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This chapter establishes the properties of gases that will be used throughout the text. It 
begins with an account of an idealized version of a gas, a perfect gas, and shows how its 
equation of state may be assembled experimentally. We then see how the properties of real 
gases differ from those of a perfect gas, and construct an equation of state that describes 
their properties.

The sim plest state o f m atter is a gas, a form  o f  m atter that fills any container it 
occupies. Initially we consider only pure gases, bu t later in the chapter we see that the 
sam e ideas and equations apply to m ixtures o f  gases too.

The perfect gas

W e shall find it helpful to p icture a gas as a collection o f m olecules (or atom s) in con ­
tinuous ran dom  m otion , with average speeds that increase as the tem perature is raised. 
A  gas differs from  a liquid in that, except during collisions, the m olecules o f  a gas are 
widely separated from  one another and m ove in path s that are largely unaffected by 
interm olecular forces.

1.1 The states of gases
The p h y sica l sta te  o f  a sam ple o f  a substance, its physical condition, is defined by  its 
physical properties. Tw o sam ples o f  a substance that have the sam e physical p rop er­
ties are in the sam e state. The state o f  a pure gas, for exam ple, is specified by giving its 
volum e, ٧, am ount o f  substance (num ber o f  m oles), n, pressure, p , and tem perature, 
T. However, it has been established experim entally that it is sufficient to specify only 
three o f  these variables, for then the fourth  variable is fixed. That is, it is an experi­
m ental fact that each substance is described by  an eq u ation  o f  state , an  equation  that 
interrelates these four variables.

The general form  o f  an equation  o f  state is

( 1.1), =  f(T ,V ,n)

This equation  tells us that, i f  we know  the values o f  T, V, and n for a particular su b ­
stance, then the pressure has a fixed value. Each substance is described by its own 
equation  o f state, bu t we know  the explicit form  o f  the equation  in only a few special 
cases. One very im portant exam ple is the equation  o f  state o f  a ‘perfect gas’, which has 
the form  p  =  nRT/V, where R is a constant. M uch o f  the rest o f  this chapter will exam ­
ine the origin  o f  this equation  o f  state and its applications.



T able 1.1 Pressure units

Name Symbol Value

N m ل ,  kg m s ل 
ل0ق  Pa 

101.325 kPa
(101 325/760) Pa = 133.32. 

6.894 757 kPa

Pa ل
1 bar 
1 atm 

1 Torr 
1 mmHg 

1 psi

pascal
bar
atmosphere
torr
millimetres of mercury 

pound per square inch

(a) P re ssu re

P ressu re  is defined as force divided by  the area to which the force is applied. The 
greater the force acting on  a given area, the greater the pressure. The origin  o f  the force 
exerted by a gas is the incessant battering o f  the m olecules on the walls o f  its container. 
The collisions are so  n um erous that they exert an effectively steady force, which is 
experienced as a steady pressure.

The SI unit o f  pressure, the pascal (P a), is defined as 1 new ton per m etre-squared:

[1.2b]

1 Pa =  1 N  m  

In term s o f  base units, 

1 Pa =  1 m

Several other units are still w idely used (Table 1.1); o f  these units, the m ost com m only 
used are atm osphere (1 atm  =  1.013 25 X 105 Pa exactly) and bar (1 bar =  105 Pa). A 
pressure o f  1 bar is the sta n d a rd  p re ssu re  for reporting data; we denote it p٠.

Self-test 1.1 Calculate the pressure (in pascals and atm ospheres) exerted by  a m ass 
o f  1.0 kg pressing through the poin t o f  a p in  o f  area 1.0 X 10-  m m 2 at the surface 
o f  the Earth. Hint. The force exerted by  a m ass m due to gravity at the surface o f  the 
Earth is mg, where g  is the acceleration o f  free fall (see endpaper 2 for its standard 
value). [0.98 GPa, 9.7 X 103 atm]

I f  two gases are in separate containers that share a com m on  m ovable wall (Fig. 1.1), 
the gas that has the higher pressure will tend to com press (reduce the volum e o f)  the 
gas that has lower pressure. The pressure o f  the high-pressure gas will fall as it expands 
and that o f  the low -pressure gas will rise as it is com pressed . There will com e a stage 
when the two pressures are equal and the wall has no further tendency to m ove. This 
condition  o f  equality o f  pressure on either side o f  a m ovable wall (a ‘p iston ’) is a state 
o f  m ech an ical eq u ilib r iu m  betw een the two gases. The pressure o f  a gas is therefore 
an indication  o f  whether a container that contains the gas will be in m echanical equ i­
librium  with another gas with which it shares a m ovable wall.

(b) T h e m e a su re m e n t o f p re s su re

The pressure exerted by the atm osphere is m easured with a b aro m eter . The original 
version o f  a barom eter (which w as invented by Torricelli, a student o f  G alileo) was an 
inverted tube o f  m ercury sealed at the upper end. W hen the colum n o f  m ercury is in 
m echanical equilibrium  with the atm osphere, the pressure at its base is equal to that

Comment 1.1
The International System o f units (SI, 
from  the French Systeme International 
d ’ Unites) is discussed in Appendix 1.

M ovable
wall

(a)

Equal pressures

High
pressure

Low
pressure

Fig. 1.1 When a region of high pressure is 
separated from a region of low pressure by 
a movable wall, the wall will be pushed into 
one region or the other, as in (a) and (c). 
However, if the two pressures are identical, 
the wall will not move (b). The latter 
condition is one o f mechanical equilibrium 
between the two regions.



Diathermic
wall

Equal tem peratu res

(b)

Low High
tem perature tem perature

Fig. 1.2 Energy flows as heat from a region 
at a higher temperature to one at a lower 
temperature if the two are in contact 
through a diathermic wall, as in (a) and 
(c). However, if the two regions have 
identical temperatures, there is no net 
transfer of energy as heat even though the 
two regions are separated by a diathermic 
wall (b). The latter condition corresponds 
to the two regions being at thermal 
equilibrium.

exerted by the atm osphere. It follow s that the height o f  the m ercury colum n is p ro ­
portional to the external pressure.

Exam ple 1.1 Calculating the pressure exerted by a column of liquid

D erive an equation  for the pressure at the base o f  a colum n o f  liquid o f  m ass 
density p  (rho) and height h at the surface o f  the Earth.

M ethod Pressure is defined as p  =  F/A  where F  is the force applied to the area A, 
and F  =  mg. T o  calculate F  we need to know  the m ass m o f  the colum n o f  liquid, 
which is its m ass density, p , m ultip lied by  its volum e, V: m =  pV . The first step, 
therefore, is to calculate the volum e o f  a cylindrical co lum n o f  liquid.

Answ er Let the colum n have cross-sectional area A; then its volum e is Ah and its 
m ass is m =  pAh. The force the co lum n o f  this m ass exerts at its base is

F  =  m g =  pA hg

The pressure at the base o f  the co lum n is therefore

p  =  A  = ج   =  pgh (1.3)

N ote that the pressure is independent o f  the shape and cross-sectional area o f  the 
colum n. The m ass o f  the colum n o f  a given height increases as the area, bu t so  does 
the area on  which the force acts, so the two cancel.

Self-test 1.2 Derive an expression  for the pressure at the base o f  a co lum n o f  liquid 
o f  length l held at an angle و (theta) to the vertical ( 1). [p =  pgl cos و]

The pressure o f  a sam ple o f  gas inside a container is m easured by  using a pressure 
gauge, which is a device with electrical properties that depend on the pressure. For 
instance, a Bayard-A lpert pressure gauge is based on  the ionization  o f  the m olecules 
present in the gas and the resulting current o f  ions is interpreted in term s o f  the p res­
sure. In a capacitance manometer, the deflection o f  a diaph ragm  relative to a fixed elec­
trode is m onitored  through its effect on the capacitance o f  the arrangem ent. Certain 
sem icon ductors also respond to pressure and are used  as transducers in solid-state 
pressure gauges.

(c) T e m p era tu re

The concept o f  tem perature springs from  the observation  that a change in physical 
state (for exam ple, a change o f  volum e) can occur when two objects are in contact 
with one another, as when a red-hot m etal is p lunged into water. Later (Section  2.1) 
we shall see that the change in state can be interpreted as arising from  a flow o f  energy 
as heat from  one object to another. The tem peratu re , T, is the property  that indicates 
the direction o f  the flow o f  energy through a therm ally conducting, rigid wall. If 
energy flows from  A  to B when they are in contact, then we say  that A  has a higher 
tem perature than B (Fig. 1.2).

It will prove useful to d istinguish  betw een two types o f  bou n d ary  that can separate 
the objects. A  bou ndary  is d iath erm ic (therm ally conducting) i f  a change o f  state is 
observed when two objects at different tem peratures are brough t into contact.1 A

1 The word dia is from the Greek for ‘through’.



m etaل container has diatherm ic walls. A  bou ndary  is ad iab a tic  (therm ally insulating) 
i f  no change occurs even though the two objects have different tem peratures. A 
vacuum  flask is an  approxim ation  to an adiabatic container.

The tem perature is a p roperty  that indicates whether two objects w ould be in 
‘therm al equilibrium ’ if  they were in contact through a diatherm ic boundary. T h erm al 
eq u ilib r iu m  is established i f  no change o f  state occurs when two objects A  to B are in 
contact through a diatherm ic boundary. Suppose an object A  (w hich we can think o f 
as a b lock  o f  iron) is in therm al equilibrium  with an object B (a b lock  o f  copper), and 
that B is also in therm al equilibrium  with another object C  (a  flask o f  w ater). Then it 
has been found experim entally that A  and C  will also be in therm al equilibrium  when 
they are put in contact (Fig. 1.3). This observation  is sum m arized by  the Z eroth  Law  
o f  th erm od y n am ics:

If A  is in therm al equilibrium  with B, and B is in therm al equilibrium  with C, then
C  is also in therm al equilibrium  with A.

The Zeroth  Law justifies the concept o f  tem perature and the use o f  a therm om eter, 
a device for m easuring the tem perature. Thus, su ppose that B is a glass capillary con ­
taining a liquid, such  as m ercury, that expands significantly as the tem perature 
increases. Then, when A  is in  contact with B, the m ercury colum n in the latter has a 
certain length. A ccording to the Z eroth Law, i f  the m ercury colum n in B has the sam e 
length when it is placed in therm al contact with another object C, then we can predict 
that no change o f  state o f  A  and C  will occur when they are in therm al contact. M o re­
over, we can use the length o f the m ercury colum n as a m easure o f  the tem peratures 
o f A  and C.

In the early days o f  therm om etry (and still in  laboratory practice today), tem pera­
tures were related to the length o f  a co lum n o f  liquid, and the difference in  lengths 
show n when the therm om eter w as first in contact with m elting ice and then with 
boiling water was divided into 100 steps called ‘degrees’, the lower poin t being labelled
0. This procedure led to the C e lsiu s sca le  o f  tem perature. In this text, tem peratures 
on the Celsius scale are denoted d  and expressed in degrees Celsius (°C ). However, 
because different liquids expand to different extents, and do not always expand 
uniform ly over a given range, therm om eters constructed from  different m aterials 
show ed different num erical values o f  the tem perature betw een their fixed poin ts. The 
pressure o f a gas, however, can be used  to construct a perfect-gas tem p eratu re  sca le  
that is independent o f  the identity o f  the gas. The perfect-gas scale turns out to be 
identical to the th erm od y n am ic  tem p eratu re  sca le  to be introduced in Section 3.2c, 
so we shall use the latter term  from  now  on  to avoid a proliferation  o f nam es. On 
the therm odynam ic tem perature scale, tem peratures are denoted T  and are norm ally 
reported in kelvins, K  (not °K ). Therm odynam ic and C elsius tem peratures are related 
by the exact expression

(1.4)T/K  = e / ° C  +  273.15

This relation, in the fo rm  d/°C  =  T/K  -  273.15, is the current definition o f  the Celsius 
scale in term s o f the m ore fundam ental K elvin  scale. It im plies that a difference in 
tem perature o f  1°C  is equivalent to a difference o f  1 K.

EquilibriumEquilibrium,

i t إ 
Equilibrium

Fig. 1.3 The experience summarized by the 
Zeroth Law of thermodynamics is that, if 
an object A is in thermal equilibrium with 
B and B is in thermal equilibrium with C, 
then C is in thermal equilibrium with A.

A note on g o o d  practice W e write T  =  0, not T  =  0 K  for the zero tem perature 
on the therm odynam ic tem perature scale. This scale is absolute, and the lowest 
tem perature is 0 regardless o f  the size o f  the divisions on  the scale (just as we write 
p  =  0 for zero pressure, regardless o f  the size o f  the units we adopt, such  as bar or 
pascal). However, we write 0 °C  because the Celsius scale is n ot absolute.



Fig. 1.4 The pressure-volume dependence 
o f a fixed amount of perfect gas at different 
temperatures. Each curve is a hyperbola 
(pV =  constant) and is called an isotherm.

Il م  Exploration '' Explore how the
pressure of 1.5 mol CO2(g) varies 

with volume as it is compressed at 
(a) 273 K, (b) 373 K from 30 dm3 to 
15 dm3.

Com m ent 1.2
A hyperbola Is a curve obtained by 
plotting y  against x  with xy =  constant.

Illustration 1.1 Converting temperatures

T o  express 25 .00°C  as a tem perature in kelvins, we use eqn 1.4 to write

T/K  =  (2 5 .0 0 °C )/°C  +  273.15 =  25.00 +  273.15 =  298.15

N ote how  the units (in this case, °C ) are cancelled like num bers. T h is is the p roced­
ure called ‘quantity calculus’ in which a physical quantity (such as the tem perature) 
is the produ ct o f  a num erical value (25.00) and a unit (1 °C ). M ultip lication  o f  both  
sides by the unit K  then gives T  =  298.15 K.

A note on g o o d  practice W hen the units need to be specified in  an equation, the 
approved procedure, which avoids any am biguity, is to write (physical quantity)/ 
units, which is a d im ensionless num ber, ju st as (2 5 .0 0 °C )/°C  =  25.00 in this 
Illustration. U nits m ay  be m ultip lied and cancelled ju st like num bers.

1.2 The gas laws
The equation  o f  state o f  a gas at low  pressure was established by com bining a series o f 
em pirical laws.

(a) Th e p erfe £ t g a s  law

W e assum e that the follow ing individual gas laws are fam iliar:

B oyle ’s  law : p V  =  constant, at constant n, T  (1 .5 )°

C h arle s’s  law : V  =  constant X T, at constant n, p  (1 .6a)°

p  =  constant X T, at constant n, V  (1 .6b)°

A v o gad ro ’s p rin c ip le :2 V  =  constant X n at constant p , T  (1 .7 )°

Boyle’s and C harles’s laws are exam ples o f  a lim itin g  law , a law that is strictly true only 
in  a certain lim it, in this case p  >  0. Equations valid in this lim iting sense will be 
signalled by a ° on  the equation  num ber, as in these expressions. A vogadro ’s principle 
is com m on ly  expressed in the form  ‘equal vo lum es o f  gases at the sam e tem perature 
and pressure contain  the sam e n um bers o f  m olecules’ . In this form , it is increasingly 
true as p  >  0. A lthough these relations are strictly true only at p  =  0, they are 
reasonably  reliable at n orm al p ressures (p 1 ء  bar) and are used  w idely throughout 
chem istry.

Figure 1.4 depicts the variation  o f  the pressure o f  a sam ple o f  gas as the volum e is 
changed. Each o f  the curves in the graph corresponds to a single tem perature and 
hence is called an iso th erm . A ccording to Boyle’s law, the isotherm s o f  gases are 
hyperbolas. An alternative depiction, a p lo t o f  pressure against 1/volum e, is show n in 
Fig. 1.5. The linear variation  o f  volum e with tem perature sum m arized by C harles’s 
law is illustrated in Fig. 1.6. The lines in this illustration  are exam ples o f  iso b ars , or 
lines show ing the variation  o f  properties at constant pressure. Figure 1.7 illustrates the 
linear variation  o f  pressure with tem perature. The lines in  this diagram  are isoch ores, 
or lines show ing the variation  o f  properties at constant volum e.

2 Avogadro’s principle is a principle rather than a law (a summary of e^erience) because it depends on 
the validi^ of a model, in this case the existence of molecules. Despite there now being no doubt about the 
existence of molecules, it is still a model-based principle rather than a law.
3 To solve this and other Explorations, use either mathematical sof^are or the Living graphs from the 
text’s web site.
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Fig. 1.7 The pressure also varies linearly 
with the temperature at constant volume, 
and e^rapolates to zero at T =  273- ) ه  °C).

Il j  Exploration E ^ loreh o w  the pressure 
of 1.5 mol CO2(g) in a container of 

volume (a) 3ه  dm3, (b) 15 dm3 varies with 
temperature as it is cooled from 373 K to 
273 K.

Fig. 1.6 The variation of the volume of a 
fixed amount o f gas with the temperature 
at constant pressure. Note that in each case 
the isobars extrapolate to zero volume at 
T = ه  , or fl=-273°C .

ئ  Exploration Explore how the volume 
of1.5 mol CO2(g) in a container 

maintained at (a) 1.هه bar, (b) ه5ه.  bar 
varies with temperature as it is cooled from 
373 K to 273 K.

Fig. 1.6 Straight lines are obtained when the 
pressure is plotted against 1/V at constant 
temperature.

Il ر  Exploration Repeat Exploration 1.4, 
but plot the data as p against 1/V.

A note on g o o d  practice T o  test the validity o f  a relation betw een two quantities, it 
is best to p lot them  in such  a way that they sh ou ld  give a straight line, for deviations 
from  a straight line are m u ch  easier to detect than deviations from  a curve.

The em pirical observations sum m arized  by eqns 1 .5 -7  can be com bined into a 
single expression:

p V  =  constant X nT

This expression  is consistent with Boyle’s law (p V  =  constant) when n and T  are con ­
stant, with both  form s o f  C harles’s law (p ح T, V T) when n and either V ح   or p  are 
held constant, and with A vogadro ’s principle (V n) when p ح   and T  are constant. The 
constant o f  proportionality , which is found experim entally to be the sam e for all 
gases, is denoted R and called the g a s co n stan t. The resulting expression

p V  =  n R T (1.8)°

is the p erfect g a s eq u ation . It is the approxim ate equation  o f  state o f  any gas, and 
becom es increasingly exact as the pressure o f  the gas approaches zero. A  gas that obeys 
eqn 1.8 exactly under all conditions is called a p erfect g a s  (or ideal gas). A  real gas, 
an actual gas, behaves m ore like a perfect gas the lower the pressure, and is described 
exactly by eqn 1.8 in the lim it o f  p  > ه  . The gas constant R can be determ ined by 
evaluating R =  p V /n T  for a gas in the lim it o f  zero pressure (to guarantee that it is



Tab le  1.2 The gas constant
behaving perfectly). However, a m ore accurate value can be obtained by m easuring 
the speed o f soun d in a low -pressure gas (argon  is used  in  practice) and extrapolating 
its value to zero pressure. Table 1.2 lists the values o f  R in a variety o f  units.

8.314 47 j K-1mol-1
8.205 74 X 1م dm  ̂atm K-1 mol-
8 314 47 X 1ت-م dm  ̂bar K-1 mol-1
8.314 47 Pa m^K-1mol-1
1 62.364 dm^Torr K-1 mol

1.987 21 cal K-1 mol-1

The kinetic model of g a se sM olecular interpretation

Com m ent 1.3
For an object o f  m ass m m oving at a 
speed 1, the kinetic energy is EK =  -  m^2. 
The potential energy, EP or V, o f  an 
object is the energy arising from  its 
position  (not speed). No universal 
expression for the potential energy can 
be given because it depends on the type 
o f  interaction the object experiences.

The m olecular explanation  o f  Boyle’s law  is that, i f  a sam ple o f  gas is com pressed 
to half its volum e, then twice as m an y  m olecules strike the walls in a given period  
o f  tim e than before it w as com pressed . A s a result, the average force exerted on 
the walls is doubled . H ence, when the volum e is halved the pressure o f  the gas is 
doubled , and p  X V  is a constant. Boyle’s law applies to all gases regardless o f  their 
chem ical identity (provided the pressure is low) because at low  pressures the aver­
age separation  o f  m olecules is so  great that they exert no influence on  one another 
and hence travel independently. The m olecular explanation  o f C harles’s law lies 
in  the fact that raising the tem perature o f  a gas increases the average speed o f  its 
m olecules. The m olecules collide with the walls m ore frequently and with greater 
im pact. Therefore they exert a greater pressure on  the walls o f  the container.

These qualitative concepts are expressed quantitatively in term s o f  the kinetic 
m odel o f  gases, which is described m ore fully in  C hapter 21. Briefly, the kinetic 
m odel is based on  three assum ptions:

1. The gas consists o f  m olecules o f  m ass m in  ceaseless ran dom  m otion .

2. The size o f  the m olecules is negligible, in the sense that their diam eters are 
m uch  sm aller than the average distance travelled betw een collisions.

3. The m olecules interact only through brief, infrequent, and elastic collisions.

An elastic collision is a collision in which the total translational kinetic energy o f  the 
m olecules is conserved. F rom  the very econom ical assum ptions o f  the kinetic 
m odel, it can be deduced (as we shall show  in detail in C hapter 21) that the pres­
sure and volum e o f  the gas are related by

p V  =  3  nM c2 (1 .9 )°

where M  =  m N A, the m olar m ass o f  the m olecules, and c is the root mean square 
speed o f  the m olecules, the square root o f  the m ean o f  the squares o f  the speeds, v , 
o f  the m olecules:

( 1.10)

o f the m olecules depends only on  the

c =  <v2) 1/2

W e see that, i f  the root m ean square sp 
tem perature, then at constant tem perature

p V =  constant

which is the content o f  Boyle’s law. M oreover, for eqn 1.9 to be the equation  o f 
state o f  a perfect gas, its right-hand side m u st be equal to nRT. It follow s that the 
root m ean square speed o f  the m olecules in a gas at a tem perature T  m u st be

( 1.11)°
3R T

M

W e can conclude that the root m ean square speed o f  the molecules o f  a  gas is propor­
tional to the square root of the temperature and inversely proportional to the square 
root o f  the m olar m ass. That is, the higher the tem perature, the higher the root m ean 
square speed o f  the m olecules, and, at a given tem perature, heavy m olecules travel 
m ore slow ly than light m olecules. The root m ean  square speed o f  N 2 m olecules, for 
instance, is found from  eqn 1.11 to be 515 m  s-1 at 298 K.



Fig. 1.9 Sections through the surface shown 
in Fig. 1.8 at constant temperature give the 
isotherms shown in Fig. 1.4 and the isobars 
shown in Fig. 1.6.

Fig. 1.8 A region of the p,V,Tsurface o f a 
fixed amount o f perfect gas. The points 
forming the surface represent the only 
states of the gas that can exist.

The surface in Fig. 1.8 is a p lot o f  the pressure o f  a fixed am ount o f  perfect gas 
against its volum e and therm odynam ic tem perature as given by eqn 1.8. The surface 
depicts the only possible states o f  a perfect gas: the gas cannot exist in states that do not 
correspond to poin ts on  the surface. The graphs in Figs. 1.4 and 1.6 correspond to the 
sections through the surface (Fig. 1.9).

Exam ple 1.2 Using the perfect g a s  equation

In an industrial process, n itrogen  is heated to 500 K in a vessel o f  constant volum e. 
I f  it enters the vessel at 100 atm  and 300 K, what pressure w ould it exert at the 
w orking tem perature i f  it behaved as a perfect gas?

M ethod W e expect the pressure to be greater on  account o f  the increase in tem ­
perature. The perfect gas law in the form  P V /n T  =  R im plies that, i f  the conditions 
are changed from  one set o f  values to another, then because P V /n T  is equal to a 
constant, the two sets o f  values are related by the ‘com bined gas law’ :

ظ = ص (°1.12)
يء1 يء2

The know n and unknow n data are sum m arized  in (2).

A nswer C ancellation o f the volum es (because V1 =  V2) and am oun ts (because 
n1 =  n2) on  each side o f  the com bined gas law results in

n p V T

Same 100 Same 300
Same ? Same 500

T1 T2

which can be rearranged into

=  T2  x  

T1



Substitu tion  o f  the data then gives 

500
■ X (100 atm) =  167 atm

300

Experim ent show s that the pressure is actually 183 atm  under these conditions, so 
the assum ption  that the gas is perfect leads to a 10 per cent error.

Self-test 1.3 W hat tem perature w ould result in the sam e sam ple exerting a pressure 
o f3 0 0  atm? [900 K]

The perfect gas equation  is o f  the greatest im portance in physical chem istry because 
it is used  to derive a wide range o f relations that are used throughout therm odynam ics. 
H ow ever, it is also o f considerable practical utility for calculating the properties o f  a 
gas under a variety o f  conditions. For instance, the m olar volum e, V ^ =  V/n, o f  a p er­
fect gas under the conditions called sta n d a rd  am b ien t tem p eratu re  a n d  p re ssu re  
(SA TP ), which m eans 298.15 K and 1 bar (that is, exactly 105 Pa), is easily calculated 
from  V ^ =  R T /p  to be 24.789 dm^ m ol-1. An earlier definition, sta n d a rd  tem p eratu re  
a n d  p re ssu re  (ST P ), was 0 °C  and 1 atm ; at STP, the m olar volum e o f  a perfect gas is 
22.414 dm^ m ol-1. A m on g other applications, eqn 1.8 can be used to d iscuss processes 
in  the atm osphere that give rise to the weather.

د  IMPACT ON ENVIRONMENTAL SCIENCE ص I1.1 The gas laws and the weather

The biggest sam ple o f  gas readily accessible to us is the atm osphere, a m ixture o f  gases 
w ith the com position  sum m arized  in Table 1.3. The com position  is m aintained m o d ­
erately constant by diffusion  and convection (w inds, particularly the local turbulence 
called eddies) bu t the pressure and tem perature vary with altitude and with the local 
conditions, particularly in the troposphere (the ‘sphere o f  change’), the layer extend­
ing up to about 11 km .

Tab le  1.3 The composition of dry air at sea level

Percentage

Component By volume

Nitrogen, N2 78.08 75.53
O^gen, 2ه 20.95 23.14
Argon, Ar 0.93 1.28
Carbon dioxide, CO2 0.031 0.047
Hydrogen, H2 5.0 X 10-3 2.0 X 10-4
Neon, Ne 1.8 X 10 -3 1.3 X 10-3
Helium, He 5.2 X 10 -4 7.2 X 10-5
Methane, CH4 2.0 X 10-4 1.1 X 10 -4
Krypton, Kr 1.1 X 10 -4 3.2 X 10-4
Nitric oxide, NO 5.0 X 10-5 1.7 X 10-6
Xenon, Xe 8.7 X 10 -6 1.2 X 10-5
Ozone, O3: summer 7.0 X 10 -6 1.2 X 10-5

winter 2.0 X 10 -6 3.3 X 10-6



In the troposphere the average tem perature is 15°C  at sea level, falling to -5 7 °C  at 
the b o ttom  o f  the tropopause at 11 km . T h is variation  is m uch less pron oun ced when 
expressed on the Kelvin scale, ranging from  288 K to 216 K, an average o f  268 K. I f  we 
suppose that the tem perature has its average value all the way up to the tropopause, 
then the pressure varies with altitude, h, according to the barom etric form ula:

p  =  p،,e"h/H

where p 0 is the pressure at sea level and H  is a constant approxim ately  equal to 8 km. 
M ore specifically, H  =  RT/M g, where M  is the average m olar m ass o f  air and T  is the 
tem perature. The barom etric form ula fits the observed pressure distribution  quite 
well even for regions well above the troposphere (see Fig. 1.10). It im plies that the 
pressure o f  the air and its density fall to h alf their sea-level value at h =  H  ln 2, or 6 km.

Local variations o f  pressure, tem perature, and com position  in the troposphere 
are m anifest as ‘w eather’ . A  sm all region o f  air is term ed a parcel. First, we note that a 
parcel o f  w arm  air is less dense than the sam e parcel o f  cool air. A s a parcel rises, it 
expands adiabatically  (that is, w ithout transfer o f  heat from  its su rroun dings), so  it 
cools. C ool air can absorb lower concentrations o f  water vapour than w arm  air, so  the 
m oisture form s clouds. C loudy skies can therefore be associated with rising air and 
clear skies are often associated with descending air.

The m otion  o f  air in the upper altitudes m ay  lead to an accum ulation  in som e 
regions and a loss o f  m olecules from  other regions. The form er result in the form ation  
o f  regions o f  high pressure ( ‘h ighs’ or anticyclones) and the latter result in regions o f  
low  pressure ( ‘low s’ , depressions, or cyclones). These regions are show n as H and L on 
the accom panying weather m ap  (Fig. 1.11). The lines o f  constant p re ssu re -d iffe r in g  
by 4 m bar (400 Pa, about 3 T o rr)— m arked on it are called isobars. The elongated 
regions o f  high and low  pressure are know n, respectively, as ridges and troughs.

In m eteorology, large-scale vertical m ovem ent is called convection. H orizontal 
pressure differentials result in the flow  o f air that we call wind (see Fig.1.12). W inds 
com ing from  the north  in the N orthern  hem isphere and from  the south  in the 
Southern hem isphere are deflected tow ards the west as they m igrate from  a region 
where the Earth is rotating slow ly (at the poles) to where it is rotating m ost rapidly  (at 
the equator). W inds travel nearly parallel to the isobars, with low  pressure to their 
left in the N orthern  hem isphere and to the right in the Southern hem isphere. At the 
surface, where w ind speeds are lower, the w inds tend to travel perpendicu lar to the 
isobars from  high to low  pressure. This differential m otion  results in a sp iral outw ard 
flow o f  air clockwise in the Northern hem isphere around a high and an inw ard counter­
clockwise flow around a low.

The air lost from  regions o f  high pressure is restored as an in flux o f  air converges 
into the region  and descends. A s we have seen, descending air is associated with clear 
skies. It also becom es w arm er by  com pression  as it descends, so  regions o f  high p res­
sure are associated with high surface tem peratures. In winter, the cold surface air m ay 
prevent the com plete fall o f  air, and result in a tem perature inversion, with a layer o f 
w arm  air over a layer o f  cold air. G eographical conditions m ay also trap cool air, as 
in Los Angeles, and the photochem ical pollu tants we know  as sm og m ay be trapped 
under the w arm  layer.

(b) M ixtu res o f g a s e s

W hen dealing with gaseous m ixtures, we often need to know  the contribution  that 
each com ponent m akes to the total pressure o f  the sam ple. The p artia l p re ssu re , p j , o f 
a gas j  in a m ixture (any  gas, n ot ju st a perfect gas), is defined as

E
ق
له
سبسبد

Fig. 1.10 The variation o f atmospheric 
pressure with altitude, as predicted by the 
barometric formula and as suggested by the 
‘US Standard Atmosphere’, which takes 
into account the variation of temperature 
with altitude.

ll م  Exploration Howwouid the graph 
shown in the iilustration change if 

the temperature variation with altitude 
were taken into account? Construct a graph 
allowing for a linear decrease in 
temperature with altitude.

Fig. 1.11 A typical weather map; in this case, 
for the United States on 1 january 2000.
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Fig. 1.12 The flow of air (‘wind’) around 
regions of high and low pressure in the 
Northern and Southern hemispheres.



where Xj is the m o le  fractio n  o f  the com ponent j , the am oun t o f  j  expressed as a frac­
tion  o f  the total am ount o f  m olecules, n, in the sam ple:

Xj =  n  n =  nA +  nB +  • • • [1.14]
n

W hen no j  m olecules are present, Xj =  0; when only j  m olecules are present, Xj =  1. 
It follow s from  the definition o f  Xj that, whatever the com position  o f  the m ixture, 
xA +  xB +  • • • =  1 and therefore that the su m  o f  the partial pressures is equal to the total 
pressure:

p A +  p B +  • • • =  (xA +  xB +  • • • )p =  p  (1 .15)

Th is relation is true for both  real and perfect gases.
W hen all the gases are perfect, the partial pressure as defined in eqn 1.13 is also 

the pressure that each gas w ould occupy i f  it occupied the sam e container alone at 
the sam e tem perature. The latter is the original m eaning o f  ‘partial pressure’ . That 
identification was the basis o f  the original form ulation  o f  D a lto n ’s law:

The pressure exerted by a m ixture o f  gases is the su m  o f  the pressures that each one 
w ould exist i f  it occupied the container alone.

N ow , however, the relation betw een partial pressure (as defined in eqn 1.13) and total 
pressure (as given by  eqn 1.15) is true for all gases and the identification o f  partial 
pressure with the pressure that the gas w ould exert on  its own is valid only for a p er­
fect gas.

Exam ple 1.3 Calculating partial pressures

The m ass percentage com position  o f  dry air at sea level is approxim ately  N 2: 75.5; 
O 2: 23.2; Ar: 1.3. W hat is the partial pressure o f  each com ponent when the total 
pressure is 1.00 atm?

M ethod W e expect species with a high m ole fraction  to have a proportionally  high 
partial pressure. Partial pressures are defined by eqn 1.13. T o  use the equation , we 
need the m ole fractions o f  the com ponents. T o  calculate m ole fractions, which are 
defined by  eqn 1.14, we use the fact that the am ount o f  m olecules j  o f  m olar m ass 
M j in a sam ple o f  m ass mj is nj =  m j/M j. The m ole fractions are independent o f  the 
total m ass o f  the sam ple, so we can choose the latter to be 100 g (which m akes 
the conversion from  m ass percentages very easy). Thus, the m ass o f  N 2 present is
75.5 per cent o f  100 g, which is 75.5 g.

Answ er The am oun ts o f  each type o f  m olecule present in 100 g o f  air, in which the 
m asses o f  N 2, O 2, and Ar are 75.5 g, 23.2 g, and 1.3 g, respectively, are

n؛N ,)  =  75■5 g  = ث  ق ت  m ol
28.02 g m o l-1 28.02

n(O2) = ي  ب ي = ي م ب  m ol

75.5 g 75.5

28.02 g m o l-1 28.02

23.2 g 23.2

32.00 g m o l-1 32.00

1.3 g 1.3
n(Ar) =  =  39.9 5 m ol

These three am oun ts w ork out as 2.69 m ol, 0.725 m ol, and 0.033 m ol, respectively, 
for a total o f  3.45 m ol. The m ole fractions are obtained by  dividing each o f  the



above am oun ts by  3.45 m ol and the partial pressures are then obtained by  m u lti­
plying the m ole fraction by the total pressure ( 1.00 atm ):

N 2 O 2 Ar 
M ole fraction: 0.780 0.210 0.0096
Partial pressure/atm : 0.780 0.210 0.0096

W e have not had to assum e that the gases are perfect: partial pressures are defined 
as p j =  Xjp  for any kind o f  gas.

Self-test 1.4 W hen carbon dioxide is taken into account, the m ass percentages are 
75.52 (N 2), 23.15 (O 2), 1.28 (A r), and 0.046 (C O 2). W hat are the partial pressures 
when the total pressure is 0.900 atm? [0.703, 0.189, 0.0084, 0.00027 atm]

Real gases

Real gases do not obey the perfect gas law exactly. D eviations from  the law are particu ­
larly im portant at high pressures and low  tem peratures, especially when a gas is on the 
poin t o f  condensing to liquid.

1.3 Molecular interactions

Real gases show  deviations from  the perfect gas law because m olecules interact with 
one another. Repulsive forces between m olecules assist expansion  and attractive forces 
assist com pression.

Repulsive forces are significant only when m olecules are alm ost in contact: they are 
short-range interactions, even on  a scale m easured in m olecular diam eters (Fig. 1.13). 
Because they are short-range interactions, repulsions can be expected to be im portant 
only when the average separation  o f the m olecules is sm all. This is the case at high 
pressure, when m an y  m olecules occupy a sm all volum e. O n the other hand, attractive 
interm olecular forces have a relatively long range and are effective over several m olecu­
lar diam eters. They are im portant when the m olecules are fairly close together but not 
necessarily touching (at the interm ediate separations in Fig. 1.13). Attractive forces 
are ineffective when the m olecules are far apart (well to the right in Fig. 1.13). 
Interm olecular forces are also im portant when the tem perature is so  low  that the 
m olecules travel with such  low  m ean  speeds that they can be captured by one another.

At low  pressures, when the sam ple occupies a large volum e, the m olecules are so  far 
apart for m ost o f the tim e that the interm olecular forces play no significant role, and 
the gas behaves virtually perfectly. At m oderate pressures, when the average separa­
tion o f  the m olecules is only a few m olecular diam eters, the attractive forces dom inate 
the repulsive forces. In this case, the gas can be expected to be m ore com pressible than 
a perfect gas because the forces help to draw  the m olecules together. At high pressures, 
when the average separation  o f  the m olecules is sm all, the repulsive forces dom inate 
and the gas can be expected to be less com pressible because now  the forces help to 
drive the m olecules apart.

nf a gas is the ratio o؛؛؛ = f  its m easured m olar volum e, V 
:m at the sam e pressure and tem perature؛perfect gas, V ا

(a) Th e c o m p r e ss io n  fa c to r

The co m p ressio n  factor, Z, o،
V/n, to the m olar volum e o f  a

_Qهبج

0

Fig. 1.13 The variation o f the potential 
energy of two molecules on their 
separation. High positive potential energy 
(at very small separations) indicates that 
the interactions between them are strongly 
repulsive at these distances. At 
intermediate separations, where the 
potential energy is negative, the attractive 
interactions dominate. At large separations 
(on the right) the potential energy is zero 
and there is no interaction between the 
molecules.
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is equal to RT/p, an equivalent expression

Z  =

Because the m olar volum e o f  a perfect 
is Z  =  R T /pV  m, which we can write as

pVm =  R T Z  (1.17)

Because for a perfect gas Z  =  1 under all conditions, deviation o f  Z  from  1 is a m easure 
o f  departure from  perfect behaviour.

Som e experim ental values o f  Z  are p lotted in Fig. 1.14. At very low  pressures, all 
the gases show n have Z  ~  1 and behave nearly perfectly. At high pressures, all the 
gases have Z  >  1, signifying that they have a larger m olar volum e than a perfect gas. 
Repulsive forces are now  dom inant. At interm ediate pressures, m ost gases have Z  <  1, 
indicating that the attractive forces are reducing the m olar volum e relative to that o f  a 
perfect gas.

(b) Virial co e ffic ie n ts

Figure 1.15 show s the experim ental isotherm s for carbon dioxide. At large m olar 
vo lum es and high tem peratures the real-gas isotherm s do not differ greatly from  
perfect-gas isotherm s. The sm all differences suggest that the perfect gas law is in fact 
the first term  in an expression  o f  the form

pV m =  RT(1 +  B 'p  +  C 'p 2 +  • • • )  (1.18)

Th is expression  is an exam ple o f  a com m on  procedure in physical chemistry, in which 
a sim ple law that is know n to be a good first approxim ation  (in this case p V  =  nRT) is
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Fig. 1.16 Experimental isotherms of carbon 
dioxide at several temperatures. The 
‘critical isotherm’, the isotherm at the 
critical temperature, is at 31.04°C. The 
critical point is marked with a star.

Fig. 1.14 The variation o f the compression 
factor, Z, with pressure for several gases at 
0°C. A perfect gas has Z  =  1 at all pressures. 
Notice that, although the curves approach 
1 as p ب ه , they do so with different slopes.



variable (in  this case p ). A  m ore con-

(1.19)

treated as the first term  in  a series in pow ers 
venient expansion  for m any applications is

pVm = R T

These two expressions are two versions o f  the v iria l eq u ation  o f  state .4 By com paring 
the expression  with eqn 1.17 we see that the term  in parentheses can be identified with 
the com pression  factor, Z .

The coefficients B, C , . . . ,  which depend on the tem perature, are the second, third, 
. . .  v iria l coefficients (Table 1.4); the first virial coefficient is 1. The third virial 
coefficient, C, is usually  less im portant than the second coefficient, B, in the sense that 
at typical m olar volum es C /V  m << B/V m.

W e can use the virial equation  to dem onstrate the im portant poin t that, although 
the equation  o f  state o f  a real gas m ay  coincide with the perfect gas law as p ج 0  , not 
all its properties necessarily coincide with those o f  a perfect gas in that lim it. Consider, 
for exam ple, the value o f  dZ /dp, the slope o f  the graph o f  com pression  factor against 
pressure. For a perfect gas dZ /dp  =  0 (because Z  =  1 at all pressures), bu t for a real gas 
from  eqn 1.18 we obtain

( 1.20a)ج>اب’■ =  B + :

However, B ' is not necessarily zero, so the slope o f  Z  with respect to p  does not neces­
sarily approach  0 (the perfect gas value), as we can see in  Fig. 1.14. Because several 
physical properties o f  gases depend on derivatives, the properties o f  real gases do not 
always coincide with the perfect gas values at low  pressures. By a sim ilar argum ent,

Comment 1.4
Series exp an s^n s are discussed in 
Appendix 2.

Synoptic  T able 1.4* Second virial 
coefficients, B/(cm3 mol-1)

Temperature

273 K 600 K

Ar -21.7 11.9
CO، -149.7 -12.4

٩ -10.5 21.7
Xe -153.7 -19.6

* Mae values are g .iven in the Data section؛

( 1.20b)ا< •ج؛V جcorresponding toا
m؛d(1/V

Because the virial coefficients depend on  the tem perature, there m ay be a tem pera­
ture at which Z ج 1   with zero slope at low  pressure or high m olar volum e (Fig. 1.16). 
At this tem perature, which is called the B oyle  tem peratu re , TB, the properties o f  the 
real gas do coincide with those o f  a perfect gas as p  0 ج  . A ccording to eqn 1.20b, Z has 
zero slope as p if ج 0   B =  0, so  we can conclude that B =  0 at the Boyle tem perature. 
It then follow s from  eqn 1.19 that p V ^ ء   R T B over a m ore extended range o f  p res­
sures than at other tem peratures because the first term  after 1 (that is, B / Vm) in the 
virial equation  is zero and C /V m and higher term s are negligibly sm all. For helium  
Tb =  22.64 K; for air TB =  346.8 K; m ore values are given in Table 1.5.

Synoptic  T able 1.5* Critical constants of gases

pc/atm Vc/(cm3mol-1) Tc/K ه Tb/K

Ar 48.0 75.3 150.7 0.292 411.5
CO^ 72.9 94.0 304.2 0.274 714.8
He 2.26 57.8 5.2 0.305 22.64

O2 50.14 78.0 154.8 0.308 405.9

*  More values are given in the Data section.

4 The name comes from the Lat،n word for force. The coefficients are sometimes denoted B,

Fig. 1.16 The compression factor, Z, 
approaches 1 at low pressures, but does so 
with different slopes. For a perfect gas, the 
slope is zero, but real gases may have either 
positive or negative slopes, and the slope 
may vary with temperature. At the Boyle 
temperature, the slope is zero and the gas 
behaves perfectly over a wider range of 
conditions than at other temperatures.



Com m ent 1.5
The web site contains links to online 
databases o f  properties o f  gases.

(c) C o n d en sa tio n

N ow  consider what happens when we com press a sam ple o f  gas initially in the state 
m arked A  in Fig. 1.15 at constant tem perature (by pushing in a p iston). N ear A, the 
pressure o f  the gas rises in approxim ate agreem ent with Boyle’s law. Serious devi­
ations from  that law begin  to appear when the volum e has been  reduced to B.

At C  (which corresponds to about 60 atm  for carbon dioxide), all sim ilarity to p er­
fect behaviour is lost, for suddenly  the p iston  slides in w ithout any further rise in pres­
sure: this stage is represented by the horizontal line C D E. Exam ination  o f  the contents 
o f  the vessel show s that ju st to the left o f  C  a liquid appears, and there are two phases 
separated by a sharply defined surface. A s the volum e is decreased from  C  through 
D to E, the am ount o f  liquid increases. There is no additional resistance to the piston 
because the gas can respond by  condensing. The pressure corresponding to the line 
C D E, when both  liquid and vapour are present in equilibrium , is called the v ap o u r 
p re ssu re  o f  the liquid at the tem perature o f  the experim ent.

At E, the sam ple is entirely liquid and the p iston  rests on its surface. A ny further 
reduction  o f  volum e requires the exertion o f  considerable pressure, as is indicated 
by  the sharply rising line to the left o f  E. Even a sm all reduction  o f  volum e from  E to F 
requires a great increase in pressure.

(d) C ritical c o n s ta n ts

The isotherm  at the tem perature Tc (304.19 K, or 31 .04°C  for C O 2) plays a special role 
in  the theory o f  the states o f  m atter. An isotherm  slightly below  Tc behaves as we have 
already described: at a certain pressure, a liquid condenses from  the gas and is d istin ­
guishable from  it by the presence o f  a visible surface. If, however, the com pression  
takes place at Tc itself, then a surface separating two phases does not appear and the 
vo lum es at each end o f  the horizontal part o f  the isotherm  have m erged to a single 
poin t, the critica l p o in t o f  the gas. The tem perature, pressure, and m olar volum e 
at the critical poin t are called the critica l tem peratu re , Tc, critica l p re ssu re , p c, and 
critica l m o la r  vo lu m e, Vc, o f  the substance. Collectively, p c, Vc, and Tc are the critical 
co n stan ts o f  a substance (Table 1.5).

At and above Tc, the sam ple has a single phase that occupies the entire volum e 
o f  the container. Such a phase is, by  definition, a gas. Hence, the liquid phase o f  a 
substance does not form  above the critical tem perature. The critical tem perature o f 
oxygen, for instance, signifies that it is im possib le to produce liquid oxygen by  co m ­
pression  alone i f  its tem perature is greater than 155 K: to liquefy oxygen—  obtain  a 
fluid phase that does not occupy the entire volum e— the tem perature m u st first be 
lowered to below  155 K, and then the gas com pressed  isotherm ally. The single phase 
that fills the entire volum e when T  >  Tc m ay be m uch denser than we norm ally  con ­
sider typical o f  gases, and the nam e su p ercritica l flu id  is preferred.

1.4 The van der Waals equation
W e can draw  conclusions from  the virial equations o f  state only by  inserting specific 
values o f  the coefficients. It is often useful to have a broader, i f  less precise, view o f all 
gases. Therefore, we introduce the approxim ate equation  o f  state suggested by  j.D . 
van  der W aals in 1873. T h is equation  is an excellent exam ple o f  an expression  that can 
be obtained by thinking scientifically about a m athem atically  com plicated but physi­
cally sim ple problem , that is, it is a good exam ple o f  ‘m odel bu ild in g ’ .

The van  der W aals eq u atio n  is

p  =  V ^ b  - a ( V 2 ■' ل ؛ ' a ؛



and a derivation is given in Justification 1.1. The equation  is often written in term s o f
V/n as = ؛؛؛the m olar volum e V

(1.21b) ع - ؛ p
Vm -  b V m

The constants a and b are called the van  d er W aals coefficients. They are characteris­
tic o f  each gas bu t independent o f  the tem perature (Table 1.6).

J s t i f ic a t io n  1.1 The van der Waals equation of state

The repulsive interactions between molecules are taken into account by supposing 
that they cause the molecules to behave as small but impenetrable spheres. The non­
zero volume o f the molecules implies that instead o f moving in a volume V they are 
restricted to a smaller volume V -  nb, where nb is approximately the total volume 
taken up by the molecules themselves. This argument suggests that the perfect gas 
law p =  nRT/V should be replaced by

nRT

when repulsions are significant. The closest distance o f two hard-sphere molecules 
o f radius r, and volume Vmoleĉ le = ه   nr 3, is 2r, so the volume excluded is ه  n (2r)3, or 
8 Vmolecule. The volume excluded per molecule is one-half this volume, or 4Vmoleĉ le, 

so b 4 •Vmolecule^Aء 
The pressure depends on both the frequency o f collisions with the walls and 

the force o f each collision. Both the frequency o f the collisions and their force 
are reduced by the attractive forces, which act with a strength proportional to the 
molar concentration, n/ V, o f molecules in the sample. Therefore, because both 
the f"equency and the force o f the collisions are reduced by the attractive forces, 
the pressure is reduced in proportion to the square o f this concentration. If the 
reduction o f pressure is written as - a (n /V )2, where a is a positive constant charac­
teristic o f each gas, the combined effect o f the repulsive and attractive forces is the 
van der Waals equation o f state as expressed in eqn 1.21.

In this Justification we have built the van der W aals equation using vague argu­
ments about the volumes o f molecules and the effects o f forces. The equation can be 
derived in other ways, but the present method has the advantage that it shows how 
to derive the form o f an equation out o f general ideas. The derivation also has the 
advantage o f keeping imprecise the significance o f the coefficients a and b: they are 
much better regarded as empirical param eters than as precisely defined molecular 
properties.

Synoptic  T able 1.6*
coefficients

van der Waals

،*/(atm dm6 mol-2) ^ ( 10-2dm3mol-1)

Ar 1.337 3.20

CO^ 3.610 4.29

H e 0.0341 2.38

X e 4.137 5.16

*  M ore values are given in the D ata  section.

Exam ple 1.4 Using the van der Waals equation to estimate a molar volume

Estim ate the m olar volum e o f  C O 2 at 500 K and 100 atm  by  treating it as a van  der 
W aals gas.

M ethod T o  express eqn 1.21b as an equation  for the m olar volum e, we m ultip ly 
both  sides by  (Vm -  b) V^؛, to obtain

(V m - b )V  m p  =  R T V  m - ( V m - b ) a  

and, after division by p , collect pow ers o f Vm to obtain

b +  R T a
V 2 +m V  -

I p  , \ p , m p



A lthough closed expressions for the roots o f  a cubic equation  can be given, they 
are very com plicated. U nless analytical so lu tions are essential, it is usually  m ore 
expedient to solve such  equations with com m ercial software.

Answ er A ccording to Table 1.6, a  =  3.592 dm 6 atm  m ol-  and b =  4.267 X 1ه -  
d m 3 m ol-1. U nder the stated conditions, R T /p  = .ه41ه   d m 3 m ol- . The coefficients 
in  the equation  for Vm are therefore

b +  RT /p  =  0.453 d m 3 m ol-  

a/p  =  3.61 X 10-2 (d m 3 m ol-1)2 

ab/p =  1.55 X 10-3 (d m 3 m ol-1)3

Therefore, on  w riting x  =  V ^ /(d m 3 m ol-1), the equation  to solve is

x 3 -  0 .453x2 +  (3.61 X 10-2) x -  (1.55 X 10-3) = ه 
The acceptable root is x  =  0.366, which im plies that Vm =  0.366 d m 3 m ol-1. For a 
perfect gas under these conditions, the m olar volum e is ه41ه.  d m 3 m ol-1.

Self-test 1.5 C alculate the m olar volum e o f  argon  at 100°C  and 1هه atm  on  the 
assum ption  that it is a van der W aals gas. [0.298 d m 3 m ol-1 ]

(a) Th e reliability  o f th e eq u ation

W e now  exam ine to what extent the van der W aals equation  predicts the behaviour 
o f  real gases. It is too  optim istic to expect a single, sim ple expression  to be the true 
equation  o f  state o f  all substances, and accurate w ork on  gases m ust resort to the virial 
equation , use tabulated values o f  the coefficients at various tem peratures, and analyse 
the system s num erically. The advantage o f  the van der W aals equation, however, is 
that it is analytical (that is, expressed sym bolically) and allows us to draw  som e gen ­
eral conclusions about real gases. W hen the equation  fails we m ust use one o f  the 
other equations o f  state that have been p roposed  (som e are listed in  Table 1.7), invent 
a new one, or go back  to the virial equation.

That having been said, we can begin  to judge the reliability o f  the equation  by  co m ­
parin g the isotherm s it predicts with the experim ental isotherm s in Fig. 1.15. Som e

T ab le  1.7 Selected equations of state

Critical constants

Equation Reduced form* Pc Vc Tc

* Reduced variables are defined in Section 1.5.



Reduced vo lum e, V/V

Fig. 1.18 Van der Waals isotherms at several values o f T/Tc. Compare these curves with those 
in Fig. 1.15. The van der Waals loops are normally replaced by horizontal straight lines. The 
critical isotherm is the isotherm for T/Tc =  1.

م 11  Exploration Calculate the molar volume of chlorine gas on the basis o f the van der Waals 
equation o f state at 25ه  K and 15ه  kPa and calculate the percentage difference from the 

value predicted by the perfect gas equation.

calculated isotherm s are show n in Figs. 1.17 and 1.18. A part from  the oscillations 
below  the critical tem perature, they do resem ble experim ental isotherm s quite well. 
The oscillations, the van  d er W aals lo o p s, are unrealistic because they suggest that 
under som e conditions an increase o f  pressure results in an increase o f  volum e. 
Therefore they are replaced by horizontal lines drawn so  the loop s define equal areas 
above and below  the lines: this procedure is called the M axw ell co n stru ction  (3). The 
van der W aals coefficients, such as those in Table 1.7, are found by fitting the calcu­
lated curves to the experim ental curves.

(b) T h e fe a tu r e s  o f th e eq u atio n

The principal features o f  the van der W aals equation  can be sum m arized  as follows.

(1) Perfect gas isotherm s are obtained at high tem peratures and large m olar 
volum es.

W hen the tem perature is high, R T  m ay be so  large that the first term  in eqn 1.21b 
greatly exceeds the second. Furtherm ore, i f  the m olar volum e is large in the sense 
Vm »  b, then the denom inator Vm -  b ~  Vm. U nder these conditions, the equation 
reduces to p  =  R T /V m, the perfect gas equation.

(2) Liquids and gases coexist when cohesive and dispersing effects are in balance.

The van der W aals loops occur when both  term s in eqn 1.21b have sim ilar m agnitudes. 
The first term  arises from  the kinetic energy o f  the m olecules and their repulsive 
interactions; the second represents the effect o f  the attractive interactions.

(3) The critical constants are related to the van der W aals coefficients.

Fig. 1.17 The surface of possible states 
allowed by the van der Waals equation. 
Compare this surface with that shown in 
Fig. 1.8.



For T  <  Tc, the calculated isotherm s oscillate, and each one passes through  a m in i­
m u m  follow ed by a m axim um . These extrem a converge as T  >  Tc and coincide at 
T  =  Tc; at the critical poin t the curve has a flat inflexion (4). F rom  the properties o f 
curves, we know  that an inflexion o f  this type occurs when both  the first and second 
derivatives are zero. Hence, we can find the critical constants by calculating these 
derivatives and setting them  equal to zero:

dp R T  + 2 a  0

d V  (V -  b)2 Vm 

d 2p  2 R T  6a 0 

d V ^  (Vm -  b)3 Vm

at the critical point. The so lu tions o f  these two equations (and using eqn 1.21b to 
calculate p c from  Vc and Tc) are

ب3، ج = ي آ = ش (1د2)
These relations provide an  alternative route to the determ ination  o f  a  and b from  the 
values o f  the critical constants. They can be tested by noting that the critica l co m ­
p re ssio n  factor, Z c, is predicted to be equal to

Z  - R H  (1 '23)

for all gases. W e see from  Table 1.5 that, although Z c <  8  =  0.375, it is approxim ately 
constant (at 0.3) and the discrepancy is reasonably  sm all.

1.5 The pr؛nc؛p)e of corresponding states
A n im portant general technique in science for com paring the properties o f  objects is 
to choose a related fundam ental property  o f  the sam e kind and to set up  a relative 
scale on  that basis. W e have seen that the critical constants are characteristic p ro p er­
ties o f  gases, so it m ay be that a scale can be set up  by u sing them  as yardsticks. We 
therefore introduce the dim ensionless red u ced  variab les o f  a gas by  dividing the 
actual variable by the corresponding critical constant:

pr =  ~~~ Vr = ^  Tr = ^  [1.24]
ئ  c c

I f  the reduced pressure o f  a gas is given, we can easily calculate its actual pressure by 
u sin g p  =  p rp c, and likewise for the volum e and tem perature. V an  der W aals, w ho first 
tried this procedure, hoped that gases confined to the sam e reduced volum e, Vr, at the 
sam e reduced tem perature, Tr, w ould exert the sam e reduced pressure, p r. The hope 
w as largely fulfilled (Fig. 1.19). The illustration show s the dependence o f  the co m ­
pression  factor on the reduced pressure for a variety o f  gases at various reduced tem ­
peratures. The success o f  the procedure is strikingly clear: com pare this graph with 
Fig. 1.14, where sim ilar data are p lotted w ithout u sing reduced variables. The obser­
vation  that real gases at the sam e reduced volum e and reduced tem perature exert the 
sam e reduced pressure is called the p rin c ip le  o f  co rre sp o n d in g  states. The principle 
is only an approxim ation . It w orks best for gases com posed  o f  spherical m olecules; 
it fails, som etim es badly, when the m olecules are non-spherical or polar.

The van der W aals equation  sheds som e light on the principle. First, we express 
eqn 1.21b in term s o f  the reduced variables, which gives

RTrTc a 

prpc =  VrVc -  b "  V V 2
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Reduced p ressu re, p,

Fig. 1.19 The compression factors of four of the gases shown in Fig. 1.14 plotted using reduced 
variables. The curves are labelled with the reduced temperature Tr =  T/Tc. The use of reduced 
variables organizes the data on to single curves.

Exploration Is there a set of conditions at which the compression factor o f a van der 
Waals gas passes through a minimum? If so, how does the location and value of the 

minimum value o f Z  depend on the coefficients a and b?

ظ

Then we express the critical constants in term s o f  a  and b by u sing eqn 1.22: 

apr 8aTr a

27b2 "  27%3bVr -  b) "  9b2̂ 2 

which can be reorganized into

This equation  has the sam e form  as the original, but the c o e ^ e n t s  a  and b, which 
differ from  gas to gas, have disappeared. It follow s that i f  the isotherm s are p lotted in 
term s o f  the reduced variables (as we did in fact in Fig. 1.18 w ithout draw ing attention 
to the fact), then the sam e curves are obtained whatever the gas. This is precisely the 
content o f  the principle o f  corresponding states, so  the van der W aals equation  is 
com patible with it.

Looking for too  m u ch  significance in this apparent trium ph is m istaken, because 
other equations o f  state also accom m odate the principle (Table 1.7). In fact, all we 
need are two param eters playing the roles o f  a  and b, for then the equation  can always 
be m anipulated  into reduced form . The observation  that real gases obey the principle 
approxim ately  am oun ts to saying that the effects o f  the attractive and repulsive in ter­
actions can each be approxim ated in  term s o f  a single param eter. The im portance o f 
the principle is then not so  m uch its theoretical interpretation  but the w ay that it 
enables the properties o f  a range o f  gases to be coordinated on to a single diagram  (for 
exam ple, Fig. 1.19 instead o f  Fig. 1.14).



D ISCUSSIO N Q UESTIONS 2و

Checklist of key ideas

I~112. The partial pressure of any gas is defined as pj =  xjp, where 
xj =  nj/n is its mole fraction in a mixture and p is the total 
pressure.

٥  13. In real gases, molecular interactions affect the equation of
state; the true equation of state is expressed in terms o f virial 
c o e ^ e n t s  B, C , . . .  : pV^ =  RT(1 +  B/Vm +  C/V؛m +  ■ ■ ■ ).

I~114. The vapour pressure is the pressure o f a vapour in equilibrium 
with its condensed phase.

15. The critical point is the point at which the volumes at each 
end of the horizontal part o f the isotherm have merged to 
a single point. The critical constants p c, Vc, and Tc are the 
pressure, molar volume, and temperature, respectively, at the 
critical point.

ه 16 . A supercritical fluid is a dense fluid phase above its critical 
temperature and pressure.

I~117. The van der Waals equation of state is an approximation to
the true equation o f state in which attractions are represented 
by a parameter a  and repulsions are represented by a 
parameter b: p =  nR T/(V -nb) -  a(n/V)2.

18. A reduced variable is the actual variable divided by the 
corresponding critical constant.

19. According to the principle o f corresponding states, real gases 
at the same reduced volume and reduced temperature exert 
the same reduced pressure.

I~1 1. A gas is a form of matter that fills any container it occupies.

I~1 2. An equation of state interrelates pressure, volume, 
temperature, and amount of substance: p =  f(T , V,ft).

I~1 3. The pressure is the force divided by the area to which the force 
is applied. The standard pressure is p7 =  1 bar (10؛ Pa).

I~1 4. Mechanical equilibrium is the condition of equality of 
pressure on either side o f a movable wall.

I~1 5. Temperature is the property that indicates the direction of the 
flow of energy through a thermally conducting, rigid wall.

I~1 6. A diathermic boundary is a boundary that permits the passage 
of energy as heat. An adiabatic boundary is a boundary that 
prevents the passage of energy as heat.

I~1 7. Thermal equilibrium is a condition in which no change of
state occurs when two objects A and B are in contact through 
a diathermic boundary.

I~1 8. The Zeroth Law of thermodynamics states that, if A is in
thermal equilibrium with B, and B is in thermal equilibrium 
with C, then C is also in thermal equilibrium with A.

I~1 9. The Celsius and thermodynamic temperature scales are 
related by T/K =  0/°C +  273.15.

I~110. A perfect gas obeys the perfect gas equation, pV  =  ftRT, exactly 
under all conditions.

٥  11. Dalton’s law states that the pressure exerted by a mixture of 
gases is the sum of the partial pressures of the gases.

Further reading
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Oxford University Press (2000).
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mixtures. Oxford University Press (1980).
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terminology. B lac^ e ll Scientific, Oxford (1997).
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E^erim ental versus calculated values. J. Chem. Educ. 63, 4؛ 
(1986).

M. Ross, Equations of state. In Encyclopedia of applied physics 
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A. j. Walton, Three phases of matter. Oxford University Press 
(1983).

Discussion questions

1.4 What is the significance of the critical constants?

1.5 Describe the formulation of the van der Waals equation and suggest 
rationale for one other equation of state in Table 1.7.

1.6 Explain how the van der Waals equation accounts for critical 
behaviour.

1.1 Explain how the perfect gas equation of state arises by combination of 
Boyle’s law, Charles’s law, and Avogadro’s principle.

1.2 Explain the term ‘partial pressure’ and explain why Dalton’s law is a 
limiting law.

1.3 Explain how the compression factor varies with pressure and temperature 
and describe how it reveals information about intermolecular interactions in 
real gases.



Exercises

1.7(b) The following data have been obtained for oxygen gas at 273.15 K. 
Calculate the best value of the gas constant R from them and the best value of 
the molar mass of 2ه .

p /a tm  0.750 000 0.500 000 0.250 000

p /(g  dm “ 3) 1.07144 0.714110 0.356975

1.8(a) At 500°C and 93.2 kPa, the mass densi^ of sulfur vapour is
3.710 kg m-3. What is the molecular formula of sulfur under these conditions?

1.8(b) At 100°C and 1.60 kPa, the mass densi^ of phosphorus vapour is 
0.6388 kg m-3. What is the molecular formula of phosphorus under these 
conditions?

1.9(a) Calculate the mass of water vapour present in a room of volume 400 m3 
that contains air at 27°C on a day when the relative humidity is 60 per cent.

1.9(b) Calculate the mass of water vapour present in a room of volume 250 m3 
that contains air at 23°C on a day when the relative humidity is 53 per cent.

1.10(a) Given that the density of air at 0.987 bar and 27°C is 1.146 kg m-3, 
calculate the mole fraction and partial pressure of nitrogen and oxygen 
assuming that (a) air consists only of these س  gases, (b) air also contains
1.0 mole per cent Ar.

1.10(b) A gas mi^ure consists of 320 mg of methane, 175 mg of argon, and 
225 mg of neon. The partial pressure of neon at 300 K is 8.87 kPa. Calculate
(a) the volume and (b) the total pressure of the mixture.

1.11(a) The densi^ of a gaseous compound was found to be 1.23 kg m-3 at 
330 K and 20 kPa. What is the molar mass of the compound?

1.11(b) In an experiment to measure the molar mass of a gas, 250 cm3 of the 
gas was confined in a glass vessel. The pressure was 152 Torr at 298 K and, 
a^er correcting for buoyancy effects, the mass of the gas was 33.5 mg. What is 
the molar mass of the gas?

1.12(a) The densities of air at - 85°C, 0°C, and 100°C are 1.877 g dm-3,
1.294 g dm-3, and 0.946 g dm-3, respectively. From these data, and assuming 
that air obeys Charles’s law, determine a value for the absolute zero of 
temperature in degrees Celsius.

1.12(b) A certain sample of a gas has a volume of 20.00 dm3 at 0°C and
1.000 atm. A plot of the experimental data of its volume against the Celsius 
temperature, 9, at constant p, gives a straight line of slope 0.0741 dm3 (°C)-1. 
From these data alone (without making use of the perfect gas law), determine 
the absolute zero of temperature in degrees Celsius.

1.13(a) Calculate the pressure exerted by 1.0 mol behaving as (a) a 
perfect gas, (b) a van der Waals gas when it is confined under the following 
conditions: (i) at 273.15 K in 22.414 dm3, (ii) at 1000 K in 100 cm3. Use the 
data in Table 1.6.

1.13(b) Calculate the pressure exerted by 1.0 mol H^S behaving as (a) a 
perfect gas, (b) a van der Waals gas when it is confined under the following 
conditions: (i) at 273.15 K in 22.414 dm3, (ii) at 500 K in 150 cm3. Use the data 
in Table 1.6.

1.14(a) Express the van der Waals parameters a = 0.751 atm dm6 mol-  and 
b = 0.0226 dm3 mol-1 in SI base units.

1.14(b) Express the van der Waals parameters a = 1.32 atm dm6 mol-  and 
b = 0.0436 dm3 mol-1 in SI base units.

1.15(a) A gas at 250 K and 15 atm has a molar volume 12 per cent smaller 
than that calculated from the perfect gas law. Calculate (a) the compression 
factor under these conditions and (b) the molar volume of the gas. Which are 
dominating in the sample, the attractive or the repulsive forces?

1.1(a) (a) Could 131 g of xenon gas in a vessel of volume 1.0 dm3exert a 
pressure of 20 atm at 25°C if it behaved as a perfect gas? If not, what pressure 
would it exert? (b) What pressure would it exert if it behaved as a van der 
Waals gas?

1.1(b) (a) Could 25 g of argon gas in a vessel of volume 1.5 dm3 exert a 
pressure of 2.0 bar at 30°C if it behaved as a perfect gas? If not, what pressure 
would it exert? (b) What pressure would it exert if it behaved as a van der 
Waals gas?

1.2(a) A perfect gas undergoes isothermal compression, which reduces its 
volume by 2.20 dm3. The final pressure and volume of the gas are 5.04 bar 
and 4.65 dm3, respectively. Calculate the original pressure of the gas in (a) bar, 
(b) atm.

1.2(b) A perfect gas undergoes isothermal compression, which reduces its 
volume by 1.80 dm3. The final pressure and volume of the gas are 1.97 bar and 
2.14 dm3, respectively. Calculate the original pressure of the gas in (a) bar,
(b) Torr.

1.3(a) A car ^re (i.e. an automobile tire) was inflated to a pressure of 24 lb in-  
(1.00 atm = 14.7 lb in- ) on a winter’s day when the temperature was —5°C. 
What pressure will be found, assuming no leaks have occurred and that the 
volume is constant, on a subsequent summer’s day when the temperature is 
35°C? What complications should be taken into account in practice?

1.3(b) A sample of hydrogen gas was found to have a pressure of 125 kPa 
when the temperature was 23°C. What can its pressure be expected to be when 
the temperature is 11°C?

1.4(a) A sample of 255 mg of neon occupies 3.00 dm3 at 122 K. Use the perfect
gas law to calculate the pressure of the gas.

1.4(b) A homeowner uses 4.00 X 103 m3 of natural gas in a year to heat a 
home. Assume that natural gas is all methane, CH4, and that methane is a 
perfect gas for the conditions of this problem, which are 1.00 atm and 20°C. 
What is the mass of gas used?

1.5(a) A diving bell has an air space of 3.0 m3 when on the deck of a boat. 
What is the volume of the air space when the bell has been lowered to a depth 
of 50 m? Take the mean densi^ of sea water to be 1.025 g cm-3 and assume 
that the temperature is the same as on the surface.

1.5(b) What pressure difference must be generated across the length of a 
15 cm vertical drinking straw in order to drink a water-like liquid of densi^
1.0 g cm-3?

1.6(a) A manometer consists of a U-shaped tube containing a liquid. One side 
is connected to the apparatus and the other is open to the atmosphere. The 
pressure inside the apparatus is then determined from the difference in 
heights of the liquid. Suppose the liquid is water, the external pressure is 
770 Torr, and the open side is 10.0 cm lower than the side connected to the 
apparatus. What is the pressure in the apparatus? (The density of water at 
25°C is 0.997 07gcm-3.)

1.6(b) A manometer like that described in Exercise 1.6a contained mercury in 
place of water. Suppose the external pressure is 760 Torr, and the open side is
10.0 cm higher than the side connected to the apparatus. What is the pressure 
in the apparatus? (The density of mercury at 25°C is 13.55 g cm-3.)

1.7(a) In an attempt to determine an accurate value of the gas constant, R, a 
student heated a container of volume 20.000 dm3 filled with 0.251 32 g of 
helium gas to 500°C and measured the pressure as 206.402 cm of water in a 
manometer at 25°C. Calculate the value of R from these data. (The densi^ of 
water at 25°C is 0.997 07 g cm-3; the construction of a manometer is described 
in Exercise 1.6a.)



1.19(a) The critical constants of methane are ! ,atm ء = 45.6
Vc=98.7 cm3mol-1, and Tc=190.6 K. Calculate the van der Waals parameters 
of the gas and estimate the radius of the molecules.

1.19(b) The critical constants of ethane are pc = 48.20 atm, V̂  = 148 cm  ̂mol-1, 
and Tc = 305.4 K. Calculate the van der Waals parameters of the gas and 
estimate the radius of the molecules.

1.20(a) Use the van der Waals parameters for chlorine to calculate 
approximate values of (a) the Boyle temperature of chlorine and (b) the radius 
of a Cl2 molecule regarded as a sphere.

1.20(b) Use the van der Waals parameters for hydrogen sulfide to calculate 
approximate values of (a) the Boyle temperature of the gas and (b) the 
radius of a H2S molecule regarded as a sphere (a =  4.484 dm6 atm mol-2, 
b = 0.0434 dm  ̂mol"1).

1.21(a) Suggest the pressure and temperature at which 1.0 mol of (a) NH3,
(b) Xe, (c) He will be in states that correspond to 1.0 mol H2 at 1.0 atm and 25°C.

1.21(b) Suggest the pressure and temperature at which 1.0 mol of (a) H2S,
(b) CO2, (c) Ar will be in states that correspond to 1.0 mol N2 at 1.0 atm and 
25°C.

1.22(a) A certain gas obeys the van der Waals equation with a = 0.50 m6Pa mol- . 
Its volume is found to be 5.00 X 10-4 m  ̂mol-1 at 273 K and 3.0 MPa. From 
this information calculate the van der Waals constant b. What is the 
compression factor for this gas at the prevailing temperature and pressure?

1.22(b) A certain gas obeys the van der Waals equation with a = 0.76 m6 Pa mol- . 
Its volume is found to be 4.00 X 10-4 m  ̂mol-1 at 288 K and 4.0 MPa. From 
this information calculate the van der Waals constant b. What is the 
compression factor for this gas at the prevailing temperature and pressure?

1.15(b) A gas at 350 K and 12 atm has a molar volume 12 per cent larger than 
that calculated from the perfect gas law. Calculate (a) the compression factor 
under these conditions and (b) the molar volume of the gas. Which are 
dominating in the sample, the attractive or the repulsive forces?

1.16(a) In an industrial process, nitrogen is heated to 500 K at a constant 
volume of 1.000 محل The gas enters the container at 300 K and 100 atm.
The mass of the gas is 92.4 kg. Use the van der Waals equation to determine 
the approximate pressure of the gas at its working temperature of 500 K.
For nitrogen, a = 1.352 dm6 atm mol 2, b = 0.0387 dm3 mol 1.

1.16(b) Cylinders of compressed gas are ^pically filled to a pressure of 
200 bar. For oxygen, what would be the molar volume at this pressure and 
25°C based on (a) the perfect gas equation, (b) the van der Waals equation. 
For oxygen, a = 1.364 dm6 atm mol-2, b = 3.19 X 10-2 dm3 mol-1.

1.17(a) Suppose that 10.0 mol م(ة ح2ب ) is confined to 4.860 dm  ̂at 27°C. 
Predict the pressure exerted by the ethane from (a) the perfect gas and 
(b) the van der Waals equations of state. Calculate the compression factor 
based on these calculations. For ethane, a =  5.507 dm6 atm mol-2, 
b = 0.0651 dm3 mol 1.

1.17(b) At 300 K and 20 atm, the compression factor of a gas is 0.86. Calculate
(a) the volume occupied by 8.2 mmol of the gas under these conditions and
(b) an approximate value of the second virial coefficient B at 300 K.

1.18(a) A vessel of volume 22.4 dm  ̂contains 2.0 mol H2 and 1.0 mol N2 at
273.15 K. Calculate (a) the mole fractions of each component, (b) their partial 
pressures, and (c) their total pressure.

1.18(b) A vessel of volume 22.4 dm  ̂contains 1.5 mol H2 and 2.5 mol N2 at
273.15 K. Calculate (a) the mole fractions of each component, (b) their partial 
pressures, and (c) their total pressure.

Problems*

1.4 The molar mass of a newly synthesized fluorocarbon was measured in a 
gas microbalance. This device consists of a glass bulb forming one end of a 
beam, the whole surrounded by a closed container. The beam is pivoted, and 
the balance point is attained by raising the pressure of gas in the container, so 
increasing the buoyancy of the enclosed bulb. In one experiment, the balance 
point was reached when the fluorocarbon pressure was 327.10 Torr; for the 
same setting of the pivot, a balance was reached when CHF3 (M = 70.014 g mol-1) 
was introduced at 423.22 Torr. A repeat of the experiment with a different 
setting of the pivot required a pressure of 293.22 Torr of the fluorocarbon and 
427.22 Torr of the CHF3. What is the molar mass of the fluorocarbon? Suggest 
a molecular formula.

