The properties
of gases

This chapter establishes the properties of gases that will be used throughout the text. It
begins with an account of an idealized version of a gas, a perfect gas, and shows how its
equation of state may be assembled experimentally. We then see how the properties of real
gases differ from those of a perfect gas, and construct an equation of state that describes
their properties.

The simplest state of matter is a gas, a form of matter that fills any container it
occupies. Initially we consider only pure gases, but later in the chapter we see that the
same ideas and equations apply to mixtures of gases too.

The perfect gas

We shall find it helpful to picture a gas as a collection of molecules (or atoms) in con-
tinuous random motion, with average