1.5 A constant-volume perfect gas thermometer indicates a pressure of 6.69 
kPa at the triple point temperature of water (273.16 K). (a) What change of 
pressure indicates a change of 1.00 K at this temperature? (b) What pressure 
indicates a temperature of 100.00°C? (c) What change of pressure indicates a 
change of 1.00 K at the latter temperature?

1.6 A vessel of volume 22.4 dm  ̂contains 2.0 mol H2 and 1.0 mol N2 at
273.15 K initially. All the H2 reacted with sufficient N2 to form NH3. Calculate 
the partial pressures and the total pressure of the final mixture.

1.7 Calculate the molar volume of chlorine gas at 350 K and 2.30 atm using 
(a) the perfect gas law and (b) the van der Waals equation. Use the answer to 
(a) to calculate a first approximation to the correction term for attraction and 
then use successive approximations to obtain a numerical answer for part (b).

Numerica[ problem s

1.1 Recent communication with the inhabitants of Neptune have revealed 
that they have a Celsius-type temperature scale, but based on the melting 
point (0°N) and boiling point (100°N) of their most common substance, 
hydrogen. Further communications have revealed that the Neptunians know 
about perfect gas behaviour and they find that, in the limit of zero pressure, 
the value ofpVis 28 dm  ̂atm at 0°N and 40 dm  ̂atm at 100°N. What is the 
value of the absolute zero of temperature on their temperature scale?

1.2 Deduce the relation be^een the pressure and mass densi^, p, of a perfect 
gas of molar mass M. Confirm graphically, using the following data on 
dimethyl ether at 25°C, that perfect behaviour is reached at low pressures and 
find the molar mass of the gas.

p /k P a 12.223 25.20 36.97 60.37 85.23 101.3

p /(k g  m -3) 0.225 0.456 0.664 1.062 1.468 1.734

1.3 Charles’s law is sometimes expressed in the form V = V^1 + a0), where 0 
is the Celsius temperature, a is  a constant, and ٩  is the volume of the sample 
at 0°C. The following values for a  have been reported for nitrogen at 0°C:

For these data calculate the best value for the absolute zero of temperature on 
the Celsius scale.

* Problems denoted with the symbol ي were supplied by Charles Trapp, Carmen Giunta, and Marshall Cady.



1.20 The equation of state of a certain gas is given by p = RT/Vm +
(a + bT)/Vm, where a and b are constants. Find (dV/dT)p.

1.21 The following equations of state are occasionally used for approximate 
calculations on gases: (gas A) pV^ = RT(1 + b/Vm), (gas B) p(V^ -  b) = RT. 
Assuming that there were gases that actually obeyed these equations of state, 
would it be possible to liquefy either gas A or B? Would they have a critical 
temperature? Explain your answer.

1.22 Derive an expression for the compression factor of a gas that obeys the 
equation of state p(V-  nb) = nRT, where b and R are constants. If the pressure 
and temperature are such that Vm = 10b, what is the numerical value of the 
compression factor?

 The discovery of the element argon by Lord Rayleigh and Sir William ب1.23
Ramsay had its origins in Rayleigh’s measurements of the density of nitrogen 
with an eye toward accurate determination of its molar mass. Rayleigh 
prepared some samples of nitrogen by chemical reaction of nitrogen- 
containing compounds; under his standard conditions, a glass globe filled 
with this ‘chemical nitrogen’ had a mass of 2.2990 g. He prepared other 
samples by removing oxygen, carbon dioxide, and water vapour from 
atmospheric air; under the same conditions, this ‘atmospheric nitrogen’ had a 
mass of 2.3102 g (Lord Rayleigh, Royal Institution Proceedings 14,524 (1895)). 
With the hindsight of knowing accurate values for the molar masses of 
nitrogen and argon, compute the mole fraction of argon in the latter sample 
on the assumption that the former was pure nitrogen and the latter a mixture 
of nitrogen and argon.

 A substance as elementary and well known as argon still receives ب1.24
research attention. Stewart and jacobsen have published a review of 
thermodynamic properties of argon (R.B. Stewart and R.T. jacobsen, J. Phys. 
Chem. Ref. Data 18, 639 (1989)) that included the following 300 K isotherm.
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(a) Compute the second virial coefficient, B, at this temperature. (b) Use 
non-linear curve-fitting software to compute the third virial coefficient, C, 
at this temperature.

A pplications: to environm ental sc ie n c e

1.25 Atmospheric pollution is a problem that has received much attention. 
Not all pollution, however, is from industrial sources. Volcanic eruptions can 
be a significant source of air pollution. The Kilauea volcano in Hawaii emits 
200-300 t of SO2 per day. If this gas is emitted at 800°C and 1.0 atm, what 
volume of gas is emitted?

1.26 Ozone is a trace atmospheric gas that plays an important role in 
screening the Earth from harmful ultraviolet radiation, and the abundance 
of ozone is commonly reported in Dobson units. One Dobson unit is the 
thickness, in thousandths of a centimetre, of a column of gas if it were 
collected as a pure gas at 1.00 atm and 0°C. What amount of O3 (in moles) is 
found in a column of atmosphere with a cross-sectional area of 1.00 dm2 if the 
abundance is 250 Dobson units (a typical mid-latitude value)? In the seasonal 
Antarctic ozone hole, the column abundance drops below 100 Dobson units; 
how many moles of ozone are found in such a column of air above a 1.00 dm2 
area? Most atmospheric ozone is found between 10 and 50 km above the 
surface of the earth. If that ozone is spread uniformly through this portion
of the atmosphere, what is the average molar concentration corresponding to 
(a) 250 Dobson units, (b) 100 Dobson units?

1.27 The barometric formula relates the pressure of a gas of molar mass M at 
an altitude h to its pressure p0 at sea level. Derive this relation by showing that

1.8 At 273 K measurements on argon gave B = —21.7 cm3 mol-1 and
C = 1200 cm6 mol-2, where B and C are the second and third virial coefficients 
in the expansion of Z in powers of 1/Vm. Assuming that the perfect gas law 
holds sufficiently well for the estimation of the second and third terms of 
the expansion, calculate the compression factor of argon at 100 atm and 
273 K. From your result, estimate the molar volume of argon under these 
conditions.

1.9 Calculate the volume occupied by 1.00 mol N2 using the van der Waals 
equation in the form of a virial expansion at (a) its critical temperature,
(b) its Boyle temperature, and (c) its inversion temperature. Assume that 
the pressure is 10 atm throughout. At what temperature is the gas most 
perfect? Use the following data: T126.3 = ء K, a = 1.352 dm6 atm mol- ,
b = 0.0387 dm3 mol 1.

بم1.1  The second virial coefficient of methane can be approximated 
by the empirical equation B  (T  = a + be-c/T؛, where a = —0.1993 bar-1, 
b = 0.2002 bar-1, and c = 1131 K̂  with 300 K < T < 600 K. What is the 
Boyle temperature of methane?

1.11 The mass densi^ of water vapour at 327.6 atm and 776.4 K is 133.2 kg m-3. 
Given that for water T647.4 = ء K, pc = 218.3 atm, a = 5.464 dm6 atm mol- ,
b = 0.03049 dm3 mol-1, and M = 18.02 g mol-1, calculate (a) the molar 
volume. Then calculate the compression factor (b) from the data,
(c) from the virial expansion of the van der Waals equation.

1.12 The critical volume and critical pressure of a certain gas are
160 cm3 mol-1 and 40 atm, respectively. Estimate the critical temperature by 
assuming that the gas obeys the Berthelot equation of state. Estimate the radii 
of the gas molecules on the assumption that they are spheres.

1.13 Estimate the coefficients a and b in the Dieterici equation of state from 
the critical constants of xenon. Calculate the pressure exerted by 1.0 mol Xe 
when it is confined to 1.0 dm3 at 25°C.

Theoretical problem s

1.14 Show that the van der Waals equation leads to values of Z < 1 and Z > 1, 
and identify the conditions for which these values are obtained.

1.15 Express the van der Waals equation of state as a virial expansion in 
powers of 1/V^ and obtain expressions for B and C in terms of the parameters 
a and b. The expansion you will need is (1 -  x)-1 = 1 + x + م+م • • . 
Measurements on argon gave B = —21.7 cm3 mol-1 and C = 1200 cm6 mol-  
for the virial coefficients at 273 K. What are the values of a and b in the 
corresponding van der Waals equation of state?

 Derive the relation between the critical constants and the Dieterici ب1.16
equation parameters. Show that Zc = 2e-2 and derive the reduced form of the 
Dieterici equation of state. Compare the van der Waals and Dieterici 
predictions of the critical compression factor. Which is closer to typical 
experimental values?

1.17 A scientist proposed the following equation of state:

RT B C
V3V2V

Show that the equation leads to critical behaviour. Find the critical constants 
of the gas in terms of B and C and an expression for the critical compression 
factor.

1.18 Equations 1.18 and 1.19 are expansions in p and 1/V^, respectively. Find 
the relation between B, C and B , C .

1.19 The second virial coefficient B' can be obtained from measurements of 
the densi^ p of a gas at a series of pressures. Show that the graph ofp/p 
against p should be a straight line with slope proportional to B . Use the data 
on dimethyl ether in Problem 1.2 to find the values of B' and B at 25°C.



 The preceding problem is m٠st readily s٠lved (see the Solutions ب1.29
manual) with the use of the Archimedes principle, which states that the lifting 
force is equal to the difference be^een the weight of the displaced air and the 
weight of the balloon. Prove the Archimedes principle for the atmosphere 
from the barometric formula. Hint. Assume a simple shape for the balloon, 
perhaps a right circular cylinder of cross-sectional area A and height h.

1.3 م ي  Chlorofluorocarbons such as CC^F and 2 ص2م  have been linked 
to ozone depletion in Antarctica. As of 1994, these gases were found in 
quantities of 261 and 509 parts per trillion (1012) by volume (World 
Resources Institute, World resources 1996-97). Compute the molar 
concentration of these gases under conditions typical of (a) the mid-latitude 
troposphere (10°C and 1.0 atm) and (b) the Antarctic stratosphere 
(200 K and 0.050 atm).

the change in pressure dp for an infinitesimal change in altitude dh where 
the densi^ is م  is dp = - -  .Remember that p depends on the pressure .ص
Evaluate (a) the pressure difference between the top and bottom of a 
laboratory vessel of height 15 cm, and (b) the external atmospheric pressure 
at a typical cruising altitude of an aircraft (11 km) when the pressure at 
ground level is 1.0 atm.

1.28 Balloons are still used to deploy sensors that monitor mete٠r٠l٠gicaا 
phenomena and the chemistry of the atmosphere. It is possible to investigate 
some of the technicalities of ballooning by using the perfect gas law. Suppose 
your balloon has a radius of 3.0 m and that it is spherical. (a) What amount of 
H2 (in moles) is needed to inflate it to 1.0 atm in an ambient temperature of 
25°C at sea level? (b) What mass can the balloon lift at sea level, where the 
densi^ of air is 1.22 kg m- ?̂ (c) What would be the payload if He were used 
instead of H2?



The First Law

This chapter introduces some of the basic concepts of thermodynamics. It concentrates 
on the conservation of energy— the experimental observation that energy can be neither 
created nor destroyed— and shows how the principle of the conservation of energy can be 
used to assess the energy changes that accompany physical and chemical processes. 
Much of this chapter examines the means by which a system can exchange energy with its 
surroundings in terms of the work it may do or the heat that it may produce. The target con­
cept of the chapter is enthalpy, which is a very useful book-keeping property for keeping 
track of the heat output (or requirements) of physical processes and chemical reactions at 
constant pressure. We also begin to unfold some of the power of thermodynamics by 
showing how to establish relations between different properties of a system. We shall see 
that one very useful aspect of thermodynamics is that a property can be measured indirectly 
by measuring others and then combining their values. The relations we derive also enable 
us to discuss the liquefaction of gases and to establish the relation between the heat 
capacities of a substance under different conditions.

The release o f  energy can be used to provide heat when a fuel bu rn s in a furnace, to 
produce m echanical w ork when a fuel bu rn s in an engine, and to generate electrical 
w ork when a chem ical reaction p u m p s electrons through a circuit. In chem istry, we 
encounter reactions that can be harnessed to provide heat and work, reactions that 
liberate energy which is squandered (often  to the detrim ent o f  the environm ent) but 
which give products we require, and reactions that constitute the processes o f  life. 
T h erm od yn am ics, the stu dy  o f  the transform ation s o f  energy, enables u s to discuss all 
these m atters quantitatively and to m ake useful predictions.

The basic concepts

For the purposes o f  physical chem istry, the universe is divided into two parts, the sy s­
tem  and its surroundings. The system  is the part o f  the w orld in which we have a sp e­
cial interest. It m ay  be a reaction vessel, an engine, an electrochem ical cell, a biological 
cell, and so  on. The su rro u n d in g s com prise the region  outside the system  and are 
where we m ake our m easurem ents. The type o f  system  depends on  the characteristics 
o f  the bou n d ary  that divides it from  the surroun dings (Fig. 2 .1). I f  m atter can be 
transferred through the bou n d ary  betw een the system  and its surroun dings the sy s­
tem  is classified as open . I f  m atter cannot p ass through  the bou n d ary  the system  is 
classified as c io sed . Both  open  and closed system s can exchange energy with their su r­
roundings. For exam ple, a closed system  can expand and thereby raise a weight in the 
surroundings; it m ay also transfer energy to them  if  they are at a lower tem perature.
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Fig. 2.1 (a) An open system can exchange 
matter and energy with its surroundings. 
(b ) A closed system can exchange energy 
with its surroundings, but it cannot 
exchange matter. (c) An isolated system 
can exchange neither energy nor matter 
with its surroundings.

A n iso la ted  system  is a closed system  that has neither m echanical nor therm al contact 
w ith its surroundings.

2.1 Work, heat, and energy
The fundam ental physical property in therm odynam ics is work: w ork  is m otion  
against an opposing force. D oin g  w ork is equivalent to raising a weight som ew here 
in  the surroundings. An exam ple o f  doing w ork is the expansion  o f  a gas that pushes 
out a p iston  and raises a weight. A  chem ical reaction that drives an electric current 
through  a resistance also does work, because the sam e current could be driven 
through a m otor and used to raise a weight.

The en ergy  o f  a system  is its capacity to do work. W hen w ork is done on an other­
wise isolated system  (for instance, by com pressing a gas or winding a spring), the capa­
city o f  the system  to do w ork is increased; in other w ords, the energy o f  the system  
is increased. W hen the system  does w ork (when the p iston  m oves out or the spring 
unw inds), the energy o f  the system  is reduced and it can do less w ork than before.

Experim ents have show n that the energy o f  a system  m ay be changed by m eans 
other than w ork itself. W hen the energy o f  a system  changes as a result o f  a tem pera­
ture difference betw een the system  and its surroun dings we say  that energy has been 
transferred as heat. W hen a heater is im m ersed in a beaker o f  water (the system ), the 
capacity o f  the system  to do w ork increases because hot water can be used  to do m ore 
w ork than  the sam e am oun t o f  cold water. N ot all bou n daries perm it the transfer 
o f  energy even though there is a tem perature difference betw een the system  and its 
surroundings.

An exo th erm ic p ro ce ss  is a p rocess that releases energy as heat into its su rro u n d ­
ings. All com bustion  reactions are exotherm ic. An en d o th erm ic  p ro ce ss  is a p ro ­
cess in which energy is acquired from  its surroun dings as heat. An exam ple o f  an 
endotherm ic process is the vaporization  o f  water. T o  avoid a lot o f  awkward circum ­
locution, we say  that in an exotherm ic process energy is transferred ‘as heat’ to the 
surroun dings and in an endotherm ic process energy is transferred ‘as heat’ from  
the surroun dings into the system . However, it m u st never be forgotten  that heat is a 
p rocess (the transfer o f  energy as a result o f  a tem perature difference), not an entity. 
A n endotherm ic process in a diatherm ic container results in energy flow ing into the 
system  as heat. An exotherm ic process in a sim ilar diatherm ic container results in a 
release o f  energy as heat into the surroundings. W hen an endotherm ic process takes 
place in an adiabatic container, it results in a low ering o f  tem perature o f  the system; 
an exotherm ic process results in a rise o f  tem perature. These features are sum m arized 
in  Fig. 2.2.

M olecular interpretation 2.1 Heat and work

In m olecular term s, heating is the transfer o f  energy that m akes use o f  disorderly 
molecular motion. The disorderly m otion  o f m olecules is called th erm al m otion . 
The therm al m otion  o f  the m olecules in the hot surroun dings stim ulates the 
m olecules in the cooler system  to m ove m ore vigorously and, as a result, the energy 
o f  the system  is increased. W hen a system  heats its surroun dings, m olecules o f 
the system  stim ulate the therm al m otion  o f  the m olecules in the surroun dings 
(Fig. 2.3).

In contrast, work is the transfer o f  energy that makes use o f  organized motion 
(Fig. 2 .4). W hen a weight is raised or lowered, its atom s m ove in an organized way 
(up or dow n). The atom s in a spring m ove in an orderly w ay when it is w ound; the
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Fig. 2.4 When a system does work, it 
stimulates orderly motion in the 
surroundings. For instance, the atoms 
shown here may be part of a weight that is 
being raised. The ordered motion of the 
atoms in a falling weight does work on the 
system.

System

Fig. 2.3 When energy is transferred to the 
surroundings as heat, the transfer 
stimulates random motion of the atoms in 
the surroundings. Transfer o f energy from 
the surroundings to the system makes use 
of random motion (thermal motion) in the 
surroundings.

(a) ( ط ر

(٠١ (d)

Fig. 2.2 (a) When an endothermic process 
occurs in an adiabatic system, the 
temperature falls; (b) if the process is 
exothermic, then the temperature rises.
(c) When an endothermic process occurs 
in a diathermic container, energy enters as 
heat from the surroundings, and the system 
remains at the same temperature. (d) If the 
process is exothermic, then energy leaves as 
heat, and the process is isothermal.

electrons in an electric current m ove in  an orderly direction when it flows. W hen a 
system  does w ork it causes atom s or electrons in its surroun dings to m ove in an 
organized way. Likewise, when w ork is done on  a system , m olecules in the su r­
roundings are used  to transfer energy to it in an organized way, as the atom s in a 
weight are lowered or a current o f  electrons is passed.

The distinction betw een w ork and heat is m ade in the surroundings. The fact 
that a falling weight m ay  stim ulate therm al m otion  in the system  is irrelevant to the 
distinction betw een heat and work: w ork is identified as energy transfer m aking 
use o f  the organized m otion  o f  atom s in the surroun dings, and heat is identified as 
energy transfer m aking use o f  therm al m otion  in the surroundings. In the co m ­
pression  o f  a gas, for instance, w ork is done as the atom s o f  the com pressing weight 
descend in an orderly way, bu t the effect o f  the incom ing p iston  is to accelerate the 
gas m olecules to higher average speeds. Because collisions betw een m olecules 
quickly random ize their directions, the orderly m otion  o f  the atom s o f  the weight 
is in effect stim ulating therm al m otion  in the gas. W e observe the falling weight, 
the orderly descent o f  its atom s, and report that w ork is being done even though it 
is stim ulating therm al m otion .

2.2 The internal energy
In therm odynam ics, the total energy o f  a system  is called its in tern a l energy, U. The 
internal energy is the total kinetic and potential energy o f  the m olecules in the system  
(see Com m ent 1.3 for the definitions o f  kinetic and potential energy).1 W e denote by 
A U  the change in internal energy when a system  changes from  an initial state i with 
internal energy Ui to a final state f  o f  internal energy Uf:

A U = U f -  Ui [2.1]

1 The internal energy does not include the kinetic energy arising from the motion of the system as a whole, 
such as its kinetic energy as it accompanies the Earth on its orbit round the Sun.



Comment 2.1
An extensive property is a property that 
depends on the am ount o f substance in 
the sam ple. An intensive property is a 
property that is independent o f the 
am ount o f  substance in the sam ple. Two 
exam ples o f  extensive properties are 
m ass and volume. Exam ples o f intensive 
properties are tem perature, m ass 
density (m ass divided by volum e), and 
pressure.

The internal energy is a sta te  fu n ction  in the sense that its value depends only on the 
current state o f  the system  and is independent o f  how that state has been  prepared. 
In other w ords, it is a function  o f  the properties that determ ine the current state o f 
the system . C hanging any one o f  the state variables, such  as the pressure, results in 
a change in internal energy. The internal energy is an  extensive property. That the 
internal energy is a state function  has consequences o f  the greatest im portance, as we 
■start to unfold  in Section 2.10.

Internal energy, heat, and w ork are all m easured in the sam e units, the joule ( j ). The 
joule, which is n am ed after the nineteenth-century scientist J.P. Joule, is defined as

1 j  =  1 kg m 2 s-

A  jou le  is quite a sm all unit o f  energy: for instance, each beat o f  the hum an heart con ­
su m es about 1 j. C hanges in m olar internal energy, A U m, are typically expressed in 
k ilojoules per m ole (kJ m ol-1). C ertain  other energy units are also used, but are m ore 
com m on  in fields other than therm odynam ics. Thus, 1 electronvolt (1 eV) is defined 
as the kinetic energy acquired when an electron is accelerated from  rest through a 
potential difference o f  1 V; the relation betw een electronvolts and jou les is 1 eV ء 
0.16 aJ (where 1 aJ =  10-18 j) .  M any processes in chem istry have an energy o f  several 
electronvolts. Thus, the energy to rem ove an electron from  a so d iu m  atom  is close to 
5 eV. Calories (cal) and kilocalories (kcal) are still encountered. The current definition 
o f  the calorie in term s o f  jou les is

1 cal =  4.184 j  exactly 

An energy o f  1 cal is enough to raise the tem perature o f  1 g o f  water by  1°C.

M olecular interpretation 2.2 The internal energy of a g a s

A  m olecule has a certain num ber o f  degrees o f  freedom , such  as the ability to tran s­
late (the m otion  o f  its centre o f  m ass through space), rotate around its centre 
o f  m ass, or vibrate (as its bon d lengths and angles change). M any physical and 
chem ical properties depend on the energy associated with each o f  these m odes o f 
m otion . For exam ple, a chem ical bon d m ight break if  a lot o f  energy becom es 
concentrated in it.

The equipartition theorem o f  classical m echanics is a useful guide to the average 
energy associated with each degree o f  freedom  when the sam ple is at a tem perature 
T. First, we need to know  that a ‘quadratic contribution ’ to the energy m eans a 
contribution  that can be expressed as the square o f  a variable, such  as the position  
or the velocity. For exam ple, the kinetic energy an atom  o f  m ass m as it m oves 
through  space is

E k =  -  m v2x +  -  mvy; +  -  m vz

and there are three quadratic contributions to its energy. The equipartition  
theorem  then states that, for a collection o f  particles at therm al equilibrium  at a 
tem perature T, the average value o f  each quadratic contribution to the energy is the 
sam e and equal to - kT, where k is Boltzm ann ’s constant (k =  1.381 X 10- j أ  K -1).

The equipartition  theorem  is a conclusion  from  classical m echanics and is 
applicable only when the effects o f  quantization can be ignored (see Chapters 16 
and 17). In practice, it can be used for m olecular translation  and rotation  but not 
vibration. At 25°C , -  kT  =  2 zJ (where 1 zJ =  10—2 j) , or about 13 m eV.

A ccording to the equipartition  theorem , the average energy o f  each term  in the 
expression  above is -  kT. Therefore, the m ean  energy o f  the atom s is - k T  and the



total energy o f  the gas (there being no potential energy contribution) is - N k T , or 
-  n R T  (because N  =  nNA and R =  N Ak). W e can therefore write

Um =  Um(0) +  - R T

where Um(0) is the m olar internal energy at T  =  0, when all translational m otion  
has ceased and the sole contribution  to the internal energy arises from  the internal 
structure o f  the atom s. T h is equation  show s that the internal energy o f  a perfect gas 
increases linearly with tem perature. At 25°C , - R T  =  3.7 kJ m ol-1, so translational 
m otion  contributes about 4 kJ m ol-1 to the m olar internal energy o f  a gaseous 
sam ple o f  atom s or m olecules (the rem aining contribution  arises from  the internal 
structure o f  the atom s and m olecules).

W hen the gas consists o f  polyatom ic m olecules, we need to take into account the 
effect o f  ro tation  and vibration. A  linear m olecule, such  as N 2 and C O 2, can rotate 
around two axes perpendicular to the line o f  the atom s (Fig. 2 .5), so  it has two 
rotational m odes o f  m otion , each contributing a term  - kT to the internal energy. 
Therefore, the m ean rotational energy is kT  and the rotational contribution  to the 
m olar internal energy is RT. By adding the translational and rotational contribu­
tions, we obtain

U ^ =  U ^(0) +  - R T  (linear m olecule, translation  and rotation  only)

A  nonlinear m olecule, such as C H 4 or water, can rotate around three axes and, 
again, each m ode o f  m otion  contributes a term  -  kT  to the internal energy. 
Therefore, the m ean  rotational energy is - kT  and there is a rotational contribution  
o f - R T  to the m olar internal energy o f  the m olecule. That is,

(nonlinear m olecule, translation  and ro tation  only)

rapidly with tem perature com pared

Um =  U „(0 ) +  3R T

The internal energy now  increases twice 
with the m onatom ic gas.

The internal energy o f  interacting m olecules in condensed phases also has a 
contribution  from  the potential energy o f  their interaction. H ow ever, no sim ple 
expressions can be written down in general. Nevertheless, the crucial m olecular 
poin t is that, as the tem perature o f  a system  is raised, the internal energy increases 
as the various m odes o f  m otion  becom e m ore highly excited.

Fig. 2.5 The rotational modes o f n le cu le s  
and the corresponding average energies at a 
temperature T. (a ) A linear molecule can 
rotate about two axes perpendicular to the 
line of the atoms. (b ) A nonlinear molecule 
can rotate about three perpendicular axes.

It has been found experim entally that the internal energy o f  a system  m ay be 
changed either by doing w ork on the system  or by heating it. W hereas we m ay know  
how the energy transfer has occurred (because we can see i f  a weight has been raised 
or lowered in the surroundings, indicating transfer o f  energy by doing work, or i f  ice 
has m elted in the surroun dings, indicating transfer o f  energy as heat), the system  is 
b lind to the m ode em ployed. H eat and work are equivalent ways ofchanging a system’s 
internal energy. A  system  is like a bank: it accepts deposits in either currency, bu t stores 
its reserves as internal energy. It is also found experim entally that, i f  a system  is 
isolated from  its surroundings, then no change in internal energy takes place. This 
su m m ary  o f  observations is now  know n as the F ir st Law  o f  th erm od y n am ics and 
expressed as follows:

The internal energy o f  an  isolated system  is constant.

W e cannot use a system  to do work, leave it isolated for a m onth, and then com e back 
expecting to find it restored to its original state and ready to do the sam e w ork again. 
The evidence for this property  is that no ‘perpetual m otion  m achine’ (a m achine that



does w ork w ithout consum in g fuel or som e other source o f  energy) has ever been 
built.

These rem arks m ay  be sum m arized  as follow s. I f  we write w for the w ork done on  a 
system , q for the energy transferred as heat to a system , and A U  for the resulting 
change in internal energy, then it follow s that

A U  =  q +  w (2.2)

Equation  2.2 is the m athem atical statem ent o f  the First Law, for it sum m arizes the 
equivalence o f  heat and w ork and the fact that the internal energy is constant in an 
isolated system  (for which q =  0 and w =  0). The equation  states that the change in 
internal energy o f  a closed system  is equal to the energy that passes through its b o u n d ­
ary as heat or work. It em ploys the ‘acquisitive convention ’, in which w >  0 or q >  0 if  
energy is transferred to the system  as w ork or heat and w <  0 or q <  0 i f  energy is lost 
from  the system  as w ork or heat. In other w ords, we view the flow o f  energy as work 
or heat from  the system ’s perspective.

Illustration 2.1 The sign convention in thermodynamics

If  an electric m otor produced  15 k j o f  energy each second as m echanical w ork and 
lost 2 k j as heat to the surroundings, then the change in the internal energy o f  the 
m otor each second is

A U  = - 2  k j -  15 k j =  - 1 7  k j

Suppose that, when a spring was w ound, 100 j  o f  w ork was done on  it bu t 15 j  
escaped to the surroun dings as heat. The change in internal energy o f  the spring is

A U  = + 1 0 0  k j -  15 k j =  +85  k j

2.3 Expansion work
The way can now  be opened to pow erful m ethods o f  calculation by sw itching atten­
tion  to infinitesim al changes o f  state (such  as infinitesim al change in tem perature) 
and infinitesim al changes in the internal energy dU . Then, i f  the w ork done on  a sys­
tem  is dw and the energy supplied  to it as heat is dq, in  place o f  eqn 2.2 we have

d U =  d q +  dw (2.3)

T o  use this expression  we m u st be able to relate dq and dw to events taking place in the 
surroundings.

W e begin by discussing exp an sio n  w ork, the w ork arising from  a change in volum e. 
Th is type o f  w ork includes the w ork done by  a gas as it expands and drives back  the 
atm osphere. M any chem ical reactions result in the generation or consum ption  o f 
gases (for instance, the therm al decom position  o f  calcium  carbonate or the co m b u s­
tion  o f  octane), and the therm odynam ic characteristics o f  a reaction depend on the 
w ork it can do. The term  ‘expansion  w ork’ also includes w ork associated with n egat­
ive changes o f  volum e, that is, com pression.

(a) Th e ge n e ra l e x p re s s io n  fo r w ork

The calculation o f  expansion  w ork starts from  the definition used  in physics, which 
states that the w ork required to m ove an object a distance dz against an op posin g  force 
o f  m agnitude F  is

dw =  - F d z  [2.4]



The negative sign  tells us that, when the system  m oves an object against an opposing 
force, the internal energy o f  the system  doing the work will decrease. N ow  consider the 
arrangem ent show n in Fig. 2.6, in which one wall o f  a system  is a m assless, frictionless, 
rigid, perfectly fitting p iston  o f  area A . I f  the external pressure is p ex, the m agnitude o f 
the force acting on  the outer face o f  the p iston  is F  =  p exA . W hen the system  expands 
through a distance dz against an external pressure p ex, it follow s that the w ork done is 
dw =  - p exAdz. But A dz is the change in volum e, dV, in the course o f  the expansion. 
Therefore, the w ork done when the system  expands by d V  against a pressure p ex is

dw =  - p exd V  (2.5)

T o obtain  the total w ork done when the volum e changes from  V؛ to ٧؛  we integrate 
this expression  betw een the initial and final volum es:

Vf
w =  -  p exd V  (2.6)

؛V ر

The force acting on  the p iston , p ex A, is equivalent to a weight that is raised as the sy s­
tem  expands.

If  the system  is com pressed  instead, then the sam e weight is lowered in the su r­
roundings and eqn 2.6 can still be used, bu t now  V؛ <  Vi. It is im portant to note that it 
is still the external pressure that determ ines the m agnitude o f  the work. This so m e­
what perplexing conclusion  seem s to be inconsistent with the fact that the gas inside 
the container is opposing the com pression . H ow ever, when a gas is com pressed , the 
ability o f  the surroundings to do w ork is dim inished by an am ount determ ined by  the 
weight that is lowered, and it is this energy that is transferred into the system .

O ther types o f  w ork (for exam ple, electrical w ork), which we shall call either n o n ­
exp an sio n  w ork  or a d d itio n aل w ork, have analogous expressions, with each one the 
product o f  an intensive factor (the pressure, for instance) and an extensive factor (the 
change in vo lum e). Som e are collected in Table 2.1. For the present we continue with 
the w ork associated with changing the volum e, the expansion  work, and see what we 
can extract from  eqns 2.5 and 2.6.

(b) F ree  ex p a n sio n

By free exp an sio n  we m ean  expansion  against zero op posin g  force. It occurs when 
p ex =  0. A ccording to eqn 2.5, dw =  0 for each stage o f  the expansion. Hence, overall:

Free expansion: w =  0 (2.7)

T able 2.1 Varieties of work*

Type of work dw Comments Units؛

Expansion -pexdV p is the e^erna، pressure Pa
dV is the change in volume m3

Surface expansion yda Y is the surface tension N m-1
dtfis the change in area m2

Extension fdl f  is the tension N
dl is the change in length m

Electrical $dQ $ is the electric potential V
dQ is the change in charge C

External
pressu re,

Fig. 2.6 When a piston of area A moves out 
through a distance dz, it sweeps out a 
volume dV =  Adz. The external pressure pex 
is equivalent to a weight pressing on the 
piston, and the force opposing expansion is

F  =  pexA .

* In general, the work done on a system can be expressed in the form dw = -Fdz, where F is a ‘generalized force’ 
and dz is a ‘generalized displacement’.
t  For work in joules (J). Note that 1 N m = 1 j and 1 V C = 1 j.



xpands freely. Expansion  o f  this kind occursThat is, no w ork is done when a system  
when a system  expands into a vacuum .

٧ ,ume؛Vo ٧ إ V,

" ٨ ه
٦ ر ٢ م

Fig. 2.7 The work done by a gas when it 
expands against a constant external 
pressure, pex, is equal to the shaded area in 
this example of an indicator diagram.

Com m ent 2 .2 م 
The value o f the integr̂؛  f(x )d x  is

j a

equal to the area under the graph off(x ) 
between x  =  a  and x  =  b. For instance, the 
area under the curve f(x ) =  x 2 shown in 
the illustration that lies between x  =  1 
and 3 is

'3
x  2dx =  (—x 3 +  constant)3

= (ي33 - 1ق) = 26 ء 8.67

(c) E xp an sio n  a g a in s t  c o n s ta n t  p re s su re

N ow  su ppose that the external pressure is constant throughout the expansion. For ex­
am ple, the p iston  m ay be pressed on  by the atm osphere, which exerts the sam e pres­
sure throughout the expansion. A  chem ical exam ple o f  this condition  is the expansion 
o f  a gas form ed in a chem ical reaction. W e can evaluate eqn 2.6 by taking the constant 
p ex outside the integral:

(pex(Vf-  Vi- = ؟dw =  —t

Therefore, i f  we write the change in volum e as A y  =  Vf — Vi,

w =  - p ex A ^  (2 .8 )

Th is result is illustrated graphically in Fig. 2.7, which m akes use o f  the fact that an 
integral can be interpreted as an area. The m agnitude o f  w, denoted |w ا, is equal to the 
area beneath the horizontal line at p  =  p ex lying betw een the initial and final volum es. 
A  p ,V -graph  used to com pute expansion  w ork is called an in d ic ato r  d iagram ; Jam es 
W att first used one to indicate aspects o f  the operation  o f  his steam  engine.

(d) R e v e rsib le  ex p a n sio n

A  reversib le  ch an ge in therm odynam ics is a change that can be reversed by  an 
infinitesim al m odification  o f  a variable. The key w ord ‘infinitesim al’ sharpens the 
everyday m eaning o f  the w ord ‘reversible’ as som eth ing that can change direction. We 
say that a system  is in eq u ilib r iu m  with its surroun dings i f  an infinitesim al change 
in  the conditions in opposite directions results in opposite changes in its state. One 
exam ple o f  reversibility that we have encountered already is the therm al equilibrium  
o f  two system s with the sam e tem perature. The transfer o f  energy as heat betw een the 
two is reversible because, i f  the tem perature o f  either system  is lowered in finitesim ­
ally, then energy flow s into the system  with the lower tem perature. I f  the tem perature 
o f  either system  at therm al equilibrium  is raised infinitesim ally, then energy flows out 
o f  the hotter system.

Suppose a gas is confined by a p iston  and that the external pressure, p ex, is set equal 
to the pressure, p , o f  the confined gas. Such a system  is in m echanical equilibrium  with 
its surroun dings (as illustrated in Section 1.1) because an infinitesim al change in the 
external pressure in either direction causes changes in  volum e in opposite directions. 
I f  the external pressure is reduced infinitesim ally, then the gas expands slightly. If 
the external pressure is increased infinitesim ally, then the gas contracts slightly. In 
either case the change is reversible in the therm odynam ic sense. If, on  the other hand, 
the external pressure differs m easurably  from  the internal pressure, then changing p ex 
infinitesim ally will not decrease it below  the pressure o f  the gas, so  will not change the 
direction o f  the process. Such a system  is not in m echanical equilibrium  with its su r­
roun dings and the expansion  is therm odynam ically irreversible.

T o  achieve reversible expansion  we set p ex equal to p  at each stage o f  the expansion. 
In practice, this equalization could be achieved by gradually rem oving weights from  
the p iston  so that the dow nw ard force due to the weights always m atched the chang­
ing upw ard force due to the pressure o f  the gas. W hen we set p ex =  p , eqn 2.5 becom es

dw =  -pexd؟ = - p d ^  (2.9)rev

(E quation s valid only for reversible processes are labelled with a subscript rev.) 
A lthough the pressure inside the system  appears in this expression  for the work, it



does so  only because p ex has been  set equal to p  to ensure reversibility. The total w ork 
o f  reversible expansion  is therefore

(2 .10)rp d Vw = -

W e can evaluate the integral once we know  how  the pressure o f  the confined gas 
depends on  its volum e. Equation  2.10 is the link with the m aterial covered in C h ap ­
ter 1 for, i f  we know  the equation  o f  state o f  the gas, then we can express p  in term s o f 
V  and evaluate the integral.

(e) Iso th erm al re v ersib le  ex p a n sio n

C onsider the isotherm al, reversible expansion  o f  a perfect gas. The expansion  is m ade 
isotherm al by keeping the system  in therm al contact with its surroun dings (which 
m ay be a constant-tem perature bath ). Because the equation  o f  state is p V  =  nRT, we 
know  that at each stage p  =  nRT/V, with V th e volum e at that stage o f  the expansion. 
The tem perature T  is constant in an isotherm al expansion, so  (together with n and R) 
it m ay be taken outside the integral. It follow s that the w ork o f  reversible isotherm al 
expansion  o f  a perfect gas from  Vi to Vf at a tem perature T  is

(2 .11)°e,
V f d V  V

—— =  - n R T  ln —
V V  Vi

w =  —nRT

W hen the final volum e is greater than the initial volum e, as in an expansion, the 
logarithm  in eqn 2.11 is positive and hence w <  0. In this case, the system  has done 
w ork on  the surroun dings and the internal energy o f  the system  has decreased as a 
resu lt.2 The equations also show  that m ore w ork is done for a given change o f  volum e 
when the tem perature is increased. The greater pressure o f  the confined gas then 
needs a higher op posin g  pressure to ensure reversibility.

W e can express the result o f  the calculation  as an indicator diagram , for the m agn i­
tude o f  the w ork done is equal to the area under the isotherm  p  =  n R T /V  (Fig. 2.8). 
Superim posed on  the diagram  is the rectangular area obtained for irreversible expan ­
sion  against constant external pressure fixed at the sam e final value as that reached in 
the reversible expansion. M ore w ork is obtained when the expansion  is reversible (the 
area is greater) because m atching the external pressure to the internal pressure at each 
stage o f  the process ensures that none o f  the system ’s pushing pow er is wasted. We 
cannot obtain m ore work than for the reversible process because increasing the external 
pressure even infinitesim ally at any stage results in com pression . W e m ay infer from  
this discussion  that, because som e pushing pow er is w asted when p  >  p ex, the m ax i­
m u m  w ork available from  a system  operating betw een specified initial and final states 
and passin g along a specified path  is obtained when the change takes place reversibly.

W e have introduced the connection betw een reversibility and m axim u m  w ork for 
the special case o f  a perfect gas undergo in g expansion. Later (in Section 3.5) we shall 
see that it applies to all substances and to all kinds o f  work.

Exam ple 2.1 Calculating the work of g a s  production

Calculate the w ork done when 50 g o f  iron  reacts with hydrochloric acid in (a) a 
closed vessel o f  fixed volum e, (b) an  open beaker at 25°C .

2 We shall see later that there is a compensating influx of energy as heat, so overall the internal energy is 
constant for the isothermal e^ansion of a perfect gas.

Comment 2.3
An integral that occurs throughout 
therm odynam ics is

b
=  ln —

a
b ١ ,

— dx =  (ln x  +  constant)
J a x

Fig. 2.8 The work done by a perfect gas 
when it expands reversibly and 
isothermally is equal to the area under the 
isotherm p =  nRT/V. The work done 
during the irreversible expansion against 
the same final pressure is equal to the 
rectangular area shown slightly darker. 
Note that the reversible work is greater 
than the irreversible work.

ئ  Exploration Calculate the work of 
isothermal reversible expansion of

1.0 mol CO2(g) at 298 K from 1.0 m3 to
3.0 m3 on the basis that it obeys the van 
der Waals equation of state.



372.4 HEAT TRANSACTIONS

M ethod W e need to judge the m agnitude o f  the volum e change and then to decide 
how  the process occurs. I f  there is no change in volum e, there is no expansion  w ork 
however the process takes place. I f  the system  expands against a constant external 
pressure, the w ork can be calculated from  eqn 2.8. A  general feature o f  processes in 
which a condensed phase changes into a gas is that the volum e o f  the form er m ay 
usually be neglected relative to that o f  the gas it form s.

Answ er In (a) the volum e cannot change, so  no expansion  w ork is done and 
w =  0. In (b) the gas drives back  the atm osphere and therefore w =  - p ex AV. W e can 
neglect the initial vo lum e because the final volum e (after the production  o f  gas) 
is so m uch larger and A V  =  V؛-  Vi ء  V؛ =  nRT/pex, where n is the am ount o f  H 2 p ro ­
duced. Therefore,

nR T
w =  - p ex A V ء -م   X =  - n R T

p ex

Because the reaction is Fe(s) +  2 H C l(aq ) >  FeCl2(aq) +  H 2(g), we know  that 1 m ol 
H 2 is generated when 1 m ol Fe is consum ed, and n can be taken as the am ount o f 
Fe atom s that react. Because the m olar m ass o f  Fe is 55.85 g m ol-1, it follow s that

w 50 - ء  g , , X (8.3145 j  K-1 m ol-1) X (298 K)
55.85 g m ol 1

2.2- ء  kJ

The system  (the reaction m ixture) does 2.2 kJ o f  w ork driving back  the atm o­
sphere. N ote that (for this perfect gas system ) the m agnitude o f  the external p res­
sure does not affect the final result: the lower the pressure, the larger the volum e 
occupied by  the gas, so  the effects cancel.

Self-test 2.1 C alculate the expansion  w ork done when 50 g o f  water is electrolysed 
under constant pressure at 25°C . [-10  kJ]

2.4 Heat transactions
In general, the change in internal energy o f  a system  is

d U  =  dq +  dwexp +  dwe (2 .12)

where dwe is w ork in addition  (e for ‘extra’ ) to the expansion  work, dwexp. For 
instance, dwe m ight be the electrical w ork o f  driving a current through  a circuit. A 
system  kept at constant volum e can do no expansion  work, so dwexp =  0. I f  the sys­
tem  is also incapable o f  doing any other kind o f  w ork (if  it is not, for instance, an 
electrochem ical cell connected to an electric m o to r), then dwe =  0 too. U nder these 
circum stances:

d U =  d q (at constant volum e, no additional work) (2.13a)

W e express this relation by w riting d U  =  d qV , where the subscript im plies a change at 
constant volum e. For a m easurable change,

A U  =  qV (2.13b)

It follow s that, by  m easuring the energy supplied  to a constant-volum e system  as heat 
(q >  0 ) or obtained from  it as heat (q <  0 ) when it undergoes a change o f  state, we are 
in  fact m easurin g the change in its internal energy.



(a) C alorim etry

C alo rim etry  is the study o f  heat transfer during physical and chem ical processes. A 
ca lo rim eter is a device for m easurin g energy transferred as heat. The m ost com m on  
device for m easurin g A U is an ad iab a tic  b o m b  calo rim eter (Fig. 2 .9 ). The process we 
w ish to study— which m ay  be a chem ical reaction—  initiated inside a constant- 
volum e container, the ‘b o m b ’ . The bom b is im m ersed in a stirred water bath, and the 
whole device is the calorim eter. The calorim eter is also im m ersed in an outer water 
bath. The water in the calorim eter and o f  the outer bath  are both  m onitored and 
adjusted to the sam e tem perature. Th is arrangem ent ensures that there is no net loss 
o f  heat from  the calorim eter to the surroun dings (the bath) and hence that the 
calorim eter is adiabatic.

The change in tem perature, A T, o f  the calorim eter is p roportional to the heat 
that the reaction releases or absorbs. Therefore, by  m easurin g A T we can determ ine qV 
and hence find AU. The conversion o f  A T  to qV is best achieved by calibrating the 
calorim eter using a p rocess o f  know n energy output and determ ining the ca lo rim eter 
co n stan t, the constant C in the relation

q =  C A T (2.14a)

The calorim eter constant m ay be m easured electrically by passing a constant current, 
/, from  a source o f  know n potential difference, V, through a heater for a known period 
o f  tim e, t, for then

q =  IV  t (2.14b)

Alternatively, C m ay be determ ined by burn in g a know n m ass o f  substance (benzoic 
acid is often used) that has a know n heat output. W ith C known, it is sim ple to inter­
pret an observed tem perature rise as a release o f  heat.

Illustration 2.2 The calibration of a calorimeter

If  we p ass a current o f  10.0 A  from  a 12 V  supply  for 300 s, then from  eqn 2.14b the 
energy supplied  as heat is

q =  (10.0 A) X (12 V ) X (300 s) =  3.6 X 104 A  V  s =  36 kJ

because 1 A  V  s =  1 j. I f  the observed rise in tem perature is 5.5 K, then the calorim e­
ter constant is C =  (36 k J)/(5 .5  K) =  6.5 kJ K-1.

(b) H eat c a p a c ity

The internal energy o f  a substance increases when its tem perature is raised. The 
increase depends on  the conditions under which the heating takes place and for the 
present we su ppose that the sam ple is confined to a constant volum e. For exam ple, 
the sam ple m ay be a gas in a container o f  fixed volum e. I f  the internal energy is plotted 
against tem perature, then a curve like that in Fig. 2.10 m ay be obtained. The slope o f  
the tangent to the curve at any tem perature is called the h ea t cap acity  o f  the system  at 
that tem perature. The h eat cap ac ity  a t  co n stan t vo lu m e is denoted C V and is defined 
form ally as3

3 If the system can change its composition, it is necessary to distinguish between equilibrium and fixed- 
composition values of Cy. All applications in this chapter refer to a single substance, so this complication 
can be ignored.

R esistance
therm om eter

Fig. 2.9 A constant-volume bomb 
calorimeter. The ‘bomb’ is the central 
vessel, which is strong enough to withstand 
high pressures. The calorimeter (for which 
the heat capacity must be known) is the 
entire assembly shown here. To ensure 
adiabaticity, the calorimeter is immersed 
in a water bath with a temperature 
continuously readjusted to that of the 
calorimeter at each stage of the 
combustion.

Comment 2.4
Electrical charge is m easured in 
coulombs, C. The m otion o f  charge gives 
rise to an electric current, I, m easured in 
coulom bs per second, or amperes, A, 
where 1 A =  1 C s-1. I f  a constant current 
I  flows through a potential difference V 
(m easured in volts, V), the total energy 
supplied in an interval t  is

Energy supplied =  IV t

Because 1 A V  s =  1 (C  s-1) V  s =
1 C V  =  1 j, the energy is obtained in 
joules with the current in amperes, the 
potential difference in volts, and the 
tim e in seconds. We write the electrical 
power, P , as

P  =  (energy supplied)/(time interval)
=  IV  t/t =  IV
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Temperature 
variation of u

Fig. 2.11 The internal energy of a system 
varies with volume and temperature, 
perhaps as shown here by the surface. The 
variation o f the internal energy with 
temperature at one particular constant 
volume is illustrated by the curve drawn 
parallel to T. The slope o f this curve at 
any point is the partial derivative 
(dU/dT )V.

Fig. 2.10 The internal energy of a system 
increases as the temperature is raised; this 
graph shows its variation as the system is 
heated at constant volume. The slope of the 
tangent to the curve at any temperature is 
the heat capacity at constant volume at that 
temperature. Note that, for the system 
illustrated, the heat capacity is greater at B 
than at A.

Com m ent 2.5
The partial-differential operation 
(dz/dx)y consists o f taking the first 
derivative o f z(x,y) with respect to x, 
treating y  as a constant. For example, 
i f  z(x,y) =  x  2y, then

B  dz F  B  3 [x2y] ١ d x2

' y ' y
Partial derivatives are reviewed in 
Appendix 2.

A dz D A3 [x2y] D

Cd dx

[2.15]
d U

dT

In this case, the internal energy varies with the tem perature and the volum e o f  the 
sam ple, bu t we are interested only in its variation  with the tem perature, the volum e 
being held constant (Fig. 7.-11)-

Illustration 2.3 Estimating a constant-volume heat capacity

The heat capacity o f  a m on atom ic perfect gas can be calculated by inserting the 
expression  for the internal energy derived in M olecular interpretation 2.2. There we 
saw  that Uج =  Um(0) +  - RT , so  from  eqn 2.15

Cv,m =  d T  U m (0 ) +  - R T ) =  - R

The num erical value is 12.47 j  K-  m ol-1

H eat capacities are extensive properties: 100 g o f  water, for instance, has 100 tim es 
the heat capacity o f  1 g o f  water (and therefore requires 100 tim es the energy as heat 
to bring about the sam e rise in tem perature). The m aله r  h ea t cap acity  a t  co n stan t 
v o lu m e, C Vm =  C v/n, is the heat capacity per m ole o f  m aterial, and is an intensive 
property  (all m olar quantities are intensive). Typical values o f  C y m for polyatom ic 
gases are close to 25 j  K-1 m ol- 1  For certain applications it is u seful to know  the 
spec ific  h ea t cap acity  (m ore inform ally, the ‘specific heat’ ) o f  a substance, which is 
the heat capacity o f  the sam ple divided by  the m ass, usually  in gram s: C ^ = ؛  C v /m . The 
specific heat capacity o f  water at ro o m  tem perature is close to 4 j  K-  g-1. In general,



heat capacities depend on  the tem perature and decrease at low  tem peratures. H ow ­
ever, over sm all ranges o f  tem perature at and above ro o m  tem perature, the variation 
is quite sm all and for approxim ate calculations heat capacities can be treated as alm ost 
independent o f  tem perature.

The heat capacity is used to relate a change in internal energy to a change in tem ­
perature o f  a constant-volum e system . It follow s from  eqn 2.15 that

d U  =  C V d T  (at constant volum e) (2.16a)

That is, at constant volum e, an infinitesim al change in tem perature brings about an 
infinitesim al change in internal energy, and the constant o f  proportionality  is C V. If 
the heat capacity is independent o f  tem perature over the range o f  tem peratures o f  
interest, a m easurable change o f  tem perature, A T, brings about a m easurable increase 
in internal energy, A U, where

A U  =  C V A T  (at constant volum e) (2.16b)

Because a change in internal energy can be identified with the heat supplied  at con ­
stant volum e (eqn 2 .13b), the last equation  can be written

q v =  C v A T  (2.17)

This relation provides a sim ple way o f  m easurin g the heat capacity o f  a sam ple: a m ea­
sured quantity o f  energy is transferred as heat to the sam ple (electrically, for exam ple), 
and the resulting increase in  tem perature is m onitored. The ratio o f  the energy tran s­
ferred as heat to the tem perature rise it causes (qV/A T ) is the constant-volum e heat 
capacity o f  the sam ple.

A  large heat capacity im plies that, for a given quantity o f  energy transferred as heat, 
there will be only a sm all increase in tem perature (the sam ple has a large capacity for 
heat). An infinite heat capacity im plies that there will be no increase in tem perature 
however m uch energy is supplied  as heat. At a phase transition , such  as at the boiling 
poin t o f  water, the tem perature o f  a substance does not rise as energy is supplied  as 
heat: the energy is used  to drive the endotherm ic transition , in this case to vaporize 
the water, rather than  to increase its tem perature. Therefore, at the tem perature o f  
a phase transition, the heat capacity o f  a sam ple is infinite. The properties o f  heat 
capacities close to phase transitions are treated m ore fully in Section 4.7.

2.5 Entha)py
The change in internal energy is n ot equal to the energy transferred as heat when the 
system  is free to change its volum e. U nder these circum stances som e o f  the energy 
supplied as heat to the system  is returned to the surroun dings as expansion  w ork 
(Fig. 2 .12), so  d U  is less than dq. However, we shall now  show  that in this case the 
energy supplied  as heat at constant pressure is equal to the change in another 
therm odynam ic property  o f  the system , the enthalpy.

(a) Th e defin ition  o f en th alpy

The en thalpy , H , is defined as

H  =  U  +  p V  [2.18]

where p  is the pressure o f  the system  and V is its volum e. Because U, p , and V are all 
state functions, the enthalpy is a state function  too. As is true o f  any state function, the 
change in enthalpy, AH , betw een any pair o f  initial and final states is independent o f 
the path  betw een them .

Fig. 2.12 When a system is su^ected to 
constant pressure and is free to change its 
volume, some o f the energy supplied as 
heat may escape back into the 
surroundings as work. In such a case, the 
change in internal energy is smaller than 
the energy supplied as heat.



A lthough the definition o f  enthalpy m ay appear arbitrary, it has im portant im plica­
tions for therm ochem isty. For instance, we show  in the follow ing Justification that eqn
2.18 im plies that the change in enthalpy is equal to the energy supplied as heat a t  constant 
pressure (provided the system  does no additional work):

d H  =  dq (at constant pressure, no additional w ork) (2.19a)

For a m easurable change,

A H = q p (2.19b)

Justification  2.1 The relation AH = qp

For a general infinitesimal change in the state o f the system, U changes to U +  dU, 
p  changes to p  +  dp, and V changes to V +  dV, so from  the definition in eqn 2.18, 
H  changes ^ o m  U +  p V  to

H  +  dH  =  (U  +  d U ) +  (p +  dp)(V  +  d V )

=  U +  dU  +  p V + pdV  +  Vdp +  dpdV

The last term is the product o f two infinitesimally small quantities and can therefore 
be neglected. As a result, after recognizing U +  pV  =  H  on the right, we find that H  
changes to

H  +  dH  =  H  +  dU  +  pdV  +  Vdp

and hence that

dH  =  dU  +  pdV  +  Vdp

If we now substitute dU  =  dq +  dw into this expression, we get

dH  =  dq +  dw +  pdV  +  Vd£

If  the system is in mechanical equilibrium with its surroundings at a pressure p  and 
does only expansion work, we can write dw =  -p d V  and obtain

dH  =  dq +  Vd£

Now  we impose the condition that the heating occurs at constant pressure by writ­
ing dp =  0. Then

dH  =  dq (at constant pressure, no additional work)

as in eqn 2.19a.

The result expressed in eqn 2.19 states that, when a system  is subjected to a constant 
pressure, and only expansion  w ork can occur, the change in  enthalpy is equal to the 
energy supplied as heat. For exam ple, i f  we supply  36 kJ o f  energy through an electric 
heater im m ersed in an open beaker o f  water, then the enthalpy o f  the water increases 
by  36 kJ and we write A H  =  +36  kJ.

(b) Th e m e a su re m e n t o f an  en th alpy  c h a n g e

An enthalpy change can be m easured calorim etrically by m onitoring the tem perature 
change that accom panies a physical or chem ical change occurring at constant p res­
sure. A  calorim eter for studying processes at constant pressure is called an iso b a ric  
calo rim eter. A  sim ple exam ple is a therm ally insulated vessel open  to the atm osphere: 
the heat released in the reaction is m onitored  by m easuring the change in tem perature



o f  the contents. For a com bustion  reaction an a d iab a tic  flam e calo rim eter m ay  be 
used to m easure A T when a given am oun t o f  substance bu rn s in a supply  o f  oxygen 
(Fig. 2 .13). Another route to A H  is to m easure the internal energy change by using 
a bom b calorim eter, and then to convert A U  to AH. Because so lids and liquids have 
sm all m olar volum es, for them  pVm is so  sm all that the m olar enthalpy and m olar 
internal energy are alm ost identical (H m =  U^  +  pVm ~  U ^). Consequently, i f  a p ro ­
cess involves only solids or liquids, the values o f  AH  and A U  are alm ost identical. 
Physically, such  processes are accom panied by a very sm all change in volum e, the 
system  does negligible w ork on the surroun dings when the process occurs, so the 
energy supplied  as heat stays entirely within the system . The m ost soph isticated way 
to m easure enthalpy changes, however, is to use a d ifferen tial scan n in g  ca lo rim eter 
(D SC ). C hanges in enthalpy and internal energy m ay  also be m easured by noncalori- 
m etric m ethods (see C hapter 7).

Exam ple 2.2 Relating AH and AU

The internal energy change when 1.0 m ol C aC O 3 in the fo rm  o f  calcite converts to 
aragonite is +  0.21 k j. Calculate the difference betw een the enthalpy change and the 
change in internal energy when the pressure is 1.0 bar given that the densities o f  the 
solids are 2.71 g cm “ 3 and 2.93 g c m '3, respectively.

M ethod The starting poin t for the calculation is the relation betw een the enthalpy 
o f  a substance and its internal energy (eqn 2.18). The difference betw een the two 
quantities can be expressed in term s o f  the pressure and the difference o f  their 
m olar volum es, and the latter can be calculated from  their m olar m asses, M , and 
their m ass densities, p , by  using p  =  M /V m.

A nswer The change in enthalpy when the transition  occurs is

A H  =  H (aragon ite) -  H (calcite)

= U؛  (a) +  p V ( a ) } - + U(c)؛   p V (c)}

=  A U + p {V (a ) -  V (c)} = A U  +  pA V

The volum e o f  1.0 m ol C aC O 3 (100 g) as aragonite is 34 cm 3, and that o f  1.0 m ol 
C aC O 3 as calcite is 37 cm 3. Therefore,

pA V  =  (1.0 X 10ق Pa) X (34 -  37) X 10“ 6 m 3 =  - 0 .3  j

(because 1 Pa m 3 =  1 j) .  Hence,

A H - A U  = - 0 . 3  j

which is only 0.1 per cent o f  the value o f  AU. W e see that it is usually  justifiable to 
ignore the difference betw een the enthalpy and internal energy o f  condensed 
phases, except at very high pressures, when p V is no longer negligible.

Self-test 2 .2  Calculate the difference between A H  and A U  when 1.0 m ol Sn(s, grey) 
o f  density 5.75 g cm -3 changes to Sn(s, white) o f  density 7.31 g cm -3 at 10.0 bar. At 
298 K, A H  = + 2 .1  k j. [ A H - A U  = - 4 .4  j]

Gas, v ap o r  

Oxygen

Products

Fig. 2.13 A constant-pressure flame 
calorimeter consists o f this component 
immersed in a stirred water bath. 
Combustion occurs as a known amount of 
reactant is passed through to fuel the flame, 
and the rise of temperature is monitored.

The enthalpy o f  a perfect gas is related to its internal energy by  u sing p V  =  n R T in 
the definition o f H :

H  =  U  +  p V  =  U  +  n R T  (2.20)°



This relation im plies that the change o f  enthalpy in a reaction that p roduces or con ­
su m es gas is

A H  = A U  + A n g R T  (2 .21)°

where Ang is the change in the am ount o f  gas m olecules in the reaction.

Illustration 2.4 The relation between AH and A U forgas-phase reactions

In the reaction 2 H 2(g) +  O 2(g) >  2 H 2O (l), 3 m ol o f  gas-phase m olecules is 
replaced by 2 m ol o f  liquid-phase m olecules, so  Ang =  - 3  m ol. Therefore, at 298 K, 
when R T  =  2.5 kJ m ol- , the enthalpy and internal energy changes taking place in 
the system  are related by

A H - A U  =  (-3  m ol) X R T  7.4- ء  kJ

N ote that the difference is expressed in kilojoules, not jou les as in Exam ple 2.2. The 
enthalpy change is sm aller (in this case, less negative) than the change in internal 
energy because, although heat escapes from  the system  when the reaction occurs, 
the system  contracts when the liquid is form ed, so  energy is restored to it from  the 
surroundings.

Exam ple 2.3 Calculating a change in enthalpy

W ater is heated to boiling under a pressure o f  1.0 atm . W hen an electric current o f 
0.50 A  from  a 12 V  supply  is passed  for 300 s through a resistance in therm al con ­
tact with it, it is found that 0.798 g o f  water is vaporized. Calculate the m olar in ter­
nal energy and enthalpy changes at the boiling poin t (373.15 K ).

M ethod Because the vaporization  occurs at constant pressure, the enthalpy change 
is equal to the heat supplied  by  the heater. Therefore, the strategy is to calculate the 
energy supplied  as heat (from  q =  IV t) , express that as an enthalpy change, and 
then convert the result to a m olar enthalpy change by division by the am ount o f 
H 2O m olecules vaporized. T o  convert from  enthalpy change to internal energy 
change, we assum e that the vapour is a perfect gas and use eqn 2 .21 .

Answ er The enthalpy change is

A H  =  qp =  (0.50 A) X (12 V ) X (300 s) = + (0 .5 0  X 12 X 300) j

Here we have used 1 A  V  s =  1 j  (see Com m ent 2.4). Because 0.798 g o f  water is 
(0.798 g)/(18 .02 g m ol-1) =  (0.798/18.02) m ol H 2O, the enthalpy o f  vaporization  
per m ole o f  H 2O is

0.50 X 12 X 300 j

AH”  =  +  (0 .798/18.02) m ol = + 41 kJ m °

In the process H 2O (l) >  H 2O (g) the change in the am oun t o f  gas m olecules is 
Ang =  +1 m ol, so

A U ^ =  A H ^ -  R T  = + 3 8  kJ m ol-

The p lus sign  is added to positive quantities to em phasize that they represent an 
increase in internal energy or enthalpy. N otice that the internal energy change is 
sm aller than the enthalpy change because energy has been  used  to drive back  the 
su rroun ding atm osphere to m ake ro o m  for the vapour.



Self-test 2 .3  The m olar enthalpy o f  vaporization  o f  benzene at its boilin g point 
(353.25 K) is 30.8 kJ m ol-1. W hat is the m olar internal energy change? For how 
long w ould the sam e 12 V  source need to supply  a 0.50 A  current in order to 
vaporize a 10 g sam ple? [+27.9 kJ m ol-1, 660 s]

(c) Th e variation  o f en th alpy  with tem p e ra tu re

The enthalpy o f  a substance increases as its tem perature is raised. The relation b e­
tween the increase in enthalpy and the increase in tem perature depends on  the con d i­
tions (for exam ple, constant pressure or constant volum e). The m ost im portant 
condition  is constant pressure, and the slope o f  the tangent to a p lot o f  enthalpy 
against tem perature at constant pressure is called the h ea t cap acity  a t  co n stan t p re s­
su re , C p, at a given tem perature (Fig. 2 .14). M ore form ally:

Cp =  [2 .2 2 ]

The heat capacity at constant pressure is the analogue o f  the heat capacity at constant 
volum e, and is an extensive property .4 The m o la r  h eat cap acity  a t  co n stan t p ressu re , 
Cp,m, is the heat capacity per m ole o f  m aterial; it is an  intensive property.

The heat capacity at constant pressure is used  to relate the change in enthalpy to a 
change in tem perature. For infinitesim al changes o f  tem perature,

d H  =  CpdT (at constant pressure) (2.23a)

If  the heat capacity is constant over the range o f  tem peratures o f  interest, then for a 
m easurable increase in  tem perature

A H  =  Cp A T  (at constant pressure) (2.23b)

Because an increase in enthalpy can be equated with the energy supplied  as heat at 
constant pressure, the practical form  o f  the latter equation  is

qp =  Cp A T  (2.24)

This expression  show s us how to m easure the heat capacity o f  a sam ple: a m easured 
quantity o f  energy is supplied  as heat under conditions o f  constant pressure (as in a 
sam ple exposed to the atm osphere and free to expand), and the tem perature rise is 
m onitored.

The variation  o f  heat capacity with tem perature can som etim es be ignored i f  the 
tem perature range is sm all; this approxim ation  is highly accurate for a m onatom ic 
perfect gas (for instance, one o f  the noble gases at low  pressure). However, when it is 
necessary to take the variation  into account, a convenient approxim ate em pirical 
expression  is

c
Cp,m =  a +  bT  +  ~ 2  2 .25 (ا

The em pirical param eters a, b, and c are independent o f  tem perature (Table 2.2).

Fig. 2.14 The s^ p e  of the tangent to a curve 
of the enthalpy of a system subjected to a 
constant pressure plotted against 
temperature is the constant-pressure heat 
capacity. The s^p e  may change with 
temperature, in which case the heat 
capacity varies with temperature. Thus, the 
heat capacities at A and B are different. For 
gases, at a given temperature the slope of 
enthalpy versus temperature is steeper than 
that o f internal energy versus temperature, 
and Cp m is لarger than CV m.

4 As in the case of CV , if the system can change its composition it is necessary to distinguish between 
equilibrium and fixed-composition values. All applications in this chapter refer to pure substances, so this 
complication can be ignored.



Synoptic T )؛ = able 2 .2 * Temperature variation of molar heat capacities, Cp m/(J K 1 mol
a +  bT +  c/T2

a k/(10-3K) ء105رم/)

C(s, graphite) 16.86 4.77 -8.54

CO2(g) 44.22 8.79 -8.62
H2O(l) 75.29 0 0

N2(g) 28.58 3.77 -0.50

،v؛Mae values are g * m in the Data section.

Com m ent 2.6
Integrals com m only encountered In 
physical chemistry are listed inside the 
front cover.

Exam ple 2.4 Evaluating an increase in enthalpy with temperature

W hat is the change in m olar enthalpy o f  N 2 when it is heated from  25 °C  to 100°C? 
U se the heat capacity in form ation  in Table 2.2.

M ethod The heat capacity o f  N 2 changes with tem perature, so we cannot use eqn 
2.23b (w hich assum es that the heat capacity o f  the substance is constant). There­
fore, we m u st use eqn 2.23a, substitute eqn 2.25 for the tem perature dependence o f 
the heat capacity, and integrate the resulting expression  from  25 °C  to 100°C.

Answer For convenience, we denote the two tem peratures T1 (298 K) and T2 (373 K). 
The integrals we require are

fH(T2) T2 c D
d H  = a  +  bT  + d T

j ؛(H(T T1
T  2 F

N otice how  the lim its o f  integration  correspond on  each side o f  the equation : the 
integration  over H  on  the left ranges from  H (T 1), the value o f  H  at T1, up to H ( T2), 
the value o f  H  at T2, while on the right the integration over the tem perature ranges 
from  T1 to T2. N ow  we use the integrals

dx 1
^  =  - — + co n sta n t
٢2 x

1

T1

1

T

dx =  x  +  constant x  dx =  -  x 2 +  constant 

to obtain

H (T 2) -  H (T 1) =  a (T 2 -  T1) +  - b (T 2 -  T 2) -  ،

Substitu tion  o f  the num erical data results in

H (373 K) =  H (298  K) +  2.20 kJ m ol-

If  we had assum ed a constant heat capacity o f  29.14 j  K-1 m ol-1 (the value given 
b y  eqn 2.25 at 25 °C ), we w ould have found that the two enthalpies differed by
2.19 kJ m ol- .

Self-test 2 .4  At very low  tem peratures the heat capacity o f  a so lid  is proportional 
to T 3, and we can write Cp =  a T 3. W hat is the change in enthalpy o f  such a substance 
when it is heated from  0 to a tem perature T  (w ith T  close to 0)? [A H  =  -  a T  4]

M ost system s expand when heated at constant pressure. Such system s do w ork on 
the surroun dings and therefore som e o f  the energy supplied to them  as heat escapes



back to the surroundings. As a result, the tem perature o f  the system  rises less than 
when the heating occurs at constant volum e. A  sm aller increase in tem perature 
im plies a larger heat capacity, so  we conclude that in m ost cases the heat capacity at 
constant pressure o f  a system  is larger than its heat capacity at constant volum e. 
W e show  later (Section  2.11) that there is a sim ple relation betw een the two heat 
capacities o f  a perfect gas:

(2.2Cp C V =  nR

x)A T

aa tA T
C =

Thermocouples

It follow s that the m olar heat capacity o f  a perfect gas is about 8 j  K-1 m ol-1 larger at 
constant pressure than at constant volum e. Because the heat capacity at constant vo l­
um e o f  a m onatom ic gas is about 12 j  K-1 m ol-1, the difference is highly significant 
and m u st be taken into account.

IMPACT ON BIOCHEMISTRY AND MATERIALS SCIENCE 
I2.1 Differential scanning calorimetry

A  differential scanning calorimeter (D SC ) m easures the energy transferred as heat to or 
from  a sam ple at constant pressure during a physical or chem ical change. The term  
‘differential’ refers to the fact that the behaviour o f  the sam ple is com pared to that o f  
a reference m aterial which does not undergo a physical or chem ical change during the 
analysis. The term  ‘scanning’ refers to the fact that the tem peratures o f  the sam ple and 
reference m aterial are increased, or scanned, during the analysis.

A  D SC  consists o f  two sm all com partm ents that are heated electrically at a constant 
rate. The tem perature, T , at tim e t during a linear scan is T  =  T0 +  a t , where T0 is the 
initial tem perature and a i s  the tem perature scan  rate (in kelvin per second, K  s-1). A 
com puter controls the electrical pow er output in order to m aintain  the sam e tem per­
ature in the sam ple and reference com partm ents throughout the analysis (see Fig. 2.15).

The tem perature o f  the sam ple changes significantly relative to that o f  the reference 
m aterial i f  a chem ical or physical process involving the transfer o f  energy as heat 
occurs in the sam ple during the scan. T o  m aintain  the sam e tem perature in both  
com partm ents, excess energy is transferred as heat to or from  the sam ple during the 
process. For exam ple, an endotherm ic process lowers the tem perature o f  the sam ple 
relative to that o f  the reference and, as a result, the sam ple m ust be heated m ore 
strongly than the reference in order to m aintain  equal tem peratures.

I f  no physical or chem ical change occurs in the sam ple at tem perature T, we write 
the heat transferred to the sam ple as qp =  Cp AT, where A T  =  T  -  T0 and we have 
assum ed that Cp is independent o f  tem perature. The chem ical or physical process 
requires the transfer o f  qp +  qp,ex, where qp,ex is excess energy transferred as heat, to 
attain the sam e change in tem perature o f  the sam ple. W e interpret qp ex in term s o f  an 
apparent change in the heat capacity at constant pressure o f  the sam ple, Cp, during the 
tem perature scan. Then we write the heat capacity o f  the sam ple as C p +  C p ex, and

ص
Heaters

qp +  qp,ex =  (C p +  Cp

It follow s that

where P ex =  qp ex/t is the excess electrical pow er necessary to equalize the tem perature 
o f  the sam ple and reference com partm ents.

A  D SC  trace, also called a thermogram, consists o f  a p lot o f  P ex or Cp ex against T (see 
Fig. 2 .16). Broad peaks in the therm ogram  indicate processes requiring transfer o f  
energy as heat. F rom  eqn 2.23a, the enthalpy change associated with the process is

Fig. 2.15 A differential scanning calorimeter. 
The sample and a reference material are 
heated in separate but identical metal heat 
sinks. The output is the difference in power 
needed to maintain the heat sinks at equal 
temperatures as the temperature rises.
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Fig. 2.16 A thermogram for the protein 
ubiquitin at pH =  2.45. The protein retains 
its native structure up to about 45oC  and 
then undergoes an endothermic 
conformational change. (Adapted from B. 
Chowdhry and S. LeHarne, j . Chem. Educ. 
74, 236 (1997).)



Fig. 2.17 To achieve a change of state from 
one temperature and volume to another 
temperature and volume, we may consider 
the overall change as composed of two 
steps. In the first step, the system expands 
at constant temperature; there is no change 
in internal energy if the system consists of a 
perfect gas. In the second step, the 
temperature o f the system is reduced at 
constant volume. The overall change in 
internal energy is the sum of the changes 
for the two steps.

A H  =

where T1 and T2 are, respectively, the tem peratures at which the process begins and 
ends. T h is relation show s that the enthalpy change is then the area under the curve o f 
Cp ex against T. W ith a D SC , enthalpy changes m ay be determ ined in sam ples o f 
m asses as low  as 0.5 m g, which is a significant advantage over bom b  or flame 
calorim eters, which require several gram s o f  m aterial.

D ifferential scanning calorim etry is used  in the chem ical industry to characterize 
polym ers and in the biochem istry laboratory to assess the stability o f  proteins, nucleic 
acids, and m em branes. Large m olecules, such  as synthetic or biological polym ers, 
attain  com plex three-dim ensional structures due to intra- and interm olecular in ter­
actions, such  as hydrogen bon d in g  and hydrophobic interactions (C hapter 18). 
D isruption  o f  these interactions is an endotherm ic process that can be studied with a 
D SC . For exam ple, the therm ogram  show n in the illustration  indicated that the p ro ­
tein ubiquitin  retains its native structure up  to about 45°C . At higher tem peratures, 
the protein  undergoes an endotherm ic conform ational change that results in the loss 
o f  its three-dim ensional structure. The sam e principles also apply to the study o f 
structural integrity and stability  o f  synthetic polym ers, such  as plastics.

2.6 Adiabatic changes

W e are now equipped to deal with the changes that occur when a perfect gas expands 
adiabatically. A  decrease in tem perature should be expected: because w ork is done but 
no heat enters the system , the internal energy falls, and therefore the tem perature o f 
the w orking gas also falls. In m olecular term s, the kinetic energy o f  the m olecules falls 
as w ork is done, so  their average speed decreases, and hence the tem perature falls.

The change in internal energy o f  a perfect gas when the tem perature is changed 
from  Ti to Tf and the volum e is changed from  Vi to Vf can be expressed as the su m  of 
two steps (Fig. 2 .17). In the first step, only the volum e changes and the tem perature is 
held constant at its initial value. However, because the internal energy o f  a perfect 
gas is independent o f  the volum e the m olecules occupy, the overall change in internal 
energy arises solely from  the second step, the change in tem perature at constant 
volum e. Provided the heat capacity is independent o f  tem perature, this change is

A U  =  C V(T -؛  Ti) =  C VAT

Because the expansion  is adiabatic, we know  that q =  0; because A U  =  q +  w, it then 
follow s that A ^  =  wa^  The subscript ‘ad ’ denotes an  adiabatic process. Therefore, 
b y  equating the two values we have obtained for A أ /, we obtain

wad= CVA T  (2.27)

That is, the w ork done during an adiabatic expansion  o f  a perfect gas is proportional 
to the tem perature difference betw een the initial and final states. That is exactly what 
we expect on  m olecular grounds, because the m ean kinetic energy is proportional 
to T, so  a change in internal energy arising from  tem perature alone is also expected 
to be proportional to AT. In Further information 2.1 we show  that the initial and 
final tem peratures o f  a perfect gas that undergoes reversible adiabatic expansion  
(reversible expansion  in a therm ally insulated container) can be calculated from



where c =  C Vm/R, or equivalently

ViT ci =  VfT c (2 .28b)؟،,

This result is often sum m arized in the form  V T C=  constant.

Illustration 2.5 Work of adiabatic expansion

C onsider the adiabatic, reversible expansion  o f  0.020 m ol Ar, initially at 25°C , 
from  0.50 d m 3 to 1.00 d m 3. The m olar heat capacity o f  argon at constant volum e is 
12.48 j  K-  m ol-1, so c =  1.501. Therefore, from  eqn 2.28a,

١ 1/1.501

=  188 :
.50 d m 3

Tf =  (298 K) X
 ̂ 1.00 dm 3 ,

It follow s that A T  =  -1 1 0  K, and therefore, from  eqn 2.27, that

w =  {(0 .020 m ol) X (12.48 j  K_1 m o l X (-1 {(؛' 1 0  K) =  —27 j

N ote that tem perature change is independent o f  the am ount o f  gas but the w ork 
is not.

Self-test 2 .5  C alculate the final tem perature, the w ork done, and the change o f 
internal energy when am m on ia is used  in a reversible adiabatic expansion  from  
0.50 d m 3 to 2.00 d m 3, the other initial conditions being the sam e.

[195 K, —56 j , —56 j]

W e also show  in Further information 2.1 that the pressure o f  a perfect gas that 
undergoes reversible adiabatic expansion  from  a volum e Vi to a volum e Vf is related 
to its initial pressure by

pfV  f  =  p V  [  (2 .29 ev؟(

where Y =  Cpm/C Vm. T h is result is sum m arized  in the form  p V Y =  constant. For a 
m onatom ic perfect gas, C Vm =  -|R (see Illustration 2.3), and from  eqn 2.26 Cpm =  -R ; 
so Y =  - .  For a gas o f  nonlinear polyatom ic m olecules (w hich can rotate as well as 
translate), C Vm =  3R, so  Y =  - .  The curves o f  pressure versus volum e for adiabatic 
change are know n as a d iab a ts , and one for a reversible path  is illustrated in Fig. 2.18. 
Because Y >  1, an  adiabat falls m ore steeply (p 1 ح/V Y) than the corresponding 
isotherm  (p 1 ح/V ). The physical reason  for the difference is that, in an isotherm al 
expansion, energy flow s into the system  as heat and m aintains the tem perature; as a 
result, the pressure does not fall as m uch as in an adiabatic expansion.

Illustration 2 ة.  The pressure change accompanying adiabatic expansion

W hen a sam ple o f  argon  (for which Y =  4 )  at 100 kPa expands reversibly and adia- 
batically  to twice its initial vo lum e the final pressure will be

A Vi D
Y

A 1 D
5/3

p i = — X (100 kPa)
F؛V ̂١ C 2 F

For an isotherm al doubling o f  volum e, the final pressure w ould be 50 kPa.

Isotherm, p o c W

Fig. 2.18 An adiabat depicts the variation of 
pressure with volume when a gas expands 
adiabatically. (a) An adiabat for a perfect 
gas undergoing reversible expansion.
(b) Note that the pressure declines more 
steeply for an adiabat than it does for an 
isotherm because the temperature 
decreases in the former.

ll م  Exploration E ^ loreh o w  the
parameter Yalfects the dependence 

o f the pressure on the volume. Does the 
pressure-volume dependence become 
stronger or weaker with increasing volume?



Thermochemistry

The study o f  the energy transferred as heat during the course o f  chem ical reactions is 
called th erm och em istry . Therm ochem istry is a branch  o f  therm odynam ics because 
a reaction vessel and its contents fo rm  a system , and chem ical reactions result in the 
exchange o f  energy betw een the system  and the surroun dings. T h us we can use 
calorim etry to m easure the energy supplied  or discarded as heat by a reaction, and can 
identify q with a change in internal energy ( i f  the reaction occurs at constant volum e) 
or a change in enthalpy (if  the reaction occurs at constant pressure). Conversely, if  
we know  A U  or A H  for a reaction, we can predict the energy (transferred as heat) the 
reaction can produce.

W e have already rem arked that a process that releases energy by  heating the su r­
roun dings is classified as exotherm ic and one that absorbs energy by  cooling the su r­
roun dings is classified as endotherm ic. Because the release o f  energy by heating the 
surroun dings signifies a decrease in the enthalpy o f  a system  (at constant pressure), we 
can now  see that an exotherm ic process at constant pressure is one for which A H  <  0. 
Conversely, because the absorption  o f  energy by cooling the surroun dings results in 
an increase in enthalpy, an endotherm ic process at constant pressure has A H  >  0.

2.7 Standard entha)py changes
C hanges in enthalpy are norm ally reported for processes taking place under a set 
o f  stan dard conditions. In m ost o f  our d iscussion s we shall consider the s tan d a rd  
en th alpy  ch ange, A H٠, the change in enthalpy for a p rocess in which the initial and 
final substances are in  their stan dard  states:

The s ta n d a rd  sta te  o f  a substance at a specified tem perature is its pure form  at 
1 bar.؛

For exam ple, the stan dard  state o f  liquid ethanol at 298 K is pure liquid ethanol at 
298 K  and 1 bar; the stan dard state o f  so lid  iron  at 500 K  is pure iron  at 500 K and
1 bar. The stan dard  enthalpy change for a reaction or a physical p rocess is the differ­
ence betw een the p rodu cts in their stan dard  states and the reactants in their standard 
states, all at the sam e specified tem perature.

A s an exam ple o f  a stan dard enthalpy change, the standard enthalpy o f vaporization, 
AvapH * , is the enthalpy change per m ole when a pure liquid at 1 bar vaporizes to a gas 
at 1 bar, as in

H 2O (l) >  H 2O (g) A vapH م(373  K) =  +40.66 kJ m ol-1

A s im plied by the exam ples, stan dard  enthalpies m ay be reported for any tem pera­
ture. However, the conventional tem perature for reporting therm odynam ic data is 
298.15 K (correspon ding to 25 .00°C ). U nless otherwise m entioned, all therm ody­
n am ic data in this text will refer to this conventional tem perature.

A note on g o o d  practice  The attachm ent o f  the nam e o f  the transition  to the 
sym bol A, as in A vapH , is the m odern  convention. However, the older convention, 
AH vap, is still widely used. The new convention is m ore logical because the su b ­
script identifies the type o f  change, not the physical observable related to the change.

5 The definition of standard state is more sophisticated for a real gas (Further information 2.ت) and for 
solutions (Sections 5.6 and 5.7).



Synoptic  T able 2 .3 * Standard enthalpies of fusion and vaporization at the transition
H)؛ */(kJ m o l؟r؛temperature,A

Tf/K Fusion Tb/K Vaporization

506 6 87.29 1.188 83.81 Ar

H^O 273.15 6.008 373.15 40.656 (44.016 at 298 K) 
0.084 4.22 0.021 3.5 He

.More values are given in the Data section *

(a) E n th a lp ie s o f p h y sica l c h a n g e

The stan dard enthalpy change that accom panies a change o f  physical state is called the 
sta n d a rd  en th alpy  o f  tran sitio n  and is denoted A trsH 7  (Table 2.3). The sta n d a rd  
en th alpy  o f  vap o rizatio n , AvapH * , is one exam ple. A nother is the s ta n d a rd  en thalpy  
o f  fu sio n , AfusH 7, the stan dard  enthalpy change accom panying the conversion o f  a 
solid to a liquid, as in

H 2O (s) ج  H 2O (l) AfusH 7 (273 K) =  + 6 .01  kJ m ol-1

As in this case, it is som etim es convenient to know  the stan dard  enthalpy change at the 
transition  tem perature as well as at the conventional tem perature.

Because enthalpy is a state function, a change in enthalpy is independent o f  the path 
betw een the two states. This feature is o f  great im portance in therm ochem istry, for it 
im plies that the sam e value o f  A H 7 will be obtained however the change is brought 
about betw een the sam e initial and final states. For exam ple, we can picture the con ­
version o f  a so lid  to a vapour either as occurring by sublim ation  (the direct conversion 
from  solid  to vapour),

H 2O (s) ج  H 2O (g) A ^ H *

or as occurring in two steps, first fusion  (m elting) and then vaporization  o f  the resu lt­
ing liquid:

A fusH 7

A vapH*

H 2O (s) ج  H 2O(l)

H 2O (l) ج  H 2O (g)

Overall: H 2O (s) ج  H 2O (g) A ،،H * +A vapH ^

Because the overall result o f  the indirect path  is the sam e as that o f  the direct path, the 
overall enthalpy change is the sam e in each case ( 1), and we can conclude that (for 
processes occurring at the sam e tem perature)

(2.30)Asub ^  =  AfuH  +  Avap.

An im m ediate conclusion  is that, because all enthalpies o f  fusion  are positive, the 
enthalpy o f  sublim ation  o f  a substance is greater than its enthalpy o f  vaporization  (at 
a given tem perature).

A nother consequence o f  H  bein g a state function  is that the stan dard enthalpy 
changes o f  a forw ard process and its reverse differ in sign  (2 ):

٨ ٣ (A ج  B) =  - A ^ ( B ج   A) (2.31)

For instance, because the enthalpy o f  vaporization  o f  water is + 4 4  kJ m ol-1 at 298 K, 
its enthalpy o f  condensation  at that tem perature is - 4 4  kJ m ol-1.
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T ab le  2.4 Enthalpies of transition

Transition Process Symbol*

Transition Phase a ج   phase p A^sH
Fusion s ج  l ح مي
Vaporization l ج  g AvapH
Sublimation s ج  g AsubH
Mixing Pure ج  mixture Amix^
Solution Solute ج solution AsolH
Hydration X؛ (g) ج  X؛ (aq) AhydH
Atomization Species(s, l, g) ج atoms(g) AatH
Ionization X(g) ج  X+(g) + e- (g) AionH
Electron gain X(g) + e- (g) ج  X- (g) AegH
Reaction Reactants ج  products ArH
Combustion Compounds(s, l, g) + O2(g) ج CO2(g), H2O(l, g) AcH
Formation Elements ج compound AfH
Activation Reactants ج  activated complex A؛H

* IUPAC recommendations. In common usage, the transition subscript is often attached to AH, as in AH؛r؟.

T he d ifferen t types o f  en thalp ies en co u n te red  in  th e rm o ch em is try  are sum m arized  
in  T able 2.4. W e shall m ee t th e m  again  in  various loca tions th ro u g h o u t th e  text.

(b) E n th a )p ie s  of ch e m ic a )  c h a n g e

N o w  we consider en th a lp y  changes th a t acco m p an y  chem ical reac tions. T here  are tw o 
ways o f  re p o r tin g  the  change in  en thalpy  th a t accom pan ies a chem ical reac tion . O ne 
is to  w rite  th e  th e rm o c h e m ic a l e q u a tio n , a co m b in a tio n  o f  a chem ical eq u a tio n  and  
th e  co rresp o n d in g  change in  s tan d a rd  enthalpy:

C H 4(g) +  2 0 2 (g) ج  C O 2(g) +  2 H 2O (l) A =  -8 9 0  kJ

A H * is th e  change in  en th a lp y  w hen  reac tan ts  in  th e ir  s tan d a rd  states change to  p ro d ­
uc ts in  th e ir  s tan d a rd  states:

P ure , separate  reac tan ts  in  th e ir  s tan d a rd  states
ج  p u re , separa te  p ro d u c ts  in  th e ir s tan d a rd  states

E xcept in  the  case o f  io n ic  reac tions in  so lu tio n , th e  en th a lp y  changes accom pany ing  
m ix ing  an d  sep a ra tio n  are in sign ifican t in  co m p ariso n  w ith  th e  c o n tr ib u tio n  fro m  the 
reac tio n  itself. For th e  c o m b u s tio n  o f  m e th an e , th e  s tan d a rd  value refers to  the  reac ­
tio n  in  w h ich  1 m o l C H 4 in  th e  fo rm  o f  p u re  m e th an e  gas at 1 b a r  reacts com pletely  
w ith  2 m o l O 2 in  th e  fo rm  o f  p u re  oxygen gas to  p ro d u ce  1 m o l C O 2 as p u re  carb o n  
d iox ide at 1 b a r an d  2 m o l H 2O as p u re  liq u id  w ater at 1 bar; th e  n u m erica l value is for 
th e  reac tio n  at 298 K.

A lternatively, we w rite  the chem ical eq ua tion  and  th e n  re p o r t th e  s ta n d a rd  reac tio n  
e n th a lp y , Ar H . T hus, fo r th e  co m b u s tio n  o f  reaction , we w rite

C H 4(g) +  2 O 2(g) ج  C O 2(g) +  2 H 2O (l) ArH ٠ =  -8 9 0  kJ m o l-1

For th e  reac tion

2 A +  B 3 ج C  +  D



S yn o p tic  T ab le  2.5* Standard enthalpies of formation and combustion of organic 
compounds at 298 K

Af H7/(kJ m)؛ o l AcH7/(kJmol )؛

Benzene, C6H6(l) +49.0 -3268
Ethane, C2H6(g) —84.7 —1560
Glucose, C6H 12O6(s) — 1274 -2808
Methane, CH4(g) -74.8 -890
Methanol, C^OH(l) -238.7 —721

* More values are given in the Data section.

th e  s tan d a rd  reac tio n  en tha lpy  is

A r H *  =  l3H m (C) +  Hm (D)} — l2 «m (A ) +  Hm(B)}

w here Hm (j ) is the  s tan d a rd  m o la r en th a lp y  o f  species j  a t th e  tem p e ra tu re  o f  in terest. 
N o te  h o w  the  ‘p e r m o le ’ o f  ArH *  com es d irectly  fro m  th e  fact th a t m o la r en thalp ies 
appear in  th is  expression . W e in te rp re t th e  ‘p e r m o le’ b y  n o tin g  th e  sto ich iom etic  
coefficients in  th e  chem ical equa tion . In  th is case ‘p e r m o le ’ in  ArH *  m ean s ‘p e r 2 m o l 
A’, ‘p e r m ole B’, ‘per 3 m o l C ’, o r ‘per m o l D ’. In  general,

A H  =  X h  — X vH m (2.32)
Products Reactant؟

w here in  each  case th e  m o la r en thalp ies o f  th e  species are m u ltip lied  by  th e ir s to ich io ­
m e tric  coefficients, V.6

Som e s tan d a rd  reac tio n  en thalp ies have special n am es an d  a p a rticu la r significance. 
For instance , th e  s ta n d a rd  e n th a lp y  o f  c o m b u s tio n , Ac H 7, is th e  s tan d a rd  reac tion  
en th a lp y  for th e  com plete  ox id a tio n  o f  an  o rgan ic  c o m p o u n d  to  C O 2 gas an d  liqu id  
H 2O if  th e  c o m p o u n d  con ta in s  C, H , an d  O , an d  to  N 2 gas if  N  is also p resen t. A n 
exam ple is th e  co m b u s tio n  o f  glucose:

C6H 12O 6(s) +  6 O 2(g) >  6 C O 2(g) +  6 H 2O (l) AcH 7  =  -2 8 0 8  kJ m o l—

T he value q u o ted  show s th a t 2808 kJ o f  hea t is released  w h en  1 m o l C؛؛H 12O b ؛؛ u rn s  
u n d e r s tan d a rd  co n d itio n s  (a t 298 K). Som e fu r th e r values are listed in  T able 2.5.

£٩  I M P A C T  O N  B I O L O G Y

12.2 Food and energy reserves

T he th e rm o ch em ica l p ro p ertie s  o f  fuels T able 2.6 an d  foods are co m m o n ly  discussed 
in  te rm s o f  th e ir  specific enthalpy, th e  en th a lp y  o f  co m b u s tio n  p e r g ram  o f  m aterial. 
T hus, if  th e  s tan d a rd  en th a lp y  o f  co m b u s tio n  is Ac H 7  and  th e  m o la r m ass o f  th e  c o m ­
p o u n d  is M , th e n  th e  specific en tha lpy  is Ac H */M . T able 2.6 lists th e  specific en thalp ies 
o f  several fuels.

A  typical 18-20 year o ld  m a n  req u ires  a daily  in p u t o f  ab o u t 12 MJ; a w o m an  o f  the 
sam e age needs ab o u t 9 M J. I f  th e  en tire  c o n su m p tio n  w ere in  the  fo rm  o f  glucose 
(3; w h ich  has a specific en th a lp y  o f  16 kJ g—1), th a t w o u ld  req u ire  th e  co n su m p tio n  o f 
750 g o f  glucose fo r a m a n  and  560 g for a w o m an . In  fact, digestible ca rbohydrates 
have a slightly  h igher specific en thalpy  (17 kJ g“1) th a n  glucose itself, so a carbohydrate

6 In this and similar expressions, all stoichiometric ™efficients are pه sitive. For a more sophisticated way 
of writing eqn 2.32, see Section 7.2.
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T ab le  2 .6  Thermochemical properties of some fuels

Fuel Combustion equation
AcH/*

( ، - ؛ (kJ mo
Specific enthalpy/

kJ g)-)؛
Enthalpy density/ 
(kJ dm- )̂

Hydrogen H2(g) + -O 2(g) 
ج  H2O(l) -286 142 13

Methane CH4(g) + 2 O2(g)
ج  CO2(g) + 2 H2O(l) -890 55 40

Octane ي1مإ ) + ^ O 2(g)
CO2(g) +9 H2O(l) ج 8 -5471 48 3.8 X 104

Methanol CH3OH(l) + -O 2(g)
CO2(g) +2 H2O(l) ج -726 23 1.8 X 104

d ie t is slightly  less d a u n tin g  th a n  a p u re  glucose diet, as w ell as b e in g  m o re  a p p ro p r i­
ate in  th e  fo rm  o f  fibre, th e  indigestib le  cellulose th a t helps m ove d igestion  p ro d u c ts  
th ro u g h  the  in testine .

T he specific en th a lp y  o f  fats, w h ich  are lo n g -ch a in  esters like tr is tea rin  (b eef fat), is 
m u c h  greater th a n  th a t o f  carbohydrates, at a ro u n d  38 kJ g-1, slightly less th a n  the value 
fo r th e  h y d ro ca rb o n  oils u sed  as fuel (48 kJ g-1). Fats are c o m m o n ly  u sed  as an  energy 
sto re , to  be  u sed  o n ly  w h en  th e  m o re  read ily  accessible carbohyd rates have fallen in to  
sh o r t supply . In  A rctic species, th e  s to red  fat also acts as a layer o f  in su la tion ; in  desert 
species (such  as the cam el), the  fat is also a source o f  w ater, one o f  its ox idation  products.

P ro te in s  are also u sed  as a source o f  energy, b u t th e ir  co m p o n en ts , the  am ino  
acids, are o ften  to o  valuab le  to  sq u an d er in  th is way, an d  are u sed  to  co n stru c t o th er 
p ro te in s  in stead . W h en  p ro te in s  are oxid ized  (to  u rea, C O (N H 2)2), th e  equivalen t 
en th a lp y  density  is com parab le  to  th a t o f  carbohydrates.

T he hea t released b y  the  ox id a tio n  o f  foods needs to  be  d iscarded  in  o rd e r to  
m a in ta in  b o d y  tem p e ra tu re  w ith in  its typ ical range o f  35 .6 -37 .8 °C . A  varie ty  o f 
m echan ism s c o n tr ib u te  to  th is aspect o f  hom eostasis, th e  ability  o f  an  o rg an ism  to 
co u n te rac t en v iro n m en ta l changes w ith  physio logical responses. T he general u n i­
fo rm ity  o f  te m p e ra tu re  th ro u g h o u t th e  b o d y  is m a in ta in ed  largely b y  th e  flow  of 
b lo o d . W h en  hea t needs to  be d issipated  rap id ly , w arm  b lo o d  is allow ed to  flow  
th ro u g h  th e  capillaries o f  the  skin, so p ro d u c in g  flushing. R ad ia tion  is one m ean s of 
d iscard ing  heat; an o th e r is ev ap o ra tio n  an d  th e  energy  dem an d s o f  the  en th a lp y  o f 
v ap o riza tio n  o f  w ater. E v apo ra tion  rem oves ab o u t 2.4 kJ per g ram  o f  w ater persp ired . 
W h en  v igorous exercise p ro m o te s  sw eating  ( th ro u g h  th e  in fluence  o f  hea t selectors 
o n  th e  hy p o th a lam u s), 1-2  d m 3 o f  persp ired  w ater can  be p ro d u c e d  p e r h o u r, co r­
re sp o n d in g  to  a heat loss o f  2 .4 -5 .0  M J h _1.

(c) H e s s ’s  law

S tan d ard  en thalp ies o f  in d iv id u a l reac tions can  be co m b in ed  to  o b ta in  th e  en th a lp y  o f 
an o th e r reac tion . T his app lica tion  o f  the  F irst Law is called H ess’s law :

T he s tan d a rd  en th a lp y  o f  an  overall reac tio n  is th e  su m  o f  th e  s tan d a rd  en thalp ies
o f  th e  in d iv id u a l reac tions in to  w h ich  a reac tio n  m ay  be  div ided.

T he in d iv id u a l steps n eed  n o t be  realizable in  practice: th ey  m ay  be  hypo thetica l 
reac tions, th e  on ly  req u irem en t be in g  th a t th e ir  chem ical eq u a tio n s sh o u ld  balance. 
T he th e rm o d y n am ic  basis o f  th e  law  is th e  p a th - in d ep en d en ce  o f  th e  value o f  ArH *  
an d  th e  im p lica tio n  th a t w e m ay  take the  specified reactan ts , pass th ro u g h  any  (p o s­
sibly hypo thetica l) set o f  reac tions to  th e  specified p ro d u c ts , an d  overall o b ta in  the 
sam e change o f  en thalpy . T he im p o rtan ce  o f  H ess’s law  is th a t in fo rm a tio n  ab o u t a



reac tio n  o f  in te rest, w h ich  m ay  be  difficult to  d e te rm in e  directly , can  be assem bled 
fro m  in fo rm a tio n  o n  o th e r reactions.

Exam ple 2.5 Using H ess's law

T he s tan d a rd  reac tio n  en thalpy  fo r th e  h y d ro g en a tio n  o f  p ropene,

C H 2=  C H C H 3(g) +  H 2(g) ج  C H 3C H 2C H 3(g)

is -1 2 4  kJ m o l-1. T he s tan d a rd  reac tio n  en th a lp y  fo r th e  co m b u s tio n  o f  p ro p an e ,

C H 3C H 2C H 3(g) +  5 O 2(g) 3 ج  C O 2(g) +  4 H 2O (l)

is -2 2 2 0  kJ m o l-1. C alculate th e  s tan d a rd  en th a lp y  o f  co m b u s tio n  o f  p ropene .

M ethod  T he  skill to  develop is th e  ability  to  assem ble a given therm o ch em ica l 
eq u a tio n  fro m  o thers. A dd o r su b trac t th e  reac tions given, to g e th e r w ith  any 
o thers  needed , so as to  rep ro d u ce  th e  reac tio n  req u ired . T hen  add  or su b trac t the 
reac tio n  en thalp ies in  the  sam e way. A dd itio n a l da ta  are in  T able 2.5.

A nswer T he co m b u s tio n  reac tio n  we req u ire  is 

C 3H 6(g) +  - O 2(g) 3 ج  C O 2(g) +  3 H 2O (l)

T h is reac tio n  can  be  recrea ted  fro m  th e  fo llow ing sum :

Ar H * /(k J m o l-1)

C3H 6(g) +  H 2(g) ج C3H 8(g) -1 2 4

C3H 8(g) +  5 O 2(g) 3 ج C O 2(g) +  4 H 2O (l) -2 2 2 0

H 2O (l) ج  H 2(g) +  - O 2(g) +286

C 3H 6(g) +  - O 2(g) 3 ج  C O 2(g) +  3 H 2O (l) -2 0 5 8

Self-te st2 .6  C alculate th e  en th a lp y  o f  h y d ro g en a tio n  o f  b enzene fro m  its en tha lpy  
o f  co m b u s tio n  an d  th e  en th a lp y  o f  co m b u s tio n  o f  cyclohexane. [-2 0 5  kJ m o l-1 ]

2.8 Standard enthalpies of formation
T he s ta n d a rd  e n th a lp y  o f  fo rm a tio n , a H؛ ٠, o f  a substance  is th e  s tan d a rd  reac tion  
en tha lpy  fo r th e  fo rm a tio n  o f  th e  co m p o u n d  fro m  its e lem en ts in  th e ir  reference 
states. T he re fe re n c e  s ta te  o f  an  e lem en t is its m o s t stable sta te  at th e  specified te m ­
p e ra tu re  an d  1 b ar. For exam ple, at 298 K th e  reference sta te  o f  n itro g en  is a gas o f  N 2 
m olecules, th a t o f  m e rcu ry  is liqu id  m ercu ry , th a t o f  ca rb o n  is g raph ite , an d  th a t o f  tin  
is the w hite (m etallic) fo rm . T here  is one exception to  th is general p resc rip tio n  o f  re fe r­
ence states: th e  reference sta te  o f  p h o sp h o ru s  is tak en  to  be w h ite  p h o sp h o ru s  despite 
th is a llo trope  n o t be in g  th e  m o s t stable fo rm  b u t sim ply  th e  m o re  rep ro d u c ib le  fo rm  
o f  th e  e lem ent. S tan d ard  en thalp ies o f  fo rm a tio n  are expressed as en thalp ies pe r m ole 
o f  m olecu les o r (for ion ic  substances) fo rm u la  u n its  o f  th e  co m p o u n d . T he s tan d ard  
en th a lp y  o f  fo rm a tio n  o f  liq u id  b enzene at 298 K, fo r exam ple, refers to  th e  reac tion

6 C (s, g raph ite ) + م 3  م(ة) ج ء6ب ب (!)

and  is +49.0 kJ m o l-1. T he s tan d a rd  en thalp ies o f  fo rm a tio n  o f  e lem en ts in  th e ir  re fe r­
ence sta tes are zero  at all tem p era tu res  because they  are th e  en thalp ies o f  such  ‘n u ll’ 
reactions as N 2(g) ج  N 2(g). Som e enthalpies o f  fo rm ation  are listed in  Tables 2.5 and  2.7.

S yn o p tic  T ab le  2.7* Standard 
enthalpies of formation of inorganic 
compounds at 298 K

A)؛- H /(kJ mol

H2O(l)
H2O(g)
NH3(g)

®N2H4

(NO2(g
هبم4ى

NaCl(s)
KCl(s)

* More values are given in the Data section.

Comment 2.7
The NIST W ebB ook listed  in  th e  web 
site for th is  book  links to  online 
databases o f therm ochem ical data.



E le m e n ts

T he s ta n d a rd  en tha lpy  o f  fo rm a tio n  o f  ions in  so lu tio n  poses a special p ro b lem  
because it is im possib le  to  p rep are  a so lu tio n  o f  ca tions alone or o f  an ions alone. T his 
p ro b lem  is solved by  defin ing  one  ion , conven tiona lly  th e  h y d ro g en  ion , to  have zero 
s tan d a rd  en tha lpy  o f  fo rm a tio n  at all tem pera tu res:

[2 .AfH 7 (H+, aq) = ا 

T hus, if  th e  en th a lp y  o f  fo rm a tio n  o f  H B r(aq) is fo u n d  to  be  —122 kJ m o l—1, th e n  the 
w hole o f  th a t value is ascribed to  the fo rm a tio n  o f  Br—(aq), and  we w rite A fH *(B r—, aq) 
=  —122 kJ m o l—1. T h a t value m ay  th e n  be co m b in ed  w ith , for in stance , th e  en tha lpy  
fo rm a tio n  o f  A gB r(aq) to  d e te rm in e  the  value o f  A fH 7 (Ag+, aq), an d  so on . In  essence, 
th is  defin itio n  ad justs th e  ac tua l values o f  th e  en thalp ies o f  fo rm a tio n  o f  io n s b y  a fixed 
a m o u n t, w h ich  is chosen  so th a t th e  s tan d a rd  value for one o f  th em , H +(aq), has the 
value zero.

_  R e a c ta n ts

A rH~

X X  \ 7  P ro d u c ts

ؤ

(a) T h e  re a c t io n  e n th a lp y  in te r m s  of e n th a lp ie s  o f fo rm a tio n

C oncep tually , we can  regard  a reac tio n  as p roceed ing  b y  d ecom posing  th e  reac tan ts  
in to  th e ir e lem en ts an d  th e n  fo rm in g  those  elem en ts in to  th e  p ro d u c ts . T he value o f 
ArH 7 for th e  overall reac tio n  is th e  su m  o f  these ‘u n fo rm in g ’ an d  fo rm in g  en thalp ies. 
Because ‘u n fo rm in g ’ is th e  reverse o f  fo rm ing , th e  en tha lpy  o f  an  u n fo rm in g  step  is 
th e  negative o f  th e  en th a lp y  o f  fo rm a tio n  (4). H ence, in  th e  en thalp ies o f  fo rm a tio n  of 
substances, we have en o u g h  in fo rm a tio n  to  calculate th e  en tha lpy  o f  any  reac tio n  by 
using

(2.34)ArH 7  =  X v A fH 7  — X v A fH 7
Products

w here  in  each case the  en thalp ies o f  fo rm a tio n  o f  th e  species th a t occur are m u ltip lied  
b y  th e ir  s to ich io m etric  coefficients.

Illustration  2.7 Using standard enthalpies of formation

T he s tan d a rd  reac tio n  en th a lp y  o f  2 H N 3(l) +  2 N O (g ) >  H 2O 2(l) +  4 N 2(g) is cal­
cu la ted  as fo llow s:

({2AfH 7 (H N 3,l) +  2A،,H^(NO,g؛ — ({AfH 7 (H 2O 2,l) +  4AfH 7 (N 2,g؛ = ArH 7 

1—2(264.0) + 2(90.25}) kJ m o l({0)4 + 187.78—1 — ؛ kJ m o l—إ =

1—896.3 kJ m o l— =

(b) E n th a lp ie s  of fo rm a tio n  a n d  m o le c u la r  m o d e llin g

W e have seen h o w  to  co n stru c t s tan d a rd  reac tio n  en thalp ies b y  co m b in in g  s tan d a rd  
en thalp ies o f  fo rm atio n . T he q u es tio n  th a t n o w  arises is w h e th er we can  co n stru c t 
s tan d a rd  en thalp ies o f  fo rm a tio n  fro m  a know ledge o f  th e  chem ical c o n stitu tio n  
o f  th e  species. T he sh o r t answ er is th a t th ere  is no  th erm o d y n am ica lly  exact w ay o f 
expressing  en thalp ies o f  fo rm a tio n  in  te rm s o f  co n tr ib u tio n s  fro m  in d iv id u a l a tom s 
an d  b o n d s . In  th e  past, ap p ro x im ate  p ro ced u res based  o n  m e a n  b o n d  en th a lp ie s , 
A H (A -B ), th e  average en th a lp y  change associated  w ith  th e  b reak in g  o f  a specific 
A—B b o n d ,

A -B (g ) و   A (g) +  B(g) A H(A —B)



have b een  used. H ow ever, th is  p ro ced u re  is n o to rio u s ly  un re liab le , in  p a rt because 
the  A H (A -B ) are average values fo r a series o f  re la ted  co m p o u n d s . N o r does the 
ap p ro ach  d is tingu ish  betw een  geom etrical isom ers, w here th e  sam e a to m s an d  b o n d s  
m ay  be  p resen t b u t experim en ta lly  th e  en thalp ies o f  fo rm a tio n  m ig h t be  significantly  
different.

C o m p u te r-a id ed  m o lecu la r m od ellin g  has largely d isp laced  th is  m o re  prim itive  
app roach . C om m erc ia l softw are packages use the  p rincip les developed  in  C h ap te r 11 
to  calculate the  s tan d a rd  en th a lp y  o f  fo rm a tio n  o f  a m olecu le  d raw n  on  th e  co m p u te r 
screen. These techn iques can  be  app lied  to  d ifferen t co n fo rm a tio n s o f  the  sam e 
m olecu le . In  th e  case o f  m ethylcyclohexane, fo r in stance , th e  calcu lated  c o n fo rm a ­
tio n a l energy  difference ranges fro m  5.9 to  7.9 kJ m o l-1, w ith  th e  eq ua to ria l co n fo rm er 
hav ing  th e  low er s tan d a rd  en th a lp y  o f  fo rm atio n . These estim ates com pare  fav o u r­
ably  w ith  th e  ex perim en ta l value o f  7.5 kJ m o l-1. H ow ever, good  ag reem en t be tw een  
calcu lated  an d  experim en ta l values is relatively  rare . C o m p u ta tio n a l m e th o d s  a lm ost 
always p red ic t co rrec tly  w h ich  co n fo rm er is m o re  stable b u t do  n o t always p red ic t the 
co rrec t m ag n itu d e  o f  th e  co n fo rm a tio n a l energy  difference.

2.9 The temperature-dependence of reaction enthalp؛es

T he s tan d a rd  en thalp ies o f  m an y  im p o rta n t reac tions have b een  m easu red  at d iffer­
en t tem p era tu res . H ow ever, in  th e  absence o f  th is in fo rm a tio n , s tan d a rd  reac tio n  
en thalp ies at d ifferen t tem p era tu res  m ay  be  calcu lated  fro m  hea t capacities and  the 
reac tio n  en th a lp y  at som e o th e r te m p e ra tu re  (Fig. 2.19). In  m an y  cases hea t capacity  
da ta  are m o re  accura te  th a t reac tio n  en thalp ies so, p ro v id in g  th e  in fo rm a tio n  is avail­
able, th e  p ro ced u re  we are ab o u t to  describe is m o re  accura te  th a t a d irec t m easu re ­
m e n t o f  a reac tio n  en th a lp y  at an  elevated tem p era tu re .

It follow s fro m  eqn  2 .23a th a t, w h en  a substance  is h ea ted  fro m  T1 to  T2, its e n ­
th a lp y  changes fro m  H ( T1) to

H (T 2) =  H (T 1) +  CpdT (2 .

(W e have assum ed  th a t n o  phase tra n s itio n  takes place in  the  te m p e ra tu re  range o f  
in terest.) Because th is eq u a tio n  applies to  each substance  in  the  reaction , th e  s tan d a rd  
reac tio n  en th a lp y  changes fro m  ArH * (T 1) to

م خ:ب م ) =  A rH 7 (T 1) +  ArC : d T  (2.

w here ArC ^  is th e  difference o f  th e  m o la r hea t capacities o f  p ro d u c ts  an d  reac tan ts  
u n d e r s tan d a rd  co n d itio n s  w eighted  by  the  s to ich io m etric  coefficients th a t appear in  
the  chem ical equation :

A rC : =  ٤ ٩ ٦  -  X v C 7 ,m [2.37]
Products Reactant؟

E q u a tio n  2.36 is k n o w n  as K irc h h o ff’s law . It is n o rm ally  a good  a p p ro x im a tio n  to 
assum e th a t ArCp is in d ep en d e n t o f  the  tem p e ra tu re , a t least over reasonab ly  lim ited  
ranges, as illu s tra ted  in  the  fo llow ing  exam ple. A lth o u g h  the  ind iv idua l hea t capacities 
m ay  vary, th e ir  difference varies less significantly . In  som e cases th e  tem p e ra tu re  
d ependence  o f  heat capacities is tak en  in to  accoun t by  using  eqn  2.25.

Temperature, T

Fig. 2.19 An illustration of the content of 
Kirchhoff’s law. W hen the tem perature is 
increased, the enthalpy o f the products and 
the reactants both increase, bu t may do so 
to different extents. In each case, the 
change in enthalpy depends on the heat 
capacities of the substances. The change in 
reaction enthalpy reflects the difference in 
the changes of the enthalpies.



Fig. 2.20 As the volume and tem perature of 
a system are changed, the internal energy 
changes. An adiabatic and a non-adiabatic 
path are shown as Path 1 and Path 2, 
respectively: they correspond to different 
values o f q and w but to the same value 
o f AU.

E xam ple 2 ة.  Using Kirchhoff's law

T he s tan d a rd  en th a lp y  o f  fo rm a tio n  o f  gaseous H 2O at 298 K is -2 4 1 .8 2  kJ m o l-1. 
E stim ate  its value at 100°C given th e  fo llow ing values o f  th e  m o la r hea t capacities 
a t co n stan t pressure: H 2O (g): 33.58 j  K- 1 m o l-1; H 2(g): 28.84 j  K- 1 m o l-1; O 2(g): 
29.37 j  K- 1 m o l-1. A ssum e th a t the  hea t capacities are in d e p e n d e n t o f  tem p era tu re .

M ethod  W h en  A؟  is in d e p e n d e n t o f  tem p e ra tu re  in  th e  range T1 to  T2, the 
in teg ra l in  eqn  2.36 evaluates to  (T 2 -  T1)ArC^. T herefore ,

ي ء  (T 2) = م  مثئب  (T 1) +  (T 2 - م  ي ( م ب  
T o p roceed , w rite  th e  chem ical equa tion , id e n t i^  th e  s to ich io m etric  coefficients, 
an d  calculate ArC ٠ fro m  the  data.

Answ er T he reac tio n  is H 2(g) + إ   O 2(g) ج  H 2O (g), so

ArC ي2ه ٠ = ص , g) -  lC p m(H 2, g) + خ2  ي س , g)} =  —9.94 j  K- 1 m o l- 1 

It th e n  follow s th a t

A؛H *(373 K) =  -2 4 1 .8 2  kJ m o l-1 +  (75 K) X (-9 .9 4  j  K- 1 m o l-1) =  -2 4 2 .6  kJ m ol-1

S e lf- te st2 .7  E stim ate the  s tan d a rd  en th a lp y  o f  fo rm a tio n  o f  cyclohexene at 400 K 
fro m  th e  da ta  in  T able 2.5. [-163  kJ m o l-1]

State Unctions and exact differentials

W e saw  in  Section  2.2 th a t a ‘state fu n c tio n ’ is a p ro p e r ty  th a t is in d e p e n d e n t o f  h ow  a 
sam ple is p repared . In  general, su ch  p ro p ertie s  are fu n c tio n s  o f  variables th a t define 
th e  c u rre n t state o f  th e  system , su ch  as p ressu re  and  tem p e ra tu re . T he in te rn a l energy 
an d  en thalpy  are exam ples o f  sta te  func tions, fo r they  d ep en d  o n  th e  c u rre n t sta te  o f 
th e  system  an d  are in d e p e n d e n t o f  its p rev ious h is to ry . P rocesses th a t describe the 
p re p a ra tio n  o f  th e  state  are called p a th  fu n c tio n s . E xam ples o f  p a th  fu n c tio n s  are the 
w o rk  and  hea tin g  th a t are done  w h en  p rep a rin g  a state. W e do  n o t speak  o f  a system  
in  a p a rticu la r state as possessing w o rk  o r heat. In  each case, the  energy tran sfe rred  as 
w o rk  or hea t rela tes to  th e  p a th  b e in g  tak en  betw een  states, n o t th e  c u rre n t state itself.

W e can  use th e  m a th em atica l p ro p ertie s  o f  sta te  fu n c tio n s to  d raw  fa r-reach ing  
conclu s ions ab o u t th e  re la tions betw een  physical p ro p e rtie s  an d  establish  co n n ec ­
tio n s  th a t m ay  be com plete ly  unexpec ted . T he p rac tica l im p o rtan ce  o f  these resu lts is 
th a t we can  com bine  m easu rem en ts  o f  d ifferen t p ro p ertie s  to  o b ta in  th e  value o f  a 
p ro p e rty  we requ ire .

2.10 Exact and inexact differentials
C o n sid er a system  un d erg o in g  the  changes dep ic ted  in  Fig. 2.20. T he in itia l sta te  o f  the 
system  is i an d  in  th is  sta te  th e  in te rn a l energy is U i . W o rk  is done  by  the  system  as it 
expands ad iabatically  to  a sta te  f. In  th is sta te  th e  system  has an  in te rn a l energy  U؛ and 
th e  w o rk  d o n e  o n  th e  system  as it changes a long  P a th  1 fro m  i to  f  is w . N otice  o u r 
use o f  language: U  is a p ro p e r ty  o f  th e  state; w  is a p ro p e r ty  o f  the  p a th . N o w  consider 
an o th e r process, P a th  2, in  w h ich  the  in itia l an d  final states are th e  sam e as those  in  
P a th  1 b u t in  w h ich  th e  expansion  is n o t ad iabatic . T he in te rn a l energy o f  b o th  the



in itia l and  th e  final states are th e  sam e as befo re  (because U  is a sta te  fu n c tio n ). 
H ow ever, in  th e  second  p a th  an  energy  q en ters the  system  as heat and  th e  w o rk  w ' is 
n o t th e  sam e as w . T he w o rk  an d  th e  hea t are p a th  fu nc tions. In  te rm s o f  th e  m o u n ­
ta in eerin g  analogy in  Section  2.2, th e  change in  a ltitude  (a  state fu n c tio n ) is 
in d ep en d e n t o f  th e  pa th , b u t th e  d is tance  travelled  (a  p a th  fu n c tio n ) does d ep en d  on 
the  p a th  tak en  betw een  th e  fixed endpo in ts.

If  a system  is tak en  a long  a p a th  (for exam ple, b y  hea tin g  it), U  changes fro m  Ui to 
U؛, an d  th e  overall change is th e  su m  (in teg ra l) o f  all th e  in fin itesim al changes along 
the  path :

A U = d؛  U  (2.38)

T he value o f  A U  d epends o n  th e  in itia l an d  final states o f  th e  system  b u t is in d e p e n d ­
en t o f  th e  p a th  betw een  th em . T h is p a th -in d ep en d en ce  o f  the  in teg ra l is expressed 
b y  saying th a t d U  is an  ‘exact d ifferen tia l’. In  general, an  ex ac t d if fe re n tia l is an 
in fin itesim al q u an tity  tha t, w h en  in teg ra ted , gives a resu lt th a t is in d e p e n d e n t o f  the 
p a th  be tw een  the  in itia l an d  final states.

W h en  a system  is heated , th e  to ta l energy tran sfe rred  as hea t is th e  su m  o f  all in d i­
v idual c o n tr ib u tio n s  at each p o in t o f  th e  path :

٠ i, path

N otice th e  difference betw een  th is  eq u a tio n  an d  eqn  2.38. First, we do  n o t w rite  Aq , 
because q is n o t a sta te  fu n c tio n  an d  th e  energy supp lied  as hea t c an n o t be  expressed 
as q  ̂-  qi. Secondly, we m u s t s p e c i f  th e  p a th  o f  in teg ra tio n  because q d epends on  the 
p a th  selected (for exam ple, an  ad iaba tic  p a th  has q =  0 , w hereas a n o n ad iab a tic  p a th  
betw een  th e  sam e tw o sta tes w o u ld  have q 0 T .(ص  h is p a th -d ep en d en ce  is expressed 
by saying th a t d q is an  ‘inexact d ifferen tia l’. In  general, an  in ex ac t d if fe re n tia l is an 
in fin itesim al q u an tity  tha t, w h en  in teg ra ted , gives a resu lt th a t depends o n  th e  p a th  
betw een  th e  in itia l an d  final states. O ften  dq is w ritten  pq  to  em phasize th a t it is in ­
exact an d  req u ires  th e  specification  o f  a pa th .

T he w o rk  done  o n  a system  to  change it fro m  one sta te  to  an o th e r d epends o n  
the  p a th  tak en  betw een  th e  tw o specified states; fo r exam ple, in  general th e  w o rk  is 
d ifferen t if  th e  change takes place ad iabatically  an d  non -ad iabatica lly . It follow s th a t 
dw  is an  inexact d ifferential. It is o ften  w ritten  pw.

Exam ple 2.7 Calculating work, heat, and internal energy

C onsider a perfect gas in side  a cylinder fitted  w ith  a p is to n . Let the  in itia l sta te  be 
T, Vi an d  th e  final sta te  be  T, Vf. T he change o f  state can  be  b ro u g h t ab o u t in  m an y  
ways, o f  w h ich  th e  tw o sim plest are the  follow ing: P a th  1, in  w h ich  th e re  is free 
expansion  against zero  ex ternal pressure; P a th  2, in  w h ich  th ere  is reversible, 
iso th erm al expansion . C alculate w, q, an d  A U  fo r each process.

M ethod  T o  find  a s ta rtin g  p o in t fo r a ca lcu la tion  in  th erm o d y n am ics, it is o ften  
a good  idea to  go b ack  to  first p rincip les, an d  to  lo o k  fo r a w ay o f  expressing  
the  qu an tity  we are asked to  calculate in  te rm s o f  o th e r qu an tities  th a t are easier 
to  calculate. W e saw  in  M olecular interpretation 2.2  th a t th e  in te rn a l energy  o f  a 
perfect gas depends only  o n  th e  tem p e ra tu re  an d  is in d e p e n d e n t o f  th e  vo lum e 
those  m olecu les occupy, so fo r any iso th e rm al change, A U  =  0. W e also know  th a t 
in  general A U  =  q +  w . T he  q u estio n  depends o n  be in g  able to  com b ine  th e  tw o



expressions. In  th is chap te r, we derived  a n u m b e r o f  expressions fo r th e  w o rk  done  
in  a varie ty  o f  processes, and  here  we need  to  select the  ap p ro p ria te  ones.

Answ er Because A U  =  0 fo r b o th  p a th s  an d  A U  =  q +  w, in  each case q =  -w . 
T he w o rk  o f  free expansion  is zero  (Section  2 .3b); so in  P a th  1, w =  0 an d  q =  0. For 
P a th  2, th e  w o rk  is given b y  eqn  2.11, so w  =  - n R T  ln (V f/V i) an d  consequen tly  
q =  n R T ln (V f/V i). These resu lts  are consequences o f  th e  p a th  in d ep en d en ce  o f  U, 
a sta te  fu n c tio n , an d  the  p a th  d ependence  o f  q an d  w, w h ich  are p a th  func tions.

Self-test 2 .8  C alculate th e  values o f  q, w, an d  A U  fo r an  irreversib le iso th erm al 
expansion  o f  a perfect gas against a co n stan t n o n ze ro  ex ternal p ressu re.

[q =  p ex AV, w  =  - p ex AV, A U  =  0]

2.11 Changes in internal energy
W e beg in  to  u n fo ld  the  consequences o f  d U  be in g  an  exact d ifferen tia l by  exp lo ring  a 
closed system  o f  co n stan t co m p o s itio n  (the  on ly  type o f  system  considered  in  th e  rest 
o f  th is  ch ap te r). T he in te rn a l energy  U  can  be regarded  as a fu n c tio n  o f  V, T, an d  p, 
b u t, because th e re  is an  eq u a tio n  o f  state, sta ting  th e  values o f  tw o o f  th e  variables fixes 
th e  value o f  the  th ird . T herefo re , it is possib le to  w rite  U in  te rm s o f  ju s t tw o in d ep en d ­
en t variables: V  an d  T, p  an d  T, o r p  an d  V. Expressing U  as a fu n c tio n  o f  vo lum e and  
te m p e ra tu re  fits th e  p u rp o se  o f  o u r d iscussion .

(a) G e n e ra l c o n s id e ra t io n s

W h en  V  changes to  V  +  d V  a t co n stan t tem p e ra tu re , U  changes to

U ' = U +

T he coefficient (d U /d V ) T, th e  slope o f  a p lo t o f  U against V at c o n stan t tem p era tu re , 
is the  p a rtia l derivative o f  U  w ith  respect to  V  (Fig. 2.21). If, in stead , T  changes to  T +  
d T  a t co n stan t vo lum e (Fig. 2 .22), th e n  the  in te rn a l energy  changes to

Internal
energy ,
u

V olum e, ٧

u'\ § ) r

Internal
energy ,
u

V olum e, ٧ . r d V

Fig.2.21 The partial derivative (dU/dV)Tis Fig. 2.22 The partial derivative (dU/dT)Vis
the slope of U with respect to  V with the the slope of U with respect to  T  with the
tem perature T held constant. volume V held constant.



d T
d U

dT
U ' = U +

N ه w  s u p p ه se th a t V an d  T b o th  change in fin itesim ally  (Fig. 2 .23). T he new  in te rn a l 
energy, neg lec ting  seco n d -o rd e r in fin itesim als (those  p ro p o r tio n a l to  dV dT ), is the 
su m  o f  th e  changes arising  fro m  each increm en t:

U ' = U +
A d U  D A d U  D

d V + d T
C dV Tر  C d T Vر 

As a resu lt o f  th e  in fin itesim al changes in  co n d itions , th e  in te rn a l energy  U ' differs 
fro m  U  by  th e  in fin itesim al a m o u n t dU , so we an  w rite  U ' = U  +  dU . T herefo re , from  
the  last eq u a tio n  we o b ta in  th e  very  im p o rta n t resu lt th a t

(2.40)
A d U  D A d U  D

d V + d T
C d V Tر  C d T Vر 

d U  =

T he in te rp re ta tio n  o f  th is eq u a tio n  is th a t, in  a closed system  o f  co n stan t co m position , 
any  in fin itesim al change in  th e  in te rn a l energy  is p ro p o r tio n a l to  th e  in fin itesim al 
changes o f  vo lum e an d  tem p e ra tu re , th e  coefficients o f  p ro p o r tio n a lity  be in g  th e  tw o 
p artia l derivatives.

In  m an y  cases p artia l derivatives have a stra igh tfo rw ard  physical in te rp re ta tio n , 
and  th erm o d y n am ics  gets shapeless an d  difficult on ly  w h en  th a t in te rp re ta tio n  is n o t 
kep t in  sight. In  th e  p resen t case, we have already  m e t (d U /d T )V in  eqn  2.15, w here  we 
saw  th a t it is th e  co n stan t-v o lu m e  hea t capacity , C V. T he o th e r coefficient, (d U /d V )T, 
plays a m a jo r ro le in  th erm o d y n am ics  because it is a m easure  o f  th e  v a ria tio n  o f  
the  in te rn a l energy  o f  a substance  as its vo lum e is changed  at c o n stan t tem p era tu re  
(Fig. 2.24). W e shall deno te  it nT and , because it has th e  sam e d im en sio n s as pressure, 
call it th e  in te rn a l  p re s su re :

[2.41]

(2.42)

d U

dV

In  te rm s o f  th e  n o ta tio n  C Van d  nT, eqn  2.40 can  n o w  be  w ritten

d U  = n T d V  +  C V d T

(b) T h e  J e u le  e x p e r im e n t

W h en  th ere  are no  in te rac tio n s  betw een  the  m olecules, th e  in te rn a l energy  is in d e ­
p en d en t o f  th e ir  sep a ra tio n  an d  hence in d e p e n d e n t o f  the  vo lum e o f  th e  sam ple (see 
M olecular interpretation 2 .2 ). T herefore , fo r a perfec t gas we can w rite  n T =  0. The 
s ta tem en t nT =  0 ( th a t is, th e  in te rn a l energy  is in d e p e n d e n t o f  the  vo lum e occupied  
b y  th e  sam ple) can  be  tak en  to  be th e  d efin ition  o f  a perfec t gas, fo r la ter we shall see 
th a t it im plies th e  eq u a tio n  o f  sta te  p V  =  nRT. I f  th e  in te rn a l energy  increases ( d U > 0) 
as th e  vo lum e o f  the  sam ple expands iso therm ally  (d V  > 0), w h ich  is th e  case w hen  
there  are a ttrac tive  forces betw een  th e  partic les, th e n  a p lo t o f  in te rn a l energy  against 
vo lum e slopes u p w ard s an d  n T > 0 (Fig. 2.25).

Jam es Joule th o u g h t th a t he cou ld  m easu re  n T b y  observ ing  the  change in  te m p e r­
a tu re  o f  a gas w h en  it is allow ed to  expand  in to  a v acu u m . H e u sed  tw o m eta l vessels 
im m ersed  in  a w ater b a th  (Fig. 2 .26). O ne w as filled w ith  air at ab o u t 22 a tm  an d  the 
o th e r was evacuated . H e th e n  tr ied  to  m easure  th e  change in  te m p e ra tu re  o f  th e  w ater 
o f  th e  b a th  w h en  a sto p co ck  w as o p en ed  an d  th e  air expanded  in to  a vacuum . H e 
observed  n o  change in  tem p era tu re .

Fig. 2.23 An overall change in U, which is 
denoted dU, arises when both V and T 
are allowed to change. If second-order 
infinitesimals are ignored, the overall 
change is the sum of changes for each 
variable separately.

Fig. 2.24 The internal pressure, nT, is the 
slope of U with respect to V with the 
tem perature T held constant.



Fig. 2.26 A schematic diagram of the 
apparatus used by Joule in an attempt to 
measure the change in internal energy 
when a gas expands isothermally. The heat 
absorbed by the gas is proportional to the 
change in tem perature of the bath.

V olum e, ٧

Fig. 2.26 For a perfect gas, the internal 
energy is independent o f the volume (at 
constant tem perature). If attractions are 
dom inant in a real gas, the internal energy 
increases with volume because the 
molecules become farther apart on average. 
If repulsions are dominant, the internal 
energy decreases as the gas expands.

T he th e rm o d y n am ic  im p lica tions o f  th e  ex perim en t are as follow s. N o  w o rk  was 
d o n e  in  th e  expansion  In to  a v acu u m , so w =  0. N o  energy  en te red  o r left the  system  
(the  gas) as hea t because th e  tem p e ra tu re  o f  th e  b a th  d id  n o t change, so q =  0 . 
C onsequen tly , w ith in  th e  accuracy  o f  th e  experim en t, A U  =  0. It follow s th a t U  does 
n o t change m u c h  w h en  a gas expands iso therm ally  an d  there fo re  th a t n T =  0 .

Jou le’s ex perim en t w as crude . In  particu la r, th e  hea t capacity  o f  th e  app ara tu s  
w as so large th a t the  tem p e ra tu re  change th a t gases do  in  fact cause w as to o  sm all to  
m easu re . F ro m  h is exp e rim en t Joule ex trac ted  an  essential lim itin g  p ro p e r ty  o f  a gas, 
a p ro p e r ty  o f  a perfect gas, w ith o u t de tec ting  th e  sm all dev ia tions characteristic  o f  real 
gases.

(c) C h a n g e s n In؛  te rn a l e n e rg y  a t  c o n s ta n t  p r e s s u re

P artia l derivatives have m an y  usefu l p ro p e rtie s  an d  som e th a t we shall d raw  on  
freq u en tly  are review ed in  Appendix 2. Skilful use o f  th e m  can o ften  tu rn  som e 
un fam ilia r q u a n tity  in to  a q u an tity  th a t can  be  recognized , in te rp re ted , o r m easured .

As an  exam ple, suppose  w e w an t to  find  o u t h o w  th e  in te rn a l energy  varies w ith  
te m p e ra tu re  w h en  the  p ressu re  o f  th e  system  is k ep t co n stan t. I f  we divide b o th  sides 
o f  eqn  2.42 b y  d T  an d  im pose  th e  co n d itio n  o f  co n stan t p ressu re  o n  th e  resu lting  
d ifferentials, so th a t d U /d T o n  the  left becom es (dU /dT)p, w e ob ta in

A d U  ١ A d V  ١
= n>T

C d T  F C d T ر 
It is usually  sensible in  th erm o d y n am ics  to  in spec t th e  o u tp u t o f  a m a n ip u la tio n  like 
th is  to  see if  it con ta in s  any  recognizab le  physical quan tity . T he p artia l derivative o n  
th e  rig h t in  th is expression  is th e  slope o f  th e  p lo t o f  vo lum e against tem p e ra tu re  (at



,th e  e x p a n s io n  coeffic ien t ؛

[2.43]

co n stan t p ressu re). T his p ro p e r ty  is n o rm ally  tab u la ted  
a ,  o f  a su b stan ce ,7 w h ich  is defined  as

a =

and  physically  is the  frac tiona l change in  vo lum e th a t accom pan ies a rise in  te m ­
p era tu re . A  large value o f  a m ean s th a t th e  vo lum e o f  th e  sam ple resp o n d s s trong ly  to  
changes in  tem p e ra tu re . T able 2.8 lists som e experim en ta l values o f  a  an d  o f  the 
is o th e rm a l co m p re ss ib ility , KT (kappa), w h ich  is defined  as

[2.44]
'd V

V
k t = -

T he iso th e rm al com pressib ility  is a m easu re  o f  th e  frac tional change in  vo lum e w hen  
the  p ressu re  is increased  by  a sm all a m o u n t; th e  negative sign in  th e  defin itio n  ensures 
th a t th e  com pressib ility  is a positive quan tity , because an  increase o f  p ressu re , im p ly ­
ing  a positive dp, b rin g s ab o u t a red u c tio n  o f  vo lum e, a negative dV.

S yn o p tic  T ab le  2.8* Expansion 
coefficients (a) and isothermal 
compressibilities ( k t ) at 298 K

a/(10-^K-)؛ kt/(10-6bar-1)

Benzene 12.4 90.9
Diamond 0.030 0.185
Lead 0.861 2.18
Water 2.1 49.0

* More values are given in the Data section.

Exam ple 2.8 Calculating the expansion coefficient (

D erive an  expression  fo r th e  expansion  coefficient o f  a perfect gas.

M ethod  T he  expansion  coefficient is defined  in  eqn  2.43. T o  use th is expression, 
su b stitu te  th e  expression  fo r V  in  te rm s o f  T  ob ta in ed  fro m  th e  eq u a tio n  o f  state 
for th e  gas. As im p lied  b y  th e  su b sc rip t in  eqn  2.43, th e  p ressu re, p , is trea ted  as a 
constan t.

A nswer Because p V  =  nRT, w e can  w rite

1 nR d T  nR 1

V  p  d T  p V  T

d(nR T/p)

d T

1
a =  —

V

T he h igher th e  tem p e ra tu re , the  less responsive is th e  vo lum e o f  a perfec t gas to  a 
change in  tem p era tu re .

Self-test 2 .9  D erive an  expression  fo r th e  iso th e rm al com pressib ility  o f  a perfect 
gas. [Kt. =  1/p]

W h en  we in tro d u ce  th e  defin ition  o f  a i n t o  th e  eq u a tio n  fo r (d U /d T  )p, w e ob ta in

T his eq u a tio n  is en tire ly  general (p rov ided  th e  system  is closed an d  its co m p o s itio n  is 
co n stan t). It expresses th e  d ependence  o f  th e  in te rn a l energy  o n  th e  te m p e ra tu re  at 
co n stan t p ressu re  in  te rm s o f  C V, w h ich  can be  m easu red  in  one  experim en t, in  te rm s 
o f  a ,  w h ich  can  be m easu red  in  an o th e r, an d  in  te rm s o f  th e  q u an tity  n T. For a perfect 
gas, n T =  0 , so th en

7 As for heat capacities, the expansion coefficients of a mixture depends on whether or not the composition 
is allowed to change. Throughout this chapter, we deal only with pure substances, so this complication can 
be disregarded.



T h a t is, a lth o u g h  th e  co n stan t-v o lu m e  hea t capacity  o f  a perfect gas is defined  as the 
slope o f  a p lo t o f  in te rn a l energy  against tem p e ra tu re  a t co n stan t vo lum e, for a perfect 
gas C Vis also th e  slope at c o n stan t pressure.

E q u a tio n  2.46 prov ides an  easy w ay  to  derive th e  re la tio n  betw een  Cp an d  C Vfor a 
perfect gas expressed in  eqn  2.26. T hus, we can  use it to  express b o th  hea t capacities in  
te rm s o f  derivatives at co n stan t pressure:

(2.47)°
d U

d T

dH

dT
Cp C V =

T h en  we in tro d u ce  H  =  U  +  p V  =  U  +  n R T  in to  th e  first te rm , w hich  resu lts  in

(2.48)°

(2.49)

(  d U  ١ (  d U  ١
+  nR - =  nR

C d T ر  C d T - Cpر   C V =

w؛ h ich  is eqn  2.26. W e show  in  Further information 2.2  th a t in  genera

a 2 TV
=Cp -  C V

kt

E q u a tio n  2.49 applies to  any  substance  ( th a t is, it is ‘un iversally  tru e ’). It reduces to  
eqn  2.48 fo r a perfect gas w h en  we set a  =  1 /T  an d  KT =  1/p. Because expansion  
coefficients a  o f  liqu id s an d  solids are sm all, it is tem p tin g  to  deduce  fro m  eqn  2.49 
th a t for th e m  Cp ~  C V. B ut th is is n o t always so, because th e  com pressib ility  KT m igh t 
also be  sm all, so' a 2/ KT m ig h t be large. T h a t is, a lth o u g h  o n ly  a little  w o rk  n eed  be  done 
to  p u sh  b ack  th e  a tm o sp h ere , a great deal o f  w o rk  m ay  have to  be  d o n e  to  p u ll a tom s 
ap a rt fro m  one an o th e r as th e  solid  expands. As an  illu s tra tio n , fo r w ater at 25°C, eqn 
2.49 gives Cpm =  75.3 j  K-1 m o l-1 co m p ared  w ith  C y m =  74.8 j  K-1 m o l-1. In  som e 
cases, th e  tw o hea t capacities differ by  as m u c h  as 30 p e r cent.

2.12 The Joule-Thomson effect
W e can carry  o u t a sim ilar set o f  opera tions o n  th e  enthalpy, H  =  U + pV. T he quantities 
U, p , and  V  are all state functions; therefo re  H  is also a state fu n c tio n  an d  d H  is an  exact 
d ifferential. It tu rn s  o u t th a t H  is a useful th e rm o d y n am ic  fu n c tio n  w h en  th e  p ressure 
is u n d e r o u r con tro l: w e saw  a sign o f  th a t in  th e  re la tio n  A H  =  qp (eq n  2.19). W e shall 
there fo re  regard  H as a fu n c tio n  o fp  an d  T, an d  ad ap t th e  a rg u m en t in  Section  2.10 to  
find  an  expression  fo r the  v a ria tio n  o f  H  w ith  tem p e ra tu re  a t co n stan t vo lum e. As set 
o u t in  Justification  2.2, w e find  th a t for a closed system  o f  co n stan t com position ,

d H  =  —!C p d p  +  CpdT (2.50)

w here  the  Jo u le -T h o m s o n  coeffic ien t, ٣ (m u ), is defined  as

٣ = C d T 2ل  ر ء51.

T his re la tio n  will p rove  usefu l for re la tin g  th e  heat capacities at co n stan t p ressu re  and  
v o lum e an d  fo r a d iscussion  o f  th e  liquefaction  o f  gases.

Ju s tif ica tio n  2.2 The variation of enthalpy with pressure and temperature

By the same argum ent th a t led to  eqn 2.40 b u t w ith  H regarded as a function  o fp  and 
T  we can write

(  dH  ١ (  dH  ١
d H =

dp
dp +

T ,  dT  j
d T

p
(2



The second partial derivative is Cp, ou r task here is to  express (dH ة/ p )T in term s 
o f recognizable quantities. The chain relation (see Further information 2.2) lets us 
write

(dp /dT H (dT / dH)p

and b o th  partial derivatives can be b rough t in to  the num era to r by using the 
reciprocal identity  (see Further information 2.2) twice:

(2.
A  dH  ١ (dT/ dp )H A  dT  ١A  dH  ١

dp ~  (dT / dH )p~ dp H ,  dT  ,
W e have used the definitions o f the constant-pressure heat capacity, Cp, and the 
Joule-T hom son coefficient,n  (eqn 2.5ل). Equation 2.50 now  follows directly.

T he analysis o f  th e  Jo u le -T h o m so n  c o e ^ i e n t  is cen tra l to  th e  techno log ica l p ro b ­
lem s associated  w ith  th e  liquefac tion  o f  gases. W e n eed  to  be  able to  in te rp re t it p h y s­
ically an d  to  m easu re  it. As show n  in  the  Justification  below , th e  c u n n in g  req u ired  to 
im pose  th e  c o n stra in t o f  co n stan t en thalpy , so th a t the  process is is e n th a lp ic , was 
supp lied  b y  Joule an d  W illiam  T h o m so n  (la ter L ord  K elvin). T hey  let a gas expand  
th ro u g h  a p o ro u s  b a rr ie r  fro m  one co n stan t p ressu re  to  an o th e r, and  m o n ito re d  
the  difference o f  te m p e ra tu re  th a t arose fro m  th e  expansion  (Fig. 2.27). T he w hole 
ap p a ra tu s  w as in su la ted  so th a t th e  process was ad iabatic . T hey  observed  a low er te m ­
p e ra tu re  o n  the  low  p ressu re  side, th e  difference in  tem p e ra tu re  be in g  p ro p o r tio n a l to 
the  p ressu re  difference they  m a in ta in ed . T h is coo ling  by  isen tha lp ic  expansion  is n ow  
called th e  Jo u le -T h o m s o n  effect.

Ju s tif ica tio n  2.3 The Joule-Thomson effect

H ere we show that the experim ental arrangem ent results in expansion at constant 
enthalpy. Because all changes to  the gas occur adiabatically,

q = 0, w hich im plies AU  = w

C onsider the w ork done as the gas passes th rough  the barrier. W e focus on the pas­
sage o f a fixed am oun t o f gas from  the high pressure side, where the pressure is p i, 
the tem perature  Ti, and the gas occupies a volum e V■ (Fig. 2.28). The gas emerges on 
the low  pressure side, where the same am oun t of gas has a pressure pf, a tem perature 
Tf, and occupies a volum e Vf. The gas on the left is com pressed isotherm ally by the 
upstream  gas acting as a piston. The relevant pressure is p i and the volum e changes 
from  V i to  0, therefore, the w ork done on the gas is

w =  —pi(0 — Vi) = ؛١■ ٧ ■

The gas expands isotherm ally on the right o f the barrier (bu t possibly at a different 
constant tem perature) against the pressure pf provided by the dow nstream  gas act­
ing as a piston to  be driven out. The volum e changes from  0 to  Vf, so the w ork done 
on the gas in this stage is

” = ص2 pf (Vf — 0 ) = “pfV؛

The to ta l w ork done on the gas is the sum  o f these two quantities, or

barrier high p re ssu re

Fig. 2.27 The apparatus used for measuring 
the Joule-Thomson effect. The gas expands 
through the porous barrier, which acts as a 
throttle, and the whole apparatus is 
thermally insulated. As explained in the 
text, this arrangement corresponds to an 
isenthalpic expansion (expansion at 
constant enthalpy). W hether the expansion 
results in a heating or a cooling o f the gas 
depends on the conditions.

w =  w1 + w2 = p■ V■ — pfVf
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Fig. 2.28 The thermodynamic basis of 
Joule-Thomson expansion. The pistons 
represent the upstream and downstream 
gases, which maintain constant pressures 
either side of the throttle. The transition 
from  the top diagram to the bottom  
diagram, which represents the passage of a 
given am ount o f gas through the throttle, 
occurs w ithout change o f enthalpy.

It follows th a t the change o f in ternal energy o f the إ 
one side of the barrier to  the o ther is

Uf — Ui = w = piVi — pfV؛

Reorganization of this expression gives 

Uf+ pfVf = Ui + piVi, o r H f = Hj 

Therefore, the expansion occurs w ithout change o f enthalpy.

T he p ro p e r ty  m easu red  in  th e  exp erim en t is the  ra tio  o f  th e  tem p e ra tu re  change to  
th e  change o f  p ressu re , AT/Ap. A dd ing  th e  co n stra in t o f  c o n stan t en th a lp y  an d  tak ing  
th e  lim it o f  sm all Ap im plies th a t th e  th e rm o d y n am ic  q u an tity  m easu red  is (dT /dp)H, 
w hich  is th e  Jo u le -T h o m so n  coefficient, 1 . In  o th e r w ords, th e  physical in te rp re ta tio n  
o f  1  is th a t it is th e  ra tio  o f  th e  change in  tem p e ra tu re  to  th e  change in  p ressu re  w hen  
a gas expands u n d e r  co n d itio n s  th a t ensure  th ere  is n o  change in  en thalpy.

T he m o d e rn  m e th o d  o f  m easu rin g  1  is ind irec t, an d  involves m easu rin g  the 
is o th e rm a l J o u l^ T h o m s o n  coeffic ien t, th e  q u an tity

[2.54]

en th a lp y  against p ressu re  at c o n stan t tem p e ra tu re
3 an d  2.54, we see th a t the  tw o coefficients are re lated

(2.5

dH

w hich  is th e  slope o f  a p lo t o 
(Fig. 2.29). C o m p arin g  eqns 2. 
by:

1 T =  ~ Cp1

T o m easure  1 T, th e  gas is p u m p e d  co n tin u o u sly  at a steady  p ressu re  th ro u g h  a heat 
exchanger (w hich  b rings it to  th e  req u ired  tem p e ra tu re ), an d  th e n  th ro u g h  a p o ro u s  
p lug  inside a th e rm a lly  in su la ted  co n ta iner. T he steep p ressu re  d ro p  is m easured , 
an d  the  coo ling  effect is exactly offset b y  an  electric h ea te r p laced im m ed ia te ly  after 
th e  p lug  (Fig. 2.30). T he energy  p rov id ed  b y  th e  h ea te r is m o n ito red . Because the 
energy  tran sfe rred  as hea t can  be iden tified  w ith  th e  value o f  A H  for th e  gas (because

Heater
Gas flow

Thermometer

Fig. 2.30 A schematic diagram of the 
apparatus used for measuring the 
isothermal Joule-Thomson c o ^ c i ^ t .  
The electrical heating required to offset 
the cooling arising from expansion is 
interpreted as AH and used to calculate 
(dH/dp)T, which is then converted to 1  as 
explained in the te^ .

Fig. 2.29 The isothermal Joule-Thomson 
c o e ^ e n t  is the slope of the enthalpy with 
respect to  changing pressure, the 
tem perature being held constant.



A H  =  qp), an d  th e  p ressu re  change Ap is know n, w e can  find  ٣T fro m  th e  lim itin g  value 
o f  A H /A p as Ap >  0, an d  th e n  convert it to  ٣. T able 2.9 lists som e values o b ta in ed  in  
th is way.

Real gases have n o n ze ro  Jo u le -T h o m so n  coefficients. D ep en d in g  o n  th e  id en tity  o f 
the  gas, th e  p ressu re, th e  relative m ag n itu d es o f  th e  a ttractive an d  repulsive in te r-  
m o lecu lar forces (see M olecular interpretation 2 .1), an d  th e  tem p era tu re , th e  sign of 
the  coefficient m ay  be  e ither positive o r negative (Fig. 2.31). A  positive sign im plies 
th a t d T  is negative w h en  dp is negative, in  w h ich  case th e  gas cools o n  expansion . 
Gases th a t show  a hea tin g  effect (٣ < 0) at one tem p e ra tu re  show  a cooling  effect 
(٣ > 0 ) w h en  th e  tem p e ra tu re  is be low  th e ir  u p p e r  in v e rs io n  te m p e ra tu re , T  
(Table 2.9, Fig. 2 .32). As in d ica ted  in  Fig. 2.32, a gas typically  has tw o inversion  te m ­
pera tu res, one at h igh  te m p e ra tu re  an d  th e  o th e r at low.

T he ‘L inde re frig e ra to r’ m akes use o f  Jo u le -T h o m p so n  expansion  to  l iq u e ^  gases 
(Fig. 2.33). T he gas a t h igh  p ressu re  is allow ed to  expand  th ro u g h  a th ro ttle ; it cools 
and  is c ircu la ted  past th e  in co m in g  gas. T h a t gas is cooled , an d  its su b seq u en t ex p an ­
sion  cools it still fu r th e r. T here  com es a stage w h en  th e  c ircu la ting  gas becom es so cold 
th a t it condenses to  a liqu id .

For a perfect gas, ٣ =  0; hence, th e  te m p e ra tu re  o f  a perfec t gas is u n ch an g ed  
b y  Jo u le -T h o m so n  ex p an sio n .8 T his characteristic  p o in ts  clearly to  th e  invo lvem en t 
o f  in te rm o lecu la r forces in  d e te rm in in g  th e  size o f  th e  effect. H ow ever, th e  Jo u le - 
T h o m so n  coefficient o f  a real gas does n o t necessarily  ap p ro ach  zero  as th e  p ressu re  is 
red u ced  even th o u g h  th e  eq u a tio n  o f  state o f  th e  gas ap p roaches th a t o f  a perfect gas. 
T he coefficient behaves like th e  p ro p e rtie s  d iscussed in  Section  1.3b in  th e  sense th a t 
it d epends o n  derivatives an d  n o t o n  p , V, an d  T  them selves.

Fig. 2.33 The principle of the Linde 
refrigerator is shown in this diagram. The 
gas is recirculated, and so long as it is 
beneath its inversion tem perature it cools 
on e^ a n s io n  through the throttle. The 
cooled gas cools the high-pressure gas, 
which cools still further as it expands. 
Eventually liquefied gas drips from the 
throttle.

p/atm

Fig. 2.32 The inversion temperatures for 
three real gases, nitrogen, hydrogen, and 
helium.

S yn o p tic  T ab le  2.9* Inversion 
temperatures (Ti), normal freezing (Tf) and 
baling (Tb) points, and Joule-Thomson 
cهefficient (٣) at 1 atm and 298 K

K؛/T Tf/K Tb/K H/(K bar 1)

Ar
CO2

723
1500 194.7 + 1.10

He 40 4.2 -  0.060
n 2 621 63.3 77.4 +0.25

* More values are given in the Data section.

ا—

ج
re
0!

Pressure, p

Fig. 2.31 The sign of the Joule-Thomson 
c o e ^ e n t ,  ٣, depends on the conditions. 
Inside the boundary, the shaded area, it is 
positive and outside it is negative. The 
temperature corresponding to the 
boundary at a given pressure is the 
‘inversion tem perature’ of the gas at that 
pressure. For a given pressure, the 
temperature must be below a certain value 
if cooling is required but, if it becomes too 
low, the boundary is crossed again and 
heating occurs. Reduction of pressure 
under adiabatic conditions moves the 
system along one of the isenthalps, or 
curves of constant enthalpy. The inversion 
temperature curve runs through the points 
of the isenthalps where their slope changes 
from negative to  positive.

8 Simple adiabatic expansion does cool a perfect gas, because the gas does work; recall Section



M o)ecu)ar in te rp re ta tio n  2.3 Molecular interactions and the Joule-Thomson effect

T he k inetic  m o d e l o f  gases (M olecular interpretation 1.1) an d  th e  e q u ip a rtitio n  
th e o re m  (M olecular interpretation  2.2) im p ly  th a t th e  m ean  k inetic  energy  o f 
m olecu les in  a gas is p ro p o r tio n a l to  th e  tem p e ra tu re . It follow s th a t red u c in g  the 
average speed  o f  th e  m olecu les is equ ivalen t to  cooling  th e  gas. I f  th e  speed  o f  the 
m olecu les can  be red u ced  to  th e  p o in t th a t n e ig h b o u rs  can  cap tu re  each o th e r by  
th e ir  in te rm o lecu la r a ttrac tio n s, th e n  th e  cooled  gas w ill condense  to  a liqu id .

T o slow  th e  gas m olecules, we m ake use o f  an  effect sim ilar to  th a t seen  w h en  a 
ball is th ro w n  in to  th e  air: as it rises it slows in  response  to  th e  g rav ita tional a ttra c ­
tio n  o f  th e  E a rth  an d  its k ine tic  energy  is converted  in to  p o ten tia l energy. W e 
saw  in  Section  1.3 th a t m olecu les in  a real gas a ttra c t each o th e r (the  a ttra c tio n  is 
n o t g rav ita tional, b u t th e  effect is the  sam e). It follow s th a t, if  we can cause the 
m olecu les to  m ove ap a rt fro m  each o th e r, like a ball rising  fro m  a p lanet, th e n  they  
sh o u ld  slow. It is very  easy to  m ove m olecu les ap a rt fro m  each o ther: we sim ply  
allow  the  gas to  expand , w h ich  increases th e  average sep a ra tio n  o f  th e  m olecules. 
T o  cool a gas, therefo re , we allow  it to  expand  w ith o u t allow ing any  energy  to  en ter 
fro m  ou tside  as heat. As th e  gas expands, the  m olecu les m ove ap a rt to  fill th e  avail­
able vo lum e, strugg ling  as th ey  do  so against th e  a ttra c tio n  o f  th e ir  ne ighbou rs. 
B ecause som e k inetic  energy  m u s t be  converted  in to  p o ten tia l energy  to  reach  
grea ter separa tions, th e  m olecu les travel m o re  slow ly as th e ir  sep a ra tio n  increases. 
T h is sequence o f  m o lecu lar events explains th e  Jo u le -T h o m so n  effect: th e  coo ling  
o f  a real gas b y  ad iaba tic  expansion . T he coo ling  effect, w h ich  co rre sp o n d s to  
n >  0 , is observed  u n d e r  co n d itio n s  w h en  attrac tive  in te rac tio n s  are d o m in a n t 
(Z  < 1, eqn  7 ل.ل ), because th e  m olecu les have to  c lim b ap a rt against th e  a ttractive 
force in  o rd e r fo r th e m  to  travel m o re  slowly. For m olecu les u n d e r co n d itio n s 
w h en  repu lsions are d o m in a n t (Z  > 1), the  Jo u le -T h o m so n  effect resu lts in  th e  gas 
beco m in g  w arm er, o r n <  0 .

Checklist of key ideas

l~~l 6. An exothermic process releases energy as heat to  the
surroundings. An endothermic process absorbs energy as heat 
from  the surroundings.

I~~l 7. A state function is a property that depends only on the current 
state of the system and is independent o f how that state has 
been prepared.

l~~l 8. The First Law of thermodynamics states that the internal 
energy of an isolated system is constant, A [/ = q +  w.

I~1 9. Expansion work is the work of e ^ a n s io n  (or compression) of 
a system, dw = -p exdV. The work of free e ^ a n s io n  is w = ه . 
The work of expansion against a constant e te rn a l pressure is 
w = —p  A V. The work of isothermal reversible expansion of a^؛
perfect gas is w = -nR T  ln(Vf/Vi).

10. A reversible change is a change that can be reversed by an 
infinitesimal modification of a variable.

11. M aximum work is achieved in a reversible change.

I~~l 1. Thermodynamics is the study of the transformations of 
energy.

I~1 2. The system is the part of the world in which we have a special 
interest. The surroundings is the region outside the system 
where we make our measurements.

I~1 3. An open system has a boundary through which m atter can be 
transferred. A closed system has a boundary through which 
m atter cannot be transferred. An isolated system has a 
boundary through which neither m atter nor energy can be 
transferred.

I~1 4. Energy is the capacity to do work. The internal energy is the 
total energy of a system.

I~1 5. W ork is the transfer of energy by motion against an opposing 
force, dw = -—ظ  . Heat is the transfer of energy as a result o f a 
tem perature difference between the system and the 
surroundings.



I~~l21. The standard enthalpy of formation (AfH^) is the standard
reaction enthalpy for the formation of the com pound from its 
elements in their reference states. The reference state is the 
most stable state of an element at the specified tem perature 
and 1 bar.

I~122. The standard reaction enthalpy may be estimated 
by combining enthalpies o f formation,
A ^  = ̂ Products^A؛H ٠ — ^Rea،tants^A؛H ٠.

I~~l 23. The tem perature dependence of the reaction enthalpy is given
م

by Kirchhoff’s law, ArH *(T 2) =A rH^(Tj) + ArC؟ dT.
> T,

l~~l 24. An exact differential is an infinitesimal quantity that, when 
integrated, gives a result that is independent of the path 
between the initial and final states. An inexact differential 
is an infinitesimal quantity that, when integrated, gives a 
result that depends on the path between the initial and final 
states.

I~125. The internal pressure is defined as nT = (ة U/dV)T. For a 
perfect gas, nT = ه .

I~126. The Joule-Thomson effect is the cooling of a gas by 
isenthalpic expansion.

I~127. The Joule-Thomson c o e ^ e n t  is defined as 1 =  (dT/dp)H. 
The isothermal Joule-Thomson c o ^ c i ^ t  is defined as
1 T = (dH/dp)T = “ Cp^•

l~~l 28. The inversion tem perature is the tem perature at which the 
Joule-Thomson c o e ^ e n t  changes sign.

Calorimetry is the study of heat transfers during physical and 
chemical processes.

The heat capacity at constant volume is defined as 
CV = (dU/dT)V. The heat capacity at constant pressure is 
Cp = (dH/dT)p. For a perfect gas, the heat capacities are related 
by Cp — CV = nR.

The enthalpy is defined as H  = U + pV .The enthalpy change is 
the energy transferred as heat at constant pressure, AH = qp 

D uring a reversible adiabatic change, the tem perature of a 
perfect gas varies according to  Tf = T؛( V؛/V1( .c, c = CV^/R/؛
The pressure and volume are related by pV Y=  constant, with
Y=  Cp,m/CV,m.
The standard enthalpy change is the change in enthalpy for a 
process in which the initial and final substances are in their 
standard states. The standard state is the pure substance at 
1 bar.

Enthalpy changes are additive, as in AsubH ^ = AfusH ^ + AvapH ٠. 

The enthalpy change for a process and its reverse are related
by AforwardH٠ = —Arever*eH ٠.
The standard enthalpy of combustion is the standard reaction 
enthalpy for the complete oxidation of an organic com pound 
to CO2 gas and liquid H 2O  if the com pound contains C, H, 
and O, and to  N 2 gas if N  is also present.

Hess’s law states that the standard enthalpy of an overall 
reaction is the sum of the standard enthalpies o f the individual 
reactions into which a reaction may be divided.

13.

14.

15.

□  16.

17. 

□  18.

19.

□  20.
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Further information

F u rther inform ation  2.2 The relation between heat capacitiesF urther inform ation  2.1 Adiabatic p rocesses

A useful rule when doing a problem in thermodynamics is to  go back 
to  first principles. In the present problem  we do this twice, first by 
expressing Cp and CV in terms of their definitions and then by 
inserting the definition H  = U + pV:

(  dH  ١ (  dU  ١
Cp -  Cv = ] dT~ ا  - -١ dT~ ا =

I  dH  ١1 (
V

V dT p Vر 
B dU  ١l (
C dT p Vر 

(2 ..p CV = a(p  +  nT) V

(2.57)CV =  aT V  I - ؛<

Consider a stage in a reversible adiabatic expansion when the 
pressure inside and out is p . The work done when the gas expands by 
dV is dw = —pdV; however, for a perfect gas, dU  = CV dT.

Therefore, because for an adiabatic change (dq = ه ) dU  = dw + dq = 
dw, we can equate these two expressions for d U and write

CV dT  =  —pdV

We are dealing with a perfect 
obtain

, so we can replace p  by nRT/V  and

We have already calculated the difference of the first and th ird  terms 
on the right, and eqn 2.45 lets us write this difference as an TV. The 
factor a V  gives the change in volume when the tem perature is raised, 
and nT = (dU/dV )T converts this change in volume into a change in 
internal energy. We can simplify the remaining term  by noting that, 
because p is constant,

= apV

The middle term  of this expression identifies it as the contribution to 
the work of pushing back the atmosphere: (dV/dT )p is the change of 
volume caused by a change of temperature, and multiplication by p 
converts this expansion into work.

Collecting the two contributions gives

dT nRdVV
VT

To integrate this eg ression  we note that T  is equal to T؛ when V  is 
equal to  Vi, and is equal to  Tf when V is equal to Vf at the end of the 
expansion. Therefore,

f Tf dT f VfdV

V

n ، d T  [

J t t ~ j

As زust remarked, the first term  on the right, apV , is a measure of the 
work needed to push back the atmosphere; the second term  on the 
right, a n TV, is the work required to  separate the molecules 
composing the system.

At this point we can go further by using the result we prove in 
Section 3.8 that

%T = T|

W hen this expression is inserted in the last equation we obtain

(We are taking CVto be independent o f temperature.) Then, because 
jdx/x = ln x + constant, we obtain

C „  ln T  =  -n R  ln V
T  n

Because ln(x /y) = -ln(y/x), this eg ression  rearranges to

C v m  Tf = ln V i
VnR T

(  T  ١c ( آ ١
I ن  = ln I

I .v؛ر

law

W ith c = CV/nR we obtain (because ln x a = a ln x )

ln

which implies that (T؛/T؛)c = (Vi/Vf) and, upon rearrangement, 
eqn 2.28.

The initial and final states o f a perfect gas satisfy the perfect g 
regardless of how the change o f state takes place, so we can use 
p V = nRT to  write

p V T

We now transform  the remaining partial derivative. It follows from 
Euler’s chain relation that

 p؛Vf T؛
ust shown thatز However, we have

T I؛ ١  v
1/c

I  Vf ١١
Tf V v؛ر V Vi ر

Comment 2.8
The Euler chain relation states that, for a differentiable function
z = z(x,y),

For instance, if z(*,y) = x?y,

where we use the definition of the heat capacity ratio where 
Y =  Cp^/CV^  and the fact that, for a perfect gas, Cpm-  CV^  = R (the 
molar version of eqn 2.26). Then we combine the two expressions, to 
obtain

p = V  x اV  j = ا̂  j 7

which rearranges to  p V  Y = pfV  f, which is eqn 2.29.



Comment 2.9

The reciprocal identity states that

B 9x E z (dx/d1 dx I (dx/dy)z 

For example, for the function z(x,y) = x2y,

A dy ١ A9(z/x2)D d (1/x 2) 2z

V j z  \  J Z

We can also write x = (z/y)1/2, in which case 

,d ( 1/y1/2)

dy

A 9xE B 9(z/y)1/2 ١

2y3/2 2(z/x2)3/2 2z 

which is the reciprocal of the coefficient derived above.

Insertion of this relation into eqn 2.57 produces eqn 2.49.

z
dx

dz1/2

2(yz)1/2y1/2 dz

ى  = x2
dy

Multiplication of the three terms together gives the result—1.

A 9y E A (ثىق2ل  

A 9x ١ A 9(z/y)^E

and therefore that

C dT )  V (dT/dV)p(dV/dp)T

Unfortunately, (dT/dV)p occurs instead of (dV/dT)p. However, the 
‘reciprocal identity’ allows us to  invert partial derivatives and to 
write

A dp E (dV/dT)p a  

C dT )  ~  (dV/dp)T~  kt

Discussion questions

2.5 Explain the significance of the Joule and Joule-Thomson experiments. 
What would Joule observe in a more sensitive apparatus?

2.6 Suggest (with explanation) how the internal ener^  of a van der Waals gas 
should vary with volume at constant temperature.

2.7 In many experimental thermograms, such as that shown in Fig. 2.16, the 
baseline below T  is at a different level from that above T2. Explain this
observation.

2.1 Provide mechanical and molecular definitions of work and heat.

2.2 Consider the reversible expansion of a perfect gas. Provide a physical 
interpretation for the fact that pVY= constant for an adiabatic change, whereas 
pV = constant for an isothermal change.

2.3 Explain the difference between the change in internal energy and the 
change in enthalpy accompanying a chemical or physical process.

2.4 Explain the significance of a physical observable being a state function and 
compile a list of as many state functions as you can identify.

Exercises

2.3(b) A sample consisting of 2.00 mol He is expanded isothermally at 22°C 
from 22.8 dm3to 31.7 dm3 (a) reversibly, (b) against a constant external 
pressure equal to the final pressure of the gas, and (c) freely (against zero 
external pressure). For the three processes calculate q, w, AU, and AH.

2.4(a) A sample consisting of 1.00 mol of perfect gas atoms, for which 
C^m = - R, initially at p 1 = 1.00 atm and T  = 300 K, is heated reversibly to 
400 K at constant volume. Calculate the final pressure, AU, q, and w.

2.4(b) A sample consisting of 2.00 mol of perfect gas molecules, for which 
CV,m = -52R, initially at p1 = 111 kPa and T1 = 277 K, is heated reversibly to 356 K 
at constant volume. Calculate the final pressure, AU, q, and w.

2.5(a) A sample of 4.50 g of methane occupies 12.7 dm3 at 310 K.
(a) Calculate the work done when the gas expands isothermally against a 
constant external pressure of 200 Torr until its volume has increased by
3.3 dm3. (b) Calculate the work that would be done if the same expansion 
occurred reversibly.

2.5(b) A sample of argon of mass 6.56 g occupies 18.5 dm3 at 305 K.
(a) Calculate the work done when the gas expands isothermally against a

Assume all gases are perfect unless stated otherwise. Unless otherwise stated, 
thermochemical data are for 298.15 K.

2.1(a) Calculate the work needed for a 65 kg person to climb through 4.0 m
on the surface of (a) the Earth and (b) the Moon (g = 1.60 m s—2).

2.1(b) Calculate the work needed for a bird of mass 120 g to fly to a height of 
50 m from the surface of the Earth.

2.2(a) A chemical reaction takes place in a container of cross-sectional area 
100 cm2. As a result of the reaction, a piston is pushed out through 10 cm 
against an external pressure of 1.0 atm. Calculate the work done by the system.

2.2(b) A chemical reaction takes place in a container of cross-sectional area
50.0 cm2. As a result of the reaction, a piston is pushed out through 15 cm 
against an external pressure of 121 kPa. Calculate the work done by the 
system.

2.3(a) A sample consisting of 1.00 mol Ar is expanded isothermally at 0°C 
from 22.4 dm3 to 44.8 dm3 (a) reversibly, (b) against a constant externai
pressure equal to the final pressure of the gas, and (c) freely (against zero 
external pressure). For the three processes calculate q, w, AU, and AH.



2.14(b) A sample of 5.0 سل CO2 is originally confined in 15 dm3 at 280 K and 
then undergoes adiabatic expansion against a constant pressure of 78.5 kPa 
until the volume has increased by a factor of 4.0. Calculate q, w, AT, AU, and 
A#. (The final pressure of the gas is not necessarily 78.5 kPa.)

2.15(a) A sample consisting of 1.0 mol of perfect gas molecules with Cv=
20.8 j K—1 is initially at 3.25 atm and 310 K. It undergoes reversible adiabatic 
expansion until its pressure reaches 2.50 atm. Calculate the final volume and 
temperature and the work done.

2.15(b) A sample consisting of 1.5 mol of perfect gas molecules with 
Cpm = 20.8 j K—1 mol-  is initially at 230 kPa and 315 K. It undergoes reversible 
adiabatic expansion until its pressure reaches 170 kPa. Calculate the final 
volume and temperature and the work done.

2.16(a) A certain liquid has AvapH  ̂= 26.0 kJ mol-  Calculate q, w, Art, and .أ
AU when 0.50 mol is vaporized at 250 K and 750 Torr.

2.16(b) A certain liquid has AvapH  ̂= 32.0 kJ mol- . Calculate q, w, AH, and 
AU when 0.75 mol is vaporized at 260 K and 765 Torr.

2.17(a) The standard enthalpy of formation of ethylbenzene is—12.5 kJ mol-ا  
Calculate its standard enthalpy of combustion.

2.17(b) The standard enthalpy of formation of phenol is —165.0 kJ mol- . 
Calculate its standard enthalpy of combustion.

2.18(a) The standard enthalpy of combustion of cyclopropane is —2091 kJ 
mol-  at 25°C. From this information and enthalpy of formation data for 
CO^(g) and م0(ة ب ), calculate the enthalpy of formation of cyclopropane. The 
enthalpy of formation of propene is +20.42 kJ mol- . Calculate the enthalpy of 
isomerization of cyclopropane to propene.

2.18(b) From the following data, determine AfH^ for diborane, م ب ظ2ئ ), at 
298 K:

(1) B2H،(g) + 3 0 2(g) 3 + ( ي مظ3ى  H20(g) ArH٠ = -1941 kJ mol-1
(2) 2 B(s) + ̂ 0 2(g) ي B20 3(s) ArH ٠ = —2368 kJ mol-1
(3) H2(g) + - 0 2(g) ي H20(g) 241.8— = ءمه  kJ mo،-؛

2.19(a) When 120 mg of naphthalene, صح8ئ ), was burned in a bomb 
calorimeter the temperature rose by 3.05 K. Calculate the calorimeter 
constant. By how much will the temperature rise when 10 mg of phenol, 
C50^ ?H(s), is burned in the calorimeter under the same conditions؛

2.19(b) When 2.25 mg of anthracene, C14H10(s), was burned in a bomb 
calorimeter the temperature rose by 1.35 K. Calculate the calorimeter 
constant. By how much will the temperature rise when 135 mg of phenol, 

م0ظ ح6ب ($), is burned in the calorimeter under the same conditions?
(A H (C 14H10, s) = —7061 kJ mol“*.)

2.20(a) Calculate the standard enthalpy of solution of AgCl(s) in water from 
the enthalpies of formation of the solid and the aqueous ions.

2.20(b) Calculate the standard enthalpy of solution of AgBr(s) in water from 
the enthalpies of formation of the solid and the aqueous ions.

2.21(a) The standard enthalpy of decomposition of the yellow complex 
H3NS02 into NH3 and S02 is +40 kJ mol-1. Calculate the standard enthalpy of 
formation of H3NS02.

2.21(b) Given that the standard enthalpy of combustion of graphite is 
—393.51 kJ mol-1 and that of diamond is —395.41 kJ mol-1, calculate the 
enthalpy of the graphite-to-diamond transition.

2.22(a) Given the reactions (1) and (2) below, determine (a) ArH٠ and ArU  ̂
for reaction (3), (b) AfH^ for both HCl(g) and م0ى ب  all at 298 K.

(1) H^(g) + Cl (̂g) 2 ي HCl(g) ArH٠ = —184.62 kJ mol-1
(2 )2  H^(g) + 02(g) 2 ي H20(g) ArH ٠ = —483.64 kJ mol-1
(3) 4 HCl(g) + 02(g) ي Cl (̂g) + 2 م0لئ ب

constant external pressure of 7.7 kPa until its volume has increased by 2.5 dm3. 
(b) Calculate the work that would be done if the same expansion occurred 
reversibly.

2.6(a) A sample of 1.00 mol H20(g) is condensed isothermally and reversibly 
to liquid water at 100°C. The standard enthalpy of vaporization of water at 
100°C is 40.656 kJ mol-1. Find w, q, AU, and AH for this process.

2.6(b) A sample of 2.00 mol CH30H(g) is condensed isothermally and 
reversibly to liquid at 64°C. The standard enthalpy of vaporization of 
methanol at 64°C is 35.3 kJ mol-1. Find w, و, AU, and AH for this process.

2.7(a) A strip of magnesium of mass 15 g is dropped into a beaker of dilute 
hydrochloric acid. Calculate the work done by the system as a result of the 
reaction. The atmospheric pressure is 1.0 atm and the temperature 25°C.

2.7(b) A piece of zinc of mass 5.0 g is dropped into a beaker of dilute 
hydrochloric acid. Calculate the work done by the system as a result of the 
reaction. The atmospheric pressure is 1.1 atm and the temperature 23°C.

2.8(a) The constant-pressure heat capacity of a sample of a perfect gas was 
found to vary with temperature according to the expression Cp/(j K-1) = 20.17 
+ 0.3665(T/K). Calculate q, w, AU, and AH when the temperature is raised 
from 25°C to 200°C (a) at constant pressure, (b) at constant volume.

2.8(b) The constant-pressure heat capaci^ of a sample of a perfect gas was 
found to vary with temperature according to the expression Cp/(j K-1) = 20.17 
+ 0.4001(T/K). Calculate q, w, AU, and AH when the temperature is raised 
from 0°C to 100°C (a) at constant pressure, (b) at constant volume.

2.9(a) Calculate the final temperature of a sample of argon of mass 12.0 g that 
is expanded reversibly and adiabatically from 1.0 dm3 at 273.15 K to 3.0 dm3.

2.9(b) Calculate the final temperature of a sample of carbon dioxide of mass
16.0 g that is expanded reversibly and adiabatically from 500 cm3 at 298.15 K 
to 2.00 dm3.

2.10(a) A sample of carbon dioxide of mass 2.45 g at 27.0°C is allowed to 
expand reversibly and adiabatically from 500 cm3 to 3.00 dm3. What is the 
work done by the gas?

2.10(b) A sample of nitrogen of mass 3.12 g at 23.0°C is allowed to expand 
reversibly and adiabatically from 400 cm3 to 2.00 dm3. What is the work done 
by the gas?

2.11(a) Calculate the final pressure of a sample of carbon dioxide that 
expands reversibly and adiabatically from 57.4 kPa and 1.0 dm3 to a final 
volume of 2.0 dm3. Take Y= 1.4.

2.11(b) Calculate the final pressure of a sample of water vapour that expands 
reversibly and adiabatically from 87.3 Torr and 500 cm3 to a final volume of
3.0 dm3. Take Y= 1.3.

2.12(a) When 229 J of energy is supplied as heat to 3.0 mol Ar(g), the 
temperature of the sample increases by 2.55 K. Calculate the molar heat 
capacities at constant volume and constant pressure of the gas.

2.12(b) When 178 j of energy is supplied as heat to 1.9 mol of gas molecules, 
the temperature of the sample increases by 1.78 K. Calculate the molar heat 
capacities at constant volume and constant pressure of the gas.

2.13(a) When 3.0 mol 2ه  is heated at a constant pressure of 3.25 atm, its 
temperature increases from 260 K to 285 K. Given that the molar heat capacity 
of 2ه  at constant pressure is 29.4 j K-1 mol-1, calculate q, AH, and AU.

2.13(b) When 2.0 mol C02 is heated at a constant pressure of 1.25 atm, its 
temperature increases from 250 K to 277 K. Given that the molar heat capacity 
of C02 at constant pressure is 37.11 j K-1 mol-1, calculate q, AH, and AU.

2.14(a) A sample of 4.0 mol 2ه  is originally confined in 20 dm3 at 270 K and 
then undergoes adiabatic expansion against a constant pressure of 600 Torr 
until the volume has increased by a factor of 3.0. Calculate q, w, AT, AU, and 
AH. (The final pressure of the gas is not necessarily 600 Torr.)



2.28(b) Set up a thermodynamic cycle for determining the enthalpy of 
hydration of Ca2+ ions using the following data: enthalpy of sublimation 
of Ca(s), +178.2 kJ mol-1; first and second ionization enthalpies of Ca(g),
589.7 kJ mol-1 and 1145 kJ mol-1; enthalpy of vaporization of bromine,
+30.91 kJ mol-1; dissociation enthalpy of Br2(g), +192.9 kJ mol-1; electron 
gain enthalpy of Br(g), -331.0 kJ mol-1; enthalpy of solution of 
CaBr2(s), -103.1 kJ mol“1; enthalpy of hydration of Br“(g), -337 kJ mol“1.

2.29(a) When a certain freon used in refrigeration was expanded adiabatically 
from an initial pressure of 32 atm and 0°C to a final pressure of 1.00 atm, the 
temperature fell by 22 K. Calculate the Joule-Thomson coefficient, ٣, at 0°C, 
assuming it remains constant over this temperature range.

2.29(b) A vapour at 22 atm and 5°C was allowed to expand adiabatically to a 
final pressure of 1.00 atm; the temperature fell by 10 K. Calculate the 
Joule-Thomson coefficient, ٣, at 5°C, assuming it remains constant over this 
temperature range.

2.30(a) For a van der Waals gas, Kt = a/Vm Calculate AU^ for the isothermal 
expansion of nitrogen gas from an initial volume of 1.00 dm3 to 24.8 dm3 at 
298 K. What are the values of q and w?

2.30(b) Repeat Exercise 2.30(a) for argon, from an initial volume of 1.00 dm3 
to 22.1 dm3 at 298 K.

2.31(a) The volume of a certain liquid varies with temperature as

V = V '{0.75 + 3.9 x 10-4(T/K) + 1.48 x 10-6(T/K)2}

where V' is its volume at 300 K. Calculate its expansion coefficient, a, at 320 K. 

2.31(b) The volume of a certain liquid varies with temperature as

V = V'{0.77 + 3.7 x 10-4(T/K) + 1.52 x 10-6(T/K)2}

where V' is its volume at 298 K. Calculate its expansion coefficient, a, at 310 K.

2.32(a) The isothermal compressibility of copper at 293 K is 7.35 x
10-7 atm-1. Calculate the pressure that must be applied in order to increase its
density by 0.08 per cent.

2.32(b) The isothermal compressibili^ of lead at 293 K is 2.21 x 10-6 atm-1. 
Calculate the pressure that must be applied in order to increase its density by 
0.08 per cent.

2.33(a) Given that ٣ = 0.25 K atm-1 for nitrogen, calculate the value of its 
isothermal Joule-Thomson coefficient. Calculate the energy that must be 
supplied as heat to maintain constant temperature when 15.0 mol N2 flows 
through a throttle in an isothermal Joule-Thomson experiment and the 
pressure drop is 75 atm.

2.33(b) Given that ٣ = 1.11 K atm-1 for carbon dioxide, calculate the value of 
its isothermal Joule-Thomson coefficient. Calculate the energy that must be 
supplied as heat to maintain constant temperature when 12.0 mol CO2 flows 
through a throttle in an isothermal Joule-Thomson experiment and the 
pressure drop is 55 atm.

2.22(b) Given the reactions (1) and (2) below, determine (a) A H  and 
A H  for reaction (3), (b) A H  for both HCl(g) and H2O(g) all at 298 K.

(1) H^(g) + I2(s) 2 ج  HI(g) A H  = +52.96 kJ mol-1
(2 )2  H^(g) + 02(g) 2 ج  H2O(g) A H  = -483.64 kJ mol-1
(3) 4 HI(g) + 02(g) 2 ج  I2(s) + 2 م0ى ب

2.23(a) For the reaction C2̂ 0 H(l) + 3 02(g) 3 + ( ج 2 س2ى  H20(g),
A H  = -1373 kJ mol“1 at 298 K. Calculate A H .

2.23(b) For the reaction 2 C 6^C00H(s) + 13 02(g) ج 12 س2ي ) +
6 H20(g), A U =-772.7 kJ mol-1at 298 K. Calculate A H .

2.24(a) Calculate the standard enthalpies of formation of (a) KCl03(s) from 
the enthalpy of formation of KCl, (b) NaHC03(s) from the enthalpies of 
formation of 2س  and Na0H together with the following information:

2 KCl03(s) 2 ج  KCl(s) + 3 02(g) A H  = -89.4 kJ mol-1 
Na0H(s) + C02(g) ج  NaHC03(s) A H = -127 .5  kJ mol-1

2.24(b) Calculate the standard enthalpy of formation of N0Cl(g) from the 
enthalpy of formation of N 0 given in Table 2.5, together with the following 
information:

2 N0Cl(g) 2 ج  N0(g) + Cl2(g) A H  = +75.5 kJ mol“1

2.25(a) Use the information in Table 2.5 to predict the standard reaction 
enthalpy of 2 N02(g) ج هبم4ى  at 100°C from its value at 25°C.

2.25(b) Use the information in Table 2.5 to predict the standard reaction 
enthalpy of 2 H2(g) + 0 2(g) 2 ج  H20(l) at 100°C from its value at 25°C.

2.26(a) From the data in Table 2.5, calculate A H A سق  H  a£ (a) 298 K,
(b) 378 K for the reaction C(graphite) + H20(g) ج  C0(g) + م(ة ب ). Assume 
all heat capacities to be constant over the temperature range of interest.

2.26(b) Calculate A H  and A H  at 298 K and A H  at 348 K for the 
hydrogenation of ethyne (acetylene) to ethene (ethylene) from the enthalpy of 
combustion and heat capaci^ data in Tables 2.5 and 2.7. Assume the heat 
capacities to be constant over the temperature range involved.

2.27(a) Calculate A H  for the reaction Zn(s) + CuS04(aq) ج  ZnS04(aq) + 
Cu(s) from the information in Table 2.7 in the Data section.

2.27(b) Calculate A H  for the reaction NaCl(aq) + AgN03(aq) ج  AgCl(s) + 
NaN03(aq) from the information in Table 2.7 in the Data section.

2.28(a) Set up a thermodynamic cycle for determining the enthalpy of 
hydration of Mg2+ions using the following data: enthalpy of sublimation of 
Mg(s), +167.2 kJ mol-1; first and second ionization enthalpies of Mg(g),
7.646 eV and 15.035 eV; dissociation enthalpy of C^(g), +241.6 kJ mol-1; 
electron gain enthalpy of Cl(g), -3.78 eV; enthalpy of solution of MgC^(s), 
-150.5 kJ mol-1; enthalpy of hydration of Cl- (g), -383.7 kJ mol-1.



Problems*

Table 2.2. Calculate the standard enthalpy of formation of ethane at 350 K 
from its value at 298 K.
2.8 A sample of the sugar D-ribose (5 م0ه ح5ب ) of mass 0.727 g was placed 
in a calorimeter and then ignited in the presence of excess oxygen. The 
temperature rose by 0.910 K. In a separate experiment in the same calorimeter, 
the combustion of 0.825 g of benzoic acid, for which the internal energy of 
combustion is —3251 kJ mol—ا  gave a temperature rise of 1.940 K. Calculate 
the internal energy of combustion of D-ribose and its enthalpy of formation.

2.9 The standard enthalpy of formation of the metallocene 
bis(benzene)chromium was measured in a calorimeter. It was found for the 
reaction صح2ئ) ج فيم  Cr(s) + 2 جمح(ة ) that ArU^(583 K) = +8.0 kJ mol'1. 
Find the corresponding reaction enthalpy and estimate the standard enthalpy 
of formation of the compound at 583 K. The constant-pressure molar
heat capaci^ of benzene is 136.1 j K—1 mol—1 in its liquid range and 
81.67 j K—1 mol—1 as a gas.

بم2.1  From the enthalpy of combustion data in Table 2.5 for the 
alkanes methane through octane, test the extent to which the relation 
A ^  = k{(M/(g m ol'1)}” holds and find the numerical values for k and n. 
Predict AcH for decane and compare to the known value.
2.11 It is possible to investigate the thermochemical properties of 
hydrocarbons with molecular modelling methods. (a) Use electronic structure 
software to predict ACHه  values for the alkanes methane through pentane. To 
calculate AcHه values, estimate the standard enthalpy of formation of 
CnH2(n+1)(g) by performing semi-empirical calculations (for example, AM1 
or PM3 methods) and use experimental standard enthalpy of formation 
values for س2ى ) and م0(إ ب ). (b) Compare your estimated values with the 
experimental values of AcHه (Table 2.5) and comment on the reliabili^ of 
the molecular modelling method. (c) Test the extent to which the relation 
Ac؛^  = k{(M/(g mol-1)}n holds and find the numerical values for k and n.
 When 1.3584 g of sodium acetate trihydrate was mixed into 100.0 cm3 ب2.12
of 0.2000 m  HCl(aq) at 25°C in a solution calorimeter, its temperature fell by
0.397°C on account of the reaction:

H30+(aq) + NaCH3C02 • 3 م0لئ ب
ج  Na+(aq) + CH3C0 0 H(aq) + 4 H^O(l).

The heat capaci^ of the calorimeter is 91.0 j K—1 and the heat capacity densi^ 
of the acid solution is 4.144 j K—1 cm—3. Determine the standard enthalpy of 
formation of the aqueous sodium cation. The standard enthalpy of formation 
of sodium acetate trihydrate is —1064 kJ mol-1.
 Since their discovery in 1985, fullerenes have received the attention of ب2.13
many chemical researchers. Kolesov et al.reported the standard enthalpy of 
combustion and of formation of crystalline C60 based on calorimetric 
measurements (V.P. Kolesov, S.M. Pimenova, V.K. Pavlovich, N.B. Tamm, 
and A.A. Kurskaya, j. Chem. Thermodynamics 28, 1121 (1996)). In one of their 
runs, they found the standard specific internal energy of combustion to be 
—36.0334 kJ g— at 298.15 K Compute AcH^ and A؛H^ of C60.
 A thermodynamic study of DyCl3 (E.H.P. Cordfunke, A.S. Boo^, and ب2.14
M. Yu. Furkaliouk, j. Chem. Thermodynamics 28, 1387 (1996)) determined its 
standard enthalpy of formation from the following information

ArH* = —180.06kJmol-

ArH699.43-  -kJ mol ه = 
ArH158.31— = ه  kJ mol-

(1) DyC^(s) ج  DyCl3(aq, in 4.0 m  HCl)
(2) Dy(s) + 3 HCl(aq, 4.0 m  ج (

DyCl3(aq, in 4.0 m  HCl(aq)) + - ة(بم
(3) -H 2(g) + -C l2(g) ج  HCl(aq, 4.0 m ) 

Determine A؛H^(DyCl3, s) from these data.

Assume all gases are perfect unless stated otherwise. Note that 1 atm =
1.013 25 bar. Unless otherwise stated, thermochemical data are for 298.15 K.

N um erical prob>ems

2.1 A sample consisting of 1 mol of perfect gas atoms (for which 
C^m = - R) is taken through the cycle shown in Fig. 2.34. (a) Determine the 
temperature at the points 1, 2, and 3. (b) Calculate q, w, AU, and س  for each 
step and for the overall cycle. If a numerical answer cannot be obtained from 
the information given, then write in +, —, 0, or ? as appropriate.

Volume, Wdm3

Fig. 2.34

2.2 A sample consisting of 1.0 mol CaC03(s) was heated to 800°C, when it 
decomposed. The heating was carried out in a container fitted with a piston 
that was initially resting on the solid. Calculate the work done during 
complete decomposition at 1.0 atm. What work would be done if instead of 
having a piston the container was open to the atmosphere?

2.3 A sample consisting of 2.0 mol 2س  occupies a fixed volume of 15.0 dm3 
at 300 K. When it is supplied with 2.35 kJ of energy as heat its temperature 
increases to 341 K. Assume that 2س  is described by the van der Waals 
equation of state, and calculate w, AU, and AH.

2.4 A sample of 70 mmol Kr(g) expands reversibly and isothermally at 373 K 
from 5.25 cm3 to 6.29 cm3, and the internal energy of the sample is known to 
increase by 83.5 j. Use the virial equation of state up to the second coefficient 
B = —28.7 cm3 mol-1 to calculate w, q, and AH for this change of state.

2.5 A sample of 1.00 mol perfect gas molecules with Cp^ = - Ris put through 
the following cycle: (a) constant-volume heating to twice its initial volume,
(b) reversible, adiabatic expansion back to its initial temperature, (c) 
reversible isothermal compression back to 1.00 atm. Calculate q, w, AU, and 
AH for each step and overall.

2.6 Calculate the work done during the isothermal reversible expansion of a 
van der Waals gas. Account physically for the way in which the coefficients a 
and b appear in the final expression. Plot on the same graph the indicator 
diagrams for the isothermal reversible expansion of (a) a perfect gas,
(b) a van der Waals gas in which a = 0 and b = 5.11 X 10-2 dm3 mol-1, and
(c) a = 4.2 dm^ atm mol-  and b = 0. The values selected exaggerate the 
imperfections but give rise to significant effects on the indicator diagrams. 
Take Vi = 1.0 dm3, n = 1.0 mol, and T = 298 K.

2.7 The molar heat capacity of ethane is represented in the temperature range 
298 K to 400 K by the empirical expression Cp^/(J K-1 mol-1) = 14.73 + 
0.1272(T/K). The corresponding expressions for C(s) and م(ة ب ) are given in

* Problems denoted with the symbol ي were supplied by Charles Trapp, Carmen Giunta, and Marshall Cady.



expressing (dH/dU)p as the ratio of two derivatives with respect to volume 
and then using the definition of enthalpy.

2.26 (a) Write expressions for dV and dp given that V is a function of p and 
T and p is a function of V and T. (b) Deduce expressions for d ln V and d ln p 
in terms of the expansion coefficient and the isothermal compressibili^.

2.27 Calculate the work done during the isothermal reversible expansion of a 
gas that satisfies the virial equation of state, eqn 1.19. Evaluate (a) the work 
for 1.0 mol Ar at 273 K (for data, see Table 1.3) and (b) the same amount of a 
perfect gas. Let the expansion be from 500 cm3 to 1000 cm3 in each case.

2.28 Express the work of isothermal reversible expansion of a van der Waals 
gas in reduced variables and find a definition of reduced work that makes the 
overall expression independent of the identity of the gas. Calculate the work 
of isothermal reversible expansion along the critical isotherm from Vc to xVc.

-A gas obeying the equation of state p( V ب2.29  nb) = nRT is subjected to a 
Joule-Thomson expansion. Will the temperature increase, decrease, or 
remain the same?

 Use the fact that (dU/dV)T = a/v2m for a van der Waals gas to show that م2.3
! Cpm 2) ءa/RT)) -  b by using the definition of !  and appropriate relations 
be^een partial derivatives. (Hint. Use the approximation pv^ ء RT when it 
is justifiable to do so.)

2.31 Rearrange the van der Waals equation of state to give an expression for 
T as a function ofp and V (with n constant). Calculate (dT/dp)vand confirm 
that (dT/dp)V = 1/(dp/dT)V. Go on to confirm Euler’s chain relation.

2.32 Calculate the isothermal compressibili^ and the expansion coefficient 
of a van der Waals gas. Show, using Euler’s chain relation, that
KtR = a(Vm -  b).

2.33 Given that ! Cp = T(dV/dT)p-  V, derive an expression for !  in terms of 
the van der Waals parameters a and b, and express it in terms of reduced 
variables. Evaluate !  at 25°C and 1.0 atm, when the molar volume of the gas 
is 24.6 dm3 mol-1. Use the expression obtained to derive a formula for the 
inversion temperature of a van der Waals gas in terms of reduced variables, 
and evaluate it for the xenon sample.

2.34 The thermodynamic equation of state (dU/dV) t  = T(dp/dT) v - p was 
quoted in the chapter. Derive its partner

from it and the general relations between partial differentials. 

2.35 Show that for a van der Waals gas,

and evaluate the difference for xenon at 25°C and 10.0 atm.

2.36 The speed of sound, cs, in a gas of molar mass M is related to the ratio of 
heat capacities Y by cs = (yRT/M) 1/2. Show that cs = (Yp/p)1/2, where p  is the 
mass densi^ of the gas. Calculate the speed of sound in argon at 25°C.

 -A gas obeys the equation of state V^ = RT/p + aT2 and its constant ب2.37
pressure heat capacity is given by Cp,m = A + BT + Cp, where a, A, B, and C are 
constants independent of T and p. Obtain expressions for (a) the 
Joule-Thomson coefficient and (b) its constant-volume heat capacity.

A pplications: to  biology, m a te ria ls  sc ie n c e , an d  th e  
env ironm ent

2.38 It is possible to see with the aid of a powerful microscope that a long 
piece of double-stranded DNA is flexible, with the distance between the ends 
of the chain adopting a wide range of values. This flexibility is important 
because it allows DNA to adopt very compact conformations as it is packaged 
in a chromosome (see Chapter 18). It is convenient to visualize a long piece

 Silylene (SiH2) is a key intermediate in the thermal decomposition of ي2.15
silicon hydrides such as silane (SiH4) and disilane (Si2H6). Moffatet al. (H.K. 
Moffat, K.F. Jensen, and R.W. Carr, j. Phys. Chem. 95, 145 (1991)) report 
AfH 7(SiH2) =+274 kJ mol-1. If AfH734.3+= (م م ب  kJ mol-1 and 
AfH780.3+= ( م ؛م2ب  kJ mol-1 (CRC Handbook (2004)), compute the 
standard enthalpies of the following reactions:

(a) SiH4(g) ج  SiH2(g) + H2(g)
(b) Si2H6(g) ج  SiH2(g) + SiH4(g)

 Silanone (SiH2O) and silanol (SiH3OH) are species believed to be ب2.16
important in the oxidation of silane (SiH4). These species are much more 
elusive than their carbon counterparts. C.L. Darling and H.B. Schlegel 
(j. Phys. Chem. 97, 8207 (1993)) report the following values (converted from 
calories) from a computational study: AfH7(SiH2O) = —98.3 kJ mol-1 and 
AfH 7(Si^OH) = —282 kJ mol-1. Compute the standard enthalpies of the 
following reactions:

(a) SiH4(g) + -O^(g) ج  SiH3OH(g)
(b) SiH4(g) + O^(g) ج  SiH^O(g) + H^O(l)
(c) SiH3OH(g) ج  SiH^O(g) + H^(g)

Note that AfH7(SiH4, g) = +34.3 kJ mol-1 (CRC Handbook (2004)).

2.17 The constant-volume heat capacity of a gas can be measured by 
observing the decrease in temperature when it expands adiabatically and 
reversibly. If the decrease in pressure is also measured, we can use it to infer 
the value of Y = Cp/Cv and hence, by combining the two values, deduce the 
constant-pressure heat capacity. A fluorocarbon gas was allowed to expand 
reversibly and adiabatically to twice its volume; as a result, the temperature 
fell from 298.15 K to 248.44 K and its pressure fell from 202.94 kPa to 
81.840 kPa. Evaluate Cp.

2.18 A sample consisting of 1.00 mol of a van der Waals gas is compressed 
from 20.0 dm3 to 10.0 dm3 at 300 K. In the process, 20.2 kJ of work is done 
on the gas. Given that !  = {(2a/RT) -  b}/Cp^, with Cp^ = 38.4 j K-1 mol-1,
a = 3.60 dm6 atm mol-2, and b = 0.44 dm3 mol-1, calculate AH for the process.

2.19 Take nitrogen to be a van der Waals gas with a = 1.352 dm6 atm mol-2 
and b = 0.0387 dm3 mol-1, and calculate AHm when the pressure on the gas is 
decreased from 500 atm to 1.00 atm at 300 K. For a van der Waals gas,
!  = {(2a/RT) -  b}/Cp, .̂ Assume Cp,  ̂= -R.

T heo re tica l p ro b lem s

,Show that the following functions have exact differentials: (a) x2y + 3y2 م2.2
(b) x cos xy, (c) x3y2, (d) t(t + es) + s.

2.21 (a) What is the total differential of z = x2 + 2y2 - - xموع + 22   4y -  8? (b) 
Show that d2z/dydx = ddz/dxdy for this Unction. (c) Let z = xy -  y + ln x + 2. 
Find dz and show that it is exact.

2.22 (a) Express (dCv/dV ) t as a second derivative of Uand find its relation 
to (dU/dV ) t  and (dCp/dp)T as a second derivative of H  and find its relation 
to (dH/dp)؟  (b) From these relations show that (dCv/dV) t  = 0 and
(dCp/dp)0 = ؟ for a perfect gas.

2.23 (a) Derive the relation Cv = -  (dU/dV) t (dV/dT)u from the expression 
for the total differential of U(T,V) and (b) starting from the expression for 
the total differential of H(T,p), express (dH/dp) t in terms of Cp and the 
Joule-Thomson coefficient, ! .

2.24 Starting from the expression Cp -  Cv = T(dp/dT) V(dV/dT)p, use the 
appropriate relations between partial derivatives to show that

T(dV/dT )2
p v (dV/dT )T

Evaluate Cp -  CV for a perfect gas.

2.25 (a) By direct differentiation of H  = U+pv, obtain a relation be^een 
(dH/dU)p and (dU/dV)p. (b) Confirm that (dH/dU)p = 1 + p(dV/dU)p by



molecule of glucose is converted to two molecules of lactic acid 
(CH3CH (OH)COOH) by a process called anaerobic glycolysis (see 
ImpactI7.2). (a) When 0.3212 g of glucose was burned in a bomb 
calorimeter of calorimeter constant 641 j K-1 the temperature rose by 
7.793 K. Calculate (i) the standard molar enthalpy of combustion, (ii) the 
standard internal energy of combustion, and (iii) the standard enthalpy of 
formation of glucose. (b) What is the biological advantage (in kilojoules 
per mole of energy released as heat) of complete aerobic oxidation 
compared with anaerobic glycolysis to lactic acid?

2.43 You have at your disposal a sample of pure polymer P and a sample of P 
that has just been synthesized in a large chemical reactor and that may 
contain impurities. Describe how you would use differential scanning 
calorimetry to determine the mole percentage composition of P in the 
allegedly impure sample.

 Alkyl radicals are important intermediates in the combustion ب2.44
and atmospheric chemistry of hydrocarbons. Seakins et al. (P.W.
Seakins, M.j. Pilling, j.T. Niiranen, D. Gutman, and L.N. Krasnoperov, 
j . Phys. ^^em. 96, 9847 (1992)) report A؛H^ for a variety of alkyl radicals 
in the gas phase, information that is applicable to studies of pyrolysis and 
oxidation reactions of hydrocarbons. This information can be combined 
with thermodynamic data on alkenes to determine the reaction enthalpy 
for possible fragmentation of a large alkyl radical into smaller radicals and 
alkenes. Use the following set of data to compute the standard reaction 
enthalpies for three possible fates of the tert-butyl radical, namely,
(a) tert-C4H9 ج  sec-C^9, (b) tert-C4H9 ج  C3H6 + CH3, (c) tert-C4H9 ج 
C2H4 + C2H5.

Species: C 2H 5 5 9 -ءء0م  tert-C^Hg

A fH */(k j m ol“ 1) +121.0  +67.5 +51.3

 In 1995, the Intergovernmental Panel on Climate Change (IPCC) ب2.45
considered a global average temperature rise of 1.0-3.5°C likely by the year 
2100, with 2.0°C its best estimate. Predict the average rise in sea level due to 
thermal expansion of sea water based on temperature rises of 1.0°C, 2.0°C, 
and 3.5°C given that the volume of the Earth’s oceans is 1.37 X 109 km3 and 
their surface area is 361 X 106 km2, and state the approximations that go into 
the estimates.

2.46± Concerns over the harmful effects of chlorofluorocarbons on 
stratospheric ozone have motivated a search for new refrigerants. One such 
alternative is 2,2-dichloro-1,1,1-trifluoroethane (refrigerant 123). Younglove 
and McLinden published a compendium of thermophysical properties of this 
substance (B.A. Younglove and M. McLinden, j. Phys. Chem. Ref. Data 23, 7 
(1994)), from which properties such as the joule-Thomson coefficient م 
can be computed. (a) Compute م at 1.00 bar and 50°C given that (dH/dp)T 
= -3.29 X 1ص j MPa-1 mol-1 and Cpm = 110.0 j K-1 mol-1. (b) Compute the 
temperature change that would accompany adiabatic expansion of 2.0 mol 
of this refrigerant from 1.5 bar to 0.5 bar at 50°C.

 -Another alternative refrigerant (see preceding problem) is 1,1,1,2 ب2.47
tetrafluoroethane (refrigerant HFC-134a). Tillner-Roth and Baehr published 
a compendium of thermophysical properties of this substance (R. Tillner- 
Roth and H.D. Baehr, j. Phys. Chem. Ref. Data 23, 657 (1994)), from which 
properties such as the joule-Thomson coefficient م can be computed. (a) 
Compute م at 0.100 MPa and 300 K from the following data (all referring 
to 300 K):

p /M P a  0.080 0.100 0.12

Specific en thalpy/(kj kg-1) 426.48 426.12 425.76

(The specific constant-pressure heat capaci^ is 0.7649 kj K-1 kg-1.)
(b) Compute م at 1.00 MPa and 350 K from the following data (all referring
to 350 K):

p /M P a  0.80 1.00 1.2

Specific en thalpy/(kj kg-1) 461.93 459.12 456.15

(The specific constant-pressure heat capaci^ is 1.0392 kj K-1 kg-1.)

of DNA as a freely jointed chain, a chain of N  small, rigid units of length l 
that are free to make any angle with respect to each other. The length l, the 
persistence length, is approximately 45 nm, corresponding to approximately 
130 base pairs. You will now explore the work associated with extending a 
DNA molecule. (a) Suppose that a DNA molecule resists being extended 
from an equilibrium, more compact conformation with a restoring force 
F = —k¥ X, where X is the difference in the end-to-end distance of the chain 
from an equilibrium value and kp is the force constant. Systems showing this 
behaviour are said to obey Hooke's law. (i) What are the limitations of this 
model of the DNA molecule? (ii) Using this model, write an expression for 
the work that must be done to extend a DNA molecule by X. Draw a graph 
of your conclusion. (b) A better model of a DNA molecule is the one­
dimensional freely jointed chain, in which a rigid unit of length l can only 
make an angle of 0° or 180° with an adjacent unit. In this case, the restoring 
force of a chain extended by X = nl is given by

kT (1 + vD 
F = —  ln I v= n/N

2l 1 1 - v j

where k = 1.381 X 10-23 j K-1 is Boltzmann’s constant (not a force constant).
(i) What are the limitations of this model? (ii) What is the magnitude of the 
force that must be applied to extend a DNA molecule with N = 200 by 90 nm? 
(iii) Plot the restoring force against v, noting that v can be either positive or 
negative. How is the variation of the restoring force with end-to-end distance 
different from that predicted by Hooke’s law? (iv) Keeping in mind that the 
difference in end-to-end distance from an equilibrium value is X = nl and, 
consequently, dX = ldn = Nld v, write an expression for the work of extending 
a DNA molecule. (v) Calculate the work of extending a DNA molecule from 
v= 0 to v= 1.0. Hint. You must integrate the expression for w. The task can 
be accomplished easily with mathematical software. (c) Show that for small 
extensions of the chain, when v «  1, the restoring force is given by

vkT nkT 
l Nl

Hint. See AppendiX 2 for a review of series expansions of functions. (d) Is the 
variation of the restoring force with extension of the chain given in part
(c) different from that predicted by Hooke’s law? Explain your answer.

2.39 There are no dietary recommendations for consumption of 
carbohydrates. Some nutritionists recommend diets that are largely devoid of 
carbohydrates, with most of the ener^  needs being met by fats. However, the 
most common recommendation is that at least 65 per cent of our food 
calories should come from carbohydrates. A -34-cup serving of pasta contains 
40 g of carbohydrates. What percentage of the daily calorie requirement for a 
person on a 2200 Calorie diet (1 Cal =1 kcal) does this serving represent?

 An average human produces about 10 Mj of heat each day through م2.4
metabolic activity. If a human body were an isolated system of mass 65 kg 
with the heat capacity of water, what temperature rise would the body 
experience? Human bodies are actually open systems, and the main 
mechanism of heat loss is through the evaporation of water. What mass of 
water should be evaporated each day to maintain constant temperature?

2.41 Glucose and fructose are simple sugars with the molecular formula 
C6H12O6. Sucrose, or table sugar, is a complex sugar with molecular formula 
C12H22O11 that consists of a glucose unit covalently bound to a fructose unit 
(a water molecule is given off as a result of the reaction be^een glucose and 
fructose to form sucrose). (a) Calculate the energy released as heat when a 
typical table sugar cube of mass 1.5 g is burned in air. (b) To what height 
could you climb on the energy a table sugar cube provides assuming 25 per 
cent of the energy is available for work? (c) The mass of a typical glucose 
tablet is 2.5 g. Calculate the ener^  released as heat when a glucose tablet is 
burned in air. (d) To what height could you climb on the energy a cube 
provides assuming 25 per cent of the energy is available for work?

2.42 In biological cells that have a plentiful supply of O2, glucose is oxidized 
completely to CO2 and H2O by a process called aerobic oXidation. Muscle cells 
may be deprived of O2 during vigorous exercise and, in that case, one



The Second Law

The purpose of this chapter is to explain the origin of the spontaneity of physical and chem­
ical change. We examine two simple processes and show how to define, measure, and use 
a property, the entropy, to discuss spontaneous changes quantitatively. The chapter also 
introduces a m^jor subsidiary thermodynamic property, the Gibbs energy which lets us ex­
press the spontaneity of a process in terms of the properties of a system. The Gibbs energy 
also enables us to predict the maximum non-expansion work that a process can do. As we 
began to see in Chapter 2, one application of thermodynamics is to find relations betwee□ 
properties that might not be thought to be related. Several relations of this kind can be 
established by making use of the fact that the Gibbs energy is a state function. We also see 
how to derive expressions for the variation of the Gibbs energy with temperature and pres­
sure and how to formulate expressions that are valid for real gases. These expressions will 
prove useful later when we discuss the effect of temperature and pressure on equilibrium 
constants.

Som e th ings h ap p en  natu ra lly ; som e th ings d o n ’t. A  gas expands to  fill th e  available 
vo lum e, a h o t b o d y  cools to  the  tem p e ra tu re  o f  its su rro u n d in g s , and  a chem ical re ac ­
tio n  ru n s  in  one d irec tio n  ra th e r th a n  an o th e r. Som e aspect o f  the  w o rld  de term ines 
the  s p o n ta n e o u s  d irec tio n  o f  change, th e  d irec tio n  o f  change th a t does n o t requ ire  
w ork  to  be done to  b rin g  it abou t. A  gas can be confined  to  a sm aller vo lum e, an  object 
can  be  coo led  b y  using  a refrigera to r, an d  som e reac tions can  be d riven  in  reverse 
(as in  th e  electrolysis o f  w ate r) . H ow ever, n o n e  o f  these processes is spon taneous; 
each one  m u s t be b ro u g h t ab o u t b y  d o in g  w ork . A n im p o rta n t p o in t, th o u g h , is th a t 
th ro u g h o u t th is tex t ‘sp o n tan eo u s’ m u s t be  in te rp re ted  as a n a tu ra l tendency th a t m ay  
o r m ay  n o t be realized  in  practice . T h erm o d y n am ics is silen t o n  th e  ra te  at w h ich  a 
sp o n tan eo u s  change in  fact occurs, an d  som e sp o n tan eo u s  processes (such  as th e  c o n ­
v ersion  o f  d iam o n d  to  g raph ite) m ay  be  so slow  th a t th e  ten d en c y  is never realized 
in  p rac tice  w hereas o thers  (such  as th e  expansion  o f  a gas in to  a vacu u m ) are alm ost 
in s tan tan eo u s.

T he reco g n itio n  o f  tw o classes o f  process, sp o n tan eo u s  an d  n o n -sp o n tan eo u s , is 
su m m arized  by  the  S eco n d  L aw  o f  th e rm o d y n a m ic s . T his law  m ay  be expressed  in  a 
v arie ty  o f  equ ivalen t ways. O ne s ta tem en t w as fo rm u la ted  b y  Kelvin:

N o process is possib le  in  w h ich  the  sole resu lt is th e  a b so rp tio n  o f  heat fro m  a re se r­
vo ir an d  its com plete  conversion  in to  w ork .

For exam ple, it has p ro v ed  im possib le  to  co n stru c t an  engine like th a t show n in  
Fig. 3.1, in  w h ich  hea t is d raw n  fro m  a h o t reservo ir an d  com plete ly  converted  in to  
w ork . All real hea t engines have b o th  a h o t source  an d  a cold sink; som e energy  is 
always d iscarded  in to  th e  co ld  sink  as hea t an d  n o t converted  in to  w ork . T he Kelvin
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Hnt source

Fig. 3.1 The Kelvin statement of the Second 
Law denies the possibility of the process 
illustrated here, in which heat is changed 
completely into work, there being no other 
change. The process is not in conflict with 
the First Law because energy is conserved.

Fig. 3.2 The direction of spontaneous 
change for a ball bouncing on a floor. On 
each bounce some of its energy is degraded 
into the thermal m otion of the atoms 
o f the floor, and that energy disperses.
The reverse has never been observed to 
take place on a macroscopic scale.

s ta tem en t is a genera liza tion  o f  an o th e r everyday observation , th a t a ball at rest o n  a 
surface has never b een  observed  to  leap sp o n tan eo u sly  upw ards. A n u p w ard  leap o f 
th e  ball w o u ld  be  equ ivalen t to  th e  conversion  o f  hea t fro m  th e  surface in to  w ork.

The direction of spontaneous change
W h a t de te rm ines th e  d irec tio n  o f  sp o n tan eo u s  change? It is n o t the  to ta l energy  o f  the 
iso la ted  system . T he First Law  o f  th erm o d y n am ics  states th a t energy  is conserved  in  
any  process, an d  we can n o t d isregard  th a t law  n o w  an d  say th a t every th ing  tends 
to w ard s a state o f  low er energy: th e  to ta l energy  o f  an  iso la ted  system  is constan t.

Is it  p e rh ap s th e  energy  o f  th e  system  th a t ten d s  to w ard s a m in im u m ? Tw o a rg u ­
m en ts  show  th a t th is  c an n o t be  so. First, a perfect gas expands sp o n tan eo u sly  in to  a 
vacu u m , yet its in te rn a l energy  rem ain s co n stan t as it does so. Secondly, if  th e  energy 
o f  a system  does h a p p e n  to  decrease d u rin g  a sp o n tan eo u s  change, th e  energy  o f  its 
su rro u n d in g s  m u s t increase b y  th e  sam e a m o u n t (by  th e  F irst Law). T he increase in  
energy  o f  th e  su rro u n d in g s  is ju s t as sp o n tan eo u s  a process as th e  decrease in  energy 
o f  th e  system .

W h en  a change occurs, th e  to ta l energy  o f  an  iso lated  system  rem ain s  co n stan t b u t 
it  is parcelled  o u t in  d ifferen t ways. C an  it be, therefo re , th a t th e  d irec tio n  o f  change is 
re la ted  to  th e  distribution  o f  energy? W e shall see th a t th is  idea is the  key, an d  th a t 
sp o n tan eo u s  changes are always acco m p an ied  b y  a d ispersal o f  energy.

3.1 The dispersa) of energy
W e can beg in  to  u n d e rs ta n d  th e  ro le  o f  the  d is tr ib u tio n  o f  energy  b y  th in k in g  ab o u t a 
ba ll (the  system ) b o u n c in g  o n  a floor (the  su rro u n d in g s). T he ball does n o t rise as 
h ig h  after each b o u n ce  because th ere  are inelastic  losses in  the  m ateria ls  o f  the  ball and  
floor. T he k ine tic  energy  o f  th e  b a ll’s overall m o tio n  is sp read  o u t in to  th e  energy  o f 
th e rm a l m o tio n  o f  its partic les an d  those  o f  th e  floo r th a t it h its. T he d irec tio n  o f 
sp o n tan eo u s  change is tow ards a sta te  in  w h ich  th e  ball is at rest w ith  all its energy  d is­
persed  in to  ra n d o m  th e rm a l m o tio n  o f  m olecu les in  th e  air an d  o f  th e  a tom s o f  the 
v irtua lly  in fin ite  floo r (Fig. 3.2).

A  ball res tin g  o n  a w a rm  floo r has never b een  observed  to  s ta rt b o u n c in g . For 
b o u n c in g  to  begin , so m eth in g  ra th e r special w o u ld  n eed  to  hap p en . In  the  first place, 
som e o f  th e  th e rm a l m o tio n  o f  th e  a to m s in  th e  floo r w ou ld  have to  accum ulate  in  a 
single, sm all object, th e  ball. T h is accu m u la tio n  req u ires  a sp o n tan eo u s  localiza tion  o f 
energy  fro m  th e  m yriad  v ib ra tio n s o f  th e  a to m s o f  th e  floo r in to  th e  m u c h  sm aller 
n u m b e r o f  a to m s th a t co n stitu te  the  ball (Fig. 3.3). F u rth e rm o re , w hereas the  th erm al 
m o tio n  is ran d o m , fo r the  ball to  m ove up w ard s its a to m s m u s t all m ove in  th e  sam e 
d irec tion . T he localiza tion  o f  ran d o m , d iso rderly  m o tio n  as concerted , o rd ered  
m o tio n  is so un like ly  th a t we can  d ism iss it as v irtua lly  im possib le .1

W e appear to  have fo u n d  the  s ignpost o f  sp o n tan eo u s  change: we look fo r the 
direction o f change that leads to dispersal o f  the total energy o f the isolated system. T his 
p rin c ip le  accoun ts  for th e  d irec tio n  o f  change o f  the  b o u n c in g  ball, because its energy 
is sp read  o u t as th e rm a l m o tio n  o f  th e  a to m s o f  th e  floor. T he reverse process is n o t 
sp o n tan eo u s  because it is h igh ly  im probab le  th a t energy will becom e localized, leading 
to  u n ifo rm  m o tio n  o f  th e  b a ll’s a tom s. A  gas does n o t co n trac t sp o n tan eo u sly  because

1 Concerted motion, but on a much smaller scale, is observed as Brownian motion, the jittering motion of 
small particles suspended in water.



to  do  so th e  ra n d o m  m o tio n  o f  its m olecu les, w h ich  sp reads o u t th e  d is tr ib u tio n  o f 
k inetic  energy  th ro u g h o u t th e  co n ta iner, w ou ld  have to  take th e m  all in to  th e  sam e 
reg ion  o f  th e  co n ta iner, th e reb y  localizing th e  energy. T he opposite  change, sp o n ta n e ­
ous expansion , is a n a tu ra l consequence  o f  energy  b eco m in g  m o re  d ispersed  as th e  gas 
m olecu les occupy  a larger vo lum e. A n ob ject does n o t sp o n tan eo u sly  b ecom e w arm er 
th a n  its su rro u n d in g s  because it is h igh ly  im p ro b ab le  th a t th e  jo stling  o f  ran d o m ly  
v ib ra ting  a to m s in  th e  su rro u n d in g s  w ill lead  to  th e  localiza tion  o f  th e rm a l m o tio n  
in  th e  object. T he opposite  change, th e  sp read in g  o f  th e  o b jec t’s energy  in to  th e  s u r ­
ro u n d in g s  as th e rm a l m o tio n , is n a tu ra l.

It m ay  seem  very  puzzling  th a t the  sp read ing  o u t o f  energy  an d  m a tte r , th e  collapse 
in to  d iso rder, can  lead  to  th e  fo rm a tio n  o f  su ch  o rd e red  s tru c tu res  as crystals o r p ro ­
teins. N evertheless, in  due course, we shall see th a t d ispersal o f  energy  an d  m atte r 
accoun ts for change in  all its fo rm s.

3.2 Entropy
T he First Law o f  th erm o d y n am ics  led  to  th e  in tro d u c tio n  o f  th e  in te rn a l energy, U. 
T he in te rn a l energy  is a sta te  fu n c tio n  th a t lets u s  assess w h e th e r a change is p e rm iss­
ible: on ly  those  changes m ay  occur for w h ich  th e  in te rn a l energy  o f  an  iso lated  system  
rem ain s co n stan t. T he law  th a t is u sed  to  iden tify  th e  signpost o f  sp o n tan eo u s  change, 
the  Second Law o f  the rm o d y n am ics, m ay  also be expressed in  te rm s o f  an o th e r state 
fu n c tio n , th e  e n tro p y , S. W e shall see th a t th e  en tro p y  (w hich  we shall define shortly , 
b u t is a m easu re  o f  th e  energy  d ispersed  in  a p rocess) lets us assess w h eth er one  state 
is accessible fro m  an o th e r b y  a sp o n tan eo u s  change. T he F irst Law uses th e  in te rn a l 
energy  to  id e n t i^  permissible changes; the  S econd Law uses th e  en tro p y  to  id e n t i^  the 
spontaneous changes am o n g  those  perm issib le  changes.

T he Second Law o f  th erm o d y n am ics  can be  expressed in  te rm s o f  th e  en tropy:

T he en tro p y  o f  an  iso lated  system  increases in  th e  course o f  a sp o n tan eo u s  change:

AS tot > 0

w here Stotis th e  to ta l en tro p y  o f  th e  system  an d  its su rro u n d in g s . T herm odynam ica lly  
irreversib le processes (like coo ling  to  th e  tem p e ra tu re  o f  th e  su rro u n d in g s  and  the 
free expansion  o f  gases) are sp o n tan eo u s  processes, an d  hence  m u s t be  accom pan ied  
b y  an  increase in  to ta l en tropy .

Fig. 3.3 The molecular interpretation of the 
irreversibility expressed by the Second Law. 
(a) A ball resting on a warm surface; the 
atoms are undergoing therm al motion 
(vibration, in this instance), as indicated by 
the arrows. (b) For the ball to fly upwards, 
some of the random  vibrational motion 
would have to change into coordinated, 
directed motion. Such a conversion is 
highly improbable.

(a) T h e  th e rm o d y n a m ic  d e fin itio n  of e n tro p y

T he th e rm o d y n am ic  defin itio n  o f  en tro p y  co ncen tra tes  o n  th e  change in  en tropy , 
dS, th a t occurs as a resu lt o f  a physical o r chem ical change (in  general, as a resu lt o f 
a ‘p rocess’). T he defin itio n  is m o tiv a ted  b y  th e  idea th a t a change in  th e  ex ten t to  
w h ich  energy  is d ispersed  d epends o n  h o w  m u c h  energy  is tran sfe rred  as heat. As we 
have rem ark ed , hea t s tim u la tes ra n d o m  m o tio n  in  th e  su rro u n d in g s . O n  the  o th er 
han d , w ork  s tim ula tes u n ifo rm  m o tio n  o f  a to m s in  th e  su rro u n d in g s  an d  so does n o t 
change th e ir  en tropy .

T he th e rm o d y n am ic  d efin ition  o f  en tro p y  is based  o n  th e  expression

[3.1]dS = أ  ت

(3.2)

For a m easu rab le  change betw een  tw o sta tes i an d  f  th is  expression  in teg ra tes to

d ،?rev
T

AS =



T h a t is, to  calculate the  difference in  en tro p y  betw een  any  tw o states o f  a system , we 
find  a reversible p a th  betw een  th em , an d  in teg ra te  th e  energy  supp lied  as hea t at each 
stage o f  th e  p a th  d iv ided  b y  th e  tem p e ra tu re  at w h ich  h ea tin g  occurs.

E xam ple 3.1 Calculating the entropy change for the isothermal expansion of a 
perfect g a s

C alculate th e  en tro p y  change o f  a sam ple o f  perfect gas w h en  it  expands iso th e r­
m ally  fro m  a vo lum e Vi to  a vo lum e —f.

M ethod  T he  defin itio n  o f  en tro p y  in s tru c ts  us to  find  th e  energy  sup p lied  as heat 
fo r a reversible p a th  betw een  th e  sta ted  in itia l an d  final sta tes regardless o f  the 
ac tua l m a n n e r in  w h ich  th e  process takes place. A  sim plifica tion  is th a t th e  ex p an ­
sio n  is iso therm al, so th e  te m p e ra tu re  is a co n stan t and  m ay  be  tak en  ou ts ide  the 
in teg ra l in  eqn  3.2. T he energy  abso rbed  as hea t d u rin g  a reversible iso th erm al 
expansion  o f  a perfect gas can be calcu lated  fro m  A U  =  q +  w an d  A U  =  0, w h ich  
im plies th a t q =  - w  in  general an d  there fo re  th a t qrev =  - w rev fo r a reversib le change. 
T he w o rk  o f  reversible iso th e rm al expansion  w as calcu lated  in  Section  2.3.

Answ er Because the  tem p e ra tu re  is co n stan t, eqn  3.2 becom es

F ro m  eqn  2.11, we k n o w  th a t

qrev =  - Wrev =  n R T  ln  —f

It follow s th a t 

A$ =  nR ln  —f

As an  illu s tra tio n  o f  th is fo rm u la , w h en  th e  vo lum e occup ied  b y  1.00 m o l o f  any  
perfect gas m olecu les is d o u b led  at any  co n stan t tem p e ra tu re , —f/Vi =  2 and

A1. 00)  = ؟   m ol) X (8.3145 j  K_1 m o l“1) X ln  2 = + 5 .7 6  j  K“ 1

A note on g o o d  practice  A ccord ing  to  eqn  3.2, w h en  th e  energy  tran sfe rred  as heat 
is expressed  in  jou les an d  th e  te m p e ra tu re  is in  kelvins, th e  u n its  o f  en tro p y  are 
jou les per kelv in  (j K-1). E n tro p y  is an  extensive p ro p erty . M olar en tropy , the 
en tro p y  d iv ided  b y  th e  a m o u n t o f  substance , is expressed in  jou les p e r kelv in  per 
m o le  ( j K-1 m o l-1).2 T he  m o lar en tro p y  is an  in tensive p ro p e rty .

Self-test 3.1 C alculate th e  change in  en tro p y  w h en  th e  p ressu re  o f  a perfect gas is 
([AS =  nR ln (p i/pf] ؛.changed  iso therm ally  fro m  p i t o p

W e can  use th e  defin itio n  in  eqn  3.1 to  fo rm u la te  an  expression  fo r th e  change in  
en tro p y  o f  th e  su rro u n d in g s , ASsur. C onsider an  in fin itesim al tran sfe r o f  heat d q sur 
to  the  su rro u n d in g s . T he su rro u n d in g s  consist o f  a reservo ir o f  co n stan t vo lum e, so 
th e  energy  supp lied  to  th e m  b y  h ea tin g  can  be  iden tified  w ith  th e  change in  the ir

2 The units of entropy are the same as those of the gas constant, R, and molar heat capacities.



in te rn a l energy, dU sur.3 T he  in te rn a l energy  is a sta te  fu n c tio n , an d  dU sur is an  exact 
d ifferential. As we have seen, these p ro p ertie s  im p ly  th a t dU suris in d e p e n d e n t o f  how  
the  change is b ro u g h t ab o u t an d  in  pa rticu la r is in d e p e n d e n t o f  w h eth er th e  p rocess is 
reversible o r irreversib le. T he sam e rem ark s there fo re  app ly  to  dqsur, to  w h ich  dU suris 
equal. T herefo re , we can ad ap t th e  defin itio n  in  eqn  3.1 to  w rite

F u rth e rm o re , because the  te m p e ra tu re  o f  th e  su rro u n d in g s  is co n stan t w hatever the 
change, fo r a m easurab le  change

T h at is, regardless o f  h o w  th e  change is b ro u g h t ab o u t in  th e  system , reversib ly  or 
irreversibly, we can calculate the  change o f  en tro p y  o f  th e  su rro u n d in g s  by  d iv id ing  
the  hea t tran sfe rred  b y  th e  te m p e ra tu re  at w h ich  th e  tran sfe r takes place.

E quation  3.3 m akes it very  sim ple to  calculate the changes in  en tro p y  o f  th e  su r ro u n d ­
ings th a t accom pany  any  process. For in stance , fo r any  ad iaba tic  change, qsur =  0, so

For an adiabatic change: ASsur =  0 (3.4)

T his expression  is tru e  how ever the  change takes place, reversib ly  o r irreversib ly , p ro ­
vided n o  local h o t spo ts are fo rm ed  in  the su rro u n d in g s . T h a t is, it is tru e  so long  as the 
su rro u n d in g s  rem a in  in  in te rn a l eq u ilib riu m . I f  h o t spo ts do  fo rm , th e n  th e  localized 
energy  m ay  subsequen tly  d isperse sp o n tan eo u sly  an d  hence  generate  m o re  en tropy .

Illustration 3.1 Calculating the entropy change in the surroundings

T o calculate th e  en tro p y  change in  th e  su rro u n d in g s  w h en  1.00 m o l H 2O (l) is 
fo rm ed  fro m  its e lem en ts u n d e r  s tan d a rd  co n d itio n s  at 298 K, w e use AH  ٠ = 
-2 8 6  kJ fro m  T able 2.7. T he energy  released  as hea t is supp lied  to  th e  su rro u n d in g s , 
n o w  regarded  as be ing  at co n stan t p ressu re , so q̂؛ r =  +286 kJ. T herefore ,

2.86 X 10لق 
A^ r =  298 K = + 9 6 0 JK "

T his strong ly  exo therm ic  reac tio n  resu lts  in  an  increase in  th e  en tro p y  o f  the  s u r ­
ro u n d in g s  as energy  is released as hea t in to  them .

Self-test 3 .2  C alculate th e  en tro p y  change in  th e  su rro u n d in g s  w h en  1.00 m o l 
N 2O ^ g )  is fo rm ed  fro m  2.00 m o l N O 2(g) u n d e r  s tan d a rd  co n d itio n s  at 298 K.

[-1 9 2  j  K-1]

M olecular in te rp re ta tio n  3.1 The statistical view of entropy

T he en try  p o in t in to  th e  m o lecu lar in te rp re ta tio n  o f  th e  Second Law o f  th e rm o ­
dynam ics is th e  rea liza tion  th a t an  a to m  o r m olecu le  can  possess on ly  certa in  
energies, called its ‘energy  levels’. T he co n tin u o u s  th e rm a l ag ita tion  th a t m olecu les

3 Alternatively, the surroundings can be regarded as being at constant pressure, in which case we could 
equate dqsur to dHsur•.
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(a) (b)

Fig. 3.4 The Boltzmann distribution 
predicts that the population of a state 
decreases exponentially with the energy of 
the state. (a) At low temperatures, only the 
lowest states are significantly populated;
(b) at high temperatures, there is 
significant population in high-energy states 
as well as in low-energy states. At infinite 
tem perature (not shown), all states are 
equally populated.

experience in  a sam ple at T  >  0 ensures th a t th ey  are d is tr ib u ted  over th e  available 
energy  levels. O ne p a rticu la r m olecu le  m ay  be  in  one low  energy  state at one 
in s tan t, an d  th e n  be  excited in to  a h ig h  energy  sta te  a m o m e n t later. A lth o u g h  
w e can n o t keep track  o f  th e  energy  sta te  o f  a single m olecu le , we can  speak  o f 
th e  p o p u la t io n  o f  th e  state, th e  average n u m b e r o f  m olecu les in  each state; these 
p o p u la tio n s  are c o n stan t in  tim e  p rov id ed  th e  te m p e ra tu re  rem ain s th e  sam e.

O n ly  th e  low est energy  sta te  is occup ied  a t T  =  0. R aising th e  tem p e ra tu re  excites 
som e m olecules in to  h igher energy states, an d  m ore  an d  m ore  states becom e access­
ible as th e  te m p e ra tu re  is ra ised  fu r th e r (Fig. 3.4). N evertheless, w hatever the  te m ­
p era tu re , the re  is always a h igher p o p u la tio n  in  a state o f  low  energy th a n  one o f  h igh 
energy. T he on ly  excep tion  occurs w h en  th e  te m p e ra tu re  is in fin ite : th e n  all states 
o f  th e  system  are equally  p o p u la ted . These rem ark s w ere su m m arized  q u a n ti ta t­
ively by  the  A ustrian  physicist Ludw ig B o ltzm ann  in  th e  Boltzm ann distribution:

N e-Ei/kT
N : ---------------

؟ e-E,/kT

i

w here  k =  1.381 X 10-23 j  K-1 an d  N i is th e  n u m b e r o f  m olecu les in  a sam ple o f 
N  m o lecu les th a t w ill be  fo u n d  in  a state w ith  an  energy  E i w h en  it is p a r t o f  a sys­
te m  in  th e rm a l eq u ilib riu m  at a tem p e ra tu re  T. C are m u s t be  tak en  w ith  th e  exact 
in te rp re ta tio n , th o u g h , because m o re  th a n  one sta te  m ay  co rre sp o n d  to  th e  sam e 
energy: th a t is, an  energy  level m ay  consist o f  several states.

B o ltzm ann  also m ad e  th e  link  betw een  the  d is tr ib u tio n  o f  m olecu les over energy 
levels an d  th e  en tropy . H e p ro p o sed  th a t th e  en tro p y  o f  a system  is given by

S =  k ln  W  (3.5)

w here  W  is the  n u m b e r o f  microstates, th e  w ays in  w h ich  th e  m olecu les o f  a system  
can  be  a rranged  w hile keep ing  th e  to ta l energy  co n stan t. Each m icro sta te  lasts on ly  
fo r an  in s ta n t and  has a d is tinc t d is tr ib u tio n  o f  m olecu les over th e  available energy 
levels. W h en  we m easu re  th e  p ro p ertie s  o f  a system , we are m easu rin g  an  average 
tak en  over th e  m a n y  m icro sta tes  th e  system  can  occupy  u n d e r  th e  co n d itio n s  o f 
th e  experim en t. T he co ncep t o f  th e  n u m b e r o f  m icro sta tes  m akes q u an tita tiv e  the 
ill-defined qualitative concepts o f  ‘d iso rd e r’ an d  ‘the dispersal o f  m a tte r and  energy’ 
th a t are u sed  w idely  to  in tro d u ce  th e  co ncep t o f  en tropy : a m o re  ‘d iso rderly ’ d is­
tr ib u tio n  o f  energy  an d  m a tte r  co rresp o n d s to  a g reater n u m b e r o f  m icro sta tes 
associated  w ith  the  sam e to ta l energy.

E q u a tio n  3.5 is k n o w n  as th e  B o ltz m a n n  fo rm u la  an d  th e  en tro p y  calculated  
fro m  it is som etim es called th e  s ta tis tic a l e n tro p y . W e see th a t if  W  =  1, w h ich  
co rre sp o n d s  to  one m icro sta te  (o n ly  one w ay  o f  achieving a given energy, all 
m o lecu les in  exactly  th e  sam e sta te), th e n  S =  0 because ln  1 =  0. H ow ever, if  the  
system  can exist in  m o re  th a n  one m icro sta te , th e n  W  > 1 an d  S > 0. B ut, if  m ore  
m olecu les can p artic ip a te  in  th e  d is tr ib u tio n  o f  energy, th e n  th ere  are m ore  
m icro sta tes  fo r a given to ta l energy  an d  th e  en tro p y  is greater th a n  w h en  the  energy 
is confined  so a sm aller n u m b e r o f  m olecu les. T herefore , th e  sta tistical view  o f 
en tro p y  su m m arized  b y  th e  B o ltzm ann  fo rm u la  is co nsis ten t w ith  o u r p rev ious 
s ta tem en t th a t th e  en tro p y  is re la ted  to  th e  d ispersal o f  energy.

T he m olecu la r in te rp re ta tio n  o f  en tro p y  advanced  b y  B o ltzm ann  also suggests 
th e  th e rm o d y n am ic  defin ition  given b y  eqn  3.1. T o apprecia te  th is  p o in t, consider 
th a t m olecu les in  a system  at h igh  tem p e ra tu re  can  occupy  a large n u m b e r o f  the 
available energy  levels, so a sm all ad d itio n a l tran sfe r o f  energy  as hea t w ill lead  to  a 
re latively  sm all change in  th e  n u m b e r o f  accessible energy  levels. C onsequen tly , the



n u m b e r o f  m icro sta tes  does n o t increase appreciab ly  and  n e ith e r does th e  en tro p y  
o f  th e  system . In  co n trast, th e  m olecu les in  a system  at low  tem p e ra tu re  have access 
to  far few er energy  levels (a t T  =  0, on ly  the  low est level is accessible), an d  th e  tra n s ­
fer o f  th e  sam e q u a n tity  o f  energy  by  h ea ting  w ill increase th e  n u m b e r o f  accessible 
energy  levels an d  th e  n u m b e r o f  m icro sta tes  ra th e r significantly . H ence, th e  change 
in  en tro p y  u p o n  h ea tin g  w ill be greater w h en  the  energy  is tran sfe rred  to  a cold 
b o d y  th a n  w h en  it is tran sfe rred  to  a h o t body . T h is  a rg u m en t suggests th a t the 
change in  en tro p y  sh o u ld  be inversely  p ro p o r tio n a l to  th e  te m p e ra tu re  at w h ich  
the  tran sfe r takes place, as in  eqn  3.1.

(b) T h e  e n tr e p y  a s  a  s t a t e  fu n £ t؛en

E n tro p y  is a sta te  fu n c tio n . T o  p rove th is assertion , we need  to  show  th a t th e  in tegral 
o f  d s  is in d e p e n d e n t o f  p a th . T o  do  so, it is sufficient to  p rove  th a t the  in teg ra l o f 
eqn  3.1 a ro u n d  an  a rb itra ry  cycle is zero , fo r th a t guaran tees th a t th e  en tro p y  is the 
sam e a t th e  in itia l an d  final states o f  th e  system  regardless o f  th e  p a th  tak en  betw een  
th e m  (Fig. 3.5). T h a t is, w e need  to  show  th a t

(3.6)
dqre-

T

w here th e  sym bol f deno tes  in teg ra tio n  a ro u n d  a closed p a th . T here  are th ree  steps in  
the  a rg u m en t:

1. First, to  show  th a t eqn  3.6 is tru e  fo r a special cycle (a ‘C a rn o t cycle’) invo lv ing  a 
perfect gas.

2. T h en  to  show  th a t th e  resu lt is tru e  w hatever th e  w o rk ing  substance.

3. Finally, to  show  th a t th e  resu lt is tru e  for any  cycle.

A C a rn o t c y ^ e , w h ich  is n am ed  after th e  F rench  engineer Sadi C arn o t, consists o f 
fo u r reversible stages (Fig. 3.6):

1. Reversible iso th e rm a l expansion  fro m  A to  B at T؛؛; the  en tro p y  change is qh/T h, 
w here qh is th e  energy  supp lied  to  th e  system  as hea t fro m  th e  h o t source.

2. Reversible ad iaba tic  expansion  fro m  B to  C. N o  energy  leaves th e  system  as heat, 
so th e  change in  en tro p y  is zero . In  th e  course o f  th is expansion , th e  te m p e ra tu re  falls 
fro m  T؛؛ to  Tc, the  tem p e ra tu re  o f  th e  co ld  sink.

3. Reversible iso th e rm al com p ressio n  fro m  C to  D  a t Tc. E nergy is re leased as heat 
to  th e  co ld  sink; th e  change in  en tro p y  o f  th e  system  is qc/T c; in  th is  expression  qc is 
negative.

4. Reversible ad iaba tic  com pression  fro m  D to  A. N o  energy  en ters the  system  as 
heat, so th e  change in  en tro p y  is zero. T he tem p e ra tu re  rises fro m  Tc to  Th.

T he to ta l change in  en tro p y  a ro u n d  th e  cycle is

f  d s  = ق + ظ 
j  Th Tc

H ow ever, w e show  in  Justification 3.1 th a t, fo r a perfect gas:

qh _  Th 

q  T„
(3.7)rev 

t, w h ich

Fig. 3.5 In a thermodynam ic cycle, the 
overall change in a state function (from the 
initial state to  the final state and then back 
to the initial state again) is zero.

S u b stitu tio n  o f  th is  re la tio n  in to  the  p reced ing  eq u a tio n  gives zero  o n  th e  rig 
is w h a t we w an ted  to  prove.

Fig. 3.6 The basic structure of a Carnot 
cycle. In Step 1, there is isothermal 
reversible expansion at the tem perature Th. 
Step 2 is a reversible adiabatic expansion in 
which the tem perature falls from Th to Tc. 
In Step 3 there is an isothermal reversible 
compression at Tc, and that isothermal 
step is followed by an adiabatic reversible 
compression, which restores the system to 
its initial state.



Th Hot source

Fig. 3.7 Suppose an energy qh (for exampie, 
20 kJ) is supplied to the engine and qc is lost 
from  the engine (for exampie, qc = -1 5  kJ) 
and discarded into the cold reservoir. The 
work done by the engine is equal to qh + qc 
(for example, 20 kJ + (-15 kJ) = 5 kJ). The 
efficiency is the work done divided by the 
energy supplied as heat from the hot 
source.

Ju s tif ica tio n  3.1 Heating accompanying reversible adiabatic expansion

This Justification is based on the fact th a t the two tem peratures in eqn 3.7 lie on the 
same adiabat in  Fig. 3.6. As explained in  Example 3.1, for a perfect gas:

= qc = ،او  nRTc ln V
■A 'C

From  the relations betw een tem perature  and volum e for reversible adiabatic p ro ­
cesses (eqn 2.28):

VaT h = vd t  cc V Tc  = VbT ٤ 
M ultiplication o f the first o f these expressions by the second gives 

VaVcT T  cc = VdVbT hT c 

w hich simplifies to

V a =  V d

Vb Vc 

C onsequently,

q = nRT  ln —  = nRT„ ln —  = -n R T  ln ئ  
Vc  ̂ Vb Va

and therefore

=  n R ^ l n ^ / V P  Th 

q < ~  -^R T cln (V B /V A ^ Tc 

as in eqn 3.7.

In  th e  second  step  we need  to  show  th a t eqn  3.7 applies to  any  m ateria l, n o t ju s t a 
perfect gas (w h ich  is w hy, in  an tic ip a tio n , we have n o t labelled it w ith  a °). W e begin  
th is  step  o f  th e  a rg u m en t by  in tro d u c in g  th e  efficiency, s  (epsilon ), o f  a hea t engine:

w o rk  pe rfo rm ed w ا  ا
hea t ab so rbed  qh [ ]

T he defin itio n  im plies th a t, th e  greater th e  w o rk  o u tp u t fo r a given sup p ly  o f  heat 
fro m  th e  h o t reservo ir, th e  g reater is the  e ^ e n c y  o f  th e  engine. W e can  express the 
defin itio n  in  te rm s o f  th e  hea t tran sac tio n s  alone, because (as show n  in  Fig. 3.7) the 
energy  supp lied  as w o rk  b y  the  engine is th e  difference betw een  th e  energy  supp lied  as 
hea t by  th e  h o t reservo ir an d  re tu rn e d  to  the  cold reservoir:

(3 ع1+ظ (9. = ق ح
qh qh

(R em em ber th a t qc < 0.) It th e n  follow s fro m  eqn  3.7 th a t

Srev =  1 -  T  (3 .10)rev
h

N ow  we are ready  to  generalize this conclusion. The Second Law o f  therm odynam ics
im plies th a t all reversible engines have the sam e efficiency regardless oftheir construction. 
T o see th e  t ru th  o f  th is  sta tem en t, suppose  tw o reversib le engines are coup led  together
an d  ru n  betw een  th e  sam e tw o reservo irs (Fig. 3.8). T he w o rk in g  substances and
details o f  c o n stru c tio n  o f  th e  tw o engines are en tire ly  arb itra ry . Initially, suppose  th a t
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Fig. 3.9 A general cycle can be divided into 
small Carnot cycles. The match is exact in 
the limit o f infinitesimally small cycles. 
Paths cancel in the interior o f the 
collection, and only the perimeter, an 
increasingly good approximation to the 
true cycle as the num ber of cycles increases, 
survives. Because the entropy change 
around every individual cycle is zero, 
the integral of the entropy around the 
perim eter is zero too.

engine A is m o re  efficient th a n  engine B an d  th a t we choose a se tting  o f  the  con tro ls 
th a t causes engine B to  acqu ire  energy  as hea t qc fro m  the  cold reservo ir an d  to  release 
a ce rta in  q u a n tity  o f  energy  as hea t in to  th e  h o t reservo ir. H ow ever, because engine A 
is m o re  efficient th a n  engine B, n o t all th e  w o rk  th a t A  p ro d u ces is needed  fo r th is p ro ­
cess, an d  th e  difference can  be u sed  to  do  w ork . T he n e t resu lt is th a t th e  cold reservoir 
is un ch an g ed , w o rk  has b een  done, and  th e  h o t reservo ir has lost a ce rta in  a m o u n t o f  
energy. T h is ou tco m e  is co n tra ry  to  th e  K elvin s ta tem en t o f  th e  Second Law, because 
som e hea t has b een  converted  d irectly  in to  w ork . In  m olecu la r te rm s, the  ra n d o m  
th e rm a l m o tio n  o f  the  h o t reservo ir has b een  converted  in to  o rd e red  m o tio n  ch a rac ­
teristic  o f  w ork . Because the  conc lu s ion  is co n tra ry  to  experience, the  in itia l a ssu m p ­
tio n  th a t engines A and  B can have d ifferen t efficiencies m u s t be false. I t  follow s th a t 
the  re la tio n  betw een  th e  hea t tran sfe rs an d  th e  tem p e ra tu re s  m u s t also be  in d e p e n d ­
en t o f  th e  w ork ing  m ateria l, an d  there fo re  th a t eqn  3.7 is always tru e  fo r any  substance 
involved in  a C a rn o t cycle.

For th e  final step  in  the  a rg u m en t, we n o te  th a t any  reversib le cycle can be ap p ro x ­
im a ted  as a co llection  o f  C a rn o t cycles an d  th e  cyclic in teg ra l a ro u n d  an  a rb itra ry  p a th  
is th e  su m  o f  th e  in tegrals a ro u n d  each o f  th e  C a rn o t cycles (Fig. 3 .9). T his ap p ro x ­
im a tio n  becom es exact as th e  in d iv id u a l cycles are allow ed to  b ecom e infin itesim al. 
T he en tro p y  change a ro u n d  each in d iv id u a l cycle is zero  (as d em o n s tra ted  above), so 
the  su m  o f  en tro p y  changes fo r all th e  cycles is zero. H ow ever, in  th e  sum , th e  en tro p y  
change a long  any  in d iv id u a l p a th  is cancelled  b y  th e  en tro p y  change a long  th e  p a th  it 
shares w ith  th e  n e ig h b o u rin g  cycle. T herefore , all th e  en tro p y  changes cancel except 
for those  a long  th e  p e rim e te r o f  th e  overall cycle. T h a t is,

Fig. 3.8 (a) The demonstration of the 
equivalence of the e ^ e n c i e s  o f all 
reversible engines working between the 
same thermal reservoirs is based on the 
flow of energy represented in this diagram. 
(b) The net effect o f the processes is the 
conversion of heat into work w ithout there 
being a need for a cold sink: this is contrary 
to the Kelvin statement of the Second Law.
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(a)

(b)

Fig. 3.10 (a) The flow of energy as heat 
from  a cold source to  a hot sink is not 
spontaneous. As shown here, the entropy 
increase of the ho t sink is smaller than 
the entropy increase of the cold source, 
so there is a net decrease in entropy.
(b) The process becomes feasible if work is 
provided to add to  the energy stream. Then 
the increase in entropy of the hot sink can 
be made to cancel the entropy decrease of 
the ho t source.

In  th e  lim it o f  in fin itesim al cycles, th e  non -can ce llin g  edges o f  th e  C a rn o t cycles 
m a tc h  th e  overall cycle exactly, an d  th e  su m  becom es an  in tegral. E q u a tio n  3.6 th en  
follow s im m edia te ly . T h is resu lt im plies th a t d s  is an  exact d ifferen tia l an d  therefore 
th a t s  is a sta te  func tion .

ص  I M P A C T  O N  E N G I N E E R I N G I3.1 Refrigeration دا 

T he d iscussion  o f  th e  tex t is th e  basis o f  th e  th e rm o d y n am ic  assessm ent o f  th e  pow er 
n eed ed  to  cool objects in  refrigera to rs . First, we consider the  w o rk  req u ired  to  cool an 
object, an d  refer to  Fig. 3.10.

W h en  an  energy is rem ا qc ا  o v ed  fro m  a cool source at a tem p e ra tu re  Tc an d  th en  
d eposited  in  a w arm er sink  at a te m p e ra tu re  Th, as in  a typical refrigera to r, th e  change 
in  en tro p y  is

T، T؛

T he p rocess is n o t sp o n tan eo u s  because n o t en o u g h  en tro p y  is genera ted  in  th e  w arm  
sin k  to  overcom e the  en tro p y  loss fro m  th e  h o t source. T o generate  m o re  en tropy , 
energy  m u s t be added  to  th e  stream  th a t en ters the  w a rm  sink. O u r task  is to  find  the 
m in im u m  energy  th a t needs to  be supp lied . T he ou tco m e  is expressed as th e  coefficient 
ofperform ance, c:

energy  tran sfe rred  as hea t ا qc ا
energy  tran sfe rred  as w o rk w ا  ا

T he less th e  w o rk  th a t is req u ired  to  achieve a given transfer, th e  greater th e  coefficient 
o f  p erfo rm an ce  and  th e  m o re  efficient th e  refrigerator.

Because ا qc ا is rem o v ed  fro m  the  cold source, an d  the  w o rk is ad ا w ا  d ed  to  the 
energy stream , the  energy deposited  as hea t in  the h o t sink  is ا qh ا = وا ا + ا w T .ا herefore,

1  = l qh M qci 1 للوا
c ه وا ا ا ا

W e can n o w  use eqn  3.7 to  express th is resu lt in  te rm s o f  the  tem p e ra tu re s  alone, 
w h ich  is possib le if  th e  tran sfe r is p e rfo rm ed  reversibly. T h is su b s titu tio n  leads to

Tc
c =

T،> -  Tc

fo r th e  therm o d y n am ica lly  o p tim u m  coefficient o f  p erfo rm ance . For a refrigera to r 
w ith d raw in g  hea t fro m  ice-co ld  w ater (T c =  273 K) in  a typ ical en v iro n m en t (T ؛  = 
293 K), c =  14, so, to  rem ove 10 kJ (en o u g h  to  freeze 30 g o f  w ater), requ ires transfer 
o f  a t least 0.71 kJ as w ork . P ractical refrigera to rs , o f  course, have a low er coefficient o f 
perfo rm ance .

T he w o rk  to  m aintain  a low  te m p e ra tu re  is also re levan t to  th e  design o f  refrigera­
to rs . N o  th e rm a l in su la tio n  is perfect, so th ere  is always a flow  o f  energy  as hea t in to  
th e  sam ple at a ra te  p ro p o r tio n a l to  th e  te m p e ra tu re  difference. I f  th e  ra te  at w h ich  
energy  leaks in  is w ritten  A (T k -  Tc), w here  A  is a co n stan t th a t depends o n  th e  size o f 
th e  sam ple and  th e  details o f  th e  in su la tio n , th e n  the  m in im u m  pow er, P , req u ired  to  
m a in ta in  th e  o rig inal te m p e ra tu re  difference b y  p u m p in g  o u t th a t energy  b y  h ea ting  
th e  su rro u n d in g s  is

P  =  - X A (T h -  Tc) =  A X إ ي  
c Tc



W e see th a t th e  pow er increases as th e  square  o f  th e  tem p e ra tu re  difference we are try ­
ing  to  m a in ta in . For th is  reason , a ir-co n d itio n e rs  are m u c h  m o re  expensive to  ru n  on 
h o t days th a n  o n  m ild  days.

T رء) h e  th e rm e d y n a m c؛  te m p e ra tu re

S uppose w e have an  engine th a t is w ork ing  reversib ly  betw een  a h o t source at a te m ­
p e ra tu re  Th an d  a cold sin k  at a tem p e ra tu re  T; th e n  we k now  fro m  eqn  3.10 th a t

T  =  (1 - e ) T h (3.11)

T his expression  enab led  K elvin to  define th e  th e rm o d y n a m ic  te m p e ra tu re  scale 
in  te rm s o f  th e  efficiency o f  a hea t engine. T he zero  o f  th e  scale occurs fo r a C arn o t 
efficiency o f  1. T he size o f  th e  u n it is en tire ly  a rb itra ry , b u t o n  th e  K elvin scale is 
defined  b y  se tting  th e  tem p e ra tu re  o f  th e  trip le  p o in t o f  w ater as 273.16 K exactly. 
T hen , if  th e  hea t engine has a h o t source at th e  trip le  p o in t o f  w ater, th e  tem p e ra tu re  
o f  th e  cold sin k  (the  ob ject we w an t to  m easu re) is fo u n d  b y  m easu rin g  th e  efficiency 
o f  th e  engine. T h is resu lt is in d e p e n d e n t o f  th e  w ork ing  substance.

(d) T h e  C )a u s u؛ s n؛  e q u a ty؛(

W e n o w  show  th a t the  d efin ition  o f  en tro p y  is consisten t w ith  the  Second  Law. To 
begin , we recall th a t m o re  energy  flows as w o rk  u n d e r  reversib le co n d itio n s  th an  
u n d e r irreversib le co n d itions . T h a t is, - d w rev > —dw, o r dw  -  dw rev > 0. Because the 
in te rn a l energy is a sta te  fu n c tio n , its change is th e  sam e fo r irreversib le an d  reversible 
p a th s  betw een  the  sam e tw o states, so we can also w rite :

d U  =  dq  +  d٣  =  dqrev +  d ؟ ev

It follow s th a t dq rev -  dq =  d٣  -  d ؟ ev > 0, o r dq rev > dq, an d  there fo re  th a t dq rev/T  > 
dq/T. N ow  we use the  th e rm o d y n am ic  defin itio n  o f  th e  en tro p y  (eqn  3.1; d s  = 
dqrev/T ) to  w rite

d s  > ■ y  (3.12)

T his expression  is th e  C lau siu s  in e q u a lity . It w ill p rove  to  be o f  great im p o rtan ce  for 
the  d iscussion  o f  the  sp o n tan e ity  o f  chem ical reac tions, as we shall see in  Section  3.5.

IllustratO n 3.2 Spontaneous cooling

at a 
.11). 
th a t 
th a t

C onsider the  tran sfe r o f  energy  as hea t fro m  one  system — th e  h o t source- 
tem p e ra tu re  T؛؛ to  an o th e r system — th e  cold sink—  a tem p e ra tu re  Tc (Fig. : 
W h en leaves th ا dq ا  e  h o t source (so dq^ < 0), th e  C lausius in eq u a lity  im plie  
d s  > dqh/T h. W h en en ا dq ا  ters th e  cold  sin k  th e  C lausius in eq u a lity  im plie  
d s  > dqc/T c (w ith  dqc > 0). O verall, therefo re ,

d s  > ي + ي 
Th Tc 

H ow ever, dq^ =  —dqc, so

،Tc dq ا d s  > T h

1 1 '

w h ich  is positive (because dqc > 0 an d  T؛؛ > Tc). H ence, coo ling  (the  tran sfe r o f  heat 
fro m  h o t to  cold) is sp o n tan eo u s, as we k now  fro m  experience.

Comment 3.1
The trip le  po in t o f a substance 
represents th e  set o f cond itions at which 
th e  th ree  phases coexist in  equilibrium . 
For w ater, th e  trip le  po in t occurs at 
273.16 K and  611 Pa. See Section 4.2 for 
details.

d S  = - |d  q/Th

d S = + |d ^ /T

Fig. 3.11 W hen energy leaves a hot reservoir 
as heat, the entropy of the reservoir 
decreases. W hen the same quantity of 
energy enters a cooler reservoir, the 
entropy increases by a larger amount. 
Hence, overall there is an increase in 
entropy and the process is spontaneous. 
Relative changes in entropy are indicated 
by the sizes of the arrows.
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Fig. 3.12 The logarithmic increase in 
entropy of a perfect gas as it expands 
isothermally.

Il م  Exploration Evaluate the change ii 
entropy that accompanies the 

expansion of1.00 mol CO2(g) from 
0.001 m^ to  0.010 m^ at 298 K, treated 
as a van der Waals gas.

W e n o w  suppose  th a t th e  system  is iso la ted  fro m  its su rro u n d in g s , so th a t dq =  0. 
T he C lausius in eq u a lity  im plies th a t

d s  > 0

an d  we conc lude  th a t in an isolated system the entropy cannot decrease when a  spon­
taneous change occurs. T his s ta tem en t cap tu res  th e  co n ten t o f  th e  Second Law.

3.3 Entropy changes accompanying specific processes
W e n o w  see h o w  to  calculate th e  en tro p y  changes th a t acco m p an y  a varie ty  o f  basic 
processes.

th a t expands

(3.13)■

(a) E x p an sio n

W e established in  E xam ple 3 .1  th a t th e  change in  en tro p y  o f  a perfect 
iso therm ally  fro m  V i to  Vf is

Vf

V
AS =  nR In-

Because S is a sta te  fu n c tio n , th e  value o f  AS o f the system  is in d e p e n d e n t o f  th e  p a th  
b e tw een  th e  in itia l an d  final states, so th is expression  applies w h eth er th e  change 
o f  sta te  occurs reversib ly  o r irreversibly. T he logarithm ic  d ependence  o f  en tro p y  o n  
v o lum e is illu s tra ted  in  Fig. 3.12.

T he total change in  en tropy , how ever, does dep en d  o n  h o w  th e  expansion  takes 
place. For any  process dq = r^؛  - d q ,  an d  fo r a reversib le change we use th e  expression 
in  E xam ple 3.1; consequen tly , fro m  eqn  3.3b

م■(3.14)  =  -n R  ln  V
TASsur =  ■

T his change is th e  negative o f  the  change in  th e  system , so w e can  conclude  th a t AStot 
=  0, w h ich  is w ha t w e sho u ld  expect fo r a reversib le process. I f  th e  iso th e rm a l ex p an ­
sio n  occurs freely (w  =  0) an d  irreversib ly , th e n  q =  0 (because A U  =  0). C onsequen tly , 
ASsur =  0, an d  th e  to ta l en tro p y  change is given by  eqn  3.13 itself:

(3.15)■
Vf

V
A S^t =  nR ln

In  th is case, A S^t > 0, as we expect fo r an  irreversib le process.

(b) P h a s e  t r a n s t؛ on؛

T he degree o f  d ispersal o f  m a tte r  an d  energy  changes w h en  a substance  freezes or boils 
as a resu lt o f  changes in  th e  o rd e r w ith  w h ich  th e  m olecu les p ack  toge ther an d  the 
ex ten t to  w h ich  th e  energy  is localized or d ispersed . T herefore , we sh o u ld  expect the 
tra n s itio n  to  be  accom pan ied  b y  a change in  en tropy . For exam ple, w h en  a substance 
vaporizes, a co m p ac t condensed  phase changes in to  a w idely  d ispersed  gas an d  we can 
expect th e  en tro p y  o f  th e  substance  to  increase considerably . T he en tro p y  o f  a solid  
also increases w h en  it m elts  to  a liq u id  an d  w h en  th a t liq u id  tu rn s  in to  a gas.

C onsider a system  an d  its su rro u n d in g s  at th e  n o rm a l tr a n s i t io n  te m p e ra tu re , 
T trs, th e  te m p e ra tu re  at w h ich  tw o  phases are in  eq u ilib r iu m  at 1 a tm . T his te m p e r­
a tu re  is 0°C (273 K) fo r ice in  eq u ilib riu m  w ith  liqu id  w ater at 1 a tm , an d  100°C 
(373 K) fo r w ater in  equ ilib rium  w ith  its v apou r at 1 atm . A t the tran sitio n  tem pera tu re , 
any  transfer o f  energy  as hea t be tw een  th e  system  an d  its su rro u n d in g s  is reversible



S yn o p tic  T ab le  3.1'
AtrsS7/(J K-  mol- ')

* Standard entropies (and temperatures) of phase transitions,

Fusion (at Tf) Vaporization (at Tb)

Argon, Ar 14.17 (at 83.8 K) 74.53 (at 87.3 K)
Benzene, ومء 38.00 (at 279 K) 87.19 (at 353 K)
Water, H2O 22.00 (at 273.15 K) 109.0 (at 373.15 K)
Helium, He 4.8 (at 8 K and 30 bar) 19.9 (at 4.22K)

* M^e values are given in the Data section

S yn o p tic  T ab le  3.2 * The standard entropies of vaporization of iiquids

AvapH 7/(kJ mol-1) 0b/°C Av،p5 7/(j K- 1mol-1)

Benzene 30.8
Carbon tetrachloride 30
Cyclohexane 30.1
Hydrogen sulfide 18.7
Methane 8.18
Water 40.7

* More values are given in the Data section.

because th e  tw o phases in  th e  system  are in  eq u ilib riu m . Because a t co n stan t pressure 
q =  A trsH , th e  change in  m o la r en tro p y  o f  the  system  is^

م (3.16) ه = ق , م
trs

I f  th e  phase tra n s itio n  is exo therm ic  ( Atr0 >  ̂ as in ,؛  freezing  or condensing ), th e n  the 
en tro p y  change is negative. T h is decrease in  en tro p y  is consis ten t w ith  localization  o f 
m a tte r  an d  energy  th a t accom pan ies th e  fo rm a tio n  o f  a so lid  fro m  a liqu id  o r a liqu id  
fro m  a gas. I f  th e  tra n s itio n  is e n d o th e rm ic  (A > 0, as in  m elting  an d  v apo riza tion ), 
th e n  the  en tro p y  change is positive, w h ich  is co nsis ten t w ith  d ispersal o f energy  and  
m a tte r  in  th e  system .

T able 3.1 lists som e ex perim en ta l en trop ies  o f  tran s itio n . T able 3.2 lists in  m ore  
detail th e  s tan d a rd  en tro p ies  o f  v ap o riza tio n  o f  several liqu id s at th e ir bo iling  po in ts. 
A n in te restin g  fea tu re  o f  th e  da ta  is th a t a w ide range o f  liqu ids give app ro x im ate ly  the 
sam e s tan d a rd  en tro p y  o f  v ap o riza tio n  (ab o u t 85 J K-  m o l-1): th is  em pirica l observa­
tio n  is called T ro u to n ’s ru le .

M olecular in te rp re ta tio n  3.2 Trouton's rule

T he exp lan a tio n  o f  T ro u to n ’s ru le  is th a t a com parab le  change in  vo lum e occurs 
(w ith  an  accom pany ing  change in  th e  n u m b e r o f  accessible m icro sta tes) w hen  any  
liqu id  evaporates and  becom es a gas. H ence, all liqu ids can be expected to  have 
sim ilar s tan d a rd  en tro p ies  o f  v apo riza tion .

4 Recall from Section 2.7 that AtrsH  is an enthalpy change per mole of substance; so A؛rs5 is also a molar 
quantity.



Liquids th a t show  sign ifican t dev ia tions fro m  T ro u to n ’s ru le  do  so o n  accoun t 
o f  s tro n g  m olecu la r in te rac tio n s  th a t re s tric t m o lecu lar m o tio n . As a resu lt, th ere  
is a greater d ispersal o f  energy  an d  m a tte r  w h en  th e  liqu id  tu rn s  in to  a v ap o u r th a n  
w o u ld  occu r fo r a liqu id  in  w h ich  m o lcu la r m o tio n  is less restric ted . A n exam ple 
is w ater, w here  th e  large en tro p y  o f  v ap o riza tio n  reflects the  p resence  o f  s tru c tu re  
arising  fro m  h y d ro g en -b o n d in g  in  th e  liqu id . H y d ro g en  b o n d s  te n d  to  organize 
th e  m olecu les in  the  liq u id  so th a t th ey  are less ra n d o m  th an , fo r exam ple, the 
m olecu les in  liq u id  h y d rogen  sulfide (in  w h ich  th ere  is n o  h y d ro g en  b o n d in g ) .

M eth an e  has an  u n u su a lly  low  en tro p y  o f  vap o riza tio n . A  p a rt o f  th e  reason  
is th a t th e  en tro p y  o f  th e  gas itself is slightly  low  (186 J K-1 m o l-1 a t 298 K); the 
en tro p y  o f  N 2 u n d e r  th e  sam e co n d itio n s  is 192 j  K-1 m o l-1. As we shall see in  
C h ap te r 13, sm all m olecu les are difficult to  excite in to  ro ta tio n ; as a resu lt, on ly  a 
few  ro ta tio n a l states are accessible at ro o m  te m p era tu re  and , consequen tly , the 
n u m b e r o f  ro ta tio n a l energy  levels am o n g  w h ich  energy  can be d ispersed  is low.

Illustration  3.3 Using Trouton's rule

T here  is n o  hyd ro g en  b o n d in g  in  liq u id  b ro m in e  an d  Br2 is a heavy  m olecu le  th a t 
is un like ly  to  d isplay  u n u su a l b eh av io u r in  th e  gas phase, so it is p ro b ab ly  safe to  
use T ro u to n ’s ru le . T o p red ic t th e  s tan d a rd  m o la r en th a lp y  o f  v ap o riza tio n  o f 
b ro m in e  given th a t it bo ils  a t 59.2°C, we use th e  ru le  in  th e  fo rm

AvapH٠ =  Tb X (85 j  K-  m o l-1)

S u b stitu tio n  o f  th e  da ta  th e n  gives

AvapH ٠ =  (332.4 K) X (85 j  K-1 m o l-1) =  +2.8 X 103 j  m o l-1 =  +28 kJ m o l-1

T he ex perim en ta l value is +29.45 kJ m o l"1.

Self-test 3.3  P red ic t the  en th a lp y  o f  v ap o riza tio n  o f  e thane  fro m  its b o ilin g  p o in t, 
-  88 .6°C. [16 kJ m o l-1]

H رء) ea tin g

W e can  use eqn  3.2 to  calculate th e  en tro p y  o f  a system  at a tem p e ra tu re  Tf fro m  a 
know ledge o f  its en tro p y  at a tem p e ra tu re  Ti an d  th e  hea t su p p lied  to  change its te m ­
p e ra tu re  fro m  one  value to  th e  o ther:

(3.17),r؟d؛
T

+ (S (T = ؛(S(T

W e shall be particu la rly  in te rested  in  th e  en tro p y  change w hen  the  system  is sub jected  
to  co n stan t p ressu re  (such  as fro m  th e  a tm osphere ) d u rin g  th e  heating . T hen , fro m  
th e  d efin ition  o f  co n stan t-p ressu re  hea t capacity  (eqn  2.22), dqrev =  CpdT p ro v id ed  the 
system  is d o in g  n o  n o n -ex p an s io n  w ork . C onsequen tly , at co n stan t pressure:

(3.18)S(Tf) =  S (T )  +

T he sam e expression  applies at c o n stan t vo lum e, b u t w ith  Cp rep laced  b y  C V. W h en  
Cp is in d e p e n d e n t o f  tem p e ra tu re  in  th e  te m p e ra tu re  range o f  in terest, it can  be taken  
ou ts ide  th e  in teg ra l an d  we o b ta in



(3.19)
f Tfd T  T

—  =  S(T i) +  Cp I n TS(Tf) =  S(Ti) +  Cp

w ith  a sim ilar expression  fo r h ea ting  a t co n stan t vo lum e. T he logarithm ic  dependence  
o f  en tro p y  o n  tem p e ra tu re  is illu s tra ted  in  Fig. 3.13.

Exam ple 3.2 Calculating the entropy change

C alculate th e  en tro p y  change w h en  a rgon  at 25°C  an d  1.00 b a r  in  a co n ta in e r o f  
vo lum e 0.500 d m 3 is allow ed to  expand  to  1.000 d m 3 an d  is sim u ltan eo u sly  hea ted  
to  100°C.

M ethod  Because S is a sta te  fu n c tio n , we are free to  choose th e  m o s t conven ien t 
p a th  fro m  the  in itia l sta te . O n e  su ch  p a th  is reversib le iso th e rm al expansion  to  the 
final vo lum e, fo llow ed b y  reversib le hea tin g  at co n stan t vo lum e to  th e  final te m ­
p era tu re . T he en tro p y  change in  th e  first step  is given by  eqn  3.13 an d  th a t o f  the 
second  step , p ro v id ed  C V is in d e p e n d e n t o f  tem p e ra tu re , b y  eqn  3.19 (w ith  C V 
in  place o f  Cp). In  each case we n eed  to  k now  n, th e  a m o u n t o f  gas m olecu les, and  
can calculate it fro m  th e  perfect gas eq u a tio n  an d  th e  da ta  fo r the  in itia l state fro m  
n =  p iVi/R Ti. T he  hea t capacity  at c o n stan t vo lum e is given b y  the  eq u ip a rtitio n  
th eo rem  as -R . (T he eq u ip a rtitio n  th eo rem  is reliable fo r m o n a to m ic  gases: for 
o thers  an d  in  general use experim en ta l da ta  like th a t in  T able 2.7, converting  to  the 
value at co n stan t vo lum e b y  using  th e  re la tio n  Cpm -  C y m =  R.)

A nswer Because n =  p iVi/RTi, fro m  eqn  3.13

>:V

cc

AS(Step 1) =

T T

Fig. 3.13 The logarithmic increase in 
entropy of a substance as it is heated at 
constant volume. Different curves 
correspond to  different values of the 
constant-volume heat capacity (which is 
assumed constant over the tem perature 
range) expressed as CV^/R.

ئ  Exploration Plot the change in 
entropy of a perfect gas of (a) atoms, 

(b) linear rotors, (c) nonlinear rotors as the 
sample is heated over the same range under 
conditions of (i) constant volume,
(ii) constant pressure.

T he en tro p y  change in  th e  second  step , fro m  298 K to  373 K at co n stan t vo lum e, is

3/2
PiVi ١ x؛ 3  T p V A t؛ ١

‘ ‘ l n
C R T  j 2 T T C T  j

AS (Step 2) =

T he overall en tro p y  change, th e  su m  o f  these tw o changes, is

AS =  p f - l n  V  +  p f - l n

A t th is p o in t we su b stitu te  th e  da ta  an d  o b ta in  (by  using  1 P a m 3 =  1 j)

A Tf ١
3" = P i ^ l ,

V؛ ' t؛ ١
3/2 6

1 Ti j Ti Vi C Ti j

3/2
373(1.00 X 10ق Pa) X (0.500 X 10-3 m  ا 1.000 (3

AS =  -  ln
.500

=  +  0.173 JK -1

A note on g o o d  practice  It is sensible to  p roceed  as generally  as possib le before  
in sertin g  n u m erica l da ta  so th a t, if  req u ired , th e  fo rm u la  can  be u sed  fo r o th e r da ta  
and  to  avoid  ro u n d in g  erro rs.

Self-test 3.4  C alculate th e  en tro p y  change w h en  th e  sam e in itia l sam ple is c o m ­
pressed  to  0.0500 d m 3 an d  coo led  to  -2 5 °C . [ -0 .4 4  j  K-1]
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Fig. 3.14 The calculation of entropy from 
heat capacity data. (a) The variation of 
Cp/T with the tem perature for a sample. 
(b) The entropy, which is equal to  the area 
beneath the upper curve up to the 
corresponding temperature, plus the 
entropy of each phase transition passed.

م ,11  Exploration Allow for the
tem perature dependence of the heat 

capacity by writing C = a + bT + c/T 2, and 
plot the change in entropy for different 
values of the three coefficients (including 
negative values o f c).

(d) T h e  m e a s u re m e n t  o f e n tro p y

T he en tro p y  o f  a system  a t a te m p e ra tu re  T  is re la ted  to  its en tro p y  at T  =  0 b y  m eas­
u rin g  its hea t capacity  Cp a t d ifferen t tem p e ra tu re s  an d  evalua ting  th e  in teg ra l in  eqn 
3.18, tak in g  care to  add  th e  en tro p y  o f  tran s itio n  (AtrsH /T trs) for each phase tran s itio n  
b e tw een  T  =  0 an d  th e  tem p e ra tu re  o f  in terest. For exam ple, if  a substance  m elts  at T؛ 
an d  bo ils  at Tb, th e n  its en tro p y  above its b o iling  tem p e ra tu re  is given by

f C p(s)dT ي   
- +  -

TT
S (T ) =  S(0) +

(3.20)
C p(g)dT

T

C ،,(1)dT + AvapH +

TT

All th e  p ro p ertie s  req u ired , except S(0), can  be  m easu red  calorim etrically , an d  the 
in teg ra ls can  be  evaluated  e ither g raphically  or, as is n o w  m o re  usual, b y  fitting  a 
p o ly n o m ia l to  th e  da ta  an d  in teg ra tin g  the  p o ly n o m ia l analytically. T he fo rm er 
p ro ced u re  is illu s tra ted  in  Fig. 3.14: th e  area u n d e r  the  curve o f  C p/T  against T is the 
in teg ra l req u ired . Because d T /T  =  d ln  T, an  a lternative p ro ced u re  is to  evaluate the 
area u n d e r  a p lo t o f  Cp against ln  T.

O ne p ro b le m  w ith  th e  d e te rm in a tio n  o f  en tro p y  is th e  d ifficulty  o f  m easu rin g  heat 
capacities n ea r T  =  0. T here  are good  theo re tica l g ro u n d s  fo r assum ing  th a t th e  heat 
capacity  is p ro p o r tio n a l to  T 3 w h en  T  is low  (see Section  8.1), an d  th is  dependence  
is th e  basis o f  th e  D ebye  e x tra p o la tio n . In  th is m e th o d , Cp is m easu red  d ow n  to  as 
low  a tem p e ra tu re  as possib le, and  a curve o f  th e  fo rm  a T 3 is fitted  to  the  data . T h a t fit 
d e term ines th e  value o f  a, an d  the expression Cp =  a T 3 is assum ed valid  dow n to  T  =  0.

Illustration  3.4 Calculating a standard molar entropy

at 25°C  has b een  calcu lated  fro m  the ؛

-1 m o l- )S m /(jK

25.25
6.43

11-47.
11.41
72.13
39.20

197.06

T he s tan d a rd  m o la r en tro p y  o f  n itro g en  
fo llow ing data:

D ebye ex trap o la tio n  
In teg ra tio n , fro m  10 K to  35.61 K 
Phase tran s itio n  at 35.61 K 
In teg ra tio n , fro m  35.61 K to  63.14 K 
F usion  at 63.14 K
In teg ra tio n , fro m  63.14 K to  77.32 K 
V ap o riza tio n  at 77.32 K 
In teg ra tio n , fro m  77.32 K to  298.15 K 
C o rrec tio n  fo r gas im p erfec tio n

T ota l

-1 m o l-1

T herefore ,

Sm(298.15 K) =  S ^(0 ) +  192.1

E xam ple 3.3 Calculating the entropy at low temperatures

T he m o la r co n stan t-p ressu re  hea t capacity  o f  a ce rta in  so lid  at 4.2 K is 0.43 j  K 1 
m o l-1. W h a t is its m o lar en tro p y  at th a t tem pera tu re?



M ethod  Because th e  tem p e ra tu re  is so low , we can  assum e th a t th e  heat capacity  
varies w ith  tem p e ra tu re  as a T 3, in  w h ich  case we can use eqn  3.18 to  calculate the 
en tro p y  at a tem p e ra tu re  T  in  te rm s o f  the  en tro p y  at T  =  0 an d  the  co n stan t a. 
W h en  the  in teg ra tio n  is carried  o u t, it tu rn s  o u t th a t th e  resu lt can  be  expressed in  
te rm s o f  th e  hea t capacity  at th e  tem p e ra tu re  T, so th e  da ta  can be  u sed  d irec tly  to  
calculate th e  en tropy .

A nswer T he in teg ra tio n  req u ired  is

■T

T 2d T  =  S(0) +  -  a T 3
0

" =  S(0) +  a
T a T 3d T

0 T
S (T ) =  S(0) +

H ow ever, because a T 3 is th e  heat capacity  at th e  tem p e ra tu re  T ,

S (T ) =  S(0) +  -  C p(T ) 

fro m  w h ich  it follow s th a t

S^(10  K) =  S ^(0 ) +  0.14 j  K“ 1 m o l“ 1

Self-test 3.5  For m etals, th ere  is also a c o n tr ib u tio n  to  the  hea t capacity  fro m  the 
e lec trons w h ich  is linearly  p ro p o r tio n a l to  T  w h en  th e  tem p e ra tu re  is low . F ind  its 
co n tr ib u tio n  to  th e  en tro p y  at low  tem p era tu res . [S (T ) =  S(0) +  C p(T )]

3.4 The Third Law of thermodynamics
A t T  =  0, all energy  o f  th e rm a l m o tio n  has b een  quenched , an d  in  a perfect crystal all 
th e  a to m s o r ions are in  a regular, u n ifo rm  array. T he localiza tion  o f  m a tte r  an d  the 
absence o f  th e rm a l m o tio n  suggest th a t such  m ateria ls  also have zero  en tropy . T his 
conc lu s ion  is consisten t w ith  th e  m olecu la r in te rp re ta tio n  o f  en tropy , because S =  0 if  
there  is on ly  one w ay o f  a rrang ing  th e  m olecu les an d  o n ly  one  m ic ro sta te  is accessible 
(the  g ro u n d  state).

(a) T h e  N e rn s t h e a t  th e o re m

T he experim en ta l observa tion  th a t tu rn s  o u t to  be consisten t w ith  th e  view  th a t the 
en tro p y  o f  a regu lar a rray  o f  m olecu les is zero at T  =  0 is su m m arized  b y  th e  N e rn s t 
h e a t  th eo rem -

T he en tro p y  change accom pany ing  any  physical o r chem ical tran sfo rm a tio n  
app roaches zero  as th e  tem p e ra tu re  app roaches zero: AS >  0 as T  >  0 p ro v id ed  all 
the  substances involved  are perfectly  crystalline.

I))ustration 3.5 Using the Nernst heat theorem

C onsider the  en tro p y  o f  th e  tran s itio n  betw een  o rth o rh o m b ic  su lfur, S (a ) , and  
m o n o c lin ic  su lfu r, S(P), w h ich  can  be  calcu lated  fro m  th e  tran s itio n  en tha lpy  
( -4 0 2  j  m o l-1) a t th e  tra n s itio n  tem p e ra tu re  (369 K):

AtrSS =  S ^ (a )  -  Sm(P) =  ( - 4 0 2 Jm o 1  ) = —1.09 j  K-1 m o l-1
369 K

T he tw o in d iv id u a l en tro p ies  can  also be  d e te rm in ed  b y  m easu rin g  th e  hea t cap a­
cities fro m  T  =  0 u p  to  T  =  369 K. It is fo u n d  th a t S ^ (a )  =  S ^ (a ,0 )  +  37 j  K-1 m o l-1



p,0) +  38 j  K 1 m o l 1. These tw o values im p ly  th a t at th e  tran s itio n؛؛؛)an d  Sm(p) =  S
tem p e ra tu re

1-A trsS =  S ^ (a ,0 )  -  S ^(P ,0 ) = - 1  j  K-1 m o l

(0,O n  co m p arin g  th is value w ith  th e  one above, we conclude  th a t S ^ (a ,0 )  -  Sm(p
.0, in  accord  w ith  th e  th e o re m ء

It follow s fro m  th e  N ern st th e o re m  th a t, if  w e a rb itra rily  ascribe th e  value zero 
to  the  en tro p ies  o f  e lem en ts in  th e ir  perfec t crystalline fo rm  at T  =  0, th e n  all perfect 
crystalline co m p o u n d s  also have zero  en tro p y  at T  =  0 (because th e  change in  en tro p y  
th a t accom pan ies th e  fo rm a tio n  o f  th e  co m p o u n d s , like th e  en tro p y  o f  all tra n s fo rm a ­
tio n s  at th a t tem p e ra tu re , is zero ). T his conc lu s ion  is su m m arized  b y  th e  T h ird  Law 
o f  th e rm o d y n a m ic s :

T he en tro p y  o f  all p erfect crystalline substances is zero  at T =  0.

As far as th erm o d y n am ics  is concerned , choosing  th is  co m m o n  value as zero  is th e n  a 
m a tte r  o f  convenience. T he m o lecu la r in te rp re ta tio n  o f  en tropy , how ever, justifies 
th e  value S =  0 at T  =  0.

S y n o p tic  T ab le  3.3*
Third-Law entropies at

Standard 
298 K

5 m/(j K- 1mol-1)

Solids

Graphite, C(s) 5.7

D iam ^d, C(s) 2.4
Sucose, C12H22On (s) 360.2

(ne, I^s؛Iod 116.1

Liquids

Benzene, م(إ ء6ب ) 173.3
Water, H^O(l) 69.9
Mercury, Hg(l) 76.ه

Gases
Methane, CH4(g) 186.3
Carbon dioxide, CO2(g) 213.7
Hydrogen, H2(g) 130.7
Helium, He 126.2
Ammonia, NH3(g) 126.2

* More values are given in the Data section.

M olecular in te rp re ta tio n  3.3 The statistical view of the Third Law of thermodynamics

W e saw  in  M olecular interpretation 3.1 th a t, acco rd ing  to  the  B o ltzm ann  fo rm u la , 
th e  en tro p y  is zero  if  th ere  is on ly  one accessible m icro sta te  (W  =  1). In  m o s t cases, 
W  =  1 at T  =  0 because th e re  is on ly  one w ay o f  achieving th e  low est to ta l energy: 
p u t all th e  m olecu les in to  th e  sam e, low est state. T herefore , S =  0 at T =  0, in  accord  
w ith  th e  T h ird  Law o f  the rm o d y n am ics. In  certa in  cases, th o u g h , W  m ay  differ 
fro m  1 at T  =  0. T his is th e  case if  th ere  is n o  energy  advantage in  ad o p tin g  a p a r ­
ticu la r o rien ta tio n  even at abso lu te  zero . For in stance , fo r a d ia to m ic  m olecu le  AB 
th ere  m ay  be  alm ost n o  energy  difference betw een  th e  arran g em en ts  . . .  AB AB AB 
. . .  an d  . . .  BA AB BA . . . ,  so W  >  1 even at T  =  0. I f  S > 0 at T  =  0 we say th a t the 
substance  has a re s id u a l e n tro p y . Ice has a res idua l en tro p y  o f  3.4 j  K-1 m o l-1. It 
stem s fro m  th e  a rran g em en t o f  th e  hyd ro g en  b o n d s  betw een  n e ig h b o u rin g  w ater 
m olecules: a given O  a to m  has tw o sh o r t O — H  b o n d s  an d  tw o long  O---H b o n d s  to  
its ne ig h b o u rs , b u t th ere  is a degree o f  ran d o m n ess  in  w h ich  tw o b o n d s  are sh o rt 
an d  w h ich  tw o are long.

(b) T h ird -L aw  e n tro p ie s

E n trop ies  rep o r ted  o n  th e  basis th a t S(0) =  0 are called T h ird -L a w  e n tro p ie s  (and  
o ften  ju s t ‘en tro p ies’). W h en  th e  substance  is in  its s tan d a rd  sta te  at th e  tem p e ra tu re  
T, th e  s ta n d a rd  (T h ird -L aw ) e n tro p y  is d e n o ted  S* (T ). A  list o f  values at 298 K is 
given in  T able 3.3.

T he s ta n d a rd  re a c tio n  e n tro p y , ArS 7, is defined, like th e  s tan d a rd  reac tio n  e n ­
thalpy , as th e  difference betw een  th e  m o la r en tro p ies  o f  th e  p u re , separa ted  p ro d u c ts  
an d  th e  p u re , separa ted  reactan ts , all substances b e in g  in  th e ir s tan d a rd  states at the 
specified tem p era tu re :

ArS *  =  X v S m  -  X v S m  (3.21)
Products Reactant؟

In  th is expression, each te rm  is w eighted  by  the ap p ro p ria te  sto ich iom etric  coefficient. 
S tan d a rd  reac tio n  en tro p ies  are likely to  be  positive if  th e re  is a n e t fo rm a tio n  o f  gas in  
a reac tion , an d  are likely to  be negative if  th ere  is a n e t c o n su m p tio n  o f  gas.



Illustration 3.6 Calculating a standard reaction entropy

T o calculate th e  s tan d a rd  reac tio n  en tro p y  o f  H 2(g) +  - O 2(g) >  H 2O (l) at 25°C, 
we use th e  da ta  in  T able 2.7 o f  th e  D ata  Section to  w rite

ArS ٠= s  m (H 2O , l) - ؛  s  m (H 2, g ) + -  s  m (O 2, g)}

=  69.9 j  K -1 m o l-1 -  205 .0) .130 + ي ؛7 )} j  K -1 m o l-1 

= - ’ 63 4 j  k -1 m o l-1

The negative value is consistent w ith  the conversion o f  tw o gases to  a com pact liquid.

A note on g o o d  practice  D o n o t m ake th e  m istake  o f  se tting  th e  s tan d a rd  m o lar 
en trop ies  o f  e lem en ts equal to  zero: they  have n o n -ze ro  values (p ro v id ed  T  > 0), as 
we have a lready  discussed.

Self-test 3 .6  C alculate th e  s tan d a rd  reac tio n  en tro p y  fo r th e  c o m b u s tio n  o f 
m e th an e  to  carb o n  diox ide an d  liqu id  w ater a t 25°C. [-243  j  K-1 m o l-1]

Just as in  th e  d iscussion  o f  en thalp ies in  Section  2.8, w here w e acknow ledged  th a t 
so lu tions o f  ca tions can n o t be  p rep a red  in  th e  absence o f  an ions, th e  s tan d a rd  m o lar 
en trop ies  o f  ions in  so lu tio n  are re p o r te d  on  a scale in  w h ich  the  s tan d a rd  en tro p y  o f 
the  H  io n s in  w ater is tak en  as zero  at all tem pera tu res:

s*(H +, aq) =  0 [3.22]

T he values based  o n  th is  choice are listed  in  T able 2.7 in  th e  D ata  section.5 Because the 
en trop ies  o f  ions in  w ater are values relative to  th e  h y d rogen  io n  in  w ater, th ey  m ay  be 
e ither positive or negative. A  positive en tro p y  m eans th a t an  io n  has a h igher m o lar 
en tro p y  th a n  H+ in  w ater an d  a negative en tro p y  m ean s th a t th e  io n  has a low er m olar 
en tro p y  th a n  H+ in  w ater. For instance , the  s tan d a rd  m o la r en tro p y  o f  Cl- (aq) is +57 
j  K-1 m o l-1 an d  th a t o f  M g2+(aq) is -1 2 8  j  K-1 m o l-1. Io n  en tro p ies  vary  as expected  
o n  th e  basis th a t th ey  are re la ted  to  th e  degree to  w h ich  th e  io n s o rd e r th e  w ater 
m olecu les a ro u n d  th e m  in  the  so lu tio n . Small, h igh ly  charged  io n s in d u ce  local s tru c ­
tu re  in  th e  su r ro u n d in g  w ater, an d  th e  d iso rd e r o f  the  so lu tio n  is decreased  m o re  th a n  
in  th e  case o f  large, singly  charged  ions. T he abso lu te , T h ird -L aw  s ta n d a rd  m o lar 
en tro p y  o f  th e  p ro to n  in  w ater can  be estim ated  by  p ro p o s in g  a m o d e l o f  th e  s tru c tu re  
it induces, an d  th ere  is som e ag reem en t o n  th e  value -2 1  j  K-1 m o l-1. T he negative 
value ind ica tes th a t th e  p ro to n  induces o rd e r in  th e  solvent.

Concentrating on the system

E n tro p y  is th e  basic  concep t for d iscussing  th e  d irec tio n  o f  n a tu ra l change, b u t to  use 
it w e have to  analyse changes in  b o th  th e  system  an d  its su rro u n d in g s . W e have seen 
th a t it is always very  sim ple to  calculate th e  en tro p y  change in  th e  su rro u n d in g s , and  
we shall n o w  see th a t it is possib le  to  devise a sim ple m e th o d  for tak ing  th a t c o n tr ib u ­
tio n  in to  acco u n t au tom atica lly . T his ap p ro ach  focuses o u r a tte n tio n  on  th e  system

5 In terms of the language to be introduced in Section 5.1, the entropies of ions in solution are actually par­
tial molar entropies, for their values include the consequences of their presence on the organization of the 
solvent molecules around them.



an d  sim plifies d iscussions. M oreover, it is th e  fo u n d a tio n  o f  all th e  app lica tions o f 
chem ical th erm o d y n am ics  th a t follow.

3.5 The Helmholtz and Gibbs energies
C o n sid er a system  in  th e rm a l eq u ilib riu m  w ith  its su rro u n d in g s  at a te m p e ra tu re  T. 
W h en  a change in  th e  system  occurs an d  th ere  is a tran sfe r o f  energy  as hea t betw een  
th e  system  an d  the  su rro u n d in g s , th e  C lausius inequality , eqn  3.12, reads

d s  -  ■ y  > 0 (3.23)

W e can  develop th is inequality  in  tw o w ays acco rd ing  to  th e  co n d itio n s  ( o f  co n stan t 
v o lum e o r co n stan t p ressure) u n d e r  w h ich  th e  process occurs.

(a) C rite ria  fo r  s p o n ta n e i ty

F irst, consider hea tin g  at co n stan t vo lum e. T h en , in  th e  absence o f  n o n -ex p an s io n  
w ork , we can w rite  dqV =  dU ; consequen tly

d s  -  3 ؤ > 0 (24. ئ )

T he  im p o rtan ce  o f  th e  inequality  in  th is  fo rm  is th a t it expresses th e  c rite rio n  for 
sp o n tan eo u s  change solely in  te rm s o f  th e  state fu n c tio n s o f  th e  system . T he in eq u a l­
ity  is easily rea rran g ed  to

T d s  > d U  (co n s tan t V, n o  ad d itio n a l w o rk )6 (3.25)

A t either co n stan t in te rn a l energy  (d U  =  0) o r co n stan t en tro p y  (d s  =  0), th is  expres­
sio n  becom es, respectively,

dS UV> 0 dU S,V< 0 (3.26)

w here  the  subscrip ts  ind ica te  th e  c o n stan t cond itions .
E q u a tio n  3.26 expresses th e  c rite ria  fo r sp o n tan eo u s  change in  te rm s o f  p ro p ertie s  

re la tin g  to  th e  system . T he first in eq u a lity  states th a t, in  a system  at co n stan t vo lum e 
an d  co n stan t in te rn a l energy  (such  as an  iso la ted  system ), the  en tro p y  increases in  a 
sp o n tan eo u s  change. T h a t s ta tem en t is essentially  th e  co n ten t o f  the  Second  Law. T he 
second  inequa lity  is less obvious, for it says th a t, if  th e  en tro p y  and  vo lum e o f  th e  sys­
te m  are co n stan t, th e n  th e  in te rn a l energy  m u s t decrease in  a sp o n tan eo u s  change. Do 
n o t in te rp re t th is  c rite rio n  as a ten d en cy  o f  th e  system  to  sin k  to  low er energy. I t  is 
a d isguised  s ta tem en t ab o u t en tropy , an d  sh o u ld  be in te rp re ted  as im p ly ing  th a t, if  
th e  en tro p y  o f  th e  system  is unch an g ed , th e n  th ere  m u s t be an  increase in  en tro p y  of 
th e  su rro u n d in g s , w h ich  can be achieved on ly  i f  th e  energy  o f  th e  system  decreases as 
energy  flows o u t as heat.

W h en  energy  is tran sfe rred  as hea t a t co n stan t p ressu re , an d  th ere  is n o  w o rk  o ther 
th a n  expansion  w ork , we can  w rite  d = p؟  d H  an d  ob ta in

T d s  > d H  (c o n s ta n tp , n o  ad d itio n a l w ork ) (3.27)

A t either co n stan t en th a lp y  o r co n stan t en tro p y  th is in eq u a lity  becom es, respectively,

dSH,p > 0 dH Sp <  0 (3.28)

T he in te rp re ta tio n s  o f  these inequalities are sim ilar to  those  o f  eqn  3.26. T he en tro p y  
o f  th e  system  a t co n stan t p ressu re  m u s t increase if  its en th a lp y  rem ain s co n stan t (for

6 Reca،l that ‘additional work’ is work other than expansion work.



th ere  can  th e n  be n o  change in  en tro p y  o f  the  su rro u n d in g s ). A lternatively, the 
en th a lp y  m u s t decrease if  th e  en tro p y  o f  th e  system  is co n stan t, fo r th e n  it  is essential 
to  have an  increase in  en tro p y  o f  the  su rro u n d in g s .

Because eqns 3.25 an d  3.27 have the  fo rm s d U -  TdS <  0 an d  d H -  TdS <  0, re sp ec t­
ively, th ey  can  be  expressed m o re  s im ply  b y  in tro d u c in g  tw o  m o re  th e rm o d y n am ic  
quan tities. O ne is th e  H e lm h o ltz  energy , A, w h ich  is defined  as

A =  U -  TS [3.29]

T he o th e r is th e  G ib b s energy , G:

G  =  H -  TS [3.30]

All th e  sym bols in  these tw o defin itions refer to  th e  system .
W h en  th e  sta te  o f  th e  system  changes at co n stan t tem p e ra tu re , th e  tw o p ro p ertie s  

change as follows:

(a) dA =  d U  -  TdS (b) dG  =  d H  -  TdS (3 .3 !)

W h en  we in tro d u ce  eqns 3.25 an d  3.27, respectively, w e o b ta in  th e  c rite ria  o f  sp o n ­
tan eo u s  change as

(a) dA T,^ < 0 (b) dG T,p < 0 (3.32)

These inequalities are th e  m o s t im p o r ta n t conclusions fro m  th erm o d y n am ics  for 
chem istry . T hey  are developed  in  su b seq u en t sec tions an d  chapters.

(b) S o m e  re m a rk s  o n  th e  H e)m ho)tz  e n e rg y

A change in  a system  at c o n stan t te m p e ra tu re  an d  vo lum e is sp o n tan eo u s  if  dA T y < 0. 
T h a t is, a change u n d e r  these co n d itio n s  is sp o n tan eo u s  if  it co rre sp o n d s to  a decrease 
in  th e  H elm h o ltz  energy. Such system s m ove sp o n tan eo u sly  tow ards states o f  low er 
A  i f  a p a th  is available. T he c rite rio n  o f  equ ilib rium , w h en  n e ith e r th e  fo rw ard  n o r  
reverse p rocess has a ten d en cy  to  occur, is

dA T,^ =  0 (3.33)

T he expressions dA =  d U  -  TdS an d  dA < 0 are som etim es in te rp re ted  as follow s. A 
negative value o f  dA is favoured  by  a negative value o f  d U  an d  a positive value o f  TdS. 
T his observa tion  suggests th a t the  ten d en c y  o f  a system  to  m ove to  low er A  is du e  to 
its ten d en cy  to  m ove tow ards sta tes o f  low er in te rn a l energy  an d  h igher en tropy . 
H ow ever, th is  in te rp re ta tio n  is false (even th o u g h  it is a good  ru le  o f  th u m b  for 
rem em b erin g  th e  expression  fo r dA ) because th e  ten d en cy  to  low er A  is solely a te n ­
dency  to w ard s states o f  g reater overall en tropy . System s change sp o n tan eo u sly  if  in  
d o ing  so th e  to ta l en tro p y  o f  th e  system  an d  its su rro u n d in g s  increases, n o t because 
they  te n d  to  low er in te rn a l energy. T he fo rm  o f  dA  m ay  give th e  im p ress io n  th a t 
system s favour low er energy, b u t th a t is m isleading: d S is th e  en tro p y  change o f  the 
system , -  d U /T  is th e  en tro p y  change o f  th e  su rro u n d in g s  (w hen  the  vo lum e o f  the 
system  is co n stan t), an d  th e ir  to ta l ten d s  to  a m ax im u m .

M (ء) ax im um  w o rk

It tu rn s  o u t th a t A  carries a greater significance th a n  being  sim p ly  a s ignpost o f  sp o n ­
tan eo u s  change: the change in the Helmholtz function is equal to the m axim um  work 
accompanying a process:

dw max= dA (3.3بم
As a result, A  is som etim es called the ‘m ax im u m  w ork  fu n c tio n ’, o r th e  ‘w ork  fu n c tio n ’ .7

7 Arbeit is the German word for work; hence the symbol A.



Jus tif ica tio n  3.2 Maximum work

To dem onstrate tha t m axim um  w ork can be expressed in term s of the changes in 
H elm holtz energy, we com bine the Clausius inequality  dS > dq/T  in  the form  TdS > 
dq w ith  the First Law, dU  = dq + dw, and obtain

d U < TdS + dw

(d U is sm aller than  the term  on the righ t because we are replacing dq by TdS, which 
in general is larger.) This expression rearranges to

dw > dU  -  TdS

It follows th a t the m ost negative value of dw, and therefore the m axim um  energy 
th a t can be obtained from  the system as work, is given by

dwma  ̂= d U -  TdS

and th a t this w ork is done only w hen the path  is traversed reversibly (because then 
the equality applies). Because at constant tem perature  dA =  dU  -  TdS, we conclude 
th a t dwm^  = dA.

S u rro u n d in g s  DSsur > 0

Fig. 3.1ء In a system not isolated from its 
surroundings, the work done may be 
different from the change in internal 
energy. Moreover, the process is 
spontaneous if overall the entropy of 
the global, isolated system increases.
In the process depicted here, the entropy 
o f the system decreases, so that of the 
surroundings m ust increase in order for the 
process to  be spontaneous, which means 
that energy m ust pass from  the system to 
the surroundings as heat. Therefore, less 
work than AU can be obtained.

W h en  a m acroscop ic  iso therm al change takes place in  th e  system , eqn  3.34 becom es

wmax = A  (3 .35)

w ith

AA =  A U -  TAS (3.36)

T h is expression  show s th a t in  som e cases, d ep en d in g  o n  th e  sign o f  TAS , n o t all the  
change in  in te rn a l energy  m ay  be  available fo r d o ing  w ork . I f  th e  change occurs w ith  
a decrease in  en tro p y  (o f  the  system ), in  w h ich  case TAS < 0, th e n  the  rig h t-h a n d  side 
o f  th is eq u a tio n  is n o t as negative as A U  itself, an d  con seq u en tly  th e  m a x im u m  w ork  
is less th a n  AU. For th e  change to  be  sp o n tan eo u s, som e o f  th e  energy  m u s t escape as 
hea t in  o rd e r to  generate  en o u g h  en tro p y  in  th e  su rro u n d in g s  to  overcom e th e  re d u c ­
tio n  in  en tro p y  in  th e  system  (Fig. 3.15). In  th is case, N a tu re  is d em an d in g  a tax  o n  the 
in te rn a l energy  as it is converted  in to  w ork . T h is is th e  o rig in  o f  th e  a lternative nam e 
‘H elm h o ltz  free energy’ fo r A, because AA is th a t p a rt o f  th e  change in  in te rn a l energy 
th a t we are free to  use to  do  w ork .

M olecular in te rp re ta tio n  3.4 Maximum work and the Helmholtz energy

F u rth e r in sigh t in to  th e  re la tio n  betw een  th e  w o rk  th a t a system  can  do  an d  the 
H e lm h o ltz  energy  is o b ta in ed  b y  recalling  th a t w o rk  is energy  tran sfe rred  to  the 
su rro u n d in g s  as th e  u n ifo rm  m o tio n  o f  a tom s. W e can in te rp re t th e  expression  
A  =  U  -  TS as show ing  th a t A  is th e  to ta l in te rn a l energy  o f  th e  system , U, less 
a c o n tr ib u tio n  th a t is s to red  as energy  o f  th e rm a l m o tio n  (the  q u a n tity  TS). 
Because energy  s to red  in  ra n d o m  th e rm a l m o tio n  can n o t be  used  to  achieve 
u n ifo rm  m o tio n  in  th e  su rro u n d in g s , on ly  the  p a r t o f  U  th a t is n o t s to red  in  th a t 
way, th e  q u a n tity  U  -  TS, is available for conversion  in to  w ork .

If  th e  change occurs w ith  an  increase o f  en tro p y  o f  th e  system  (in  w h ich  case 
TAS > 0), th e  r ig h t-h a n d  side o f  th e  eq u a tio n  is m o re  negative th a n  AU. In  th is case, 
th e  m a x im u m  w o rk  th a t can  be o b ta in ed  fro m  the  system  is greater th a n  AU. The 
exp lan a tio n  o f  th is ap p a ren t p a rad o x  is th a t th e  system  is n o t iso la ted  an d  energy  m ay



flow  in  as heat as w o rk  is done. Because th e  en tro p y  o f  th e  system  increases, we can 
afford a red u c tio n  o f  th e  en tro p y  o f  th e  su rro u n d in g s  yet still have, overall, a sp o n ta n ­
eous process. T herefo re , som e energy  (n o  m o re  th a n  th e  value o f  TAS ) m ay  leave the 
su rro u n d in g s  as hea t an d  co n tr ib u te  to  the  w ork  th e  change is genera ting  (Fig. 3.16). 
N a tu re  is n o w  p ro v id in g  a tax  re fund .

Exam p)e 3.4 Calculating the maximum available work

W h en  1.000 m o l C 6H 12O 6 (glucose) is oxid ized  to  ca rb o n  d iox ide an d  w ater at 
25°C acco rd ing  to  the  eq u a tio n  C 6H 12O 6(s) +  6 O 2(g) >  6 C O 2(g) +  6 H 2O (l), 
ca lo rim etric  m easu rem en ts  give ArU * =  -2 8 0 8  k j m o l-1 an d  ArS =  +182.4 j  K-1 
m o l-1 a t 25°C. H o w  m u c h  o f  th is  energy  change can  be  ex trac ted  as (a) hea t a t c o n ­
s tan t p ressure, (b) work?

M ethod  W e k n o w  th a t th e  hea t released at co n stan t p ressu re  is equal to  the  value 
o f  AH, so we need  to  re la te  Ar^  ٠ to  ArU*, w h ich  is given. T o do  so, w e suppose  th a t 
all th e  gases involved are perfect, an d  use eqn  2.21 in  the  fo rm  Ar H  =  ArU  + A v g RT. 
For th e  m ax im u m  w ork  available fro m  the  p rocess we use eqn  3.34.

A nswer (a) Because A vg =  0, we k now  th a t ArH ٠ =  Ar٧٠ =  -2 8 0 8  k j m o l-1. T h ere ­
fore, at co n stan t pressu re , th e  energy  available as hea t is 2808 k j m o l-1. (b) Because 
T  =  298 K, th e  value o f  Ar^  is

Ar محم  =  ArU٠ -  TArS٠ =  -2 8 6 2  k j m o l-1

T herefore , th e  co m b u s tio n  o f  1.000 m o l C H؛؛ 12O can be u ؛؛ sed  to  p ro d u ce  u p  to  
2862 k j o f  w ork . T he m a x im u m  w o rk  available is greater th a n  th e  change in  in te r ­
nal energy  o n  acco u n t o f  th e  positive en tro p y  o f  reac tio n  (w hich  is p a rtly  due to  the 
g enera tion  o f  a large n u m b e r o f  sm all m olecu les fro m  one b ig  one). T he system  can 
there fo re  d raw  in  energy  fro m  th e  su rro u n d in g s  (so red u c in g  th e ir en tropy ) and  
m ake it available fo r d o ing  w ork .

S e lf-te st3 .7  R epeat the  ca lcu la tion  for th e  co m b u s tio n  o f  1.000 m o l C H 4(g) u n d e r 
the  sam e co n d itions , u sing  da ta  fro m  T able 2.5. [ا qp | =  890 k j, ا wmax 813 = [kj ا 

(d) S o m e  re m a rk s  o n  th e  G b؛ b s  e n e rg y

T he G ibbs energy (the ‘free energy’) is m ore  co m m o n  in  chem istry  th a n  the H elm holtz  
energy  because, at least in  lab o ra to ry  chem istry , we are usually  m o re  in te rested  in  
changes occu rrin g  at co n stan t p ressu re  th a n  at co n stan t vo lum e. T he c rite rio n  dG Tp 
< 0 carries over in to  chem istry  as th e  observa tion  th a t, a t constant temperature and 
pressure, chemical reactions are spontaneous in the direction o f  decreasing Gibbs energy. 
T herefore , if  we w an t to  k n o w  w h eth er a reac tio n  is sp o n tan eo u s, th e  p ressu re  and  
tem p e ra tu re  be in g  co n stan t, we assess th e  change in  th e  G ibbs energy. I f  G decreases 
as th e  reac tio n  p roceeds, th e n  th e  reac tio n  has a sp o n tan eo u s  ten d en cy  to  convert the 
reac tan ts  in to  p ro d u c ts . I f  G  increases, th e n  th e  reverse reac tio n  is sp on taneous.

T he existence o f  sp o n tan eo u s  e n d o th e rm ic  reac tions prov ides an  illu s tra tio n  o f  the 
ro le o f  G . In  such  reactions, H  increases, th e  system  rises sp o n tan eo u sly  to  states 
o f  h igher en thalpy , an d  d H  > 0. Because the  reac tio n  is sp o n tan eo u s  w e k n o w  th a t 
dG  < 0 despite  d H  > 0; it follow s th a t th e  en tro p y  o f  th e  system  increases so m u c h  th a t 
TdS ou tw eighs d H  in  dG  =  d H  -  TdS. E n d o th e rm ic  reac tio n s are there fo re  d riven  by  
the  increase o f  en tro p y  o f  th e  system , and  th is en tro p y  change overcom es th e  re d u c ­
tio n  o f  en tro p y  b ro u g h t ab o u t in  th e  su rro u n d in g s  b y  th e  in flow  o f  hea t in to  the  sys­
tem  (dS؛^r =  - d H /T  at co n stan t p ressu re).

H |راح| < 

S u rro u n d in g s  ASsur < ه

Fig. 3.16 In this process, the entropy of the 
system increases; hence we can afford to 
lose some entropy of the surroundings. 
That is, some of their energy may be lost as 
heat to the system. This energy can be 
returned to  them  as work. Hence the work 
done can exceed AU.



(e) M ax im um  n o n -e x p a n s io n  w o rk

T he analogue o f  th e  m ax im u m  w o rk  In te rp re ta tio n  o f  AA, an d  the  o rig in  o f  th e  nam e 
‘free energy’, can  be fo u n d  fo r AG. In  th e  Justification  below , we show  th a t, at co n stan t 
te m p e ra tu re  an d  p ressu re , th e  m ax im u m  ad d itio n a l (n o n -ex p an sio n ) w ork , waddmax, 
is given b y  th e  change in  G ibbs energy:

d ™add,max =  dG  (3 .37)

T he co rresp o n d in g  expression  fo r a m easurab le  change is

™add,max = AG (3 .38)

T h is expression  is particu la rly  usefu l fo r assessing th e  electrical w o rk  th a t m ay  be  p ro ­
du ced  b y  fuel cells an d  elec trochem ical cells, an d  we shall see m an y  app lica tions o f  it.

Ju s tif ica tio n  3.3 Maximum non-expansion work

Because H  =  U  + pV, for a general change in conditions, the change in  enthalpy is

d H  = dq + dw + d( p V )

The corresponding change in Gibbs energy (G = H -  TS) is

dG = d H -  TdS -  SdT = dq + dw + d(pV) -  TdS -  SdT

W hen the change is isotherm al we can set dT  = 0; then

dG = dq + dw + d (p V ) -  TdS

W hen the change is reversible, dw = dwr؛v and dq = dqr؛v = TdS, so for a reversible, 
iso therm al process

dG = TdS + dwr؛v + d (p V ) -  TdS = dwr؛v + d (p V )

The w ork consists o f expansion w ork, w hich for a reversible change is given by 
- pdV, and possibly some o ther kind o f w ork (for instance, the electrical w ork  of 
pushing electrons th rough  a circuit or o f raising a colum n o f liquid); this additional 
w ork  we denote dw؛؛d .  Therefore, w ith  d (p V ) = p dV  + Vdp,

dG = ( - p dV  + dwadd,rev) + p dV  + Vdp  = dwadd,rev + Vdp

If the change occurs at constant pressure (as well as constant tem perature), we can 
set dp  = 0 and obtain d G =  d wadd,rev. Therefore, at constant tem perature  and pres­
sure, dw؛؛d  r؛v = d G . However, because the process is reversible, the w ork done m ust 
now  have its m axim um  value, so eqn 3.37 follows.

E xam ple 3.5 Calculating the maximum non-expansion work of a reaction

H o w  m u c h  energy  is available fo r su s ta in in g  m u scu la r an d  n ervous activ ity  fro m  
th e  co m b u s tio n  o f  1.00 m o l o f  glucose m olecu les u n d e r  s tan d a rd  co n d itio n s  at 
37°C  (b lood  tem p era tu re )?  T he s tan d a rd  en tro p y  o f  reac tio n  i s +182.4  j  K-1 m o l-1.

M ethod  T he  n o n -ex p an s io n  w o rk  available fro m  th e  reac tio n  is equal to  the 
change in  s tan d a rd  G ibbs energy  for th e  reac tio n  (ArG ٠, a q u an tity  defined  m ore  
fully  below ). T o calculate th is q uan tity , it is leg itim ate  to  ignore  th e  tem p e ra tu re - 
d ependence  o f  th e  reac tio n  en thalpy , to  o b ta in  ArH ٠ fro m  T able 2.5, an d  to  su b ­
stitu te  th e  da ta  in to  ArG٠ =  ArH *  -  TArS٠.

Answ er Because th e  s tan d a rd  reac tio n  en th a lp y  is -2 8 0 8  kJ m o l-1, it follow s th a t 
th e  s tan d a rd  reac tio n  G ibbs energy  is

ArG٠ =  -2 8 0 8  kJ m o l-1 -  (310 K) X (182.4 j  K-1 m o l-1) =  -2 8 6 5  kJ m o l-1



T herefore , wad^ ^ ax =  -2 8 6 5  kJ fo r th e  co m b u s tio n  o f  1 m o l glucose m olecu les, and  
the  reac tio n  can  be  u sed  to  do  u p  to  2865 kJ o f  n o n -ex p an s io n  w ork . T o place th is 
resu lt in  perspective, consider th a t a p e rso n  o f  m ass 70 kg needs to  do  2.1 kJ o f  w ork  
to  clim b vertically  th ro u g h  3.0 m ; therefo re , at least 0.13 g o f  glucose is need ed  to  
com plete  th e  task  (an d  in  p rac tice  significantly  m o re ).

Self-test 3.8  H ow  m u c h  n o n -ex p an s io n  w o rk  can  be ob ta in ed  fro m  th e  c o m ­
b u s tio n  o f  1.00 m o l C H ^ g )  u n d e r  s tan d a rd  co n d itio n s  at 298 K? U se ArS٠ = 
-2 4 3  j  K-1 m o l-1. [818 kJ]

3.6 Standard reaction G؛bbs energ؛es
S tan d ard  en trop ies  an d  en thalp ies o f  reac tio n  can  be co m b in ed  to  o b ta in  th e  s ta n d ­
a rd  G ib b s e n e rg y  o f  re a c tio n  (o r ‘s tan d a rd  reac tio n  G ibbs energy’), ArG*:

A G  =  A H -  TArS* [3.39]

T he s tan d a rd  G ibbs energy  o f  reac tio n  is th e  difference in  s tan d a rd  m o la r G ibbs 
energies o f  th e  p ro d u c ts  an d  reac tan ts  in  th e ir  s tan d a rd  states at th e  tem p e ra tu re  
specified fo r th e  reac tio n  as w ritten . As in  th e  case o f  s tan d a rd  reac tio n  en thalp ies, it is 
conven ien t to  define th e  s ta n d a rd  G ib b s  en e rg ies  o f  fo rm a tio n , A fG  ٠, th e  s tan d a rd  
reac tio n  G ibbs energy  fo r th e  fo rm a tio n  o f  a c o m p o u n d  fro m  its e lem en ts in  th e ir  re f­
erence states.* S tan d ard  G ibbs energies o f  fo rm a tio n  o f  th e  elem en ts in  th e ir  reference 
states are zero, because th e ir  fo rm a tio n  is a ‘n u ll’ reac tion . A  selection  o f  values for 
co m p o u n d s  is given in  T able 3.4. F ro m  th e  values there , it  is a sim ple m a tte r  to  ob ta in  
the  s tan d a rd  G ibbs energy  o f  reac tio n  by  tak ing  th e  ap p ro p ria te  com b ina tion :

ArG ٠ =  X v A fG ٠ -  ^ v A G؛ * (3.40)
Products Reactants

w ith  each te rm  w eigh ted  b y  th e  ap p ro p ria te  s to ich io m etric  coefficient.

Illustration 3.7 Calculating a standard Gibbs energy of reaction

O T) + إ 2 o calculate th e  s tan d a rd  G ibbs energy  o f  the  reac tio n  C O (g
at 25°C, w e w rite

2, g})ه(ه A؛م fG *(C O , g) +  - A؛ - (G*(CO2, g؛A =  ArG٠ 
1- 137.2) + - (0}) kJ m o l؛ ) - - 1-= -394.4 kJ m o l

1"257.2 kJ m o l- =

(g) C O 2(g)

Self-test 3.9  C alculate th e  s tan d a rd  reac tio n  G ibbs energy  for th e  co m b u stio n  o f  
C H 4(g) a t 298 K. [-8 1 8  kJ m o l-1]

Just as w e d id  in  Section  2.8, w here we acknow ledged  th a t so lu tions o f  ca tions 
can n o t be p rep a red  w ith o u t th e ir  accom pany ing  an ions, we define one io n , co n v en ­
tionally  the  hyd ro g en  ion , to  have zero  s tan d a rd  G ibbs energy  o f  fo rm a tio n  at all 
tem pera tu res:

A G ( H +, aq) =  0 [3.41]

8 The reference state of an element was defined in Section 2.7.

S yn o p tic  T ab le  3.4* Standard Gibbs 
energies of formation (at 298 K)

(1-،G ®/(kJ mo؛A

Diamond, C(s) +2.9
Benzene, C6H6(l) +124.3
Methane, CH4(g) -50.7
Carbon dioxide, CO2(g) -394.4
Water, H^O(l) -237.1
Ammonia, NH^g) -16.5
Sodium chloride, NaCl(s) -38ه1

* More values are given in the Data section.



Comment 3.2
The stan d ard  Gibbs energies of 
fo rm ation  o f  th e  gas-phase ions are 
unknow n. W e have therefore  used 
ion ization  energies (the  energies 
associated with the  rem oval o f  electrons 
from  atom s o r cations in  the  gas phase) 
o r electron  affinities (the energies 
associated w ith the  uptake o f  electrons 
by  atom s or anions in  th e  gas phase) and 
have assum ed th a t any differences from  
th e  G ibbs energies arising from  
conversion to  en thalpy  and  the 
inclusion  o f  entrop ies to  ob ta in  Gibbs 
energies in th e  fo rm ation  o f  H+ are 
cancelled by  the correspond ing  term s in 
th e  electron gain o f  X. The conclusions 
from  the cycles are therefore only 
approxim ate.

In  essence, th is  defin itio n  ad justs th e  ac tua l values o f  th e  G ibbs energies o f  fo rm atio n  
o f  ions by  a fixed am o u n t, w h ich  is chosen  so th a t th e  s tan d a rd  value fo r one o f  them , 
H +(aq), has th e  value zero. T h en  fo r th e  reac tion

إ  H 2(g) +  -  C l2(g) ج  H +(aq) +  Cl- (aq) ArG*  =  -1 3 1 .2 3  kJ m o l-

w e can  w rite

ArG * =  AfG *(H +, aq) +  AfG * ( c r ,  aq) =  A؛G *(C l- , aq)

an d  hence  id e n t i^  A؛G *(C l- , aq) as -1 3 1 .2 3  kJ m o l-1. All th e  G ibbs energies o f  fo r­
m a tio n  o f  io n s tab u la ted  in  th e  D ata  section w ere calcu lated  in  th e  sam e way.

Illustration  3.8 Calculating the standard Gibbs energy of formation of an ion

W ith  th e  value o f  A؛G *(C l- , aq) established, we can  find  th e  value o f  A؛G *(Ag+, aq) 
fro m

A g(s) + إ   C l2(g) ج  Ag+(aq) +  Cl- (aq) Ar G * =  -5 4 .1 2  kJ m o l-1 

w h ich  leads to  A؛G *(Ag+, aq) =  +77.11 kJ m o l-1.

T he factors responsib le  fo r the  m ag n itu d e  o f  th e  G ibbs energy  o f  fo rm a tio n  o f  an  
io n  in  so lu tio n  can  be  iden tified  b y  analysing it in  te rm s o f  a th e rm o d y n am ic  cycle. As 
an  illu s tra tio n , w e consider the  s tan d a rd  G ibbs energies o f  fo rm a tio n  o f  Cl-  in  w ater, 
w h ich  is -1 3 1  kJ m o l-1. W e do  so b y  trea tin g  th e  fo rm a tio n  reac tio n

-  H 2(g) +  -  X2(g) ج  H +(aq ) +  X  (aq )

as th e  ou tco m e  o f  th e  sequence o f  steps show n  in  Fig. 3.17 (w ith  values tak en  fro m  the 
D ata  section). T he  su m  o f  th e  G ibbs energies fo r all th e  steps a ro u n d  a closed cycle is 
zero , so

A fG*(Cl- , aq) =  1272 kJ m o l-1 + م  ح ت ت *(H+) + م  ح ت ت *(C l-  )

-g) + e؛) + (H (g

'+70

H+(g) + l~(g) ^

ءسح-(آ )
H (g) + I (a q ) ا 

AsolvG^(H+)

H+(g) + - 12(g) + e-

+1312

H(g) + - !2(3)

+218

(g) + - !2(g؛)H -
-{AfGT(H+, aq) + AfG- (I-, aq)} 

H+(aq) + I-(aq)
(b)

H+(g) + Cl(g) + e-

+106
;---------------------  -3 4 9
H+(g) + - □ 2(g) + e-

H+(g) + Cl-(g) V

As0lvG- (Cl)

H+(g) + Cl-(aq) ١,
+1312

AsoG- (H )

(H(g) + - □ 2(g 

218+

(g) + -  Cl2(g؛)H -

- {A ^(H + , aq) + AfG<-(Cl-, aq)}

(a) H+ (aq) + Cl-(aq)

Fig. 3.17 The thermodynamic cycles for the discussion of the Gibbs energies o f solvation 
(hydration) and formation of (a) chloride ions, (b) iodide ions in aqueous solution. The sum 
of the changes in Gibbs energies around the cycle sum to zero because G is a state function.



A n im p o rta n t p o in t to  n o te  is th a t th e  value o f  AfG ٠ o f  an  io n  X  is n o t d e te rm in ed  by 
the  p ro p e rtie s  o f  X  alone b u t inc ludes c o n tr ib u tio n s  fro m  th e  d issociation , ion iza tion , 
and  h y d ra tio n  o f  hydrogen .

G ibbs energies o f  so lvation  o f  in d iv id u a l ions m ay  be  estim ated  fro m  an  eq ua tion  
derived by  M ax B orn, w ho  iden tified م؛خ!م ٠   w ith  th e  electrical w ork  o f  tran sfe rring  an 
io n  fro m  a v acu u m  in to  th e  so lven t tre a ted  as a co n tin u o u s  dielectric  o f  relative p e r ­
m ittiv ity  £r. The resu lting  B o rn  e q u a tio n , w hich  is derived in  Further information 3.1, is

(3.42a)1 - -
z f e N A

8امص
AsolvG ٠ -  - '

w here zi is th e  charge n u m b e r o f  the  io n  an d  ri its rad iu s  (N A is A vogad ro ’s co n stan t). 
N o te  th a t 0 خ؛م!م٠ <  , an d  th a t م؛خ!م٠  is s trong ly  negative fo r sm all, h igh ly  charged 
ions in  m ed ia  o f  h igh  relative perm ittiv ity . For w ater at 25°C,

(3.42b)X (6.86 X 104 kJ m o l أ )
■/pm)

AsolvG ٠-  - :

Illustration 3.9 Using the Born equation

T o see h o w  closely th e  B orn  eq u a tio n  rep ro d u ces th e  ex perim en ta l data, we ca lcu ­
late th e  difference in  th e  values o f  AfG ٠ fo r Cl-  an d  I-  in  w ater, fo r w h ich  £r =  78.54 
at 25°C, given th e ir  rad ii as 181 p m  an d  220 p m  (Table 20.3), respectively, is

X (6.86 X 104 kJ m o l أ )

ag reem en t w ith  th e  experim en ta l difference,

AsolvG *(C l- ) - A ^ lv G  ٠(!-) =  -

T his estim ated  difference is in  
w hich  is - 6 1  kJ m o l-1.

Br- , aq) fro m  ex-^ a) - م؛خ!م( q ,-م (م Self-test 3.10 م؛خ!ن  E stim ate th e  value o f
p e rim en ta l da ta  an d  fro m  th e  B orn  e q u a tio n.

[ca lcu la ted ؛-experim en ta l; - 2 9  kJ m o l ؛-- [26 kJ m o l

C a lo rim e try  (fo r A H  directly , an d  for S v ia hea t capacities) is on ly  one o f  th e  ways 
o f  d e te rm in in g  G ibbs energies. T hey  m ay  also be  ob ta in ed  fro m  eq u ilib r iu m  c o n ­
stan ts  an d  e lec trochem ical m easu rem en ts  (C h ap te r 7), an d  fo r gases they  m ay  be  cal­
cu lated  using  da ta  fro m  spectroscop ic  observations (C h ap te r 17).

Combining the First and Second ا د ا س
T he F irst an d  Second Laws o f  th erm o d y n am ics  are b o th  re levan t to  th e  beh av io u r o f 
m a tte r , an d  we can b rin g  th e  w hole force o f  th erm o d y n am ics  to  bear o n  a p ro b lem  by 
se tting  u p  a fo rm u la tio n  th a t com b ines them .

3.7 The fundamental equation
W e have seen th a t th e  First Law o f  th erm o d y n am ics  m ay  be w ritten  d ^  =  dq  +  dw. For 
a reversible change in  a closed system  o f  co n stan t co m position , an d  in  th e  absence o f

Comment 3.3
The N IST  WebBook is a good source of 
iinks to  oniine databases of 
therm ochem icai data.



Comment 3.4
Partia l derivatives w ere in troduced  in 
Comment 2.5 and  are reviewed in 
Appendix 2. The type o f  resuit in  eqn 
3.44 was first ob ta ined  in  Section 2.11, 
w here we trea ted  U  as a function  o f  T 
and  V.

Comment 3.5
To illustrate th e  criterion  set by  eqn 
3.46, le t’s test w hether d /=  2xydx + x  2dy 
is an exact differential. W e identify 
g  = 2xy and  h = x 2 and  form

Because these tw o coefficients are equal, 
d f  is exact.

any  ad d itio n a l (n o n -ex p an sio n ) w ork , we m ay  set dw rev =  - p d V  an d  (fro m  th e  defin i­
tio n  o f  en tropy ) dq rev =  TdS, w here  p  is th e  p ressu re  o f  th e  system  an d  T  its te m p e ra ­
tu re . T herefo re , fo r a reversible change in  a closed system ,

d U  =  TdS -  p d V  (3.43)

H ow ever, because d U  is an  exact d ifferential, its value is in d ep en d e n t o f  p a th . T h e re ­
fore, th e  sam e value o f  d U  is o b ta ined  w h eth er th e  change is b ro u g h t ab o u t irreversibly 
o r reversibly. C onsequen tly , eqn 3.43 applies to any change— reversible or irreversible—  
of a closed system that does no additional (non-expansion) work. W e shall call th is  c o m ­
b in a tio n  o f  th e  F irst and  Second Laws th e  fu n d a m e n ta l  eq u a tio n .

T he fact th a t the  fu n d am en ta l eq u a tio n  applies to  b o th  reversible an d  irreversib le 
changes m ay  be puzzling  at first sight. T he reason  is th a t on ly  in  th e  case o f  a reversible 
change m ay  TdS be iden tified  w ith  dq an d  - p d V  w ith  dw. W h en  th e  change is ir re ­
versible, TdS > dq (the  C lausius inequality ) and  - p d V  > dw. T he  su m  o f  d٣  an d  dq 
rem a in s  equal to  the  su m  o f  TdS an d  -p d V , p rov id ed  th e  co m p o s itio n  is constan t.

3.8 Properties of the interna) energy
E q uation  3.43 show s th a t th e  in te rn a l energy o f  a closed system  changes in  a sim ple w ay 
w h en  either S o r V is  changed  (d U dS an ح d  d U d ح V ). These sim ple p ro po rtiona lities  
suggest th a t U  sho u ld  be  regarded  as a fu n c tio n  o f  S an d  V . W e cou ld  regard  U  as a 
fu n c tio n  o f  o th er variables, such  as S and  p  o r T  and  V, because they  are all in terre lated; 
b u t th e  sim plic ity  o f  th e  fu n d am en ta l eq u a tio n  suggests th a t U (S ,V ) is the  best choice.

T he m athem atical consequence  o f  U  b e in g  a fu n c tio n  o f  S an d  V  is th a t we can 
express an  in fin itesim al change d U  in  te rm s o f  changes dS an d  d V  by

(3.44)
A d U  ١ A d U  ١

d S + d V
V dS 1V V d V Sر 

d U  =

T he tw o p artia l derivatives are th e  slopes o f  th e  p lo ts  o f  U against S an d  V , respectively. 
W h en  th is expression  is co m p ared  to  th e  thermodynamic re la tion , eqn  3.43, we see 
th a t, fo r system s o f  co n stan t com position ,

(3.45)
A d U  ١ A d U  ١

= T
dS V V dV ر 

T he first o f  these tw o eq u a tio n s is a p u re ly  th e rm o d y n am ic  d efin ition  o f  tem p era tu re  
(a  Z ero th -L aw  concep t) as th e  ra tio  o f  th e  changes in  the  in te rn a l energy  (a  First-Law  
concept) and  en tro p y  (a Second-Law  concept) o f  a constan t-vo lum e, closed, constan t- 
co m p o s itio n  system . W e are b eg in n in g  to  generate  re la tions be tw een  the  p ro p ertie s  o f 
a system  an d  to  d iscover th e  pow er o f  th erm o d y n am ics  for estab lish ing  unexpected  
relations.

(a) T h e  M axw e)) re la tio n s

A n in fin itesim al change in  a fu n c tio n  f(x ,y ) can  be  w ritten  d f  =  gdx  +  hdy w here g  and 
h are fu n c tio n s  o f  x  an d  y. T he m a th em atica l c rite rio n  fo r d f  be in g  an  exact d ifferen ­
tia l (in  the  sense th a t its in teg ra l is in d e p e n d e n t o f  p a th ) is th a t

Because the  fu n d am en ta l equa tion , eqn  3.43, is an  expression  fo r an  exact differential, 
th e  fu n c tio n s m u ltip ly ing  dS an d  d V  (nam ely  T  an d  - p )  m u s t pass th is test. T herefore , 
it  m u s t be  th e  case th a t



A d T  ١ dp

C dV  j dS

W e have genera ted  a re la tio n  betw een  qu an tities  th a t, a t first sight, w o u ld  n o t seem  to  
be related .

E q u a tio n  3.47 is an  exam ple o f  a M axw ell re la tio n . H ow ever, ap a rt fro m  being  
unexpected , it  does n o t look  particu la rly  in teresting . N evertheless, it does suggest th a t 
there  m ay  be o th e r sim ilar re la tions th a t are m o re  useful. Indeed , we can  use th e  fact 
th a t H , G, an d  A  are all s ta te  fu n c tio n s  to  derive th ree  m o re  M axwell re la tions. The 
a rg u m en t to  o b ta in  th e m  ru n s  in  th e  sam e w ay in  each case: because H , G, an d  A  are 
state fu nc tions, th e  expressions for dH , dG, an d  dA s a t is ^  re la tions like eqn  3.47. All 
fo u r re la tions are listed in  T able 3.5 an d  we p u t th e m  to  w o rk  la ter in  th e  chap ter.

(b) T h e  v a ria tio n  of in te rn a l e n e rg y  w ith  v o lu m e

T he q u a n tity  nT =  (d U /d V  )T, w h ich  rep resen ts  ho w  th e  in te rn a l energy  changes as the 
vo lum e o f  a system  is changed  iso therm ally , p layed a cen tra l ro le in  th e  m an ip u la tio n  
o f  th e  F irst Law, an d  in  Further information 2.2  we u sed  the  re la tion

(3.48)
dT

nT =  T

T his re la tio n  is called a th e rm o d y n a m ic  e q u a tio n  o f  s ta te  because it is an  expression 
for p ressu re  in  te rm s o f  a varie ty  o f  th e rm o d y n am ic  p ro p ertie s  o f  th e  system . W e are 
n o w  read y  to  derive it b y  using  a M axw ell re la tion .

Ju s tif ica tio n  3.4 The thermodynamic equation of state

W e obtain an expression for the coefficient nT by  dividing b o th  sides o f eqn 3.43 by 
dV, im posing the constrain t o f constant tem perature, w hich gives

B d U ' d U E A ^ S +
B U

C ،١٧ j T ذل’ V C d V / T C dV  j

Next, we in troduce the two relations in eqn 3.45 and the definition o f nT to  obtain

The th ird  M axwell relation in  Table 3.5 tu rns (dS/dV )T in to  (dp/dT )V, w hich com ­
pletes the p ro o f o f eqn 3.48.

The Maxwell relations

Exam ple 3.6 Deriving a thermodynamic relation

Show  th e rm o d y n am ica lly  th a t n T =  0 fo r a perfect gas, an d  co m p u te  its value fo r a 
van  der W aals gas.

M ethod  P rov ing  a resu lt ‘therm o d y n am ica lly ’ m ean s basing  it en tire ly  o n  general 
th e rm o d y n am ic  re la tions an d  eq u a tio n s o f  state, w ith o u t d raw ing  o n  m olecu la r 
a rg u m en ts  (such  as th e  existence o f  in te rm o lecu la r forces). W e k n o w  th a t fo r a 
perfect gas, p  =  nRT/V, so th is  re la tio n  sh o u ld  be u sed  in  eqn  3.48. Sim ilarly, the 
van  der W aals eq u a tio n  is given in  T able 1.7, an d  fo r th e  second  p a rt o f  th e  q u es­
tio n  it  sh o u ld  be  u sed  in  eqn  3.48.

A nswer For a perfect gas we w rite

T ab le  3.5

From U:

From H:

From A:

From G:



( dp ( d (n R T /V ) ١ nR

C d T j V C d T  F v “ V

T hen , eqn  3.48 becom es 

n R T

V
Kt =

van  der W aals gas isT he eq u a tio n  o f  state 

n R T  n 2

V  -  nb a V 2

Because a  an d  b are in d e p e n d e n t o f  tem p era tu re , 

dp  ١ nR

V  -  nbd T

T herefo re , fro m  eqn  3. 

nR T n R T  n2 n 2 
-------------------------- + a—  =  a ­
V  -  nb V  -  nb V 2 V 2

n>T=

T his resu lt fo r n T im plies th a t th e  in te rn a l energy  o f  a van  der W aals gas increases 
w h en  it expands iso therm ally  ( th a t is, (d U /d V ) T > 0), an d  th a t th e  increase is 
re la ted  to  th e  p a ram e te r a , w h ich  m odels th e  attrac tive  in te rac tio n s  betw een  the 
partic les. A  larger m o lar vo lum e, co rresp o n d in g  to  a greater average separa tion  
b e tw een  m olecules, im p lies w eaker m ean  in te rm o lecu la r a ttrac tio n s, so th e  to ta l 
energy  is greater.

th a t obeys th e  v iria l eq u a tio n  o f  state 
[n T =  R T  2(d B /d T  )V /V  m +  ■ ■ ■ ]

Self-test 3.11 C alculate n T for 
(T able 1.7).

3.9 Properties of the Gibbs energy
T he sam e arg u m en ts  th a t w e have u sed  fo r U  can  be  u sed  fo r th e  G ibbs energy  G  =  H
-  TS. T hey  lead  to  expressions show ing  h o w  G  varies w ith  p ressu re  an d  tem p e ra tu re  
th a t are im p o rta n t fo r d iscussing phase tran s itio n s  an d  chem ical reac tions.

(a) G e n e ra l c o n s id e ra t io n s

W h en  th e  system  und erg o es a change o f  state, G m ay  change because H , T, an d  S all 
change. As in  Justification 2.1, we w rite  fo r in fin itesim al changes in  each p ro p e rty

dG  =  d H  -  d(T S) =  d H  -  TdS -  SdT

Because H  =  U  +  pV, we k n o w  th a t

d H  =  d U  +  d (p V ) =  d U + p d V  +  Vdp

an d  therefo re

dG  =  d U + p d V  +  Vdp -  TdS -  SdT

For a closed system  d o in g  n o  n o n -ex p an s io n  w ork , w e can  replace d U  b y  the  fu n d a ­
m en ta l eq u a tio n  d U  =  TdS -  p d V  an d  o b ta in

dG  =  TdS -  p d V  +  p d V  +  Vdp -  TdS -  SdT



F our te rm s n o w  cancel o n  th e  righ t, an d  we conclude  th a t, fo r a closed system  in  the 
absence o f  n o n -ex p an s io n  w o rk  an d  at c o n stan t co m position ,

dG  =  Vdp -  S dT  (3.49)

T his expression, w h ich  show s th a t a change in  G is p ro p o r tio n a l to  a change in  p  or 
T , suggests th a t G  m ay  be best regarded  as a fu n c tio n  o f  p  an d  T . It confirm s th a t G 
is an  im p o rta n t q u a n tity  in  chem istry  because th e  p ressu re  an d  tem p e ra tu re  are u s u ­
ally th e  variables u n d e r  o u r co n tro l. In  o th e r w ords, G carries a ro u n d  th e  co m bined  
consequences o f  th e  F irst and  Second Laws in  a w ay th a t m akes it p a rticu la rly  suitable 
for chem ical app lica tions.

T he sam e a rg u m en t th a t led to  eqn  3.45, w hen  app lied  to  the  exact d ifferen tia l dG 
=  Vdp -  SdT, n o w  gives

These re la tions show  h ow  th e  G ibbs energy  varies w ith  te m p e ra tu re  an d  pressu re  
(Fig. 3.18). T he first im p lies that:

• Because S > 0 fo r all substances, G  always decreases w h en  the  tem p e ra tu re  is raised  
(at co n stan t p ressu re  an d  co m p o sitio n ).

• Because (dG /dT)p  b ecom es m o re  negative as S increases, G  decreases m ost 
sharp ly  w h en  th e  en tro p y  o f  th e  system  is large.

T herefore , th e  G ibbs energy  o f  th e  gaseous phase o f  a substance , w h ich  has a h igh  
m o lar en tropy , is m o re  sensitive to  te m p e ra tu re  th a n  its liqu id  and  solid  phases 
(Fig. 3.19). S im ilarly, th e  second  re la tio n  im plies that:

• Because V  > 0 fo r all substances, G always increases w h en  th e  p ressu re  o f  the  sys­
tem  is increased  (a t co n stan t te m p e ra tu re  an d  co m p o sitio n ).

Fig. 3.19 The variation of the Gibbs energy 
with the tem perature is determined by 
the entropy. Because the entropy of the 
gaseous phase o f a substance is greater than 
that o f the liquid phase, and the entropy of 
the solid phase is smallest, the Gibbs energy 
changes most steeply for the gas phase, 
followed by the liquid phase, and then 
the solid phase of the substance.

Fig. 3.18 The variation of the Gibbs energy 
of a system with (a) tem perature at 
constant pressure and (b ) pressure at 
constant temperature. The slope of the 
former is equal to the negative of the 
entropy of the system and that o f the latter 
is equal to  the volume.



Fig. 3.20 The variation of the Gibbs energy 
with the pressure is determined by the 
volume of the sample. Because the volume 
o f the gaseous phase of a substance is 
greater than that of the same am ount of 
liquid phase, and the entropy of the solid 
phase is smallest (for most substances), the 
Gibbs energy changes most steeply for the 
gas phase, followed by the liquid phase, and 
then the solid phase of the substance. 
Because the volumes of the solid and liquid 
phases of a substance are similar, their 
molar Gibbs energies vary by similar 
amounts as the pressure is changed.

• Because (d G /dp )T increases w ith  V, G is m o re  sensitive to  p ressu re  w h en  the 
vo lum e o f  th e  system  is large.

Because th e  m o la r vo lum e o f  th e  gaseous phase 
its condensed  phases, th e  m o lar G ibbs energy 
th a n  its liq u id  and  so lid  phases (Fig. 3.20).

substance  is g reater th a n  th a t o f 
gas is m o re  sensitive to  p ressu re

(b) T h e  v a ria tio n  of th e  G ib b s  e n e rg y  w ith  te m p e ra tu re

As w e rem ark ed  in  th e  in tro d u c tio n , because th e  eq u ilib riu m  co m p o s itio n  o f  a system  
d epends on  the  G ibbs energy, to  discuss th e  response  o f  th e  co m p o s itio n  to  te m p e ra ­
tu re  we need  to  k n o w  how  G  varies w ith  tem p era tu re .

T he first re la tio n  in  eqn  3.50, (dG/dT)p  =  -S ,  is o u r s ta rtin g  p o in t fo r th is  d iscus­
sion . A lthough  it expresses th e  v a ria tio n  o f  G in  te rm s o f  the  en tropy , we can  express 
it  in  te rm s o f  th e  en th a lp y  by  u sin g  th e  defin itio n  o f  G to  w rite  S =  ( H -  G )/T . T hen

(3.51)
; - H  

T

W e shall see la ter th a t th e  eq u ilib riu m  co n stan t o f  a reac tio n  is re la ted  to  G /T  ra th er 
an d  it is easy to  deduce fro m  the  last eq u a tio n  (see the  Justification ,؟th a n  to  G  itself

below ) th a t

(3.
H
T 2

T his expression  is called th e  G ib b s -H e lm h o ltz  e q u a tio n . It show s th a t if  we k now  the 
en th a lp y  o f  th e  system , th e n  we k n o w  h o w  G /T  varies w ith  tem p era tu re .

Comment 3.6
For th is  step, we use th e  ru le for 
d ifferentiating  a p ro d u c t o f functions 
(w hich is vaiid fo r partia i derivatives as 
weli as o rd inary  derivatives):

duv dv du 

dx dx dx

For instance, to  differentiate x 2eax, we 
w rite

d x2de“x
= x2̂  + e ^ —  

d x d x d x

= ax2eax + 2xeax

d (x2e

Jus tif ica tio n  3.5 The Gibbs-Helmholtz equation 

First, we note that

A d G D 1 A وG ١ d 1 1 A وG ١
d T T p= T ة T d T T  T dT p T

Then we use eqn 3.51 in the form

G H  

T ~  T

I t  follows that

A d G D 1 [  H  ١ H

C d r T T~~ ر "آ  T j  ~ T 2

w hich is eqn 3.52.

A ة  G D 1 [ H  ١
C d T T ر  ١ T 1

p ا ا-

T he G ib b s-H e lm h o ltz  eq u a tio n  is m o s t u sefu l w h en  it is app lied  to  changes, 
in c lu d in g  changes o f  physical sta te  and  chem ical reac tions at co n stan t pressu re . T hen , 
because AG =  Gf-  G؛ fo r th e  change o f  G ibbs energy  betw een  th e  final an d  in itia l states 
an d  because the  eq u a tio n  applies to  b o th  Gf an d  G؛, we can  w rite

9 In Section 7.2b we derive the result that the equilibrium constant for a reaction is related to its standard 
reaction Gibbs energy by ArG7 =ء/ - R ln K.



T his eq u a tio n  show s tha t, if  we k n o w  the  change in  en tha lpy  o f  a system  th a t is 
u n d erg o in g  som e k in d  o f  tra n sfo rm a tio n  (such  as v ap o riza tio n  or reac tion ), th e n  we 
k now  ho w  th e  co rre sp o n d in g  change in  G ibbs energy varies w ith  tem p e ra tu re . As we 
shall see, th is  is a crucial piece o f  in fo rm a tio n  in  chem istry .

(c) T h e  v a ria tio n  of th e  G ib b s  e n e rg y  w ith  p r e s s u re

T o find  th e  G ibbs energy at one p ressu re  in  te rm s o f  its value at an o th e r p ressure, the 
tem p e ra tu re  being  co n stan t, we set d T  =  0 in  eqn  3.49, w h ich  gives dG  =  Vdp, and  
in tegrate:

(3.54a)

(3.54b)

V  dpG (pf) =  G (pi) + 

For m o la r quan tities,

Gm(p f) =  Gm(p i) +

T his expression  is applicable to  any  phase o f  m atte r , b u t to  evaluate it we need  to  k now  
how  the  m o la r vo lum e, Vm, d epends o n  th e  p ressure.

T he m o la r vo lum e o f  a condensed  phase  changes on ly  slightly  as th e  p ressu re  
changes (Fig. 3.21), so we can tre a t Vm as a c o n stan t an d  take it ou ts ide  th e  integral:

(3.=  Gm(pi) +  (p f -  p i)Vm(p f) =  Gm(p i) +  Vm

Self-test 3.12  C alculate th e  change in  G ^  for ice at -1 0 °C , w ith  density  917 kg m  3, 
w h en  th e  p ressu re  is increased  fro m  1.0 b a r to  2.0 b ar. [+2.0 j  m o l-1]

U n d e r n o rm a l lab o ra to ry  co n d itio n s  (pf -  p i)Vm is very  sm all an d  m ay  be neglected. 
H ence, we m ay  usually  suppose  th a t th e  G ibbs energies o f  so lids an d  liqu id s are in d e ­
p en d en t o f  p ressu re. H ow ever, if  we are in te res ted  in  geophysical p rob lem s, th en  
because pressu res in  th e  E a rth ’s in te rio r are huge, th e ir  effect on  th e  G ibbs energy  can ­
n o t be  igno red . I f  th e  p ressu res are so great th a t there  are sub s tan tia l vo lum e changes 
over th e  range o f  in teg ra tio n , th e n  we m u s t use the  com plete  expression , eqn  3.54.

Illustration 3 Gibbs energies at high pressures هلإ.

Suppose th a t fo r a ce rta in  phase tran s itio n  o f  a so lid  Atr؛V  =  +1.0 cm 3 m o l-1 in d e ­
p en d en t o f  p ressu re . T hen , for an  increase in  p ressu re  to  3.0 M b ar (3.0 X 1011 Pa) 
fro m  1.0 b a r  (1.0 X 105 P a), the  G ibbs energy  o f  the  tran s itio n  changes fro m  
Atr؛G(1 b ar) to

A^؛G(3 M bar) =  AtrsG(1 bar) +  (1.0 X 10-ة m 3 m ol-1) X (3.0 X 1011 Pa -  1.0 X105 Pa)

=  Atr؛G(1 b a r) +  3.0 X 102 kJ m o l-1 

w here we have u sed  1 P a m 3 =  1 J.

Actual
volume

Volume
assumed
constant

Pressure, p

Fig. 3.21 The difference in Gibbs energy of a 
solid or liquid at two pressures is equal to 
the rectangular area shown. We have 
assumed that the variation of volume with 
pressure is negligible.

ذ
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Fig. 3.22 The difference in Gibbs energy for
a perfect gas at two pressures is equal to the T he m o la r vo lum es o f  gases are large, so th e  G ibbs energy o f  a gas depends
area shown below the perfect-gas isotherm. strong ly  o n  th e  p ressu re . F u rth e rm o re , because th e  vo lum e also varies m arked ly  w ith

the  p ressu re, we can n o t tre a t it as a c o n stan t in  th e  in teg ra l in  eqn  3.54b (Fig. 3.22).



we su b s titu te  Vm =  R T /p  in to  th e  in teg ra l, tre a t R T  as a constan t,

Fig. 3.23 The molar Gibbs energy potential 
o f a perfect gas is proportional to  ln p, and 
the standard state is reached at p*. Note 
that, as p ب ه  , the molar Gibbs energy 
becomes negatively infinite.

م ,11  Exploration Show how the first 
derivative o f G, (dG/dp)T, varies 

with pressure, and plot the resulting 
expression over a pressure range. W hat is 
the physical significance of (dG/dp)T?

For a perfect 
an d  find

R T  ■  =  Gm(pi) +  R T  ln + (؛a( p f) =  Gm( p (3.5

T his expression show s th a t w hen  th e  p ressure is increased tenfo ld  at ro o m  tem peratu re , 
th e  m o la r G ibbs energy  increases by  R T  ln ء 6 10   kJ m o l-1. It also follow s fro m  th is 
eq u a tio n  th a t, if  we set p = ؛  p٠ ( the  s tan d a rd  p ressu re  o f  1 b a r) , th e n  th e  m o la r G ibbs 
energy  o f  a perfect gas at a p ressu re  p  (set p f = p )  is re la ted  to  its s tan d a rd  value by

(3.57)°٠( p )  =  G m +  R T  ln -

Self-test 3 .13  C alculate th e  change in  th e  m o la r G ibbs energy  o f  w ater v ap o u r 
(trea ted  as a perfect gas) w h en  th e  p ressu re  is increased  iso therm ally  fro m  1.0 bar 
to  2.0 b a r a t 298 K. N o te  th a t, w hereas th e  change in  m o lar G ibbs energy  fo r a co n ­
densed  phase  (Self-test 3.12) is a few  jou les p e r m ole, th e  answ er y o u  sho u ld  get for 
a gas is o f  the  o rd e r o f  k ilo joules p e r m ole. [+1.7 kJ m o l-1]

T he logarithm ic  d ependence  o f  th e  m o la r G ibbs energy  o n  the  p ressu re  p red ic ted  
b y  eqn  3.57 is illu s tra ted  in  Fig. 3.23. T h is very  im p o rta n t expression , th e  conse­
quences o f  w h ich  w e u n fo ld  in  th e  fo llow ing chap te rs, applies to  perfect gases (w hich 
is usually  a good  en o u g h  ap p ro x im a tio n ). Further information 3.2  describes h o w  to 
take in to  acco u n t gas im perfec tions.

Checklist of key ideas

I~1 9. T routon’s س  states that many norm al liquids have
approximately the same standard entropy of vaporization 
(about 85 j K-  mol- .(؛

I~110. The variation of entropy with tem perature is given by
م

5(Tf) = S (^ ) + (Cp/T)dT.
j t؛

11. The entropy of a substance is measured from the area under a 
graph o f Cp /T  against T, using the Debye e^rapolation  at low 
temperatures, Cp = aT 3 as T  0 .ب 

I~~l 12. The Nernst heat theorem  states that the entropy change 
accompanying any physical or chemical transformation 
approaches zero as the tem perature approaches zero: AS 0 ب 
as T  provided all the substances involved are perfectly ب 0 
ordered.

I~113. Third Law of thermodynamics: The entropy of all perfect 
crystalline substances is zero at T  = 0.

I~114. The standard reaction entropy is calculated from 
ArS ٠ = ^ProductsVSm - ^ReactantsVSm.

15. The standard molar entropies of ions in solution are reported 
on a scale in which S ̂ (H+, aq) = 0 at all temperatures.

I~1 1. Kelvin statement o f the Second Law of thermodynamics: No 
process is possible in which the sole result is the absorption 
of heat from a reservoir and its complete conversion into 
work.

I~1 2. The Second Law in terms of entropy: The entropy o f an 
isolated system increases in the course of a spontaneous 
change: AStot > 0.

I~1 3. The thermodynam ic definition of entropy is dS = dqrev/T.
The statistical definition of entropy is given by the Boltzmann 
formula, S = k ln W .

I~1 4. A Carnot cycle is a cycle composed of a sequence of 
isothermal and adiabatic reversible expansions and 
compressions.

I~1 5. The efficiency of a heat engine is £ = |w ا/طو . The Carnot 
efficiency is £1 = س -  Tc/Th.

I~1 6. The Kelvin scale is a thermodynamic tem perature scale in 
which the triple point of water defines the point 273.16 K.

l~~l 7. The Clausius inequality is dS > dq/T.

I~1 8. The norm al transition temperature, Ttrs, is the tem perature at 
which two phases are in equilibrium at 1 atm. The entropy of 
transition at the transition temperature, AtrsS = AtrsH/Ttr؛.



I~123. The standard Gibbs energies o f formation of ions are reported 
on a scale in which AfG*(H+, aq) = ه  at all temperatures.

I~124. The fundamental equation is dU ودآ =   -  pdV.

I~125. The Maxwell relations are listed in Table 3.5.

I~126. A thermodynam ic equation of state is an expression 
for pressure in terms of thermodynam ic quantities,
%T = T(dp/dT )V -  p.

I~127. The Gibbs energy is best described as a function of pressure 
and temperature, dG = Vdp -  SdT. The variation of Gibbs 
energy with pressure and tem perature are, respectively, 
(dG/dp)T = V and (dG/dT )p = -S.

I~128. The tem perature dependence of the Gibbs energy is given by 
the Gibbs-Helmholtz equation, (d(G/T )/dT  )p = -H /T 2.

٥  29. For a condensed phase, the Gibbs energy varies with pressure 
as G(p؛) = G(pi) + V^Ap. For a perfect gas, G(p؛) = G(pi) + 
nRT ln( pf/pi).

I~116. The Helmholtz energy is A = U -  TS. The Gibbs energy is 
G = H  -  TS.

٥  17. The criteria of spontaneity may be written as: (a) d5UV> 0 
and dUSV < 0, or (b) dAT^ < 0 and dGTp < 0.

18. The criterion of equilibrium at constant tem perature and 
volume, dAT^ = 0. The criterion of equilibrium at constant 
tem perature and pressure, dGTp = 0.

19. The maximum work and the Helmholtz energy are related by 
wmax = AA. The maximum additional (non-expansion) work 
and the Gibbs energy are related by wadd max = AG.

I~~l 20. The standard Gibbs energy of reaction is given by
ArG٠ = ArH ^ -  TA ذ ةز٠ = س -^ReactantsVG^.

21. The standard Gibbs energy of formation (AfG^) is the 
standard reaction Gibbs energy for the formation of a 
com pound from its elements in their reference states.

I~122. The standard Gibbs energy of reaction may be e^ re ssed  in 
terms ofA fG ٠, ArG ٠ = ̂ ProductsVAfG ٠- ^ReactantsVAfG ٠.
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Further information

called the ‘dielectric constant’) o f a substance is dehned as £r = £/£0. 
Ions do not interact as strongly in a solvent of high relative 
permittivity (such as water, with £r = 80 at 293 K) as they do in a 
solvent of lower relative permittivity (such as ethanol, with £r = 25 at 
293 K). See Chapter 18 for more details. The potential energy of a 
charge و  in the presence of a charge 2و can be expressed in terms of 
the Coulomb potential, 0:

We model an ion as a sphere o f radius ri immersed in a medium 
of permittivity £. It turns out that, when the charge of the sphere is 
q, the electric potential, 0, at its surface is the same as the potential 
due to a point charge at its centre, so we can use the last eg ression  
and write

F urther inform ation 3.1 The Born equation

The electrical concepts required in this derivation are reviewed in 
Appendix 3. The strategy of the calculation is to  identify the Gibbs 
energy of solvation with the work of transferring an ion from a 
vacuum into the solvent. That work is calculated by taking the 
difference of the work of charging an ion when it is in the solution 
and the work of charging the same ion when it is in a vacuum.

The Coulomb interaction between two charges و  and 2و separated 
by a distance r is described by the Coulombicpotential energy:

4ll£r

where £is the medium ’s permittivity. The permittivity of vacuum is 
The relative permittivity (formerly ؛.-C2 m 2-؛ j8.854 = 0£ 10-؛ X

Further reading ؛n Chapter 2 for additional articles, te^s, and sources of thermochemical data.10
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Fig. 3.24 The molar Gibbs energy of a ص gas. As p ب ه , the molar 
Gibbs energy coincides with the value for a perfect gas (shown by 
the black line). W hen attractive forces are dom inant (at intermediate 
pressures), the molar Gibbs energy is less than that of a perfect 
gas and the molecules have a lower ‘escaping tendency’. At high 
pressures, when repulsive forces are dominant, the molar Gibbs 
energy of a real gas is greater than that of a perfect gas. Then the 
‘escaping tendency’ is increased.

RT = ر ب   
p-

The difference between the two equations is

p'
ect؛ ,Vper

'Jp

p (  f  p ' A fif' j
(V *-  Vperf

p
,٢٠ ™)dp = RT l l n - - -  l n ^ RT؛ —  l n =٧١ د  V f ' p'

= RT  ln f  X —

p Ip

into

-  Vperfect, m)dp

Wlren p' ب ه , the gas behaves perfectly and f  becomes equal to the 
pressure, p'. Therefore, f  'Ip' as p ' ^ 0 .  If we take this limit, 
which means setting f  Ip' = 1  on the left and p' = ه  on the right, the 
last equation becomes

Vm -  Vperfect, m)dp)ل = — ؛؛ 1ب

p
; (Vm -  Vperfect,m)dp

ر0

p RT 

Then, with ٠ = flp

ln ٠ =
1

RT

For a perfect gas, Vperfect m = RTIp. For a real gas, V* = RT^Ip, where 
Z is the compression factor of the gas (Section 1.3). W ith these two 
substitutions, we obtain

٠ =  ■

q . Therefore,phere is 
to ze  is

4^أء-إ

The work of bringing up a charge dq to the 
the total work of charging the sphere from ه

ي 1 z

8K£r,

f zie 1 ٢
.0 موه 4  n£ri . ,

This electrical work of charging, when multiplied by Avogadro’s 
constant, is the molar Gibbs energy for charging the ions.

The work of charging an ion in a vacuum is obtained by setting 
£ = £ 0, the vacuum permittivity. The corresponding value for 
charging the ion in a medium is obtained by setting £ = ££ 0, where £إ 
is the relative permittivity of the medium. It follows that the change 
in molar Gibbs energy that accompanies the transfer o f ions from a 
vacuum to a solvent is the difference of these two quantities:

zie2N l'2N . z,eN ^ z ,eN ^  z2e2N،

8n£ri 

which is eqn 3.42.

F u rther inform ation  3.2 Real g a se s : the fugacity

At various stages in the development of physical chemistry it is 
necessary to  switch from a consideration of idealized systems to  real 
systems. In many cases it is desirable to  preserve the form of the 
expressions that have been derived for an idealized system. Then 
deviations from the idealized behaviour can be expressed most 
simply. For instance, the pressure-dependence of the m olar Gibbs 
energy of a real gas might resemble that shown in Fig. 3.24. To adapt 
eqn 3.57 to  this case, we replace the true pressure, p, by an effective 
pressure, called the fugacity ," f, and write

[3.5„ = G 7  + RT  ln-

The fugacity, a function of the pressure and temperature, is defined 
so that this relation is exactly true. Although thermodynamic 
expressions in terms of fugacities derived from this expression are 
exact, they are useful only if we know how to interpret fugacities in 
terms of actual pressures. To develop this relation we write the 
fugacity as

where ٠ is the dimensionless fugacity coefficient, which in general 
depends on the temperature, the pressure, and the identity of the gas 

Equation 3.54b is true for all gases whether real or perfect. 
Expressing it in terms of the fugacity by using eqn 3.58 turns it into

p ^ d p  = Gm( p) -  Gm( p ') = { Gm + RT  ln f أ   -  { Gm + RT  ln f-
J p- ا p j  I p

= RT  ln f

In this eg ression , f  is the fugacity when the pressure is p  and f ' is the 
fugacity when the pressure is p '. If the gas were perfect, we would 
write

11 The name ‘̂ gaci^’ comes from the Latin for ‘fleetness’ in the sense of ‘escaping tendency’; ^gacity has the same dimensions as pressure.
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Fig. 3.2ء The fugacity coefficient of a van 
der Waals gas plotted using the reduced 
variables of the gas. The curves are labelled 
with the reduced tem perature Tr = T /Tc.

Exploration Evaluate the fugacityظ coefficient as a function of the 
reduced volume of a van der Waals gas and 
plot the outcome for a selection of reduced 
temperatures over the range 8.ه  < Vr < 3.

Reduced pressure, p/pc

S y n o p tic  ta b le  3.
nitrogen at 273 K

6* The fugacity of

p/atm //atm

1 0.999 55
10 9.9560

100 97.03
1000 1839

* More values are given in the Data section.

Reduced pressure, p/pc

= ٠ in(3؛.
<<

pressure in terms of the reduced variables (Section 1.5). Because 
critical constants are available in Table 1.6, the graphs can be used for 
quick estimates o f the fugacities o f a wide range of gases. Table 3.6 
gives some explicit values for nitrogen.

Provided we know how z  varies with pressure up to  the pressure of 
interest, this expression enable us to  determine the fugacity 
coefficient and hence, through eqn 3.59, to relate the fugacity to the 
pressure of the gas.

We see from  Fig. 1.14 that for most gases z  < 1 up to moderate 
pressures, bu t that z  > 1 at higher pressures. If z  < 1 throughout the 
range of integration, then the integrand in eqn 3.60 is negative and 
This value implies th .م< 1 a tf  < p  (the molecules tend to  stick 
together) and that the molar Gibbs energy of the gas is less than that 
o f a perfect gas. At higher pressures, the range over which z  > 1 may 
dominate the range over which z  < 1. The integral is then positive,
and ,م> 1 f  > p  (the repulsive interactions are dom inant and tend to 
drive the particles apart). Now the molar Gibbs energy of the gas is 
greater than that of the perfect gas at the same pressure.

Figure 3.25, which has been calculated using the full van der Waals 
equation of state, shows how the fugacity coefficient depends on the

Discussion questions

and dGTp < 0. Discuss the origin, significance, and applicabili^ ٠؛  each 
criterion.

3.4 The following expressions have been used to establish criteria for 
reversibility: dAT,V = 0 and dGT,p = 0. Discuss the origin, significance, and 
applicability of each criterion.

3.5 Discuss the physical interpretation of any one Maxwell relation.

3.6 Account for the dependence of %T of a van der Waals gas in terms of the 
significance of the parameters a and b.

3.7 Suggest a physical interpretation of the dependence of the Gibbs ener^ 
on the pressure.

3.8 Suggest a physical interpretation of the dependence of the Gibbs ener^ 
on the temperature.

3.1 The evolution of life requires the organization of a very large number of 
molecules into biological cells. Does the formation of living organisms violate 
the Second Law of thermodynamics? State your conclusion clearly and present 
detailed arguments to support it.

3.2 You received an unsolicited proposal from a self-declared inventor who is 
seeking investors for the development of his latest idea: a device that uses heat 
extracted from the ground by a heat pump to boil water into steam that is 
used to heat a home and to power a steam engine that drives the heat pump. 
This procedure is potentially very lucrative because, after an initial extraction 
of ener^  from the ground, no fossil fuels would be required to keep the device 
running indefinitely. Would you invest in this idea? State your conclusion 
clearly and present detailed arguments to support it.

3.3 The following expressions have been used to establish criteria 
for spontaneous change: AStot > 0, ds^ V> 0 and dU^ V 0 ك, V 0 ك,



Exercises

Assume that all gases are perfect and that data refer to 298.15 K unless 
otherwise stated.

3.8(a) Calculate the standard reaction entropy at 298 K of

(a) 2 CH3CHO(g) + O2(g) 2 ج  CH3COOH(l)
(b) 2 AgCl(s) + Br2(l) 2 ي AgBr(s) + Cl2(g)
(c) Hg(l) + Cl2(g) ي HgCl2(s)

3.8(b) Calculate the standard reaction entropy at 298 K of

(a) Zn(s) + Cu2+(aq) ج  Zn2+(aq) + Cu(s)

(b) C12H22O11(s) + 12 O2(g) 12 ج  CO2(g) + 11 H2O(l)

3.9(a) Combine the reaction entropies calculated in Exercise 3.8a with the 
reaction enthalpies, and calculate the standard reaction Gibbs energies at 
298 K.

3.9(b) Combine the reaction entropies calculated in Exercise 3.8b with the 
reaction enthalpies, and calculate the standard reaction Gibbs energies at 
298 K.

3.10(a) Use standard Gibbs energies of formation to calculate the standard 
reaction Gibbs energies at 298 K of the reactions in Exercise 3.8a.

3.10(b) Use standard Gibbs energies of formation to calculate the standard 
reaction Gibbs energies at 298 K of the reactions in Exercise 3.8b.

3.11(a) Calculate the standard Gibbs ener^  of the reaction 4 HCl(g) + O2(g)
ج 2  Cl2(g) + 2 H2O(l) at 298 K, from the standard entropies and enthalpies of 
formation given in the Data section.

3.11(b) Calculate the standard Gibbs ener^  of the reaction CO(g) + 
CH3OH(l) ج  CH3COOH(l) at 298 K, from the standard entropies and 
enthalpies of formation given in the Data section.

3.12(a) The standard enthalpy of combustion of solid phenol (C6H5OH) is 
-3054 kJ mol-1 at 298 K and its standard molar entropy is 144.0 J K-1 mol-1. 
Calculate the standard Gibbs energy of formation of phenol at 298 K.

3.12(b) The standard enthalpy of combustion of solid urea (CO(NH2)2) is 
-632 kJ mol-1 at 298 K and its standard molar entropy is 104.60 j K-1 mol-1. 
Calculate the standard Gibbs energy of formation of urea at 298 K.

3.13(a) Calculate the change in the entropies of the system and the 
surroundings, and the total change in entropy, when a sample of nitrogen gas 
of mass 14 g at 298 K and 1.00 bar doubles its volume in (a) an isothermal 
reversible expansion, (b) an isothermal irreversible expansion against pex = 0, 
and (c) an adiabatic reversible expansion.

3.13(b) Calculate the change in the entropies of the system and the 
surroundings, and the total change in entropy, when the volume of a sample 
of argon gas of mass 21 g at 298 K and 1.50 bar increases from 1.20 dm3 to 
4.60 dm3 in (a) an isothermal reversible expansion, (b) an isothermal 
irreversible expansion against pex = 0, and (c) an adiabatic reversible 
expansion.

3.14(a) Calculate the maximum non-expansion work per mole that may be 
obtained from a fuel cell in which the chemical reaction is the combustion of 
methane at 298 K.

3.14(b) Calculate the maximum non-expansion work per mole that may be 
obtained from a fuel cell in which the chemical reaction is the combustion of 
propane at 298 K.

3.15(a) (a) Calculate the Carnot efficiency of a primitive steam engine 
operating on steam at 100°C and discharging at 60°C. (b) Repeat the 
calculation for a modern steam turbine that operates with steam at 300°C 
and discharges at 80°C.

3.1(a) Calculate the change in entropy when 25 kJ of energy is transferred 
reversibly and isothermally as heat to a large block of iron at (a) 0°C,
(b) 100°C.

3.1(b) Calculate the change in entropy when 50 kJ of ener^  is transferred 
reversibly and isothermally as heat to a large block of copper at (a) 0°C,
(b) 70°C.

3.2(a) Calculate the molar entropy of a constant-volume sample of neon at 
500 K given that it is 146.22 j K-1 mol-1 at 298 K.

3.2(b) Calculate the molar entropy of a constant-volume sample of argon at 
250 K given that it is 154.84 j K-1 mol-1 at 298 K.

3.3(a) Calculate AS (for the system) when the state of 3.00 mol of perfect gas
atoms, for which Cpm = -R, is changed from 25°C and 1.00 atm to 125°C and
5.00 atm. How do you rationalize the sign of AS?

3.3(b) Calculate AS (for the system) when the state of 2.00 mol diatomic
perfect gas molecules, for which Cp̂ m = - R, is changed from 25°C and 
1.50 atm to 135°C and 7.00 atm. How do you rationalize the sign of AS?

3.4(a) A sample consisting of 3.00 mol of diatomic perfect gas molecules at 
200 K is compressed reversibly and adiabatically until its temperature reaches 
250 K. Given that Cvm = 27.5 j K-1 mol-1, calculate q, w, AU, AH, and AS.

3.4(b) A sample consisting of 2.00 mol of diatomic perfect gas molecules at 
250 K is compressed reversibly and adiabatically until its temperature reaches 
300 K. Given that Cvm = 27.5 j K“1 m o l1, calculate q, w, AU, AH, and AS.

3.5(a) Calculate AH and AŜ ot when two copper blocks, each of mass 10.0 kg, 
one at 100°C and the other at 0°C, are placed in contact in an isolated 
container. The specific heat capaci^ of copper is 0.385 j K-1 g-1 and may be 
assumed constant over the temperature range involved.

3.5(b) Calculate AH and AŜ ot when two iron blocks, each of mass 1.00 kg, one 
at 200°C and the other at 25°C, are placed in contact in an isolated container. 
The specific heat capacity of iron is 0.449 j K-1 g-1 and may be assumed 
constant over the temperature range involved.

3.6(a) Consider a system consisting of 2.0 mol CO2(g), initially at 25°C and
10 atm and confined to a cylinder of cross-section 10.0 cm2. It is allowed to 
expand adiabatically against an external pressure of 1.0 atm until the piston 
has moved outwards through 20 cm. Assume that carbon dioxide may be 
considered a perfect gas with Cvm = 28.8 j K-1 mol-1 and calculate (a) q,
(b) w, (c) AU, (d) AT, (e) AS.

3.6(b) Consider a system consisting of 1.5 mol CO2(g), initially at 15°C and
9.0 atm and confined to a cylinder of cross-section 100.0 cm2. The sample is 
allowed to expand adiabatically against an external pressure of 1.5 atm until 
the piston has moved outwards through 15 cm. Assume that carbon dioxide 
may be considered a perfect gas with Cvm = 28.8 j K-1 mol-1, and calculate
(a) q, (b) w, (c) AU, (d) AT, (e) AS.

3.7(a) The enthalpy of vaporization of chloroform (CHCJ) is 29.4 kJ mol-1 at 
its normal boiling point of 334.88 K. Calculate (a) the entropy of vaporization 
of chloroform at this temperature and (b) the entropy change of the 
surroundings.

3.7(b) The enthalpy of vaporization of methanol is 35.27 kJ mol-1 at its 
normal boiling point of 64.1°C. Calculate (a) the entropy of vaporization 
of methanol at this temperature and (b) the entropy change of the 
surroundings.



3.19(a) Calculate the change in chemical potential of a perfect gas when its 
pressure is increased isothermally from 1.8 atm to 29.5 atm at 40°C.

3.19(b) Calculate the change in chemical potential of a perfect gas when its 
pressure is increased isothermally from 92.0 kPa to 252.0 kPa at 50°C.

3.20(a) The fugaci^ coefficient of a certain gas at 200 K and 50 bar is 0.72. 
Calculate the difference of its molar Gibbs ener^  from that of a perfect gas in
the same state.

3.20(b) The fugaci^ coefficient of a certain gas at 290 K and 2.1 MPa is 0.68. 
Calculate the difference of its molar Gibbs energy from that of a perfect gas in 
the same state.

3.21(a) Estimate the change in the Gibbs ener^  of 1.0 dm3 of benzene when 
the pressure acting on it is increased from 1.0 atm to 100 atm.

3.21(b) Estimate the change in the Gibbs ener^  of 1.0 dm3 of water when the 
pressure acting on it is increased ،rom 100 kPa to 300 kPa.

3.22(a) Calculate the change in the molar Gibbs energy of hydrogen gas 
when its pressure is increased isothermally from 1.0 atm to 100.0 atm at
298 K.

3.22(b) Calculate the change in the molar Gibbs energy of oxygen when its 
pressure is increased isothermally from 50.0 kPa to 100.0 kPa at 500 K.

3.15(b) A certain heat engine operates be^een 1000 K and 500 K. (a) What is 
the maximum efficiency of the engine? (b) Calculate the maximum work that 
can be done by for each 1.0 kJ of heat supplied by the hot source. (c) How 
much heat is discharged into the cold sink in a reversible process for each
1.0 kJ supplied by the hot source?

3.16(a) Suppose that 3.0 mmol م(ة ب ) occupies 36 cm3 at 300 K and expands 
to 60 cm3. Calculate AG for the process.

3.16(b) Suppose that 2.5 mmol Ar(g) occupies 72 dm3 at 298 K and expands 
to 100 dm3. Calculate AG for the process.

3.17(a) The change in the Gibbs ener^  of a certain constant-pressure process 
was found to fit the expression AG/J = —85.40 + 36.5(T/K). Calculate the value
ofAS for the process.

3.17(b) The change in the Gibbs ener^  of a certain constant-pressure process 
was found to fit the expression AG/J = -73.1 + 42.8(T/K). Calculate the value
ofAS for the process.

3.18(a) Calculate the change in Gibbs ener^  of 35 g of ethanol (mass densi^ 
0.789 g cm-3) when the pressure is increased isothermally ؛rom 1 atm to 
3000 atm.

3.18(b) Calculate the change in Gibbs energy of 25 g of methanol (mass 
density 0.791 g cm-3) when the pressure is increased isothermally from 
100 kPa to 100 MPa.

Problems*

= 2.00 dm3. Energy is supplied as heat to Section A and the piston moves to 
the right reversibly until the final volume of Section B is 1.00 dm3. Calculate
(a) ASa and ASg, (b) AAa س  AAg, (c) AGa and AGg, (d) AS of the total 
system and its surroundings. If numerical values cannot be obtained, indicate 
whether the values should be positive, negative, or zero or are indeterminate 
from the information given. (Assume ^Vm = 20 j K- 1 mol-1.)

3.5 A Carnot cycle uses 1.00 mol of a monatomic perfect gas as the working 
substance from an initial state of 10.0 atm and 600 K. It expands isothermally 
to a pressure of 1.00 atm (Step 1), and then adiabatically to a temperature of 
300 K (Step 2). This expansion is followed by an isothermal compression 
(Step 3), and then an adiabatic compression (Step 4) back to the initial state. 
Determine the values of q, w, A£/, AH, AS, AŜ ot, and AG for each stage of the 
cycle and for the cycle as a whole. Express your answer as a table of values.

3.6 1.00 mol of perfect gas molecules at 27°C is expanded isothermally from 
an initial pressure of 3.00 atm to a final pressure of 1.00 atm in two ways:
(a) reversibly, and (b) against a constant external pressure of 1.00 atm. 
Determine the values of q, w, AU, AH, AS, ASsur, AStot for each path.

3.7 The standard molar entropy of NH3(g) is 192.45 j K- 1 mol-1 at 298 K, and 
its heat capacity is given by eqn 2.25 with the coefficients given in Table 2.2. 
Calculate the standard molar entropy at (a) 100°C and (b) 500°C.

3.8 A block of copper of mass 500 g and initially at 293 K is in thermal contact 
with an electric heater of resistance 1.00 ص and negligible mass. A current of
1.00 A is passed for 15.0 s. Calculate the change in entropy of the copper, 
taking Cpm = 24.4 j K-1 mol-1. The experiment is then repeated with the 
copper immersed in a stream of water that maintains its temperature at 293 K. 
Calculate the change in entropy of the copper and the water in this case.

3.9 Find an expression for the change in entropy when two blocks of the same 
substance and of equal mass, one at the temperature Thand the other at Tc, are 
brought into thermal contact and allowed to reach equilibrium. Evaluate the

Assume that all gases are perfect and that data refer to 298 K unless otherwise 
stated.

N um erical p ro b lem s

3.1  Calculate the difference in molar entropy (a) between liquid water and 
ice at - 5°C, (b) between liquid water and its vapour at 95°C and 1.00 atm.
The differences in heat capacities on melting and on vaporization are
37.3 j K- 1 mol-1 and -41.9 j K-1 mol-1, respectively. Distinguish be^een 
the entropy changes of the sample, the surroundings, and the total system, 
and discuss the spontaneity of the transitions at the two temperatures.

3.2 The heat capacity of chloroform (trichloromethane, CHCJ) in the range 
240 K to 330 K is given by Cpm/(J K- 1 mol-1) = 91.47 + 7.5 X 10-  (T/K). In a 
particular experiment, 1.00 mol CHCl3 is heated from 273 K to 300 K. 
Calculate the change in molar entropy of the sample.

3.3 A block of copper of mass 2.00 kg (Cpm = 24.44 j K- 1 m ol'1) and 
temperature 0°C is introduced into an insulated container in which there is
1.00 mol م0ي ب ) at 100°C and 1.00 atm. (a) Assuming all the steam is 
condensed to water, what will be the final temperature of the system, the heat 
transferred from water to copper, and the entropy change of the water, 
copper, and the total system? (b) In fact, some water vapour is present at 
equilibrium. From the vapour pressure of water at the temperature calculated 
in (a), and assuming that the heat capacities of both gaseous and liquid water 
are constant and given by their values at that temperature, obtain an improved 
value of the final temperature, the heat transferred, and the various entropies. 
(Hint. You will need to make plausible approximations.)

3.4 Consider a perfect gas contained in a cylinder and separated by a 
frictionless adiabatic piston into two sections A and B. All changes in B is 
isothermal; that is, a thermostat surrounds B to keep its temperature constant. 
There is 2.00 mol of the gas in each section. Initially, Ta = Tg = 300 K, Va = Vg

* Problems denoted with the symbol ي were supplied by Charles Trapp, Carmen Giunta, and Marshall Cady.



3.17 Estimate the standard reaction Gibbs ener^  of ة(بم) + 3 ة(بم) ج  
2 NH3(g) at (a) 500 K, (b) 1000 K from their values at 298 K.

3.18 At 200 K, the compression factor of o^gen varies with pressure as 
shown below. Evaluate the fugacity of oxygen at this temperature and 
100 atm.

70.00 100.0 

0.7764 0.6871

p /atm  1.0000 4.00000 7.00000 10.0000 40.00 

Z  0.9971 0.98796 0.97880 0.96956 0.873

on a temperature-entropy diagram and show 
is equal to the work done.

a certain gas is given by Gm = RT ln p + A +
, and D are constants. Obtain the equation of

= V -T ا 

(Table 1.7). Justify physically the form o

change for two blocks of copper, each of mass 500 g, with Cp,m = 24.4 J K-1 
mol-1, taking Th = 500 K and Tc = 250 K.

 A gaseous sample consisting of 1.00 mol molecules is described by the م3.1
equation of state pV^ = RT(1 + Bp). Initially at 373 K, it undergoes Joule- 
Thomson expansion from 100 atm to 1.00 atm. Given that Cp̂ m = —R, لم = 
0.21 K atm-1, B = —0.525(K/T) atm-1, and that these are constant over the 
temperature range involved, calculate AT and AS for the gas.

3.11 The molar heat capacity of lead varies with temperature as follows:

T heore tica l p ro b lem s

3.19 Represent the Carnot cy 
that the area enclosed by the

50

21.4

30

16.5

250

ه3.2  Prove that two reversible adiabatic paths can never cross. Assume that 
the energy of the system under consideration is a function of temperature 
only. (Hint. Suppose that two such paths can intersect, and complete a cycle 
with the two paths plus one isothermal path. Consider the changes 
accompanying each stage of the cycle and show that they conflict with the 
Kelvin statement of the Second Law.)

3.21 Prove that the perfect gas temperature scale and the thermodynamic 
temperature scale based on the Second Law of thermodynamics differ ^om 
each other by at most a constant numerical factor.

10 15 20 25

m ol-1) 2.8 7.0 10.8 14.1

70 100 150 200

m ol-1) 23.3 24.5 25.3 25.8

T/K

T/K

3.22 The molar Gibbs energ 
Bp + -  Cp2 + -  Dp3, where A,. 
state of the gas.

Calculate the standard Third-Law entropy of lead at (a) 0°C and (b) 25°C.

3.12 From standard enthalpies of formation, standard entropies, and
standard heat capacities available from tables in the Data section, calculate the 
standard enthalpies and entropies at 298 K and 398 K for the reaction CO2(g) 
+ H^(g) ج  CO(g) + م0(ة ب ). Assume that the heat capacities are constant over 
the temperature range involved.

3.13 The heat capacity of anhydrous potassium hexacyanoferrate(II) varies 
with temperature as follows:

T /K  c  /( J  K - 1 m ol-1) T /K  c  /( J  K  - 1 m ol-1)

3.23 Evaluate (dS/dV) t for (a) a van der Waals gas, (b) a Dieterici gas 
(Table 1.7). For an isothermal expansion, for which kind of gas
(and a perfect gas) will AS be greatest? Explain your conclusion.

3.24 Show that, for a perfect gas, (dU/dS)V = T and (dU/dV) s  = -p.

3.25 Two of the four Maxwell relations were derived in the text, but two were 
not. Complete their derivation by showing that (dS/dV)T = (dp/dT)V and 
(dT/dp)S = (dV/dS)p.

3.26 Use the M axell relations to express the derivatives (a) (dS/dV)Tand 
(dV/dS)p and (b) (dp/dS)V and (dV/dS)p in terms of the heat capacities, the 
expansion coefficient a, and the isothermal compressibili^, Kt

3.27 Use the Maxwell relations to show that the entropy of a perfect gas 
depends on the volume as S ح R ln V.

3.28 Derive the thermodynamic equation of state

T /K Cp,m/(J K - 1 m ol-1) T /K Cp,m/(J ة

10 2.09 100 179.6

20 14.43 110 192.8

30 36.44 150 237.6

40 62.55 160 247.3

50 87.03 170 256.5

60 111.0 180 265.1

70 131.4 190 273.0

80

90

149.4

165.3

200 280.3

Calculate the molar enthalpy relative to its value at T = 0 and the Third-Law 
entropy at each of these temperatures.

3.14 The compound 1,3,5-trichloro-2,4,6-trifluorobenzene is an intermediate 
in the conversion of hexachlorobenzene to hexafluorobenzene, and its 
thermodynamic properties have been examined by measuring its heat capacity 
over a wide temperature range (R.L. Andon and J.F. Martin, J. Chem. Soc. 
Faraday Trans. I. 871 (1973)). Some of the data are as follows:

Derive an expression for (dH/dp)Tfor (a) a perfect gas and (b) a van der Waals 
gas. In the latter case, estimate its value for 1.0 mol Ar(g) at 298 K and 10 atm. 
By how much does the enthalpy of the argon change when the pressure is 
increased isothermally to 11 atm?

3.29 Show that if B(T) is the second virial coefficient of a gas, and
AB = B(T") -  B(T'), AT = T" -  T ', and T is the mean of T" and T', then 
%T -  RT2AB/V2^AT. Estimate %T f°r argon given that B(250 K) = -28.0 cm3 
mol-1 and B(300 K) = -15.6 cm3 mol-1 at 275 K at (a) 1.0 atm, (b) 10.0 atm.

3.30 The Joule coefficient, جم is defined as ̂ j = (dT/dV) U. Show that 
^jCv= p -  aT/KT.

64.81

196.4

44.08

46.86

180.2

16.33 20.03 31.15

12.70 18.18 32.54

140.86 183.59 225.10

121.3 144.4 163.7

14.14

100.90

95.05

T /K

/(J  K-1 m ol-

T /K

/(J  K-1 m ol-

Calculate the molar enthalpy relative to its value at T = 0 and the Third-Law 
molar entropy of the compound at these temperatures.

 Given that Sm = 29.79 j K-1 mol-1 for bismuth at 100 K and the ي3.15
following tabulated heat capacities data (D.G. Archer, j. Chem. Eng. Data 40, 
1015 (1995)), compute the standard molar entropy of bismuth at 200 K.

3.31 Evaluate Kt for a Dieterici إ
the expression obtained.

180 200 

24.89 25.11

160

24.61

150

24.44

140

24.25

120

23.74

100

23.00

T /K

/(J  K-1 m ol-

3.32 The adiabatic compressibili^, Ks, is defined like Kt (eqn 2.44) but at 
constant entropy. Show that for a perfect gas pYK = 1 (where Yis the ratio ( 
heat capacities).

Compare the value to the value that would be obtained by taking the heat 
capaci^ to be constant at 24.44 j K-1 mol-1 over this range.

3.16 Calculate Â Ĝ (375 K) for the reaction 2 CO(g) + ه2ئ) ج 2 س2ي ) ^om 
the value of Â G 298)ج K), ArH298)ه K), and the Gibbs-Helmholtz equation.



vapour in the atmosphere based on a temperature rises of 2.0 K, assuming that 
the relative humidity remains constant. (The present global mean temperature 
is 290 K, and the equilibrium vapour pressure of water at that temperature is 
0.0189 bar.)

م3.4 ب  Nitric acid hydrates have received much attention as possible catalysts 
for heterogeneous reactions that bring about the Antarctic ozone hole. 
Worsnop et al. investigated the thermodynamic stability of these hydrates 
under conditions Epical of the polar winter stratosphere (D. R. Worsnop, L.E. 
Fox, M.S. Zahniser, and S.C. Wofsy, Science 259, 71 (1993)). They report 
thermodynamic data for the sublimation of mono-, di-, and trihydrates to 
nitric acid and water vapours, HNO3• (s) ج  HNO3(g) + nH2O(g),
for n = 1, 2, and 3. Given Ar G^ and ArH^ for these reactions at 220 K, use the 
Gibbs-Helmholtz equation to compute ArG^ at 190 K.

n 1 2  3

ArG *7 (kJ m ol-1) 46.2 69.4 93.2 

ArH / ( k J  m o l  1) 127 188 237

 j. Gao and j. H. Weiner in their study of the origin of stress on the ي3.41
atomic level in dense polymer systems (Science 266, 748 (1994)), observe 
that the tensile force required to maintain the length, l, of a long linear chain 
of N  freely ̂ inted links each of length a, can be interpreted as arising from 
an entropic spring. For such a chain, 5(l) = -  3kf/2Na2 + C, where k is the 
Boltzmann constant and C is a constant. Using thermodynamic relations of 
this and previous chapters, show that the tensile force obeys Hooke’s law, 
f = —kf- l, if we assume that the energy U is independent of l.

3.42 Suppose that an internal combustion engine runs on octane, for which 
the enthalpy of combustion is -5512 kJ mol-1 and take the mass of 1 gallon of 
fuel as 3 kg. What is the maximum height, neglecting all forms of friction, to 
which a car of mass 1000 kg can be driven on 1.00 gallon of fuel given that the 
engine cylinder temperature is 2000°C and the exit temperature is 800°C?

3.43 The cycle involved in the operation of an internal combustion engine is 
called the Otto cycle. Air can be considered to be the working substance and 
can be assumed to be a perfect gas. The cycle consists of the following steps:
(1) reversible adiabatic compression from A to B, (2) reversible constant- 
volume pressure increase from B to C due to the combustion of a small 
amount of fuel, (3) reversible adiabatic expansion from C to D, and (4) 
reversible and constant-volume pressure decrease back to state A. Determine 
the change in entropy (of the system and of the surroundings) for each step of 
the cycle and determine an expression for the efficiency of the cycle, assuming 
that the heat is supplied in Step 2. Evaluate the efficiency for a compression 
ratio of 10:1. Assume that, in state A, V = 4.00 dm^, p = 1.00 atm, and
T = 300 K, that Va = 10 Vb, pC/pB = 5, and that Cp ص = -R.

3 .4  ,To calculate the work required to lower the temperature of an o^ect ه
we need to consider how the coefficient of performance changes with the 
temperature of the o^ect. (a) Find an expression for the work of cooling an 
o^ect from Ti to T؛when the refrigerator is in a room at a temperature Th. 
Hint. Write dw = dq/c(T), relate dq to dT through the heat capaci^ Cp, 
and integrate the resulting expression. Assume that the heat capacity is 
independent of temperature in the range of interest. (b) Use the result in part
(a) to calculate the work needed to freeze 250 g of water in a refrigerator at 
293 K. How long will it take when the refrigerator operates at 100 W?

3.45 The expressions that apply to the treatment of refrigerators also describe 
the behaviour of heat pumps, where warmth is obtained from the back of a 
refrigerator while its front is being used to cool the outside world. Heat pumps 
are popular home heating devices because they are very efficient. Compare 
heating of a room at 295 K by each of two methods: (a) direct conversion of
1.00 kJ of electrical energy in an electrical heater, and (b) use of 1.00 kJ of 
electrical energy to run a reversible heat pump with the outside at 260 K. 
Discuss the origin of the difference in the ener^  delivered to the interior 
of the house by the two methods.

3.33 Suppose that S is regarded as a function ofp and T. Show that
TdS = CpdT -  aTVdp. Hence, show that the energy transferred as heat when 
the pressure on an incompressible liquid or solid is increased by Ap is equal to 
-aTVAp. Evaluate q when the pressure acting on 100 cm  ̂of mercury at 0°C is 
increased by 1.0 kbar. (a=  1.82 X 10“4 K“1.)

3.34 Suppose that (a) the attractive interactions between gas particles can be 
neglected, (b) the attractive interaction is dominant in a van der Waals gas, 
and the pressure is low enough to make the approximation 4ap/(RT)2<<1. 
Find expressions for the fugaci^ of a van der Waals gas in terms of the 
pressure and estimate its value for ammonia at 10.00 atm and 298.15 K
in each case.

3.35 Find an expression for the fugacity coefficient of a gas that obeys the 
equation of state pV^ = RT(1 + B/Vm + C/V2m). Use the resulting expression to 
estimate the hrgaci^ of argon at 1.00 atm and 100 K using B = —21.13 cm  ̂
mol 1 and C = 1054 cm6 mol 2.

A pplications: to  biology, env ironm enta l sc ie n c e , polym er 
sc ie n c e , an d  eng inee ring

3.36 The protein lysozyme unfolds at a transition temperature of 75.5°C and 
the standard enthalpy of transition is 509 kJ mol-1. Calculate the entropy of 
unfolding of lysozyme at 25.0°C, given that the difference in the constant- 
pressure heat capacities upon unfolding is 6.28 kJ K-1 mol-1 and can be 
assumed to be independent of temperature. Hint. Imagine that the transition 
at 25.0°C occurs in three steps: (i) heating of the folded protein from 25.0°C to 
the transition temperature, (ii) unfolding at the transition temperature, and 
(iii) cooling of the unfolded protein to 25.0°C. Because the entropy is a state 
function, the entropy change at 25.0°C is equal to the sum of the entropy 
changes of the steps.

3.37 At 298 K the standard enthalpy of combustion of sucrose is -5797 kJ 
mol-1 and the standard Gibbs energy of the reaction is -6333 kJ mol-1. 
Estimate the additional non-expansion work that may be obtained by raising 
the temperature to blood temperature, 37°C.

3.38 In biological cells, the ener^  released by the oxidation of foods (Impact 
on Biology I2.2) is stored in adenosine triphosphate (ATP or ATP4-). The 
essence of ATP’s action is its abili^ to lose its terminal phosphate group by 
hydrolysis and to form adenosine diphosphate (ADP or ADP3-):

ATP4“(aq) + H^O(l) ج  ADP^(aq) + HPO^(aq) + ^ 0 +(aq)

At pH = 7.0 and 37°C (310 K, blood temperature) the enthalpy and Gibbs 
ener^  of hydrolysis are ArH= —20 kJ mol-1 and ArG = -31 kJ mol-1, 
respectively. Under these conditions, the hydrolysis of 1 molATP4- (aq) results 
in the extraction of up to 31 kJ of energy that can be used to do non-expansion 
work, such as the synthesis of proteins from amino acids, muscular 
contraction, and the activation of neuronal circuits in our brains. (a) Calculate 
and account for the sign of the entropy of hydrolysis of ATP at pH = 7.0 and 
310 K. (b) Suppose that the radius of a Epical biological cell is 10 صر and that 
inside it 106 ATP molecules are hydrolysed each second. What is the power 
density of the cell in watts per cubic metre (1 W =1 J s-1)? A computer battery 
delivers about 15 W and has a volume of 100 cm3. Which has the greater 
power density, the cell or the battery? (c) The formation of glutamine from 
glutamate and ammonium ions requires 14.2 kJ mol-1 of energy input. It is 
driven by the hydrolysis of ATP to ADP mediated by the enzyme glutamine 
synthetase. How many moles of ATP must be hydrolysed to form 1 mol 
glutamine?

 In 1995, the Intergovernmental Panel on Climate Change (IPCC) ب3.39
considered a global average temperature rise of 1.0-3.5°C likely by the year 
2100, with 2.0°C its best estimate. Because water vapour is itself a greenhouse 
gas, the increase in water vapour content of the atmosphere is of some 
concern to climate change experts. Predict the relative increase in water
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The discussion of the phase transitions of pure substances is among the simplest applica­
tions of thermodynamics to chemistry. We shall see that a phase diagram is a map of the 
pressures and temperatures at which each phase of a substance is the most stable. First, 
we describe the interpretation of empirically determined phase diagrams for a selection of 
materials. Then we turn to a consideration of the factors that determine the positions and 
shapes of the boundaries between the regions on a phase diagram. The practical import­
ance of the expressions we derive is that they show how the vapour pressure of a sub­
stance varies with temperature and how the melting point varies with pressure. We shall see 
that the transitions between phases can be classified by noting how various thermodynamic 
functions change when the transition occurs. This chapter also introduces the chemical 
potential, a property that is at the centre of discussions of phase transitions and chemical 
reactions

V aporiza tion , m elting , an d  the  conversion  o f  g raph ite  to  d iam o n d  are all exam ples of 
changes o f  phase w ith o u t change o f  chem ical co m position . In  th is chap te r we describe 
su ch  processes therm odynam ica lly , u sing  as th e  gu id ing  p rinc ip le  th e  ten d en cy  o f  sys­
tem s at co n stan t tem p e ra tu re  an d  p ressu re  to  m in im ize  th e ir  G ibbs energy.

Phase diagrams

O ne o f  the  m o s t succinct w ays o f  p resen tin g  the  physical changes o f  sta te  th a t a su b ­
stance can  u n d erg o  is in  te rm s o f  its phase  d iag ram . W e p resen t th e  concep t in  this 
section .

4.1 The stab؛)؛t؛es of phases
A p h a s e  o f  a substance  is a fo rm  o f  m a tte r th a t is u n ifo rm  th ro u g h o u t in  chem ical 
co m p o s itio n  an d  physical state. T hus, w e speak  o f  solid , liqu id , an d  gas phases o f  a 
substance , an d  o f  its v arious solid  phases, su ch  as th e  w hite  and  b lack  a llo tropes o f 
p h o sp h o ru s . A  p h a se  tr a n s it io n , th e  sp o n tan eo u s  conversion  o f  one phase in to  
an o th e r phase, occurs at a characteristic  tem p e ra tu re  fo r a given p ressu re. T hus, at 
1 a tm , ice is th e  stable phase  o f  w ater be low  0°C, b u t above 0°C liq u id  w ater is m ore  
stable. T his difference ind ica tes th a t be low  0°C th e  G ibbs energy  decreases as liqu id  
w ater changes in to  ice an d  th a t above 0°C th e  G ibbs energy  decreases as ice changes 
in to  liq u id  w ater. T he tr a n s i t io n  te m p e ra tu re , Ttrs, is th e  tem p e ra tu re  at w h ich  the 
tw o  phases are in  eq u ilib riu m  an d  th e  G ibbs energy  is m in im ized  at th e  p revailing  
p ressure.



As we stressed  at th e  b eg in n in g  o f  C h ap te r 3, we m u s t d is tingu ish  betw een  the 
th e rm o d y n am ic  d escrip tion  o f  a phase tra n s itio n  an d  th e  ra te  at w h ich  the  tran s itio n  
occurs. A  tra n s itio n  th a t is p red ic ted  fro m  th erm o d y n am ics  to  be sp o n tan eo u s  m ay  
occur to o  slow ly to  be  sign ifican t in  p ractice . For in stance , a t n o rm a l tem p era tu res  
and  p ressu res th e  m o la r G ibbs energy  o f  g raph ite  is low er th a n  th a t o f  d iam o n d , so 
there  is a th e rm o d y n am ic  ten d en c y  fo r d iam o n d  to  change in to  graph ite . H ow ever, 
for th is  tran s itio n  to  take place, th e  C  a to m s m u s t change th e ir locations, w h ich  is an 
im m easu rab ly  slow  p rocess in  a so lid  except at h igh  tem p era tu res . T he d iscussion  o f  
the  ra te  o f  a tta in m en t o f  eq u ilib riu m  is a k inetic  p ro b lem  and  is ou ts ide  th e  range o f  
th erm o d y n am ics. In  gases an d  liqu ids the  m ob ilities o f  the  m olecu les allow  phase 
tran s itio n s  to  occu r rapidly , b u t in  so lids th e rm o d y n am ic  in s tab ility  m ay  be  frozen  in . 
T h e rm odynam ica lly  unstab le  phases th a t persist because the  tran s itio n  is k inetically  
h in d e red  are called m e ta s ta b le  p h ase s . D iam o n d  is a m etastab le  phase o f  carbon  
u n d e r n o rm a l cond itions .

4.2 Phase boundaries
T he p h a se  d ia g ra m  o f  a substance  show s th e  reg ions o f  p ressu re  an d  tem p e ra tu re  at 
w h ich  its various phases are th e rm o d y n am ica lly  stable (Fig. 4 .1). T he lines separa ting  
the  reg ions, w h ich  are called p h a se  b o u n d a r ie s , show  th e  values o f  p  an d  T  at w hich  
tw o phases coexist in  equ ilib rium .

C onsider a liqu id  sam ple o f  a p u re  substance  in  a closed vessel. T he p ressu re  o f  a 
vap o u r in  eq u ilib r iu m  w ith  th e  liqu id  is called the  v a p o u r  p re s s u re  o f  the  substance 
(Fig. 4 .2). T herefo re , th e  liq u id -v a p o u r phase b o u n d a ry  in  a phase d iag ram  show s 
how  th e  v ap o u r p ressu re  o f  th e  liqu id  varies w ith  tem p e ra tu re . Sim ilarly, the  so lid -  
vap o u r phase b o u n d a ry  show s the  tem p e ra tu re  v a ria tio n  o f  th e  su b lim a tio n  v a p o u r  
p re s su re , th e  v ap o u r p ressu re  o f  th e  so lid  phase. T he v ap o u r p ressu re  o f  a substance 
increases w ith  tem p e ra tu re  because at h igher tem p e ra tu re s  m o re  m olecu les have 
s u ^ e n t  energy  to  escape fro m  th e ir ne ighbours.

(a) C ritica) p o in ts  a n d  boi)ing  p o in ts

W h en  a liq u id  is hea ted  in  an  o p en  vessel, th e  liq u id  vaporizes fro m  its surface. A t the 
tem p e ra tu re  at w h ich  its v ap o u r p ressu re  w o u ld  be  equal to  th e  ex ternal p ressure, 
vap o riza tio n  can  occur th ro u g h o u t th e  b u lk  o f  the  liqu id  an d  th e  v ap o u r can expand  
freely in to  th e  su rro u n d in g s . T he co n d itio n  o f  free v ap o riza tio n  th ro u g h o u t th e  liqu id  
is called b o ilin g . T he tem p e ra tu re  at w h ich  th e  v ap o u r p ressu re  o f  a liqu id  is equal to 
the  ex ternal p ressu re  is called th e  b o il in g  te m p e ra tu re  a t th a t p ressu re . For th e  special 
case o f  an  ex ternal p ressu re  o f  1 a tm , th e  b o ilin g  te m p e ra tu re  is called th e  n o rm a l 
b o il in g  p o in t , Tb. W ith  th e  rep lacem en t o f  1 a tm  b y  1 b a r as s tan d a rd  p ressu re , there  
is som e advantage in  usin g  th e  s ta n d a rd  b o il in g  p o in t  instead : th is  is th e  tem p era tu re  
at w h ich  th e  v ap o u r p ressu re  reaches 1 b ar. Because 1 b a r is slightly  less th a n  1 a tm  
(1.00 b a r  =  0.987 a tm ), the  s tan d a rd  b o ilin g  p o in t o f  a liq u id  is slightly  low er th an  
its n o rm a l bo iling  p o in t. T he n o rm a l b o ilin g  p o in t o f  w ater is 100.0°C; its s tan d ard  
bo iling  p o in t is 99.6°C.

B oiling  does n o t occur w h en  a liq u id  is hea ted  in  a rig id , closed vessel. Instead , the 
vap o u r p ressu re , an d  hence  th e  density  o f  th e  vap o u r, rise as th e  tem p e ra tu re  is raised  
(Fig. 4.3). A t th e  sam e tim e, th e  density  o f  th e  liqu id  decreases slightly  as a resu lt o f  its 
expansion . T here  com es a stage w h en  th e  den sity  o f  th e  v ap o u r is equal to  th a t o f  the 
rem a in in g  liqu id  an d  th e  surface betw een  th e  tw o phases d isappears. T he tem p e ra tu re  
at w h ich  th e  surface d isappears is th e  c r itic a i te m p e ra tu re , Tc, o f  th e  substance . W e 
first en co u n te red  th is  p ro p e r ty  in  Section  1.3d. T he v ap o u r p ressu re  at the  critical 
tem p e ra tu re  is called the  c r i tic a i p re s su re , p c. A t an d  above th e  critical tem p e ra tu re , a 
single u n ifo rm  phase called a su p e rc r it ic a i f lu id  fills th e  co n ta in e r an d  an  in terface  no
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Fig. 4.1 The general regions of pressure and 
tem perature where solid, liquid, or gas is 
stable (that is, has m inim um  molar Gibbs 
energy) are shown on this phase diagram. 
For example, the solid phase is the most 
stable phase at low temperatures and high 
pressures. In the following paragraphs we 
locate the precise boundaries between the 
regions.

Vapour, 
p re ssu re , p

quid□
d]؛o r s o

Fig. 4.2 The vapour pressure o f a liquid or 
solid is the pressure exerted by the vapour 
in equilibrium with the condensed phase.

Comment 4.1
The N IST  Chemistry WebBook is a good 
source o f links to  online databases o f 
data  on phase transitions.



(c)(b)(a)

Fig. 4.3 (a) A liquid in equilibrium with its 
vapour. (b) W hen a liquid is heated in a 
sealed container, the density of the vapour 
phase increases and that of the liquid 
decreases slightly. There comes a stage,
(c), at which the two densities are equal 
and the interface between the fluids 
disappears. This disappearance occurs at 
the critical temperature. The container 
needs to  be strong: the critical temperature 
of water is 374°C and the vapour pressure is 
then 218 atm.

longer exists. T h a t is, above the  critical tem p e ra tu re , th e  liqu id  phase o f  th e  substance 
does n o t exist.

(b) M e)t؛n g  p o in ts  a n d  tr ip le  p o in ts

T he tem p e ra tu re  at w hich , u n d e r  a specified p ressu re , th e  liq u id  an d  solid  phases o f  a 
substance  coexist in  eq u ilib riu m  is called th e  m e ltin g  te m p e ra tu re . Because a su b ­
stance m elts  at exactly  th e  sam e tem p e ra tu re  as it freezes, th e  m elting  tem p e ra tu re  o f 
a substance  is th e  sam e as its fre e z in g  te m p e ra tu re . T he freezing te m p e ra tu re  w hen  
th e  p ressu re  is 1 a tm  is called th e  n o rm a l fre e z in g  p o in t , T؛, an d  its freezing p o in t 
w h en  th e  p ressu re  is 1 b a r  is called th e  s ta n d a rd  freez in g  p o in t . T he n o rm a l an d  s ta n d ­
a rd  freezing p o in ts  are negligibly d ifferen t fo r m o s t p u rposes. T he n o rm a l freezing 
p o in t is also called th e  n o rm a l m e ltin g  p o in t .

T here  is a set o f  co n d itio n s  u n d e r  w h ich  th ree  d ifferen t phases o f  a substance  
(typically  solid , liqu id , an d  v ap o u r) all s im u ltan eo u sly  coexist in  eq u ilib rium . These 
co n d itio n s  are rep resen ted  b y  the  tr ip le  p o in t ,  a p o in t at w h ich  the  th ree  phase 
b o u n d a rie s  m eet. T he tem p e ra tu re  at th e  trip le  p o in t is d en o ted  T3. T he tr ip le  p o in t 
o f  a p u re  substance  is ou ts ide  o u r con tro l: it occurs at a single defin ite  p ressu re  and  
te m p e ra tu re  characteristic  o f  the  substance . T he tr ip le  p o in t o f  w ater lies at 273.16 K 
an d  611 P a (6.11 m b ar, 4.58 T o rr) , an d  th e  th ree  phases o f  w ater (ice, liqu id  w ater, and  
w ater v ap o u r) coexist in  eq u ilib riu m  at n o  o th e r co m b in a tio n  o f  p ressu re  an d  te m ­
p e ra tu re . T his invariance  o f  th e  tr ip le  p o in t is th e  basis o f  its use in  th e  defin itio n  of 
th e  th e rm o d y n am ic  te m p e ra tu re  scale (S ection  3.2c).

As we can  see fro m  Fig. 4.1, th e  trip le  p o in t m arks th e  low est p ressu re  a t w h ich  a 
liq u id  phase  o f  a substance  can exist. I f  (as is co m m o n ) th e  slope o f  th e  so lid -liq u id  
phase  b o u n d a ry  is as show n  in  th e  d iag ram , th e n  th e  trip le  p o in t also m arks the 
low est te m p e ra tu re  at w h ich  th e  liq u id  can exist; th e  critical te m p e ra tu re  is the  u p p e r 
lim it.

ص  I M P A C T  O N  C H E M I C A L  E N G I N E E R I N G  A N D  T E C H N O L O G Y I4.1 Supercritical fluids ص 

Supercritica l ca rb o n  dioxide, scC O 2, is the  cen tre  o f  a tte n tio n  fo r an  increasing  n u m ­
b er o f  so lven t-based  processes. T he critical te m p e ra tu re  o f  C O 2, 304.2 K (31.0°C) and 
its critical p ressu re , 72.9 a tm , are read ily  accessible, it  is cheap, an d  it can  read ily  be re ­
cycled. T he density  o f  scC O 2 at its critical p o in t is 0.45 g cm - . H ow ever, the  tra n sp o rt 
p ro p e rtie s  o f  any  supercritica l flu id  d ep en d  s trong ly  o n  its density , w h ich  in  tu rn  is 
sensitive to  th e  p ressu re  an d  tem p e ra tu re . For instance , densities m ay  be  ad justed  
fro m  a gas-like 0.1 g cm -  to  a liqu id -like  1.2 g cm - . A  usefu l ru le  o f  th u m b  is th a t the 
so lub ility  o f  a so lu te  is an  ex p onen tia l fu n c tio n  o f  th e  density  o f  the  supercritica l fluid, 
so sm all increases in  p ressu re , particu la rly  close to  th e  critical p o in t, can  have very  
large effects o n  solubility .

A  great advantage o f  scC O 2 is th a t th ere  are n o  n o x io u s residues once th e  solvent 
has b een  allow ed to  evaporate , so, coup led  w ith  its low  critical tem p e ra tu re , scC O 2 is 
ideally  su ited  to  food  processing  an d  th e  p ro d u c tio n  o f  p harm aceu tica ls . It is used, for 
in stance , to  rem ove caffeine fro m  coffee. T he supercritica l flu id  is also increasing ly  
b e in g  u sed  fo r d ry  cleaning, w h ich  avoids th e  use o f  carc inogen ic  an d  e n v iro n m e n t­
ally dele terious ch lo rin a ted  hy d ro carb o n s.

S upercritical C O 2 has b een  u sed  since the  1960s as a m ob ile  phase in  supercritical 
flu id  chromatography (SFC), b u t it fell o u t o f  favour w h en  th e  m o re  co n v en ien t te c h ­
n iq u e  o f  h igh -perfo rm ance  liqu id  ch ro m ato g rap h y  (H PL C ) w as in tro d u ced . H ow ever, 
in te rest in  SFC has re tu rn e d , an d  there  are separa tions possib le in  SFC th a t can n o t 
easily be achieved b y  H PLC , su ch  as th e  sep a ra tio n  o f  lip ids an d  o f  p h o spho lip id s . 
Sam ples as sm all as 1 pg  can  be analysed. T he essential advantage o f  SFC is th a t 
d i ^ s i o n  coefficients in  supercritica l flu ids are an  o rd e r o f  m ag n itu d e  g reater th a n  in



liquids, so th ere  is less resistance to  th e  tran sfe r o f  so lu tes th ro u g h  th e  co lum n , w ith  
the  resu lt th a t separa tions m ay  be effected rap id ly  o r w ith  h ig h  reso lu tion .

T he p rin c ip a l p ro b lem  w ith  scC O 2, th o u g h , is th a t th e  flu id  is n o t a very  good 
so lven t an d  su rfac tan ts  are needed  to  in d u ce  m an y  po ten tia lly  in te restin g  so lu tes to  
dissolve. Indeed , scC O 2-based d ry  clean ing  d epends on  th e  availability  o f  cheap s u r ­
factants; so to o  does the  use o f  scC O 2 as a so lven t fo r h o m o g en eo u s catalysts, such  
as m eta l com plexes. T here  appear to  be tw o p rin c ip a l app roaches to  solv ing the 
so lub iliza tion  p ro b lem . O ne so lu tio n  is to  use f lu o rin a ted  an d  siloxane-based  p o ly ­
m eric  stabilizers, w h ich  allow  p o lym eriza tion  reac tions to  p ro ceed  in  scC O 2. T he d is­
advantage o f  these stabilizers for com m ercia l use is th e ir  great expense. A n alternative 
and  m u c h  cheaper ap p roach  is po ly (e ther-carbonate) copolym ers. T he copolym ers can 
be m ad e  m o re  soluble in  scC O 2 b y  ad ju s ting  th e  ra tio  o f  e th e r an d  carb o n a te  groups.

T he critical te m p e ra tu re  o f  w ater is 374°C an d  its p ressu re  is 218 a tm . T he c o n d i­
tio n s fo r using  scH 2O are th ere fo re  m u c h  m o re  d em an d in g  th a n  fo r scC O 2 an d  the 
p ro p ertie s  o f  th e  flu id  are h igh ly  sensitive to  p ressu re. T hus, as th e  density  o f  scH 2O 
decreases, th e  characteristics o f  a so lu tio n  change fro m  those  o f  an  aqueous so lu tion  
th ro u g h  those  o f  a n o n -aq u eo u s  so lu tio n  an d  eventually  to  those  o f  a gaseous so lu ­
tio n . O ne consequence  is th a t reac tio n  m echan ism s m ay  change fro m  those  involving 
ions to  those  involv ing  radicals.

4.3 Three typical phase diagrams

W e shall n o w  see h o w  these general fea tu res appear in  th e  phase d iag ram s o f  pu re  
substances.

(a) C a rb o n  d io x id e

T he phase d iag ram  fo r ca rb o n  diox ide is show n  in  Fig. 4.4. T he fea tu res to  n o tice  in ­
clude th e  positive slope o f  th e  so lid -liq u id  b o u n d a ry  (the  d irec tio n  o f  th is line is c h a r­
acteristic  o f  m o s t substances), w h ich  ind ica tes th a t th e  m elting  tem p e ra tu re  o f  solid 
carb o n  d iox ide rises as the  p ressu re  is increased . N o tice  also th a t, as th e  trip le  p o in t 
lies above 1 a tm , the  liqu id  can n o t exist at n o rm a l a tm o sp h eric  p ressu res w hatever the 
tem p era tu re , an d  th e  so lid  sub lim es w h en  left in  the  o p en  (hence th e  nam e  ‘d ry  ice’). 
T o o b ta in  th e  liqu id , it is necessary  to  exert a p ressu re  o f  at least 5.11 a tm . C ylinders 
o f  ca rb o n  d iox ide generally  co n ta in  the  liqu id  or com pressed  gas; at 25°C th a t im plies 
a v ap o u r p ressu re  o f  67 a tm  if  b o th  gas an d  liqu id  are p resen t in  eq u ilib rium . W h en  
the  gas sq u irts  th ro u g h  the  th ro ttle  it cools by  th e  Jo u le -T h o m so n  effect, so w hen  
it em erges in to  a reg io n  w here th e  p ressu re  is on ly  1 a tm , it condenses in to  a finely 
d iv ided  snow -like solid.

(b) W a te r

Figure 4.5 is th e  phase d iag ram  fo r w ater. T he liq u id -v a p o u r b o u n d a ry  in  th e  phase 
d iag ram  sum m arizes  h ow  th e  v ap o u r p ressu re  o f  liq u id  w ater varies w ith  te m p e ra ­
tu re . It also sum m arizes  how  th e  b o iling  tem p e ra tu re  varies w ith  p ressu re : we sim ply  
read  off th e  te m p e ra tu re  a t w h ich  th e  v ap o u r p ressu re  is equal to  the  p revailing  
a tm o sp h eric  p ressure. T he so lid -liq u id  b o u n d a ry  show s h ow  th e  m eltin g  te m p e ra ­
tu re  varies w ith  th e  pressure. Its very  steep slope ind ica tes th a t en o rm o u s p ressu res 
are needed  to  b rin g  ab o u t sign ifican t changes. N otice  th a t the  line has a negative slope 
up  to  2 kbar, w h ich  m ean s th a t th e  m elting  te m p e ra tu re  falls as th e  p ressu re  is raised. 
T he reason  fo r th is  a lm ost u n iq u e  b eh av io u r can  be traced  to  the  decrease in  vo lum e 
th a t occurs o n  m elting , an d  hence  it be in g  m o re  favourab le  for the  so lid  to  tran sfo rm  
in to  th e  liq u id  as the  p ressu re  is raised . T he decrease in  vo lum e is a resu lt o f  th e  very

T em pera tu re , 77K

Fig. 4.4 The experimental phase diagram for 
carbon dioxide. Note that, as the triple 
point lies at pressures well above 
atmospheric, liquid carbon dioxide does 
not exist under normal conditions (a 
pressure of at least 5.11 atm  m ust be 
applied).



Fig. 4.6 A fragment of the structure of ice 
(ice-1). Each O atom is linked by two 
covalent bonds to  H atoms and by two 
hydrogen bonds to a neighbouring O atom, 
in a tetrahedral array.
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Fig. 4.7 The phase diagram for helium 
(4He). The ^-line marks the conditions 
under which the two liquid phases are in 
equilibrium. Helium-II is the superfluid 
phase. Note that a pressure of over 20 bar 
m ust be exerted before solid helium  can be 
obtained. The labels hcp and bcc denote 
different solid phases in which the atoms 
pack together differently: hcp denotes 
hexagonal closed packing and bcc denotes 
body-centred cubic (see Section 20.1 for a 
description of these structures).
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Fig. 4.5 The experimental phase diagram for water showing the different solid phases.

o p en  m o lecu la r s tru c tu re  o f  ice: as show n  in  Fig 4.6, th e  w ater m olecu les are held  
apart, as well as together, b y  th e  hyd ro g en  b o n d s  betw een  th e m  b u t the  s tru c tu re  p a r ­
tia lly  collapses o n  m elting  an d  th e  liqu id  is denser th a n  th e  solid.

Figure 4.5 show s th a t w ater has one liqu id  phase b u t m an y  d ifferen t so lid  phases 
o th e r th a n  o rd in a ry  ice (‘ice I’, show n  in  Fig. 4.5). Som e o f  these phases m e lt a t h igh  
tem p era tu res . Ice V II, fo r in stance , m elts  at 100°C b u t exists o n ly  above 25 kbar. N ote 
th a t five m o re  trip le  p o in ts  occur in  th e  d iag ram  o th e r th a n  th e  one w here vapou r, 
liqu id , an d  ice I coexist. E ach one  occurs a t a defin ite p ressu re  and  tem p e ra tu re  th a t 
c an n o t be changed . T he  solid  phases o f  ice differ in  the  a rran g em en t o f  th e  w ater 
m olecules: u n d e r  th e  in fluence  o f  very  h igh  p ressu res, h y d rogen  b o n d s  buckle  an d  the 
H 2O m olecu les ad o p t d ifferen t a rrangem en ts . These p o ly m o rp h s , o r d ifferen t solid 
phases, o f  ice m ay  be responsib le  fo r th e  advance o f  glaciers, fo r ice at the  b o tto m  o f 
glaciers experiences very  h ig h  pressu res w here it rests o n  jagged rocks.

H رء) elium

Figure 4.7 show s th e  p h as؛ g ram  o f  he lium . H e liu m  behaves u n u su a lly  at low  te m ­
pera tu res . For instance , the  solid  and  gas phases o f  h e liu m  are never in  equ ilib riu m  
how ever low  th e  tem p era tu re : the  a to m s are so ligh t th a t th ey  v ib ra te  w ith  a large- 
am p litu d e  m o tio n  even a t very  low  tem p e ra tu re s  and  th e  solid  sim p ly  shakes itself 
apart. Solid h e liu m  can  be ob ta ined , b u t o n ly  b y  h o ld in g  th e  a to m s to g e th e r b y  ap p ly ­
ing  p ressu re.

W h en  considering  h e liu m  at low  tem p era tu res  it is necessary  to  d is tingu ish  betw een 
th e  iso topes 3H e an d  4H e. P u re  h e liu m -4  has tw o  liq u id  phases. T he phase m arked  
H e-I in  the d iagram  behaves like a n o rm a l liquid; the o th er phase, H e-II, is a superflu id ;



it is so called because it flows w ith o u t v iscosity .1 P rov ided  we d isco u n t th e  liqu id  
crystalline substances d iscussed in  Section  6.6, h e liu m  is the  on ly  k n o w n  substance 
w ith  a liq u id - liq u id  b o u n d a ry , show n  as the  ^ - l in e  (lam b d a  line) in  Fig. 4.7. The 
phase d iag ram  o f  he lium -3  differs fro m  th e  phase d iag ram  o f  he lium -4 , b u t it also 
possesses a superflu id  phase. H e liu m -3  is u n u su a l in  th a t th e  en tro p y  o f  th e  liqu id  is 
low er th a n  th a t o f  th e  solid , an d  m elting  is exo therm ic.

Phase stabi>ity and phase transitions

W e shall n o w  see how  th e rm o d y n am ic  con sid era tio n s can  acco u n t fo r the  fea tu res o f  
the  phase d iag ram s we have ju s t described . All o u r consid era tio n s w ill be  based  o n  the 
G ibbs energy  o f  a substance , an d  in  p a rticu la r o n  its m o la r G ibbs energy, Gm. In  fact, 
th is  q u a n tity  w ill p lay  su ch  an  im p o rta n t ro le in  th is  chap te r an d  the  res t o f  th e  tex t 
th a t we give it a special nam e  an d  sym bol, th e  ch em ica l p o te n t ia l , !  (m u ). For a one- 
co m p o n en t system , ‘m o la r G ibbs energy’ an d  ‘chem ical p o ten tia l’ are synonym s, so !  
= Gm, b u t in  C h ap te r 5 we shall see th a t chem ical p o ten tia l has a b ro a d e r significance 
and  a m o re  general defin ition . T he nam e  ‘chem ical p o ten tia l’ is also in structive : as we 
develop th e  concep t, w e shall see th a t م  is a m easu re  o f  th e  p o ten tia l th a t a substance 
has fo r u n d e rg o in g  change in  a system . In  th is chap te r, it reflects the  p o ten tia l o f  a su b ­
stance to  u n d e rg o  physical change. In  C h ap te r 7 we shall see th a t !  is th e  p o ten tia l o f 
a substance  to  u n d erg o  chem ical change.

Fig. 4.8 W hen two or more phases are in 
equilibrium, the chemical potential 
of a substance (and, in a mixture, a 
component) is the same in each phase and 
is the same at all points in each phase.

4.4 The thermodynamic criterion of equi)ibrium
W e base ou r discussion on  the follow ing consequence o f  the Second Law: a t equilibrium, 
the chemical potential o fa  substance is the same throughout a sample, regardless ofhow many 
phases are present. W h en  th e  liq u id  and  solid  phases o f  a substance  are in  equ ilib rium , 
the  chem ical p o ten tia l o f  th e  substance  is the  sam e th ro u g h o u t th e  system  (Fig. 4.8).

T o see th e  valid ity  o f  th is rem ark , consider a system  in  w h ich  th e  chem ical p o te n ­
tia l o f  a substance  is 1م  at one lo ca tio n  an d م2   a t an o th e r location . T he loca tions m ay  
be in  th e  sam e or in  d ifferen t phases. W h en  an  a m o u n t d n o f  th e  substance  is tra n s ­
ferred  fro m  one lo ca tio n  to  th e  o th er, th e  G ibbs energy  o f  th e  system  changes by  
- ^ 1d n  w h en  m ate ria l is rem oved  fro m  lo ca tio n  1, an d  it changes by  +،u2d n  w hen  
th a t m ate ria l is added  to  lo ca tio n  2. T he overall change is there fo re  dG  =  (1!  - م2  )d n . 
I f  th e  chem ical p o ten tia l at lo ca tio n  1 is h igher th a n  th a t a t lo ca tio n  2, th e  tran sfe r is 
accom pan ied  b y  a decrease in  G , an d  so has a sp o n tan eo u s  ten d en cy  to  occur. O n ly  if  
2 م1 = م  is th ere  no  change in  G, an d  on ly  th e n  is th e  system  at eq u ilib riu m . W e co n ­
clude th a t th e  tran s itio n  tem p era tu re , Ttrs, is th e  te m p e ra tu re  at w h ich  th e  chem ical 
po ten tia ls  o f  tw o phases are equal.

4.5 The dependence of stabi)ity on the conditions
A t low  tem p e ra tu re s  an d  p rov id ed  th e  p ressu re  is n o t to o  low, th e  so lid  phase  o f  a 
substance  has th e  low est chem ical p o ten tia l an d  is there fo re  th e  m o s t stable phase. 
H ow ever, th e  chem ical po ten tia ls  o f  d ifferen t phases change w ith  te m p e ra tu re  in  
d ifferen t ways, an d  above a certa in  tem p e ra tu re  the  chem ical p o ten tia l o f  an o th e r 
phase (perhaps an o th e r so lid  phase, a liqu id , o r a gas) m ay  tu rn  o u t to  be th e  low est. 
W h en  th a t happens, a tran s itio n  to  th e  second  phase is sp o n tan eo u s  an d  occurs if  it is 
k inetically  feasible to  do  so.

1 Recent work has suggested that water may also have a superfluid liquid phase.
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Fig. 4.9 The schematic temperature 
dependence of the chemical potential of the 
solid, liquid, and gas phases of a substance 
(in practice, the lines are curved). The 
phase with the lowest chemical potential at 
a specihed tem perature is the most stable 
one at that temperature. The transition 
temperatures, the melting and boiling 
tem peratures (Tf and Tb, respectively), are 
the tem peratures at which the chemical 
potentials of the two phases are equal.

Fig. 4.10 The pressure dependence of the 
chemical potential of a substance depends 
on the molar volume o f the phase. The 
lines show schematically the effect of 
increasing pressure on the chemical 
potential of the solid and liquid phases 
(in practice, the lines are curved), and the 
corresponding effects on the freezing 
temperatures. (a) In this case the molar 
volume of the solid is smaller than that of 
the liquid and ! ( s )  increases less than ص). 
As a result, the freezing tem perature rises. 
(b) Here the molar volume is greater for 
the solid than the liquid (as for water), !(s )  
increases m ore strongly than ص), and the 
freezing tem perature is lowered.
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(a) T h e  te m p e ra tu r e  d e p e n d e n c e  of p h a s e  s tab ility

T he te m p e ra tu re  d ependence  o f  th e  G ibbs energy  is expressed in  te rm s o f  the  en tro p y  
o f  the  system  b y  eqn  3.50 ((dG /dT)p  =  —S). Because th e  chem ical p o ten tia l o f  a p u re  
substance  is ju s t an o th e r nam e  for its m o la r G ibbs energy, it follow s th a t

T h is re la tio n  show s th a t, as the  te m p e ra tu re  is raised , the  chem ical p o ten tia l o f  a pu re  
substance  decreases: Sm > 0 fo r all substances, so th e  slope o f  a p lo t o f  !  against T  is 
negative.

E q u a tio n  4.1 im plies th a t th e  slope o f  a p lo t o f  !  against tem p e ra tu re  is steeper for 
gases th a n  fo r liqu ids, because Sm(g) > Sm(l). T he slope is also steeper fo r a liq u id  th an  
th e  co rre sp o n d in g  solid, because Sm(l) > Sm(s) a lm ost always. These fea tu res are illu s­
tra te d  in  Fig. 4.9. T he steep negative slope o f  ،u(l) resu lts in  its falling below  ،u(s) w hen  
th e  tem p e ra tu re  is h ig h  enough , an d  th e n  th e  liq u id  becom es th e  stable phase: the 
solid  m elts . T he chem ical p o ten tia l o f  the  gas phase p lunges steeply  dow nw ards as the 
te m p e ra tu re  is ra ised  (because th e  m o lar en tro p y  o f  the  v ap o u r is so h igh), an d  there  
com es a tem p e ra tu re  at w h ich  it lies low est. T h en  the  gas is th e  stable phase an d  v a p o r­
iza tio n  is sp o n tan eo u s.

(b) T h e  r e s p o n s e  o f m e ltin g  to  a p p lie d  p re s s u re

M o st substances m elt at a h igher tem p e ra tu re  w h en  sub jec ted  to  pressu re . I t  is as 
th o u g h  th e  p ressu re  is p rev en tin g  th e  fo rm a tio n  o f  th e  less dense liqu id  phase. E xcep­
tio n s  to  th is  beh av io u r inc lude  w ater, fo r w h ich  th e  liqu id  is denser th a n  th e  solid. 
A pp lica tion  o f  p ressu re  to  w ater encourages the  fo rm a tio n  o f  th e  liq u id  phase. T h a t is, 
w ater freezes at a low er tem p e ra tu re  w h en  it is u n d e r  pressure.

W e can  ra tionalize  th e  response  o f  m e ltin g  tem p e ra tu re s  to  p ressu re  as follow s. The 
v a ria tio n  o f  th e  chem ical p o ten tia l w ith  p ressu re  is expressed (fro m  th e  second  of 
eqn  3.50) by

T his eq u a tio n  show s th a t th e  slope o f  a p lo t o f  chem ical p o ten tia l against p ressu re  is 
equal to  th e  m o lar vo lum e o f  th e  substance. A n increase in  pressure raises th e  chem ical 
p o ten tia l o f  any  p u re  substance  (because Vm > 0). In  m o s t cases, Vm(l) > Vm(s) an d  the 
eq u a tio n  p red ic ts  th a t an  increase in  p ressu re  increases th e  chem ical p o ten tia l o f  the 
liq u id  m o re  th a n  th a t o f  the  solid . As show n  in  Fig. 4.10a, th e  effect o f  p ressu re  in  such

T em peratu re , T



a case is to  raise th e  m elting  tem p e ra tu re  slightly. For w ater, how ever, v ^ ( l )  < v ^ (s ) , 
and  an  increase in  p ressu re  increases th e  chem ical p o ten tia l o f  th e  so lid  m o re  th a n  
th a t o f  the  liqu id . In  th is case, th e  m elting  te m p e ra tu re  is low ered  slightly  (Fig. 4.10b).

Exam ple 4.1 A ssessing the effect of pressure on the chemical potential

C alculate th e  effect o n  th e  chem ical p o ten tia ls  o f  ice an d  w ater o f  increasing  the 
p ressu re  fro m  1.00 b a r  to  2.00 b a r  at 0°C. T he density  o f  ice is 0.917 g cm -  an d  th a t 
o f  liq u id  w ater is 0.999 g cm -  u n d e r  these cond itions .

M ethod F ro m  eqn  4.2, we k now  th a t the  change in  chem ical po ten tia l o f  an  in c o m ­
pressible substance  w h en  th e  p ressu re  is changed  b y  Ap is A ^  =  v ^ A p . T herefore , 
to  answ er th e  q uestion , we n eed  to  k now  th e  m o la r vo lum es o f  the  tw o phases o f 
w ater. T hese values are o b ta in ed  fro m  th e  m ass density , p , an d  th e  m o lar m ass, M , 
b y  using  v ^  =  M /p . W e there fo re  use th e  expression  A ^  =  M A p/p.

Answer T he m o lar m ass o f  w ater is 18.02 g m o l-1 (1.802 X 10-  kg m o l- ); therefore ,

(1.802 X 10-  kg m o l-1) X (1.00 X 105 Pa)
A ^(ice) =  k  = + 1 .9 7  j  m o l 1

(1.802 X 10-  kg m o l-1) X (1.00 X 105 Pa) ى
A ^(w ater) = - ---------------------------  ' = + 1 .8 0  j  m o l 1

999 kg m  3

W e in te rp re t th e  n u m erica l resu lts as follows: th e  chem ical p o ten tia l o f  ice rises 
m o re  sharp ly  th a n  th a t o f  w ater, so if  th ey  are in itia lly  in  eq u ilib r iu m  at 1 b ar, th en  
there  w ill be a ten d en c y  fo r the  ice to  m e lt at 2 bar.

Self-test 4.1 C alculate th e  effect o f  an  increase in  p ressu re  o f1 .00  b a r  on  th e  liqu id  
and  solid  phases o f  ca rb o n  diox ide (o f  m o la r m ass 44.0 g m o l- ) in  equ ilib riu m  
w ith  densities 2.35 g cm -3 an d  2.50 g cm -3, respectively.

[A^،(l) = + 1 .8 7  j  m o l-1, A^،(s) =  +1.76 j  m o l-1; so lid  form s]

(c) T h e  e f f e c t  o f a p p lie d  p r e s s u r e  o n  v a p o u r  p r e s s u re

W h en  p ressu re  is app lied  to  a condensed  phase, its v ap o u r p ressu re  rises: in  effect, 
m olecu les are squeezed  o u t o f  th e  phase an d  escape as a gas. P ressu re  can  be exerted 
o n  th e  condensed  phases m echan ica lly  o r b y  sub jec ting  it to  th e  app lied  pressu re  o f  an 
in e rt gas (Fig. 4.11); in  the  la tte r case, th e  vap o u r p ressu re  is th e  p artia l p ressu re  o f  the 
v ap o u r in  eq u ilib riu m  w ith  the  condensed  phase, an d  we speak  o f  th e  p a r t iaل v a p o u r  
p re s s u re  o f  the  substance . O ne co m p lica tio n  (w hich  we igno re  here) is th a t, if  the 
condensed  phase is a liqu id , th e n  the  p ressu riz ing  gas m ig h t dissolve and  change the 
p ro p ertie s  o f  th e  liqu id . A n o th e r co m p lica tio n  is th a t the  gas phase  m olecu les m igh t 
a ttrac t m olecu les o u t o f  th e  liq u id  b y  th e  p rocess o f  gas s o l a t i o n ,  the  a tta ch m en t o f 
m olecu les to  gas phase species.

As show n in  th e  fo llow ing Justification, th e  q u an tita tiv e  re la tio n  be tw een  the 
v ap o u r p ressu re , p , w h en  a p ressu re  A P is app lied  an d  th e  v ap o u r pressu re , p*, o f  the 
liqu id  in  th e  absence o f  an  ad d itio n a l p ressu re  is

p  =  p*eVm(l̂ ™ T (4.3)

T his eq u a tio n  show s h o w  th e  v ap o u r p ressu re  increases w h en  th e  p ressu re  ac ting  on  
the  condensed  phase is increased .

P ressu re , AP
V apour

p lus inert
p ressurizing

Piston
/p e rm e a b le

i to  v a p o u r
but no t

(a) (b)

Fig. 4.11 Pressure may be app^ed to  a 
condensed phases either (a) by 
compressing the condensed phase or (b) by 
subjecting it to an inert pressurizing gas. 
W hen pressure is applied, the vapour 
pressure of the condensed phase increases.



Jus tif ica tio n  4.1 The vapour pressure of a pressurized liquid

W e calculate the vapour pressure o f a pressurized liquid by using the fact tha t at 
equilibrium  the chemical potentials o f the liquid and its vapour are equal: ص) = 
،u(g). It follows that, for any change th a t preserves equilibrium , the resulting change 
in ص) m ust be equal to  the change in ،u(g); therefore, we can write d^،(g) = d^(l). 
W hen the pressure P  on the liquid is increased by  dP, the chem ical potential o f the 
liquid changes by d^(l) = V ^(l)dP. The chem ical potential o f the vapour changes by 
d^،(g) = V ^(g)dp where dp is the change in the vapour pressure we are trying to  find. 
If  we treat the vapour as a perfect gas, the m olar volum e can be replaced by V^(g) = 
RT/p, and we obtain

RTdp
d/*(g) =ث

p
Next, we equate the changes in chemical potentials o f the vapour and the liquid: 

RTdp
ث  = V ^(l)dP 

p
W e can integrate this expression once we know  the lim its o f integration.

W hen there is no  additional pressure acting on the liquid, P  (the pressure experi­
enced by the liquid) is equal to  the no rm al vapour pressure p *, so w hen P  = p*, p  = 
p* too. Wffen there is an additional pressure AP on the liquid, w ith the result that 
P  = p  + AP, the vapour pressure is p  (the value we w ant to  find). Provided the effect 
o f pressure on the vapour pressure is small (as will tu rn  ou t to  be the case) a good 
approxim ation is to replace the p  in p  + AP by p* itself, and to  set the upper lim it of 
the integral to  p* + AP. The integrations required  are therefore as follows:

fp dp fp*+AP 
R T  — = V ^(l)dP

j  p* p  j  p*

W e now  divide b o th  sides by  R T  and assume th a t the m olar volum e of the liquid is 
the same th roughou t the small range o f pressures involved:

'p dp = Vm( l ) f p*+AP dP

p*  p RT p*

Then b o th  integrations are straightforw ard, and lead to

ln —  . ت  ص AP
p * R T

w hich rearranges to  eqn 4.3 because eln x = x.

Illustration  4.1 The effect of applied pressure on the vapour pressure of liquid water

For w ater, w h ich  has density  0.997 g cm -3 at 25°C  an d  th ere fo re  m o la r vo lum e
18.1 cm 3 m o l-1, w h en  th e  p ressu re  is increased  b y  10 b a r  ( th a t is, AP =  1.0 X 105 Pa)

^ ( l ) A P  (1.81 X 10- 5 m 3 m o l-1) X (1.0 X 106 Pa) 1.81 X 1.0 X 10

R T  (8.3145 j  K- 1 m o l-و  X (298 K) 8.3145 X 298

w here  we have used  1 j  =  1 P a m 3. It follow s th a t p  =  1.0073p*, an  increase o f 
0.73 p e r cent.

Self-test 4.2  C alculate th e  effect o f  an  increase in  p ressu re  o f  100 b a r  o n  th e  v ap o u r 
p ressu re  o f  benzene a t 25°C, w h ich  has density  0.879 g cm -3. [43 p e r cent]



4.6 The location of phase boundaries
W e can  find  th e  precise loca tions o f  th e  phase b o u n d a r i e s  —  p ressu res an d  te m ­
p era tu res  at w h ich  tw o phases can c o e x i s t - —  m ak ing  use o f  the  fact th a t, w h en  tw o 
phases are in  eq u ilib riu m , th e ir  chem ical p o ten tia ls  m u s t be  equal. T herefore , w here 
the  phases a  an d  p are in  equ ilib rium ,

(4 ج(ص) =ثبم(ص) (4.
By solving th is eq ua tion  for p  in  te rm s o f  T, we get an  eq u a tio n  for the phase b oundary .

(a) T h e  s lo p e s  of th e  p h a s e  b o u n d a r ie s

It tu rn s  o u t to  be sim plest to  discuss the  phase b o u n d a rie s  in  te rm s o f  th e ir  slopes, 
dp /dT . L e tp  an d  T be changed  infin itesim ally , b u t in  su ch  a w ay th a t th e  tw o phases a  
and  p rem a in  in  equ ilib rium . T he chem ical p o ten tia ls  o f  th e  phases are in itia lly  equal 
(the  tw o phases are in  equ ilib riu m ). T hey  rem a in  equal w h en  th e  co n d itio n s  are 
changed  to  an o th e r p o in t o n  th e  phase  b o u n d a ry , w here th e  tw o phases co n tin u e  to  
be in  eq u ilib riu m  (Fig. 4.12). T herefore , the  changes in  th e  chem ical p o ten tia ls  o f  the 
tw o phases m u s t be equal an d  we can w rite  d ^ a =  d،Up. Because, fro m  eqn  3.49 (dG  = 
Vdp -  SdT ), we k now  th a t d ^  =  - S md T  +  Vmdp fo r each phase, it follow s th a t

' =  “ ^p,md T  +  Vp,md- ^a,md T  +  Va,m،

w here $a m and  Sp m are the  m o la r en tro p ies  o f  th e  phases an d  Va  m an d  Vp m are the ir 
m o lar vo lum es. H ence

(4.5)

(4.6)

(Vp,m -  Va,m)dp  =  (Sp,m -  ^a,m)d T

w hich  rearranges in to  th e  C lap ey ro n  e q u a tio n :

ي  AtrsS 

d T  AtrsV

In  th is exp ression  Atrs^ =  Sp,m - a,m an؟■  d  AtrsV  =  Vp,m -  Va,m are th e  e n tro p y  and
vo lum e o f  tran s itio n , respectively. T he C lapeyron  eq u a tio n  is an  exact expression  for 
the  slope o f  th e  phase  b o u n d a ry  an d  applies to  any  phase eq u ilib riu m  o f  any  p u re  su b ­
stance. It im p lies th a t w e can  use th e rm o d y n am ic  da ta  to  p red ic t th e  appearance  o f  
phase d iag ram s an d  to  u n d e rs ta n d  th e ir  fo rm . A m o re  p rac tica l app lica tion  is to  the 
p red ic tio n  o f  the response  o f  freezing an d  bo iling  po in ts  to  th e  app lica tion  o f  pressure.

(b) T h e  so lid - liq u id  b o u n d a ry

M elting  (fusion ) is accom pan ied  b y  a m o la r en th a lp y  change صوخ an d  occurs at a 
tem p e ra tu re  T. T he m o la r en tro p y  o f  m eltin g  at T is there fo re  AfusH /T  (Section  3.3), 
and  th e  C lapeyron  eq u a tio n  becom es

ي(4.7)
d T TAfusV

w here AfusV is th e  change in  m o la r vo lum e th a t occurs o n  m elting . T he en th a lp y  o f 
m elting  is positive (the  on ly  excep tion  is h e lium -3 ) and  th e  vo lum e change is usually  
positive an d  always sm all. C onsequen tly , the  slope d p /d T  is steep  an d  usually  positive 
(Fig. 4.13).

W e can  o b ta in  th e  fo rm u la  fo r th e  phase b o u n d a ry  b y  in teg ra tin g  dp / d T , assum ing  
th a t A،uŝ  an d  A،usV  change so little  w ith  tem p e ra tu re  an d  p ressu re  th a t th ey  can  be 
trea ted  as co n stan t. I f  th e  m elting  te m p e ra tu re  is T* w h en  th e  p ressu re  is p*, an d  T 
w h en  th e  p ressu re  is p , th e  in teg ra tio n  req u ired  is

Fig. 4.12 W hen pressure is applied to  a 
system in which two phases are in 
equilibrium (at a), the equilibrium is 
disturbed. It can be restored by changing 
the temperature, so moving the state o f the 
system to b. It follows that there is a 
relation between dp and dT  that ensures 
that the system remains in equilibrium as 
either variable is changed.

Solid

Liquid

T em peratu re , T

Fig. 4.13 A typical solid-liquid phase 
boundary slopes steeply upwards. This 
slope implies that, as the pressure is raised, 
the melting tem perature rises. Most 
substances behave in this way.



Comment 4.2
C alculations involving natu ral 
logarithm s often becom e sim pلer if  we 
no te  th a t, p rov ided  -1  < x  < 1, ln (1 + x) 
= x  -  - x 2 + - x3 ■ ■ ■ . I f x  << 1, a good 
approxim ation  is ln (1 + x) ~  x.

(c) T h e  liq u id -v a p o u r b o u n d a ry

T he en tro p y  o f  v ap o riza tio n  at a tem p e ra tu re  T  is equal to  AvapH /T ; th e  C lapeyron  
eq u a tio n  fo r the  liq u id -v a p o u r b o u n d a ry  is therefo re

(4 ح (10. م ح غ = م
d T  TAvapV

T he en th a lp y  o f  v ap o riza tio n  is positive; AvapV is large an d  positive. T herefo re , dp / d T 
is positive, b u t it is m u c h  sm aller th a n  fo r th e  so lid - liq u id  b o u n d a ry . It follow s th a t 
d T /dp  is large, an d  hence  th a t th e  bo iling  tem p e ra tu re  is m o re  responsive to  pressu re  
th a n  the  freezing  tem p era tu re .

E xam ple 4.2 Estimating the effect of pressure on the boiling temperature

E stim ate  th e  typical size o f  th e  effect o f  increasing  p ressu re  o n  the  b o ilin g  p o in t o f 
a liqu id .

M ethod  T o use eqn  4.10 w e n eed  to  estim ate  th e  r ig h t-h a n d  side. A t th e  b o iling  
p o in t, th e  te rm  AvapH /T  is T ro u to n ’s co n stan t (S ection  3 .3b). Because th e  m o lar 
vo lum e o f  a gas is so m u c h  g reater th a n  th e  m o la r vo lum e o f  a liqu id , we can w rite

AvapV =  V ^(g) -  V ^(l) -  V ^(g)

an d  take for V ^(g) th e  m o la r vo lum e o f  a perfect gas (a t low  pressures, at least).

Answ er T ro u to n ’s co n stan t has th e  value 85 j  K- 1 m o l-1. T he m o la r vo lum e o f  a 
perfect gas is ab o u t 25 d m 3 m o l-1 at 1 a tm  an d  n ear b u t above ro o m  tem p era tu re . 
T herefore ,

d T  2.5 X 10- 2 m ^ m o l- 1

T d T  

TT*

AfusH

AfusV

(4.8

T herefo re , th e  ap p ro x im ate  eq u a tio n  o f  the  so lid -liq u id  b o u n d a ry  is

p -  p* + ذ  ح م  ln  T  
AfusV T*

T his eq u a tio n  w as o rig inally  ob ta in ed  b y  yet an o th e r T h o m so n — Jam es, th e  b ro th e r 
o f  W illiam , L ord  Kelvin. W h en  T  is close to  T*, th e  lo g a rith m  can be  ap p ro x im ated  by 
using

T  -  T*

T *

T  -  T *

T *
1 +ln  T  =  ط 

therefo re ,

(4.9

steep s tra igh t line w h en  p  is p lo tted  against T

p *ء ■  + T f V { T  -  ٨
T his expression  is the  eq u a tio n  
in  Fig. 4.13).



W e have u sed  1 j  =  1 P a T .محل  h is value co rresp o n d s to  0.034 a tm  K-1, an d  hence  to  
dT /d p  =  29 K a tm -1. T herefore , a change o f  p ressu re  o f +0.1 a tm  can  be  expected  to  
change a bo iling  tem p e ra tu re  b y  ab o u t +3 K.

Self-test 4.3  E stim ate  dT /d p  for w ater at its n o rm a l b o ilin g  p o in t u sing  the  in fo r­
m a tio n  in  T able 3.2 an d  V ^(g) =  RT/p. [28 K a tm -1]

Because th e  m o la r vo lum e o f  
„V ء   V„

gas is so m u c h  greater th a n  th e  m o la r vo lum e o f  a 
liqu id , w e can  w rite  AvapV ء  V ^(g) (as in  Exam ple 4.2). M oreover, if  th e  gas behaves 
perfectly , V ^(g) =  RT/p. These tw o ap p ro x im a tio n s  tu rn  the  exact C lapeyron  e q u a ­
tio n  in to

dp AvapH

d T  T(RT/p)

w hich  rearranges in to  th e  C la u s iu s -C la p e y ro n  e q u a tio n  fo r the  v a ria tio n  o f  v apou r 
p ressu re  w ith  tem p era tu re :

(4.11)°
ln  p  AvapH

R T 2d T

(W e have u sed  dx /x  =  d ln  x.) Like the  C lapeyron  eq u a tio n , th e  C lausiu s-C lap ey ro n  
eq u a tio n  is im p o r ta n t fo r u n d e rs tan d in g  the  appearance  o f  phase d iagram s, p a r t ic u ­
larly  the  lo ca tio n  an d  shape o f  th e  liq u id -v a p o u r an d  so lid -v a p o u r phase bo u n d arie s . 
It lets us p red ic t h o w  th e  v ap o u r p ressu re  varies w ith  tem p e ra tu re  an d  h o w  th e  b o il­
ing  tem p era tu re  varies w ith  pressure. For instance, if  we also assum e th a t the en thalpy  o f 
vapo riza tion  is in d ep en d e n t o f  tem p era tu re , th is  eq ua tion  can be  in teg ra ted  as follows:

1

T *

1

T

AvapH
ln  p  =

*ln p

ln p*

w here p* is th e  v ap o u r p ressu re  w h en  th e  te m p e ra tu re  is T* an d  p  th e  v ap o u r pressure 
w h en  th e  te m p e ra tu re  is T . T herefo re , because th e  in teg ra l o n  th e  left evaluates to  
ln (p /p *), th e  tw o v ap o u r p ressu res are re la ted  by

(4.12)°
1 1

T  T *

AvapH
%=■

E q uation  4.12 is p lo tted  as th e  liq u id -v a p o u r b o u n d a ry  in  Fig. 4.14. T he line does n o t 
ex tend  b ey o n d  th e  critical te m p e ra tu re  Tc, because above th is tem p e ra tu re  the  liqu id  
does n o t exist.

□ q u id

G as

؛ة
<لء

جOiة
Q_

T em pera tu re , T

Fig. 4.14 A typical liquid-vapour phase 
boundary. The boundary can be regarded 
as a plot of the vapour pressure against the 
temperature. Note that, in some depictions 
of phase diagrams in which a logarithmic 
pressure scale is used, the phase boundary 
has the opposite curvature (see Fig. 4.7). 
This phase boundary terminates at the 
critical point (not shown).

I))ustration 4.2 The effect of temperature on the vapour pressure of a liquid

E q uation  4.12 can be u sed  to  estim ate  th e  v ap o u r p ressu re  o f  a liq u id  at any  te m ­
p e ra tu re  fro m  its n o rm a l bo iling  p o in t, th e  te m p e ra tu re  a t w h ich  th e  v ap o u r p re s ­
sure  is 1.00 a tm  (101 kPa). T hus, because the  n o rm a l bo ilin g  p o in t o f  benzene is 
80°C (353 K) an d  (fro m  T able 2 .3), AyapH *  =  30.8 kJ m o l-1, to  calculate th e  vap o u r 
p ressu re  at 20°C  (293 K), we w rite

3.08 X 10ة j  m o l 1 '  1 1 D 3.08 X 104 '  1 1 D

8.3145 j  K-1 m o l-1 C 293 K 353 K ر 8.3145 C293 353 ر



Fig. 4.1ء Near the point where they coincide 
(at the triple point), the solid-gas 
boundary has a steeper slope than the 
liquid-gas boundary because the enthalpy 
o f sublimation is greater than the enthalpy 
o f vaporization and the tem peratures that 
occur in the Clausius-Clapeyron equation 
for the slope have similar values.

an d  su b s titu te  th is value in to  eqn  4.12 w ith  p * =  101 kPa. T he resu lt is 12 kPa. The 
ex p erim en ta l value is 10 kPa.

A note on g o o d  practice  Because ex p onen tia l fu n c tio n s are so sensitive, it is good 
p ractice  to  carry  o u t n u m erica l calcu lations like th is  w ith o u t evaluating  th e  in te r ­
m ed ia te  steps and  using  ro u n d e d  values.

(d) T h e  s o l id -v a p o u r  b o u n d a ry

T he on ly  difference be tw een  th is  case and  the  last is the  rep lacem en t o f  th e  en tha lpy  
o f  v ap o riza tio n  b y  th e  en th a lp y  o f  su b lim atio n , AsubH. Because th e  en th a lp y  o f  su b ­
lim a tio n  is g rea ter th a n  th e  en th a lp y  o f  v ap o riza tio n = مى؛خ)   A ^ H؛  +  AvapH ), the 
eq u a tio n  p red ic ts  a steeper slope fo r th e  su b lim a tio n  curve th a n  fo r th e  v ap o riza ­
tio n  curve at s im ilar tem p era tu res , w h ich  is n ear w here th ey  m eet a t th e  tr ip le  p o in t 
(Fig. 4.15).

4.7 The Ehrenfest classification of phase transitions

T here  are m an y  d ifferen t types o f  phase tran s itio n , in c lu d in g  the  fam iliar exam ples o f 
fu s io n  an d  v ap o riza tio n  an d  th e  less fam iliar exam ples o f  so lid -so lid , c o n d u c tin g -  
su p erco n d u c tin g , an d  flu id -su p e rflu id  tran sitio n s . W e shall n o w  see th a t it is possible 
to  use th e rm o d y n am ic  p ro p e rtie s  o f  substances, and  in  particu la r th e  b eh av io u r o f  the 
chem ical po ten tia l, to  c la s s i^  phase tran s itio n s  in to  d ifferen t types. T he classification 
schem e w as o rig inally  p ro p o sed  b y  P au l E hrenfest, an d  is k n o w n  as th e  E h re n fe s t 
c lassif ica tion .

M an y  fam iliar phase tran sitio n s , like fu s io n  an d  v apo riza tion , are accom pan ied  by 
changes o f  en th a lp y  and  vo lum e. These changes have im p lica tions fo r the  slopes o f  the 
chem ical p o ten tia ls  o f  th e  phases at e ither side o f  th e  phase tran s itio n . T hus, at the 
tra n s itio n  fro m  a phase a  to  an o th e r phase p,

Because Atr؛v  an d  Atr؛H  are n o n -ze ro  fo r m elting  and  vap o riza tio n , it follow s th a t for 
su ch  tran sitio n s  th e  slopes o f  th e  chem ical p o ten tia l p lo tted  against e ither p ressu re  or 
te m p e ra tu re  are d ifferen t o n  e ither side o f  th e  tra n s itio n  (Fig. 4 .16a). In  o th e r w ords, 
th e  first derivatives o f  th e  chem ical po ten tia ls  w ith  respect to  p ressu re  and  te m p e ra ­
tu re  are d isco n tin u o u s  at th e  tran s itio n .

A  tran s itio n  for w h ich  th e  first derivative o f  th e  chem ical p o ten tia l w ith  respect to  
te m p e ra tu re  is d isco n tin u o u s  is classified as a f i r s t-o rd e r  p h a se  tr a n s it io n . T he con- 
s tan t-p ressu re  hea t capacity, Cp, o f  a substance  is th e  slope o f  a p lo t o f  th e  en tha lpy  
w ith  respect to  tem p era tu re . A t a f irs t-o rd e r phase tran s itio n , H  changes b y  a finite 
a m o u n t fo r an  in fin itesim al change o f  tem p e ra tu re . T herefo re , a t th e  tra n s itio n  the 
hea t capacity  is in fin ite . T he physical reason  is th a t h ea tin g  drives th e  tran s itio n  ra th er 
th a n  ra ising  the  tem p era tu re . For exam ple, b o iling  w ater stays at th e  sam e te m p e ra ­
tu re  even th o u g h  heat is be in g  supplied .
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Fig. 4.16 The changes in thermodynam ic properties accompanying (a) ^rst-order and 
(b) second-order phase transitions.

A se c o n d -o rd e r  p h a se  tr a n s i t io n  in  th e  E hrenfest sense is one in  w h ich  th e  first 
derivative o f  !  w ith  respect to  te m p e ra tu re  is co n tin u o u s  b u t its second  derivative is 
d isco n tin u o u s. A  co n tin u o u s  slope o f م   (a  g raph  w ith  th e  sam e slope o n  either side o f 
the  tran s itio n ) im plies th a t th e  vo lum e an d  en tro p y  (an d  hence  th e  en thalpy) do  n o t 
change at the  tra n s itio n  (Fig. 4 .16b). T he heat capacity  is d isco n tin u o u s  at th e  tra n s i­
tio n  b u t does n o t becom e in fin ite  there . A n exam ple o f  a seco n d -o rd e r tran s itio n  is 
the  c o n d u c tin g -su p e rc o n d u c tin g  tran s itio n  in  m etals at low  tem peratures.^

T he te rm  ^ - t r a n s i t io n  is app lied  to  a phase tra n s itio n  th a t is n o t f irs t-o rd e r yet 
the heat capacity  becom es in fin ite  at th e  tran s itio n  tem p era tu re . Typically, the heat 
capacity  o f  a system  th a t show s su ch  a tran s itio n  beg ins to  increase w ell befo re the 
tran s itio n  (Fig. 4 .17), an d  the  shape o f  th e  hea t capacity  curve resem bles th e  G reek 
le tter lam bda . T h is type o f  tran s itio n  inc ludes o rd e r -d iso rd e r  tran s itio n s  in  alloys, the 
onset o f  fe rrom agnetism , an d  th e  flu id -su p e rflu id  tra n s itio n  o f  liqu id  helium .

M olecular in te rp re ta tio n  4.1 Second-order phase transitions and %- transitions

O ne type o f  seco n d -o rd e r tran s itio n  is associated  w ith  a change in  sy m m etry  o f  
the  crystal s tru c tu re  o f  a solid . T hus, suppose  th e  a rran g em en t o f  a tom s in  a solid  
is like th a t rep resen ted  in  Fig. 4.18a, w ith  one d im en sio n  (technically , o f  th e  u n it 
cell) longer th a n  th e  o th e r tw o, w h ich  are equal. S uch a crystal s tru c tu re  is classified 
as te trag o n a l (see Section  20 .1). M oreover, suppose  th e  tw o  sh o rte r  d im ensions 
increase m o re  th a n  th e  long  d im en sio n  w h en  th e  tem p e ra tu re  is raised . T here  m ay  
com e a stage w h en  th e  th ree  d im en sio n s b ecom e equal. A t th a t p o in t th e  crystal has 
cub ic  sy m m etry  (Fig. 4 .18b), an d  at h igher tem p e ra tu re s  it w ill expand  equally  in  
all th ree  d irec tions (because th ere  is n o  longer any  d is tin c tio n  betw een  th e m ). The 
te trag o n a l >  cubic  phase tra n s itio n  has occu rred , b u t as it has n o t involved a d is­
c o n tin u ity  in  th e  in te rac tio n  energy  betw een  th e  a to m s o r th e  vo lum e th ey  occupy, 
the  tran s itio n  is n o t first-o rder.

2 A metallic conductor is a substance with an electrical conductivity that decreases as the temperature in­
creases. A superconductor is a solid that conducts electricity without resistance. See Chapter 20 for more 
details.
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Fig. 4.17 The ^-curve for hehum, where the 
heat capacity rises to infinity. The shape of 
this curve is the origin of the name X- 
transition.



(a)

(b)

(c)

Fig. 4.18 One version of a second-order phase transition in which (a) a tetragonal phase 
expands more rapidly in two directions than a third, and hence becomes a cubic phase, 
which (b) expands uniformly in three directions as the tem perature is raised. There is no 
rearrangement of atoms at the transition temperature, and hence no enthalpy of transition.

Fig. 4.19 An order-disorder transition.
(a) At T  = 0, there is perfect order, with 
different kinds of atoms occupying 
alternate sites. (b) As the tem perature is 
increased, atoms exchange locations and 
islands of each kind of atom  form in 
regions of the solid. Some of the original 
order survives. (c) At and above the 
transition temperature, the islands occur at 
random  throughout the sample.

T he o rd e r -d iso rd e r  tra n s itio n  in  P -b rass (C uZ n) is an  exam ple o f  a ^ -tra n s itio n . 
T he lo w -tem p era tu re  phase is an  o rd erly  array  o f  a lte rn a tin g  C u  and  Z n  a tom s. 
T he h ig h -tem p e ra tu re  phase is a ra n d o m  array  o f  th e  a to m s (Fig. 4 .19). A t T  =  0 the 
o rd e r is perfect, b u t islands o f  d iso rder appear as th e  te m p e ra tu re  is raised. The 
is lands fo rm  because th e  tran s itio n  is cooperative in  the  sense th a t, once tw o a tom s 
have exchanged  locations, it is easier fo r th e ir  n e ig h b o u rs  to  exchange th e ir  loca­
tions. T he islands grow  in  extent, and  m erge th ro u g h o u t th e  crystal at the tran s itio n  
te m p e ra tu re  (742 K). T he hea t capacity  increases as th e  tran s itio n  tem p e ra tu re  
is ap p ro ach ed  because th e  coopera tive  n a tu re  o f  th e  tra n s itio n  m eans th a t it is 
increasing ly  easy fo r th e  hea t sup p lied  to  drive the  phase  tran s itio n  ra th e r th a n  to  
be  s to red  as th e rm a l m o tio n .

Checklist of key ideas

I~1 8. The boiling tem perature is the tem perature at which the
vapour pressure of a liquid is equal to the external pressure.

I~1 9. The critical tem perature is the tem perature at which a liquid 
surface disappears and above which a liquid does not exist 
whatever the pressure. The critical pressure is the vapour 
pressure at the critical temperature.

I~110. A supercritical fluid is a dense fluid phase above the critical 
temperature.

11. The melting tem perature (or freezing tem perature) is the 
tem perature at which, under a specified pressure, the liquid 
and solid phases of a substance coexist in equilibrium.

I~112. The triple point is a point on a phase diagram at which the 
three phase boundaries meet and all three phases are in 
m utual equilibrium.

I~113. The chemical potential م  of a pure substance is the molar 
Gibbs energy of the substance.

I~1 1. A phase is a form of m atter that is uniform throughout in 
chemical composition and physical state.

I~1 2. A transition tem perature is the tem perature at which the two 
phases are in equilibrium.

I~1 3. A metastable phase is a thermodynamically unstable phase 
that persists because the transition is kinetically hindered.

I~1 4. A phase diagram is a diagram showing the regions of pressure 
and tem perature at which its various phases are 
thermodynamically stable.

I~1 5. A phase boundary is a line separating the regions in a phase 
diagram showing the values o fp  and T  at which two phases 
coexist in equilibrium.

I~1 6. The vapour pressure is the pressure of a vapour in equilibrium 
with the condensed phase.

I~1 7. Boiling is the condition of free vaporization throughout the 
liquid.



1 ~ 1 The tem .ل7  perature dependence o f the vapour pressure is given 
by the Clapeyron equation, dp/dT = Atrs5/AtrsV.

I~~l 18. The tem perature dependence o f the vapour pressure of a 
condensed phase is given by the Clausius-Clapeyron 
equation, d ln p /dT  = AvapH /RT 2. 

l~~l 19. The Ehrenfest classification is a classification o f phase
transitions based on the behaviour of the chemical potential.

14. The chemical potential is uniform throughout a system at 
equilibrium.

15. The chemical potential varies with tem perature as 
(d^/dT  )p = —Sm and with pressure as (d !/d p )T = Vm.

I~~l 16. The vapour pressure in the presence of applied pressure is 
given by p = p *eVmAP/RT.
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on of a component from a؛ds for the extract؛cal flu؛t4.5؛ The use of supercr 
 comp،icated m،xture is not confined to the deca،^eination of co،^ee. Consul؛

ibrary and internet resources and prepare a discussion of the princip،es، , 
advantages, disadvantages, and current uses of supercritica، fluid extraction
technology.

4.6 Exp،ain the significance of the C،apeyron equation and of the
C،ausius-C،apeyron equation.

4.7 Distinguish be^een a first-order phase transition, a second-order phase 
.transition, and a ^-transition at both mo،ecu،ar and macroscopic ،eve،s

Discussion questions

4.1 Discuss the implications for phase stability of the variation of chemical 
potential with temperature and pressure.

4.2 Suggest a physical interpretation of the phenomena of superheating and 
supercooling.

4.3 Discuss what would be observed as a sample of water is taken along a path 
that encircles and is close to its critical point.

4.4 Use the phase diagram in Fig. 4.4 to state what would be observed when 
a sample of carbon dioxide, initially at 1.0 atm and 298 K, is subjected to the 
following cycle: (a) isobaric (constant-pressure) heating to 320 K,
(b) isothermal compression to 100 atm, (c) isobaric cooling to 210 K,
(d) isothermal decompression to 1.0 atm, (e) isobaric heating to 298 K.

Exercises

4.2(b) The molar volume of a certain solid is 142.0 cm3 mol-١ at 1.00 atm and
427.15 K, its melting temperature. The molar volume of the liquid at this 
temperature and pressure is 152.6 cm3 mol-  At 1.2 MPa the melting .أ
temperature changes to 429.26 K. Calculate the enthalpy and entropy of 
fusion of the solid.

4.3(a) The vapour pressure of a liquid in the temperature range 200 K to 
260 K was found to fit the expression ln(p/Torr) = 16.255 -  2501.8/(T/K). 
Calculate the enthalpy of vaporization of the liquid.

4.3(b) The vapour pressure of a liquid in the temperature range 200 K to 
260 K was found to fit the expression ln(p/Torr) = 18.361 -  3036.8/(T/K). 
Calculate the enthalpy of vaporization of the liquid.

4.1(a) The vapour pressure of dichloromethane at 24.1°C is 53.3 kPa and its 
enthalpy of vaporization is 28.7 kJ mol-ا  Estimate the temperature at which 
its vapour pressure is 70.0 kPa.

4.1(b) The vapour pressure of a substance at 20.0°C is 58.0 kPa and its 
enthalpy of vaporization is 32.7 kJ mol-ا  Estimate the temperature at which 
its vapour pressure is 66.0 kPa.

4.2(a) The molar volume of a certain solid is 161.0 cm3 mol-  at 1.00 atm and 
350.75 K, its melting temperature. The molar volume of the liquid at this 
temperature and pressure is 163.3 cm3 mol- . At 100 atm the melting 
temperature changes to 351.26 K. Calculate the enthalpy and entropy of 
fusion of the solid.

Further reading in Chapter 2 for additional sources of thermochemical data.



substance will be found in the air if there is no ventilation? (The vapour 
pressures are (a) 3.2 kPa, (b) 13.1 kPa, (c) 0.23 Pa.)

4.7(b) On a cold, dry morning after a frost, the temperature was -5°C and the 
partial pressure of water in the atmosphere fell to 0.30 kPa. Will the frost 
sublime? What partial pressure of water would ensure that the frost remained?

4.8(a) Naphthalene, C10H8, melts at 80.2°C. If the vapour pressure of the 
liquid is 1.3 kPa at 85.8°C and 5.3 kPa at 119.3°C, use the Clausius-Clapeyron 
equation to calculate (a) the enthalpy of vaporization, (b) the normal boiling 
point, and (c) the enthalpy of vaporization at the boiling point.

4.8(b) The normal boiling point of hexane is 69.0°C. Estimate (a) its enthalpy 
of vaporization and (b) its vapour pressure at 25°C and 60°C.

4.9(a) Calculate the melting point of ice under a pressure of 50 bar. Assume 
that the density of ice under these conditions is approximately 0.92 g cm-3 and 
that of liquid water is 1.00 g cm-3.

4.9(b) Calculate the melting point of ice under a pressure of 10 MPa. Assume 
that the density of ice under these conditions is approximately 0.915 g cm-3 
and that of liquid water is 0.998 g cm-3.

4.10(a) What fraction of the enthalpy of vaporization of water is spent on 
expanding the water vapour?

4.10(b) What fraction of the enthalpy of vaporization of ethanol is spent on 
expanding its vapour?

4.4(a) The vapour pressure of benzene between 10°C and 30°C fits the 
expression log(p/Torr) = 7.960 -  1780/(T/K). Calculate (a) the enthalpy of 
vaporization and (b) the normal boiling point of benzene.

4.4(b) The vapour pressure of a liquid between 15°C and 35°C fits the 
expression log(p/Torr) = 8.750 -  1625/(T/K). Calculate (a) the enthalpy of 
vaporization and (b) the normal boiling point of the liquid.

4.5(a) When benzene freezes at 5.5°C its density changes from 0.879 g cm-3 to 
0.891 g cm-3. Its enthalpy of fusion is 10.59 kJ mol-1. Estimate the freezing 
point of benzene at 1000 atm.

4.5(b) When a certain liquid freezes at -3.65°C its density changes from 
0.789 g cm-3 to 0.801 g cm-3. Its enthalpy of fusion is 8.68 kJ mol-1. Estimate 
the freezing point of the liquid at 100 MPa.

4.6(a) In July in Los Angeles, the incident sunlight at ground level has a power 
densi^ of 1.2 kW m-2 at noon. A swimming pool of area 50 m2 is directly 
exposed to the sun. What is the maximum rate of loss of water? Assume that 
all the radiant energy is absorbed.

4.6(b) Suppose the incident sunlight at ground level has a power density of 
0.87 kW m-2 at noon. What is the maximum rate of loss of water from a lake 
of area 1.0 ha? (1 ha = 104 m2.) Assume that all the radiant energy is absorbed.

4.7(a) An open vessel containing (a) water, (b) benzene, (c) mercury stands in 
a laboratory measuring 5.0 m X 5.0 m X 3.0 m at 25°C. What mass of each

Problems*

boiling point of water. The densities of ice and water at 0°C are 0.917 g cm-3 
and 1.000 g cm-3, and those of water and water vapour at 100°C are 0.958 g 
cm-و and 0.598 g dm-و, respectively. By how much does the chemical potential 
of water vapour exceed that of liquid water at 1.2 atm and 100°C?

4.6 The enthalpy of fusion of mercury is 2.292 kJ mol-1, and its normal 
freezing point is 234.3 K with a change in molar volume of+0.517 cm-3 mol-1 
on melting. At what temperature will the bottom of a column of mercury 
(density 13.6 g cm-3) of height 10.0 m be expected to freeze?

4.7 50.0 dm3 of dry air was slowly bubbled through a thermally insulated
beaker containing 250 g of water initially at 25°C. Calculate the final 
temperature. (The vapour pressure of water is approximately constant at
3.17 kPa throughout, and its heat capaci^ is 75.5 j K-1 mol-1. Assume that the 
air is not heated or cooled and that water vapour is a perfect gas.)

4.8 The vapour pressure, p, of nitric acid varies with temperature as follows: 

e /°C  0 20 40 50 70 80 90 100

What are (a) the normal boiling point and (b) the enthalpy of vaporization of 
nitric acid?

4.9 The vapour pressure of the ketone carvone (M = 150.2 g mol-1), a 
component of oil of spearmint, is as follows:

e / °C  57.4 100.4 133.0 157.3 203.5 227.5 

p /T orr 1 . 0 0  1 0 . 0  40.0 1 0 0  400 760

What are (a) the normal boiling point and (b) the enthalpy of vaporization of 
carvone?

N um erical p o b le m s

4.1 The temperature dependence of the vapour pressure of solid sulfur 
dioxide can be approximately represented by the relation log(p/Torr) = 
10.5916 -  1871.2/(T/K) and that of liquid sulfur dioxide by log(p/Torr) = 
8.3186 -  1425.7/(T/K). Estimate the temperature and pressure of the triple 
point of sulfur dioxide.

4.2 Prior to the discovery that ^eon-12 ( م ءح2ب ) was harmful to the Earth’s 
ozone layer, it was frequently used as the dispersing agent in spray cans for 
hair spray, etc. Its enthalpy of vaporization at its normal boiling point of 
-29.2°C is 20.25 kJ mol-1. Estimate the pressure that a can of hair spray using 
freon-12 had to withstand at 40°C, the temperature of a can that has been 
standing in sunlight. Assume that AvapH is a constant over the temperature 
range involved and equal to its value at -29.2°C.

4.3 The enthalpy of vaporization of a certain liquid is found to be 14.4 kJ 
mol-1 at 180 K, its normal boiling point. The molar volumes of the liquid 
and the vapour at the boiling point are 115 cm3 mol-1 and 14.5 dm3 mol-1, 
respectively. (a) Estimate dp/dT from the Clapeyron equation and (b) the 
percentage error in its value if the Clausius-Clapeyron equation is used 
instead.

4.4 Calculate the difference in slope of the chemical potential against 
temperature on either side of (a) the normal freezing point of water and
(b) the normal boiling point of water. (c) By how much does the chemical 
potential of water supercooled to -5.0°C exceed that of ice at that 
temperature?

4.5 Calculate the difference in slope of the chemical potential against pressure 
on either side of (a) the normal freezing point of water and (b) the normal

* Problems denoted by the symbol ي were supplied by Charles Trapp, Carmen Giunta, and Marshall Cady.



4.18 The Clapeyron equation does not apply to second-order phase 
transitions, but there are two analogous equations, the Ehrenfest equations, 
that do. They are:

dp a 2 — a 1 dp = Cp,m2 — Cp,m1
dT Kt 2 — Kt1 dT TVm(a2 — a^

where a is  the expansion coefficient, Kt the isothermal compressibility, and 
the subscripts 1 and 2 refer to ٥٧٠ different phases. Derive these س  
equations. Why does the Clapeyron equation not apply to second-order 
transitions?

4.19 For a first-order phase transition, to which the Clape^on equation does 
apply, prove the relation

,  ,  a VAtrsH
S p A،sV

where Cs = (dq/dT)s is the heat capaci^ along the coexistence curve of two 
phases.

A pplications: to  bio logy an d  eng inee ring

4.20 Proteins are polypeptides, polymers of amino acids that can exist in 
ordered structures stabilized by a variety of molecular interactions. However, 
when certain conditions are changed, the compact structure of a polypeptide 
chain may collapse into a random coil. This structural change may be 
regarded as a phase transition occurring at a characteristic transition 
temperature, the melting temperature, ئ  which increases with the strength 
and number of intermolecular interactions in the chain. A thermodynamic 
treatment allows predictions to be made of the temperature ، f o r  the 
unfolding of a helical polypeptide held together by hydrogen bonds into a 
random coil. If a polypeptide has n amino acids, n — 4 hydrogen bonds are 
formed to form an a-helix, the most common ̂ pe of helix in naturally 
occurring proteins (see Chapter 19). Because the first and last residues in the 
chain are free to move, n -  2 residues form the compact helix and have 
restricted motion. Based on these ideas, the molar Gibbs ener^  of unfolding 
of a polypeptide with n > 5 may be written as

AGm = (n — 4) AhbHm — (n — 2)TAhbSm
where AhbHm and Ahbsm are, respectively, the molar enthalpy and entropy of 
dissociation of hydrogen bonds in the polypeptide. (a) Justify the form of the 
equation for the Gibbs energy of unfolding. That is, why are the enthalpy 
and entropy terms written as (n — 4) AhbH  ̂and (n — 2) AhbS ,̂ respectively?
(b) Show that Tm may be written as

T = (n — 4)AhbHm
“  (n — 2)AhbSm

(c) Plot ، / صى صمأس ) for 5 ك n 20 ك. At what value of n does T^ change 
by less than 1% when n increases by one?

 The use of supercritical fluids as mobile phases in SFC depends on their ي4.21
properties as nonpolar solvents. The solubili^ parameter, s, is defined as
(AUcohesive/Vm)1/2, where AU^esive is the cohesive ener^  of the solvent, the 
energy per mole needed to increase the volume isothermally to an infinite 
value. Diethyl ether, carbon tetrachloride, and dioxane have solubility 
parameter ranges of 7-8, 8-9, and 10-11, respectively. (a) Derive a practical 
equation for the computation of the isotherms for the reduced internal energy 
change, AUr(Tr,Vr) defined as

AUr(Tr,Vr) = د ج س
pcVc

(b) Draw a graph of AUr againstpr for the isotherms Tr = 1,1.2, and 1.5 in the 
reduced pressure range for which 0.7 ك Vr 2 ك. (c) Draw a graph of s againstpr 
for the carbon dioxide isotherms Tr = 1 and 1.5 in the reduced pressure range 
for which 1 ك Vr 3 ك. In what pressure range at Tf = 1 will carbon dioxide have

4.10 Construct the phase diagram for benzene near its triple point at 36 Torr 
and 5.50°C using the following data: AfusH = 10.6 kJ mol—1, AvapH = 30.8 kJ 
mol“1, £(s) = 0.891 g cm“3, p(l) = 0.879 g cm“3.

 .In an investigation of thermophysical properties of toluene (R.D ي4.11
Goodwin j. Phys. Chem. Ref. Data 18, 1565 (1989)) presented expressions for 
two coexistence curves (phase boundaries). The solid-liquid coexistence curve 
is given by

p/bar= p3/bar + 1000 X (5.60 + 11.727تع);ع
where x = T/T3 — 1 and the triple point pressure and temperature are 
p3 = 0.4362 ^bar and T178.15 = و K. The liquid-vapour curve is given by:

ln(p/bar) = —10.418/y + 21.157 — 15.996y + 14.015y  ̂— 5.0120y3 
+ 4.7224(1 — y)L7°

wherey = T/Tc= T/(593.95 K). (a) Plot the solid-liquid and liquid-vapour 
phase boundaries. (b) Estimate the standard melting point of toluene.
(c) Estimate the standard boiling point of toluene. (d) Compute the standard 
enthalpy of vaporization of toluene, given that the molar volumes of the 
liquid and vapour at the normal boiling point are 0.12 dm3 mol' 1 and
30.3 dm3 mol 1, respectively.

 .In a study of the vapour pressure of chloromethane, A. Bah and N ي4.12
Dupont-Pavlovsky (j. Chem. Eng. Data 40, 869 (1995)) presented data for the 
vapour pressure over solid chloromethane at low temperatures. Some of that 
data is shown below:

T /K  145.94 147.96 149.93 151.94 153.97 154.94

Estimate the standard enthalpy of sublimation of chloromethane at 150 K. 
(Take the molar volume of the vapour to be that of a perfect gas, and that of 
the solid to be negligible.)

T heo retica l p ro b lem s

4.13 Show that, for a transition between two incompressible solid phases,
AG is independent of the pressure.

4.14 The change in enthalpy is given by dH = CpdT + Vdp. The Clape^on 
equation relates dp and dT at equilibrium, and so in combination the two 
equations can be used to find how the enthalpy changes along a phase 
boundary as the temperature changes and the two phases remain in 
equilibrium. Show that d(AH/T) = ACp d ln T.

4.15 In the ‘gas saturation method’ for the measurement of vapour pressure, 
a volume V of gas (as measured at a temperature T and a pressure p) is 
bubbled slowly through the liquid that is maintained at the temperature T, 
and a mass loss m is measured. Show that the vapour pressure, p, of the liquid 
is related to its molar mass, M, by p = AmP/(1 + Am), where A = RT/MPV. The 
vapour pressure of geraniol (M = 154.2 g mol-1), which is a component of oil 
of roses, was measured at 110°C. It was found that, when 5.00 dm3 of nitrogen 
at 760 Torr was passed slowly through the heated liquid, the loss of mass was 
0.32 g. Calculate the vapour pressure of geraniol.

4.16 Combine the barometric formula (stated in ImpactI1.1) for the 
dependence of the pressure on altitude with the Clausius-Clapeyron 
equation, and predict how the boiling temperature of a liquid depends on the 
altitude and the ambient temperature. Take the mean ambient temperature 
as 20°C and predict the boiling temperature of water at 3000 m.

4.17 Figure 4.9 gives a schematic representation of how the chemical 
potentials of the solid, liquid, and gaseous phases of a substance vary with 
temperature. All have a negative slope, but it is unlikely that they are truly 
straight lines as indicated in the illustration. Derive an expression for the 
curvatures (specifically, the second derivatives with respect to temperature) of 
these lines. Is there a restriction on the curvature of these lines? Which state of 
matter shows the greatest curvature?



 s the hardest substance and the best؛ ,Diamond, an allotrope of carbon ب4.23
conductor of heat yet characterized. For these reasons, diamond is used widely 
 s؛ t؛ ,n industrial applications that require a strong abrasive. Unfortunately؛
difficult to synthesize diamond from the more readily available allotropes of 
carbon, such as graphite. To illustrate this point, calculate the pressure 
required to convert graphite into diamond at 25°C. The following data apply
to 25°C and 100 kPa. Assume the 
respect to pressure changes.

موءoncend؛
eumvocificep

Graphite Diamond
AfG ̂ /(kJ mol-1) 0 +2.8678
Vs/(cm3g-1) 0.444 0.284
kt /kPa 3.04 X 10-8 0.187 X 10-8

solvent properties similar to those of liquid carbon tetrachloride? Hint. Use 
mathematical software or a spreadsheet.

4.22± A substance as well-known as methane still receives research attention 
because it is an important component of natural gas, a commonly used fossil 
fuel . Friend et al. have published a review of thermophysical properties of 
methane (D.G. Friend, J.F. Ely, and H. Ingham, j. Phys. Chem. Ref. Data 18, 
583 (1989)), which included the following data describing the liquid-vapour 
phase boundary.
T/K 100 108 110 112 114 120 130 140 150 160 170 190 
p/MPa 0.034 0.074 0.088 0.104 0.122 0.192 0.368 0.642 1.041 1.593 2.329 4.521 
(a) Plot the liquid-vapour phase boundary. (b) Estimate the standard boiling 
point of methane. (c) Compute the standard enthalpy of vaporization of 
methane, given that the molar volumes of the liquid and vapour at the 
standard boiling point are 3.80 X 10-2 and 8.89 dm3 mol-1, respectively.



Simple mixtures

This chapter begins by developing the concept of chemical potential to show that it is a par­
ticular case of a class of properties called partial molar quantities. Then it explores how to 
use the chemical potential of a substance to describe the physical properties of mixtures. 
The underlying principle to keep in mind is that at equilibrium the chemical potential of a 
species is the same in every phase. We see, by making use of the experimental observa­
tions known as Raoult’s and Henry’s laws, how to express the chemical potential of a 
substance in terms of its mole fraction in a mixture. With this result established, we can 
calculate the effect of a solute on certain thermodynamic properties of a solution. These 
properties include the lowering of vapour pressure of the solvent, the elevation of its boiling 
point, the depression of its freezing point, and the origin of osmotic pressure. Finally, we see 
how to express the chemical potential of a substance in a real mixture in terms of a prop­
erty known as the activity. We see how the activity may be measured, and conclude with a 
discussion of how the standard states of solutes and solvents are defined and how ion-ion 
interactions are taken into account in electrolyte solutions

C hem istry  deals w ith  m ix tu res, in c lu d in g  m ix tu res  o f  substances th a t can  react 
together. T herefore, w e n eed  to  generalize th e  concep ts in tro d u c e d  so far to  deal w ith  
substances th a t are m ing led  together. As a first step  tow ards dealing  w ith  chem ical 
reac tions (w hich  are trea ted  in  C h ap te r 7), here  w e consider m ix tu res  o f  substances 
th a t do  n o t react toge ther. A t th is  stage we deal m ain ly  w ith  binary mixtures, w h ich  are 
m ix tu res  o f  tw o co m p o n en ts , A  an d  B. W e shall the re fo re  o ften  be  able to  sim plify  
equa tions by  m ak in g  use o f  the  re la tio n  xA +  xB =  1.

The thermodynamic description of mixtures
W e have already  seen th a t the  p a rtia l p ressu re , w h ich  is th e  co n tr ib u tio n  o f  one c o m ­
p o n e n t to  the  to ta l p ressure, is u sed  to  discuss the  p ro p ertie s  o f  m ix tu res  o f  gases. For 
a m o re  general d escrip tion  o f  the  th erm o d y n am ics  o f  m ix tu res  w e n eed  to  in tro d u ce  
o th e r analogous ‘p a rtia l’ p ropertie s .

5.1 Partial molar quantities
T he easiest p a rtia l m o lar p ro p e r ty  to  visualize is the  ‘p artia l m o la r v o lu m e’, th e  c o n ­
tr ib u tio n  th a t a c o m p o n e n t o f  a m ix tu re  m akes to  the  to ta l vo lum e o f  a sam ple.

(a) P a rtia l m o la r  v o lu m e

Im agine a huge vo lum e o f  p u re  w ater a t 25°C. W h en  a fu r th e r 1 m o l H 2O is added , the 
vo lum e increases b y  18 cm^ and  we can  re p o r t th a t 18 cm^ m o l-1 is the  m o la r vo lum e
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Fig. 1.ء The partial molar volumes of 
water and ethanol at 25°C. Note the 
different scales (water on the le^ ,̂ ethanol 
on the right).

A m oun t o f A, nA

Fig. 5.2 The partial molar volume of a 
substance is the slope of the variation of the 
total volume of the sample plotted against 
the composition. In general, partial molar 
quantities vary with the composition, as 
shown by the different slopes at the 
compositions a and b . Note that the partial 
molar volume at b is negative: the overall 
volume o f the sample decreases as A is 
added.

o f  p u re  w ater. H ow ever, w h en  we ad d  1 m o l H 2O to  a huge vo lum e o f  p u re  e thanol, 
th e  vo lum e increases by  o n ly  14 cm^. T he reaso n  for th e  d ifferen t increase in  vo lum e 
is th a t th e  vo lum e occup ied  b y  a given n u m b e r o f  w ater m olecu les d epends o n  the 
id en tity  o f  th e  m olecu les th a t s u r ro u n d  th em . In  th e  la tte r case there  is so m u ch  
e th an o l p resen t th a t each H 2O m olecu le  is su rro u n d e d  b y  e th an o l m olecules, an d  the 
pack ing  o f  th e  m olecu les resu lts  in  the  H 2O m olecu les increasing  th e  vo lum e b y  only  
14 cm^. T he q u an tity  14 cm^ m o l-1 is th e  p artia l m o la r vo lum e o f  w ater in  p u re  
e thano l. In  general, th e  p a r t ia l  m o la r  v o lu m e  o f  a substance  A in  a m ix tu re  is the 
change in  vo lum e per m ole o f  A ad d ed  to  a large vo lum e o f  th e  m ix tu re .

T he p a rtia l m o la r vo lum es o f  the  co m p o n en ts  o f  a m ix tu re  vary  w ith  com p o sitio n  
because th e  e n v iro n m en t o f  each type o f  m olecu le  changes as th e  com p o s itio n  
changes fro m  p u re  A  to  p u re  B. It is th is  chang ing  m o lecu la r en v iro n m en t, an d  the 
co n sequen tia l m o d ifica tion  o f  th e  forces acting  betw een  m olecules, th a t resu lts  in  the 
v a ria tio n  o f  th e  th e rm o d y n am ic  p ro p ertie s  o f  a m ix tu re  as its co m p o s itio n  is changed. 
T he p a rtia l m o la r vo lum es o f  w ater an d  e th an o l across th e  full co m p o s itio n  range at 
25°C  are show n  in  Fig. 5.1.

T he p a rtia l m o lar vo lum e, Vj , o f  a substance  j  a t som e general co m p o s itio n  is 
defined  fo rm ally  as follows:

[5.1]
dV

^ nJ رp,T,n'
VJ =

w here  th e  su b scrip t n signifies th a t th e  am o u n ts  o f  all o th e r substances p resen t are 
c o n s ta n t.1 T he p a rtia l m o la r vo lum e is th e  slope o f  the  p lo t o f  the  to ta l vo lum e as the 
a m o u n t o f  j  is changed , th e  p ressure, tem p e ra tu re , an d  a m o u n t o f  th e  o th e r c o m p o n ­
en ts  be ing  c o n stan t (Fig. 5.2). Its value d epends o n  th e  co m p o sitio n , as w e saw  for 
w ater an d  e thano l. T he defin ition  in  eqn  5.1 im plies th a t, w h en  the  co m p o s itio n  o f  the 
m ix tu re  is changed  b y  th e  ad d itio n  o f  d n A o f  A an d  dn B o f  B, th e n  th e  to ta l vo lum e of 
th e  m ix tu re  changes by

(5.2)d n B =  VAdnA +  VBd n B
p,T,nA

dV

d n R
d nA +

p,T,nB

dV
d V =

P rov ided  th e  co m p o s itio n  is he ld  co n stan t as th e  am o u n ts  o f  A  an d  B are increased , 
th e  final vo lum e o f  a m ix tu re  can  be  calcu lated  b y  in teg ra tio n . Because th e  partia l 
m o la r vo lum es are c o n stan t (p ro v id ed  th e  co m p o s itio n  is he ld  co n stan t th ro u g h o u t 
th e  in teg ra tio n ) we can  w rite

d n
f nA '،B f nA

V^dnA + VBd n B =  VA d n A +  VB
0 0 0

V =

(5.3)=  VAnA +  VBnB

A lth o u g h  we have envisaged th e  tw o in teg ra tio n s as b e in g  linked  (in  o rd e r to  preserve 
c o n stan t co m p o s itio n ), because V is a sta te  fu n c tio n  th e  final resu lt in  eqn  5.3 is valid  
how ever the  so lu tio n  is in  fact p repared .

P artia l m o la r vo lum es can  be m easu red  in  several ways. O ne m e th o d  is to  m easure 
th e  d ependence  o f  th e  vo lum e on  the  co m p o s itio n  an d  to  fit th e  observed  vo lum e to  a 
fu n c tio n  o f  the  a m o u n t o f  th e  substance . O nce th e  fu n c tio n  has b een  fo u n d , its slope 
can  be  d e te rm in ed  a t any  co m p o s itio n  o f  in te res t b y  d ifferen tia tion .

1 The IUPAC recommendation is to denote a partial molar quantity by }, but only when there is the pos­
sibility of confusion with the quantity X. For instance, the partial molar volume of NaCl in water could be 
written ^(NaCl, aq) to distinguish it from the volume of the solution, V(NaCl, aq).



Illustration 5.1 The determination of partial molar volume

I w a te r/e th an o l m ix tu re

cm 3 m o l 1
hT,nW

A p o ly n o m ia l fit to  m easu rem en ts  o f  th e  to ta l vo lum e I 
at 25°C  th a t co n ta in s 1.000 kg o f  w ater is

C م H 3C H 2O H  p resen t. The

v =  1002.93 +  54. 66643 ع- 0.363 94ع2 + 0.028 256ع  
w here v =  V /cm 3, x  =  n E/m o l, an d  n E is th e  a m o u n t
p artia l m o la r vo lum e o f  e thano l, VE, is therefo re

Ve =
'  dV  D

C ة  n E رp,T,nW

A 3 (V /cm 3) D 

C ^ n E/m o l) ر
cm 3 m o l-1 =

p,T,nW

م ة  v ا

0)ع2 0)ع + 3(028256. .36394)2 - 54.6664 -=

T hen , because

0)ع2 0)ع + 3(028256. ي = 54.6664 - 2(36394.
d x

we can conclude  th a t

VE/(c m 3 m o l-1) =  54.6664 -  0.727880.084768 +  x2ع 

Figure 5.3 is a g raph  o f  th is  fun c tio n .

Self-test 5.1 A t 25°C, th e  density  o f  a 50 p e r cen t b y  m ass e than o l/w a te r so lu tio n  
is 0.914 g cm -3. G iven th a t the  p a rtia l m o la r vo lum e o f  w ater in  th e  so lu tio n  is
17.4 cm 3 m o l-1, w hat is th e  p a rtia l m o la r vo lum e o f  the  ethanol?

[56.4 cm 3 m o l-1]

Fig. 5.3 The partial molar volume of ethanol 
as e^ re ssed  by the polynomial in 
Illustration 5.1.

Il j. Exploration Using the data from
Illustration 5.1, determine the value 

of b at which VE has a m inim um  value.

M olar vo lum es are always positive, b u t p a rtia l m o la r qu an tities  need  n o t be. For ex­
am ple, the  lim itin g  p artia l m o la r vo lum e o f  M gSO 4 in  w ater (its p artia l m o la r vo lum e 
in  th e  lim it o f  zero  co n cen tra tio n ) is - 1 .4  cm 3 m o l-1, w h ich  m ean s th a t th e  ad d itio n  
o f  1 m o l M gSO 4 to  a large vo lum e o f  w ater resu lts in  a decrease in  vo lum e o f  1.4 cm 3. 
T he m ix tu re  co n trac ts  because th e  salt b reaks u p  th e  o p en  s tru c tu re  o f  w ater as the 
ions b ecom e hyd ra ted , an d  it  collapses slightly.

(b) P a rtia l m o la r  G ib b s  e n e rg ie s

T he concep t o f  a p a rtia l m o la r q u an tity  can  be  ex tended  to  any  extensive sta te  fu n c ­
tio n . For a substance  in  a m ix tu re , th e  chem ical p o ten tia l is defined as th e  partia l m olar 
G ibbs energy:

[5.4]
p,T,n'

T h at is, th e  chem ical p o ten tia l is th e  slope o f  a p lo t o f  G ibbs energy  against th e  a m o u n t 
o f  th e  c o m p o n e n t j,  w ith  th e  p ressu re  an d  tem p e ra tu re  (an d  th e  am o u n ts  o f  the  o th e r 
substances) h e ld  co n stan t (Fig. 5.4). For a p u re  substance  we can  w rite  G =  njGj m, and  
fro m  eqn  5.4 o b ta in  jij =  Gj m: in  th is  case, th e  chem ical p o ten tia l is sim p ly  th e  m o lar 
G ibbs energy  o f  th e  substance , as we u sed  in  C h ap te r 4.

By th e  sam e a rg u m en t th a t led to  eqn  5.3, it follow s th a t th e  to ta l G ibbs energy  o f  a 
b in a ry  m ix tu re  is

G  =  nA^A +  nB^B (5 .5)

w here ^ A an d  ^ B are th e  chem ical p o ten tia ls  at the  co m p o s itio n  o f  th e  m ix tu re . T hat 
is, th e  chem ical p o ten tia l o f  a substance  in  a m ix tu re  is th e  co n tr ib u tio n  o f  th a t

تأ

ج
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Fig. 5.4 The chemical potential o f a 
substance is the slope of the total Gibbs 
energy of a mixture with respect to the 
am ount o f substance of interest. In general, 
the chemical potential varies with 
composition, as shown for the two values 
at a and b. In this case, both chemical 
potentials are positive.



substance  to  the  to ta l G ibbs energy  o f  th e  m ix tu re . Because th e  chem ical po ten tia ls  
d ep en d  o n  co m p o s itio n  (an d  th e  p ressu re  an d  te m p e ra tu re ), the  G ibbs energy  o f  a 
m ix tu re  m ay  change w h en  these variables change, an d  fo r a system  o f  c o m p o n en ts  A, 
B, etc., th e  eq u a tio n  d G  =  Vdp  -  Sd T becom es

dG  =  Vdp -  SdT  +  +  ^ d n B +  *** (5.6)

This expression is the fu n d a m e n ta l e q u a tio n  o fch em ica l th e rm o d y n am ics . Its im plica­
tio n s  an d  consequences are exp lo red  an d  developed  in  th is an d  th e  nex t tw o chapters. 

A t c o n stan t p ressu re  and  tem p e ra tu re , eqn  5.6 sim plifies to

dG  =  ^ Adn A +  ^ Bdn B +  • • •  (5.7)

W e saw  in  Section  3.5e th a t u n d e r  th e  sam e co n d itio n s  dG  =  dw „jj „„„. T herefo re , at
auu)iiiaA

c o n stan t te m p e ra tu re  an d  p ressu re,

d ™add,max =  *،Adn A +  ^BdnB +  • • •  (5.8 )

T h a t is, ad d itio n a l (n o n -ex p an sio n ) w o rk  can arise fro m  the  chang ing  co m p o s itio n  o f 
a system . For in stance , in  an  e lec trochem ical cell, th e  chem ical reac tio n  is a rranged  to  
take place in  tw o d is tinc t sites (a t th e  tw o e lec trodes). T he electrical w o rk  th e  cell p e r ­
fo rm s can be  traced  to  its changing com position  as p roduc ts  are fo rm ed  fro m  reactants.

(c) T h e  w id e r  s ig n if ic a n c e  of th e  c h e m ic a l p o te n t ia ؛

T he chem ical p o ten tia l does m o re  th a n  show  h o w  G  varies w ith  co m p o sitio n . Because 
G =  U  +  p V -  TS, an d  th ere fo re  U  = —p V  +  TS  +  G, we can  w rite  a general in fin itesim al 
change in  U  fo r a system  o f  variable co m p o s itio n  as

d U  = - p d V -  Vdp +  SdT  +  TdS +  dG

= —p d V -  Vdp +  S dT  +  TdS +  (V dp -  S dT  +  ^AdnA +  ^BdnB +  • • •)

=  —p d V  +  TdS +  +  • • '

T h is expression  is th e  genera liza tion  o f  eqn  3.43 (th a t d U  =  TdS -  p d V ) to  system s in  
w h ich  the  co m p o s itio n  m ay  change. It follow s th a t at co n stan t vo lum e an d  en tropy ,

d U  = ^ Ad n A +  ^ Bd n B +  • • •  (5.9)

an d  hence  th a t

Mj = —  (5.10)
ا  d n J ر S,V,n'

T herefo re , n o t o n ly  does th e  chem ical p o ten tia l show  ho w  G changes w h en  the  c o m ­
p o sitio n  changes, it also show s h o w  th e  in te rn a l energy  changes to o  (b u t u n d e r  a 
d ifferen t set o f  con d itio n s). In  th e  sam e w ay it is easy to  deduce th a t

(5.11)
V,T,n^ n]

(a) MJ =  ٦  ̂ (b ) MJ =
0 ا  n J Js,p,n'

T h u s we see th a t th e  Mj show s h o w  all the  extensive th e rm o d y n am ic  p ro p ertie s  U, H , 
A , an d  G d ep en d  o n  th e  co m p o sitio n . T his is w hy  th e  chem ical p o ten tia l is so cen tra l 
to  chem istry .

(d) T h e  G ib b s -D u h e m  e q u a tio n

Because the  to ta l G ibbs energy  o f  a b in a ry  m ix tu re  is given b y  eqn  5.5 an d  the 
chem ical po ten tia ls  dep en d  o n  th e  co m p o sitio n , w h en  th e  co m p o sitio n s are changed  
in fin itesim ally  we m ig h t expect G o f  a b in a ry  system  to  change by

dG  =  MAdn A +  MBd n B +  nAd MA + n Bd ،̂B



H ow ever, we have seen th a t at co n stan t p ressu re  an d  te m p e ra tu re  a change in  G ibbs 
energy  is given b y  eqn  5.7. Because G is a sta te  fu n c tio n , these tw o equa tions m u s t be 
equal, w h ich  im plies th a t at co n stan t tem p e ra tu re  an d  pressu re

nAd،uA +  n Bd،uB =  0 (5.12a)

T his eq u a tio n  is a special case o f  th e  G ib b s -D u h e m  e q u a tio n :

X  =  0 (5.12b)
ل

T he significance o f  the  G ib b ^ D u h e m  eq u a tio n  is th a t th e  chem ical p o ten tia l o f  one 
co m p o n en t o f  a m ix tu re  c an n o t change in d ep en d e n tly  o f  th e  chem ical p o ten tia ls  o f  
the  o th e r co m p o n en ts . In  a b in a ry  m ix tu re , if  one p artia l m o la r q u a n tity  increases, 
th e n  th e  o th e r m u s t decrease, w ith  th e  tw o changes re la ted  by

d،^B =  - _ — d!  (5 .13)
nB

T he sam e line o f  reaso n in g  applies to  all p artia l m o la r quan tities. W e can  see in  
Fig. 5.1, for exam ple, th a t, w here th e  p artia l m o la r vo lum e o f  w ater increases, th a t 
o f  e th an o l decreases. M oreover, as eqn  5.13 show s, an d  as we can  see fro m  Fig. 5.1, a 
sm all change in  th e  p a rtia l m o la r vo lum e o f  A  co rresp o n d s to  a large change in  the 
p artia l m o lar vo lum e o f  B if  nA/n B is large, b u t th e  opposite  is tru e  w h en  th is  ra tio  is 
sm all. In  practice , th e  G ib b s-D u h e m  eq u a tio n  is u sed  to  d e te rm in e  th e  p artia l m o lar 
vo lum e o f  one c o m p o n e n t o f  a b in a ry  m ix tu re  fro m  m easu rem en ts  o f  the  partia l 
m o lar vo lum e o f  the  second  co m p o n en t.

Example 5.1 Using the Gibbs-Duhem equation

T he ex perim en ta l values o f  the  p artia l m o la r vo lum e o f  K2S O ^ a q ) at 298 K are 
fo u n d  to  fit th e  expression

vB =  32.280 +  18.216x1/2

w here vB =  y K SO /( c m 3 m o l-1) an d  x  is th e  n u m erica l value o f  th e  m o la lity  o f 
K2SO 4 (x  =  b/b7 ; see Com m ent 5.1). U se th e  G ib b s-D u h e m  eq u a tio n  to  derive an 
eq u a tio n  fo r th e  m o lar vo lum e o f  w ater in  th e  so lu tio n . T he m o lar vo lum e o f  p u re  
w ater at 298 K is 18.079 cm 3 m o l-1.

M ethod  Let A  den o te  H 2O , th e  solvent, and  B deno te  K2S O ^ the  solu te. The 
G ib b s-D u h e m  eq u a tio n  for the  p artia l m o la r vo lum es o f  tw o  co m p o n en ts  is 
nAdVA +  n Bd ^ B =  0. T h is re la tio n  im plies th a t dvA= - ( n B/nA)dvB, an d  th ere fo re  th a t 
vA can be  fo u n d  b y  in teg ra tion :

n
—  dvBvA =  vA -
nA

w here vA =  y A/(c m 3 m o l-1) is th e  n u m erica l value o f  th e  m o la r vo lum e o f  p u re  A. 
T he first step  is to  change th e  variable vB to  x  =  b/b7  an d  th e n  to  in teg ra te  th e  righ t- 
h a n d  side betw een  x  =  0 (p u re  B) an d  th e  m o la lity  o f  in terest.

Answer It follow s fro m  th e  in fo rm a tio n  in  th e  q u estio n  th a t, w ith  B =  K2SO4, 
dvB/d x  =  9.108x-1/2. T herefore , th e  in teg ra tio n  req u ired  is

b/b 7م
vB =  v *  - إ— 9.108   x -1/2d x

ل0  nA

Comment 5.1
The m olar concentration (colloquially, 
th e  ‘m olarity ’, [j ] o r Cj) is th e  am oun t o f 
solute divided by  th e  volum e o f  the 
so lu tion  and  is usually expressed in 
m oles p e r cubic decim etre (m ol dm -3). 
W e w rite c7 = 1 m ol dm -3. The term  
molality, b, is th e  am oun t o f  solute 
divided by  th e  m ass o f solvent and  is 
usually expressed in  m oles p e r kilogram  
o f solvent (m ol kg-1). W e w rite b7 =
1 m ol kg-1.
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Fig. 5.5 The partial molar volumes o f the 
components o f an aqueous solution of 
potassium sulfate.

Fig. 5.6 The arrangement for calculating the 
thermodynam ic functions of mixing of two 
perfect gases.

H ow ever, th e  ra tio  o f  am o u n ts  o f  A  (H 2O ) an d  B (K2SO 4) is re la ted  to  th e  m ola lity  
o f  B, b =  n B/(1  kg w ater) an d  nA =  (1 kg w a te r)/M A w here M A is th e  m o la r m ass o f 
w ater, by

=  bMA =  xb7M A
nBM AnBnB

nA (1 k g )/M A 1 

an d  hence

'b/b7
{3/2(9.108M Ab7 (b/b7- = vA -؛  vA -  9.108M Ab* x 1/2d x  =  vA

ر0
It th e n  follow s, b y  su b s titu tin g  th e  da ta  (in c lud ing  M A =  1.802 X 10- 2 kg m o l-1, the 
m o la r m ass o f  w ate r) , th a t

VA/(c m 3 m o l-1) =  18.079 -  0 .1 0 9 4 ( b b  )3/2

T he p a rtia l m o la r vo lum es are p lo tted  in  Fig. 5.5.

Self-test 5.2  R epeat th e  ca lcu la tion  fo r a salt B fo r w h ich  VB/(c m 3 m o l-1) =  6.218 
+  5.146b -  7.147b2. [VA/(c m 3 m o l-1) =  18.079 -  0 .0464b2 +  0.0859b3]

5.2 The thermodynamics of mixing

T he d ependence  o f  th e  G ibbs energy  o f  a m ix tu re  on  its co m p o s itio n  is given by  
eqn  5.5, an d  w e k n o w  th a t at co n stan t tem p e ra tu re  an d  p ressu re  system s te n d  tow ards 
low er G ibbs energy. T h is is th e  lin k  w e n eed  in  o rd e r to  app ly  th erm o d y n am ics  to  the 
d iscussion  o f  sp o n tan eo u s  changes o f  co m p o sitio n , as in  th e  m ix in g  o f  tw o  su b ­
stances. O ne sim ple exam ple o f  a sp o n tan eo u s  m ix ing  process is th a t o f  tw o  gases 
in tro d u ced  in to  the sam e con ta iner. T he m ix ing  is spon taneous, so it m u s t co rrespond  
to  a decrease in  G . W e shall now  see how  to  express th is idea quantita tively .

(a) T h e  G ib b s  e n e rg y  of m ixing of p e r f e c t  g a s e s

Let th e  a m o u n ts  o f  tw o perfec t gases in  th e  tw o co n ta in ers  be nA an d  n B; b o th  are at 
a tem p e ra tu re  T  an d  a p ressu re  p  (Fig. 5.6). A t th is stage, th e  chem ical p o ten tia ls  o f 
th e  tw o gases have th e ir  ‘p u re ’ values, w h ich  are ob ta in ed  b y  app ly ing  th e  d efin ition  
! =  G ^ to  eqn  3.57:

(5.14a)°

w here م   is th e  s ta n d a rd  ch em ica l p o te n tia l , th e  chem ical p o ten tia l o f  th e  p u re  gas 
a t 1 b a r. It w ill be  m u c h  sim pler n o ta tio n a lly  if  we agree to  let p  d en o te  th e  pressure 
relative to  p*; th a t is, to  replace p/p7 b y  p , fo r th e n  we can  w rite

{5.14b}°

E quations fo r w h ich  th is co n v en tio n  is u sed  w ill be  labelled 2 إ1,} إ }, . . . ;  to  use the 
equa tions, w e have to  rem em b er to  replace p  b y  p/p7 again. In  p ractice , th a t sim ply  
m ean s u sin g  th e  n u m erica l value o f  p  in  bars . T he G ibbs energy  o f  the  to ta l system  is 
th e n  given b y  eqn  5.5 as

.15}°i =  ua ! a +  « b !b  =  « a ( ! a  +  R T  ln  p ) +  « b (!b  +  R T  ln  p )



are p A an d  p B, w ith  pA+ p B= p . T he to ta l

إ5.16إ°

(5.17)°

, is there fo re

A fter m ixing, th e  p a rtia l p ressu res o f  th e  g 
G ibbs energy  changes to

Gf =  +  R T  ln  p a ) + خ)%  ي  +  R T  ln  pb)

T he difference Gf -  Gi, th e  G ib b s en e rg y  o f  m ix in g , A

nB R ن T  ln + ؛-AmixG =  nAR T ظ 

A t th is  p o in t we m ay  replace n  b y  Xjn, w here n is the  to ta l a m o u n t o f  A  an d  B, and  
use th e  re la tio n  betw een  p a rtia l p ressu re  an d  m o le  frac tio n  (Section  1.2b) to  w rite 
p j/p  =  Xj fo r each co m p o n en t, w h ich  gives

(5.18)°I =  nRT(xA ln  XA +  XB ln  XB

Because m o le  frac tions are never greater th a n  1, th e  lo g arith m s in  th is  eq u a tio n  are 
negative, an d  AmixG < 0 (Fig. 5.7). T he co nc lu s ion  th a t A ^ixG is negative fo r all c o m ­
p ositions confirm s th a t perfect gases m ix  sp o n tan eo u sly  in  all p ro p o rtio n s . H ow ever, 
the equation  extends co m m o n  sense b y  allow ing us to  discuss th e  process quantitatively.

Exam ple 5.2 Calculating a Gibbs energy of mixing

A co n ta in e r is d iv ided  in to  tw o equal co m p artm en ts  (Fig. 5.8). O ne con ta in s 
3.0 m o l H 2(g) at 25°C; th e  o th e r con ta in s 1.0 m o l N 2(g) a t 25°C. C alculate the 
G ibbs energy  o f  m ix ing  w h en  th e  p a rtit io n  is rem oved . A ssum e perfect behav iou r.

M ethod  E q u a tio n  5.18 can n o t be u sed  d irectly  because th e  tw o  gases are in itia lly  at 
d ifferen t p ressures. W e p ro ceed  b y  calcu lating  th e  in itia l G ibbs energy  fro m  the 
chem ical po ten tia ls . T o  do  so, w e n eed  th e  p ressu re  o f  each gas. W rite  th e  p ressu re  
o f  n itro g en  as p; th e n  th e  p ressu re  o f  h y d rogen  as a m u ltip le  o fp  can  be fo u n d  fro m  
the  gas laws. N ext, calculate the  G ibbs energy  fo r th e  system  w h en  th e  p a rtit io n  is 
rem oved . T he vo lum e occup ied  by  each gas doubles , so its in itia l p a rtia l p ressu re  is 
halved.

A nswer G iven th a t th e  p ressu re  o f  n itro g en  is p , th e  p ressu re  o f  hyd ro g en  is 3p; 
therefo re , the  in itia l G ibbs energy  is

Gi =  (3.0 m o l) ^؛ ( H 2) +  R T  ln  3p} +  (1.0 m o l) ^؛ ( N 2) +  R T  ln  p}

W h en  th e  p a rtit io n  is rem oved  an d  each gas occupies tw ice the  o rig inal vo lum e, 
the  p a rtia l p ressu re  o f  n itro g en  falls to  - p  and  th a t o f  h y d ro g en  falls to  - p .  T h e re ­
fore, the  G ibbs energy  changes to

Gf =  (3.0 m o l) ^؛ ( H 2) +  R T  ln  -p }  +  (1.0 m o l) ^؛ ( N 2) +  R T  ln  -p }

T he G ibbs energy  o f  m ix ing  is th e  difference o f  these tw o quan tities:

3.0 m o l)R T  ln) ؛=

=  —(3.0 m o l)R T ln 2  -  (1.0 m o l)R T ln 2  

=  - ( 4 .0  m o l)R T  ln2 =  -6 .9  k j

In  th is exam ple, th e  value o f  AmixG is th e  su m  o f  tw o co n trib u tio n s: th e  m ix ing  
itself, an d  th e  changes in  p ressu re  o f  the  tw o  gases to  th e ir final to ta l p ressu re , 2p. 
W h en  3.0 m o l H 2 m ixes w ith  1.0 m o l N 2 at th e  sam e pressu re , w ith  th e  vo lum es o f 
the  vessels ad ju s ted  accordingly , the  change o f  G ibbs energy  is - 5 .6  kj.

-  p  D A -  p  D
— + (1.0 m o l)R T ln

1 3p F l  p  F

T
ccء

<

M ole fraction  of A, xA

Fig. 5.7 The Gibbs energy of mixing of two 
perfect gases and (as discussed later) of two 
liquids that form an ideal solution. The 
Gibbs energy of mixing is negative for all 
compositions and temperatures, so perfect 
gases mix spontaneously in all proportions.

م 11  Exploration Draw graphs of A^^G 
against XA at different temperatures 

in the range 298 K to 5هه K. For what value 
of XA does A^^G depend on temperature 
most strongly?

Fig. 5.8 The initial and final states 
considered in the calculation of the Gibbs 
energy of mixing of gases at different initial 
pressures.
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Fig. 5.9 The entropy of mixing of two 
perfect gases and (as discussed later) o f two 
liquids that form  an ideal solution. The 
entropy increases for all compositions 
and temperatures, so perfect gases mix 
spontaneously in all proportions. Because 
there is no transfer of heat to  the 
surroundings when perfect gases mix, the 
entropy of the surroundings is unchanged. 
Hence, the graph also shows the total 
entropy of the system plus the 
surroundings when perfect gases mix.

م-------------------١

A(g) + B(g)

—  —  rt،(g,p)

Equal at 
equ ilib rium

A,,) + B,,,— * (l)

Fig. 5.10 At equilibrium, the chemicai 
potential of the gaseous form of a substance 
A is equal to the chemical potential of its 
condensed phase. The equality is preserved 
if a solute is also present. Because the 
chemical potential o f A in the vapour 
depends on its partial vapour pressure, it 
follows that the chemical potential of liquid 
A can be related to its partial vapour 
pressure.

Self-test 5 .3  Suppose th a t 2.0 m o l H 2 at 2.0 a tm  an d  25°C and  4.0 m o l N 2 at 
3.0 a tm  an d  25°C  are m ixed  at co n stan t vo lum e. C alculate AmixG. W h a t w o u ld  be 

[ixG h a d  th e  p ressu res b een  iden tica l initially? [-9 .7  kJ, - 9 .5  k J؛؛؛th e  value o f  A

(b) O th e r  th e rm o d y n a m ic  m ix ing  fu n c t io n s

Because (dG/dT)p n =  -S ,  it follow s im m ed ia te ly  fro m  eqn  5.18 th a t, fo r a m ix tu re  
perfect gases in itia lly  at th e  sam e p ressu re , the  en tro p y  o f  m ix ing , A ^ixS, is

=  -n R (x A l n xA +  xBln x B) (5.19)°
,nA,nBd T

AmixS

Because ln  x  < 0, it follow s th a t A ^ixS > 0 for all co m p o sitio n s (Fig. 5.9). For equal 
a m o u n ts  o f  gas, for in stance , w e set xA =  xB =  — and  o b ta in  A ^ixS =  nR ln  2, w ith  n the  
to ta l a m o u n t o f  gas m olecules. T his increase in  en tro p y  is w ha t we expect w h en  one 
gas d isperses in to  th e  o th e r and  th e  d iso rder increases.

W e can calculate th e  iso therm al, isobaric  (co n s tan t p ressu re) e n th a lp y  o f  m ix ing , 
A؛؛؛ixH , th e  en th a lp y  change accom pany ing  m ixing, o f  tw o perfect gases fro m  AG = 
A H  -  TAS. It follow s fro m  eqns 5.18 and  5.19 th a t

Amix H  =  0 (5.20)°

T he en th a lp y  o f  m ix ing  is zero, as w e sh o u ld  expect for a system  in  w h ich  th ere  are no  
in te rac tio n s  be tw een  th e  m olecu les fo rm in g  th e  gaseous m ix tu re . It follow s th a t the 
w hole o f  the  d riv ing  force fo r m ix ing  com es fro m  th e  increase in  en tro p y  o f  the  sys­
tem , because th e  en tro p y  o f  the  su rro u n d in g s  is unchanged .

5.3 The chemical potentials of ■؛qu؛ds
T o discuss th e  eq u ilib r iu m  p ro p ertie s  o f  liq u id  m ix tu res  we need  to  k n o w  h o w  the 
G ibbs energy  o f  a liqu id  varies w ith  co m p o sitio n . T o  calculate its value, w e use the  fact 
th a t, at eq u ilib riu m , th e  chem ical po ten tia l o f  a substance  p resen t as a v ap o u r m u s t be 
equal to  its chem ical p o ten tia l in  th e  liqu id .

(a) )deal s o lu tio n s

W e shall den o te  q u an tities  re la ting  to  p u re  substances b y  a su p erscrip t *, so th e  ch e m ­
ical p o ten tia l o f  p u re  A  is w ritten  ^A, and  as ^A (l) w h en  we n eed  to  em phasize th a t 
A  is a liqu id . Because th e  v ap o u r p ressu re  o f  th e  p u re  liqu id  is pA, it follow s fro m  
eqn  5.14 th a t the  chem ical p o ten tia l o f  A  in  th e  v ap o u r (trea ted  as a perfec t gas) is بمر 
+ R T  ln  pA (w ith  p A to  be in te rp re ted  as the  relative p ressu re  p A/p7 ). These tw o ch em ­
ical p o ten tia ls  are equal at eq u ilib riu m  (Fig. 5.10), so we can  w rite

، م = ص ب  +  R T  ln  pA 5. ؛21 }

If  an o th e r substance , a so lu te , is also p resen t in  th e  liqu id , th e  chem ical p o ten tia l o f  A 
in  th e  liqu id  is changed  to ه   an d  its v ap o u r p ressu re  is changed  to  p A. T he v ap o u r and  
so lven t are still in  eq u ilib riu m , so we can  w rite

Ma = + ص   R T  ln  pA 5. ؛22 }

N ext, w e com bine  these tw o eq u a tio n s to  e lim inate  th e  s tan d a rd  chem ical p o ten tia l o f 
th e  gas. T o do  so, we w rite  eqn  5.21 as م بمر =ب  -  R T  ln  pA an d  su b stitu te  th is  expres­
sio n  in to  eqn  5.22 to  ob ta in



m ethy lbenzene , x(C 6H5CH3)M ole fraction  of A, x A

Fig. 5.11 The total vapour pressure and the Fig. 5.12 Two similar liquids, in this case
two partial vapour pressures of an ideal benzene and methylbenzene (toluene),
binary m i^ u re  are proportional to  the behave almost ideally, and the variation of
mole fractions of the components. their vapour pressures with composition

resembles that for an ideal solution.

•5) R T ln + م R = ،ب T  ln  P a  +  R T ln  Pa - م = *م

In  the  final step  w e d raw  on  ad d itio n a l experim en ta l in fo rm a tio n  ab o u t th e  re la tion  
betw een  th e  ra tio  o f  v ap o u r p ressu res an d  th e  co m p o s itio n  o f  th e  liqu id . In  a series o f 
experim en ts o n  m ix tu res  o f  closely re la ted  liqu ids (such  as b enzene an d  m ethy lbenz- 
ene), th e  F rench  chem ist F ran ؟ ois R aou lt fo u n d  th a t th e  ra tio  o f  th e  p artia l v ap o u r 
p ressu re  o f  each c o m p o n e n t to  its v ap o u r p ressu re  as a p u re  liqu id , p A/pA, ؛s a p p ro x i­
m ate ly  equal to  the  m ole frac tio n  o f  A  in  th e  liq u id  m ix tu re . T h a t is, he established 
w hat we n o w  call R a o u lt’s ذ -

Pa =  *a PA (5.24)°

T his law  is illu s tra ted  in  Fig. 5.11• Som e m ix tu res  obey  R aou lt’s law  very  well, espe­
cially w h en  th e  c o m p o n en ts  are s tru c tu ra lly  sim ilar (Fig. 5.12). M ix tu res th a t obey  the 
law  th ro u g h o u t th e  co m p o s itio n  range fro m  p u re  A  to  p u re  B are called id ea l s o lu ­
tio n s . W h en  we w rite  eq u a tio n s th a t are valid  on ly  fo r ideal so lu tions, we shall label 
th e m  w ith  a su p e rsc rip t °, as in  eqn  5.24.

For an  ideal so lu tion , it follow s fro m  eqns 5.23 an d  5.24 th a t

،UA = م  * +  R T ln  XA (5.25)°

T his im p o r ta n t eq u a tio n  can be u sed  as th e  definition o f  an  ideal so lu tio n  (so th a t it 
im plies R aou lt’s law  ra th e r th a n  stem m in g  fro m  it). It is in  fact a b e tte r  defin itio n  th a n  
eqn  5.24 because it does n o t assum e th a t the  v ap o u r is a perfect gas.

M olecular in te rp re ta tio n  5.1 The molecular origin of Raoult's law

T he o rig in  o f  R ao u lt’s law  can  be u n d e rs to o d  in  m o lecu la r te rm s b y  considering  
the  ra tes at w h ich  m olecu les leave an d  re tu rn  to  th e  liqu id . T he law  reflects th e  fact 
th a t th e  p resence  o f  a second  co m p o n en t reduces th e  ra te  at w h ich  A m olecu les 
leave the  surface o f  th e  liq u id  b u t does n o t in h ib it th e  ra te  a t w h ich  th ey  re tu rn  
(Fig. 5.13).

Fig. 5.13 A pictorial representation of the 
molecular basis o f Raoult’s law. The large 
spheres represent solvent molecules at the 
surface of a solution (the upperm ost line of 
spheres), and the small spheres are solute 
molecules. The latter hinder the escape of 
solvent molecules into the vapour, but do 
not hinder their return.



T he ra te  at w h ich  A  m olecu les leave th e  surface Is p ro p o r tio n a l to  the  n u m b e r o f 
th e m  at th e  surface, w h ich  in  tu rn  is p ro p o r tio n a l to  th e  m ole frac tio n  o f  A:

ra te  o f  v ap o riza tio n  =  kxA

w here  k is a co n stan t o f  p ro p o rtio n a lity . T he ra te  at w h ich  m olecu les condense  is 
p ro p o r tio n a l to  th e ir co n cen tra tio n  in  th e  gas phase, w h ich  in  tu rn  is p ro p o r tio n a l 
to  th e ir  p a rtia l p ressure:

ra te  o f  co n d en sa tio n  =  k '^A

A t eq u ilib riu m , th e  ra tes o f  v ap o riza tio n  an d  co n d en sa tio n  are equal, so k '^A =  kxA.
It follow s th a t 

k

For th e  p u re  liqu id , *A =  1; so in  th is  special case ^A =  k/k' . E q ua tion  5.24 th e n  fo l­
low s b y  su b s titu tio n  o f  th is re la tio n  in to  the  line above.

Som e so lu tio n s d ep a rt significantly  fro m  R ao u lt’s law  (Fig. 5.14). N evertheless, 
even in  these cases the  law  is obeyed increasing ly  closely fo r th e  c o m p o n e n t in  excess 
(the  solven t) as it app roaches p u rity . T he law  is th ere fo re  a good  a p p ro x im a tio n  for 
th e  p ro p e rtie s  o f  th e  so lven t i f  th e  so lu tio n  is d ilu te.

(b) Id e a l-d ilu te  s o lu tio n s

In  ideal so lu tio n s the  solu te, as w ell as th e  so lvent, obeys R aou lt’s law. H ow ever, the 
E nglish  chem ist W illiam  H en ry  fo u n d  experim en ta lly  th a t, for real so lu tio n s at low  
con cen tra tio n s, a lth o u g h  th e  vap o u r p ressu re  o f  th e  so lu te  is p ro p o r tio n a l to  its m ole 
frac tion , th e  co n stan t o f  p ro p o r tio n a lity  is n o t th e  v ap o u r p ressu re  o f  the  p u re  su b ­
stance (Fig. 5.15). H e n ry ’s لaw  is:

■deal dilute
solu tion
(Henry)

M ole fraction  of

Fig. 5.15 W hen a com ponent (the solvent) is 
nearly pure, it has a vapour pressure that is 
proportional to  mole fraction with a slope 
W .(Raoult’s law) جء hen it is the m inor 
component (the solute) its vapour pressure 
is still proportional to  the mole fraction, 
but the constant o f proportionality is now 
.(Henry’s law) جء
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Fig. 5.14 Strong deviations from ideality are 
shown by dissimilar liquids (in this case 
carbon disulfide and acetone, propanone).



In  th is expression  xB is th e  m o le  frac tion  o f  th e  so lu te  an d  KB is an  em pirica l constan t 
(w ith  th e  d im en sio n s o f  p ressu re) chosen  so th a t th e  p lo t o f  the  v ap o u r p ressu re  o f  B 
against its m o le  frac tio n  is tan g en t to  th e  ex perim en ta l curve at xB =  0.

M ix tu res fo r w h ich  th e  so lu te  obeys H en ry ’s law  an d  the  so lven t obeys R aou lt’s law  
are called id e a l-d ilu te  so lu tio n s . W e shall also label eq u a tio n s w ith  a su p e rsc rip t ° 
w h en  th ey  have b een  derived  fro m  H en ry ’s law. T he difference in  b eh av io u r o f  the 
so lu te  an d  so lven t a t low  co n cen tra tio n s  (as expressed  b y  H en ry ’s an d  R aou lt’s laws, 
respectively) arises fro m  th e  fact th a t in  a d ilu te  so lu tio n  th e  so lven t m olecu les are in  
an  e n v iro n m en t very  m u c h  like the  one th ey  have in  th e  p u re  liqu id  (Fig. 5.16). In 
con trast, th e  so lu te  m olecu les are su r ro u n d e d  by  so lven t m olecules, w h ich  is en tire ly  
d ifferen t fro m  th e ir  en v iro n m en t w h en  p u re . T hus, th e  so lven t behaves like a slightly  
m od ified  p u re  liqu id , b u t th e  so lu te  behaves en tire ly  d ifferen tly  fro m  its p u re  state 
un less th e  so lven t an d  so lu te  m olecu les h ap p en  to  be  very  sim ilar. In  th e  la tte r case, 
the  so lu te  also obeys R ao u lt’s law.

Exam ple 5.3 Investigating the validity of Raoult's and Henry's laws

T he v ap o u r p ressu res o f  each co m p o n en t in  a m ix tu re  o f  p ro p a n o n e  (acetone, A) 
and  tr ich lo ro m e th an e  (ch lo ro fo rm , C) w ere m easu red  at 35°C w ith  the  fo llow ing 
results:

xC 0 0.20 0.40 0.60 0.80 1
p C/k P a  0 4.7 11 18.9 26.7 36.4
p A/k P a  46.3 33.3 23.3 12.3 4.9 0

C o n firm  th a t th e  m ix tu re  con fo rm s to  R aou lt’s law  fo r th e  c o m p o n e n t in  large ex­
cess an d  to  H en ry ’s law  fo r th e  m in o r co m p o n en t. F ind  th e  H en ry ’s law  constan ts.

M ethod  B o th  R aou lt’s an d  H en ry ’s laws are s ta tem en ts  ab o u t th e  fo rm  o f  the 
g raph  o f  p a rtia l v ap o u r p ressu re  against m ole frac tion . T herefore , p lo t th e  partia l 
vap o u r p ressu res against m ole frac tion . R ao u lt’s law  is tes ted  b y  co m p arin g  the 
da ta  w ith  th e  s tra igh t line pj =  xj م أ  fo r each co m p o n en t in  th e  reg ion  in  w h ich  it is 
in  excess (an d  acting  as the  so lven t). H en ry ’s law  is tes ted  b y  find ing  a stra ig h t line 
p j =  xjKj th a t is tan g en t to  each p a rtia l v ap o u r p ressu re  at low  x, w here the  c o m p o n ­
en t can  be  trea ted  as th e  so lu te.

A nswer T he da ta  are p lo tted  in  Fig. 5.17 to g e th e r w ith  the  R ao u lt’s law  lines. 
H en ry ’s law  requ ires K  =  23.3 kP a fo r p ro p a n o n e  an d  K  =  22.0 kP a fo r tr i- 
ch lo ro m eth an e . N otice h o w  the  system  deviates fro m  b o th  R aou lt’s and  H en ry ’s 
laws even fo r qu ite  sm all dep a rtu res  fro m  x  =  1 an d  x  =  0, respectively. W e deal w ith  
these dev ia tions in  Section  5.5.

Self-test 5.4  T he v ap o u r p ressu re  o f  ch lo ro m eth an e  a t various m o le  frac tions in  a 
m ix tu re  at 25°C  w as fo u n d  to  be as follows:

x  0.005 0.009 0.019 0.024
p /k P a  27.3 48.4 101 126

E stim ate H en ry ’s law  co n stan t. [5 M Pa]

Fig. 5.16 In a dilute solution, the solvent 
molecules (the purple spheres) are in an 
environment that differs only slightly from 
that o f the pure solvent. The solute 
particles, however, are in an environment 
totally unlike that of the pure solute.

0 0.2 0 .4  0.6 0.8 1.0

M ole fraction  of 
ch loroform , x(CHCl3)

Fig. 5.17 The experimental partial vapour 
pressures of a mixture of chloroform 
(trichloromethane) and acetone 
(propanone) based on the data in Example 
5.3. The values o f K  are obtained by 
extrapolating the dilute solution vapour 
pressures as explained in the Example.

For p rac tica l app lica tions, H en ry ’s law  is expressed  in  te rm s o f  th e  m olality , b, o f 
the  solute,



S yn o p tic  T ab le  5.1* Henry’s law 
constants for gases in water at 298 K

K )؛ /(kPa kg mol

CO2 3.01 ء <1م
h 2 1.28) <1قه
n 2 1.56) <1قه
O2 7.ص <104

* More values are given in the Data section.

Som e H en ry ’s law  da ta  fo r th is co n v en tio n  are listed in  T able 5.1. As well as p rov id ing  
a link  betw een  the  m ole frac tion  o f  so lu te  an d  its p a rtia l pressu re , th e  da ta  in  the  table 
m ay  also be  u sed  to  calculate gas solubilities. A  know ledge o f  H en ry ’s law  constan ts  
fo r gases in  b lo o d  an d  fats is im p o r ta n t fo r th e  d iscussion  o f  resp ira tio n , especially 
w h en  th e  p artia l p ressu re  o f  oxygen is ab n o rm al, as in  d iv ing  an d  m o u n ta in ee rin g , 
an d  fo r the  d iscussion  o f  the  ac tion  o f  gaseous anaesthetics.

Illustration  5.2 Using Henry's law

T o estim ate  th e  m o la r so lub ility  o f  oxygen in  w ater a t 25°C  an d  a p a rtia l p ressu re  
o f  21 kPa, its p a rtia l p ressu re  in  th e  a tm o sp h ere  at sea level, we w rite

bO2 =  7.9 = ؤ   X 102 k p ? k g m o l-1  =  2 '10 * و  " m o l k r؛ ‘

T he m o la lity  o f  th e  sa tu ra te d  so lu tio n  is there fo re  0.29 m m o l kg-1. T o convert th is 
q u a n tity  to  a m o la r co n cen tra tio n , we assum e th a t th e  m ass density  o f  th is  d ilu te  
so lu tio n  is essentially  th a t o f  p u re  w ater at 25°C, o r p H^O =  0.99709 kg d m -3. It fo l­
low s th a t th e  m o la r co n cen tra tio n  o f  oxygen is

[O 2] = ة0إ   X p H^O =  0.29 m m o l kg-1 X 0.99709 kg d m -3 =  0.29 m m o l d m -3

A note on g o o d  practice  T he n u m b e r o f  sign ifican t figures in  th e  resu lt o f  a calcu­
la tio n  sh o u ld  n o t exceed th e  n u m b e r in  the  da ta  (on ly  tw o in  th is case).

Self-test 5.5  C alculate the  m o lar so lub ility  o f  n itro g en  in  w ater exposed to  air at 
25°C; p artia l p ressu res w ere calcu lated  in  Exam ple 1.3. [0.51 m m o l d m -3]

ؤح  IMPACT ON BIOLOGY 
ءا ا  I5.1 G a s  so lu b ility  a n d  b rea th in g

W e inhale  ab o u t 500 cm 3 o f  a ir w ith  each b re a th  we take. T he in flux  o f  air is a resu lt o f
changes in  vo lum e o f  th e  lungs as the  d iap h rag m  is depressed  an d  th e  chest expands,
w h ich  resu lts in  a decrease in  p ressu re  o f  ab o u t 100 P a  relative to  a tm o sp h eric  p res- Comment 5.2
su re . E xp ira tion  occurs as th e  d iap h rag m  rises an d  th e  chest con trac ts , an d  gives rise The web site con tains In k s  to  on^ne
to  a d ifferen tia l p ressu re  o f  ab o u t 100 P a  above a tm o sp h eric  p ressu re . T he to ta l databases o f H en ry ’s لaw constants.
vo lum e o f  air in  the  lungs is ab o u t 6 d m 3, an d  th e  ad d itio n a l vo lum e o f  air th a t can  be
exhaled  forcefully  after n o rm a l ex p ira tio n  is ab o u t 1.5 d m 3. Som e air rem a in s in  the
lungs at all tim es to  p rev en t th e  collapse o f  th e  alveoli.

A  know ledge o f  H en ry ’s law  co n stan ts  fo r gases in  fats an d  lip ids is im p o rta n t for 
th e  d iscussion  o f  resp ira tio n . T he effect o f  gas exchange betw een  b lo o d  and  air inside 
th e  alveoli o f  th e  lungs m ean s th a t th e  co m p o s itio n  o f  th e  air in  th e  lungs changes 
th ro u g h o u t th e  b rea th in g  cycle. A lveolar gas is in  fact a m ix tu re  o f  new ly in ha led  air 
an d  air ab o u t to  be exhaled. T he co n cen tra tio n  o f  oxygen p resen t in  arteria l b lo o d  is 
equ ivalen t to  a p artia l p ressu re  o f  ab o u t 40 T o rr  (5.3 kP a), w hereas th e  p a rtia l p re s ­
su re  o f  freshly  in ha led  air is ab o u t 104 T o rr (13.9 kP a). A rteria l b lo o d  rem ain s in  
th e  capillary  passing  th ro u g h  th e  w all o f  an  alveolus for ab o u t 0.75 s, b u t such  is the 
steepness o f  th e  p ressu re  g rad ien t th a t it b ecom es fu lly  sa tu ra ted  w ith  oxygen in  ab o u t 
0.25 s. I f  the  lungs collect flu ids (as in  p n e u m o n ia ), th e n  th e  re sp ira to ry  m em b ran e  
th ickens, d iffusion  is greatly  slow ed, an d  b o d y  tissues beg in  to  suffer fro m  oxygen 
s ta rva tion . C arb o n  diox ide m oves in  th e  opposite  d irec tio n  across th e  re sp ira to ry


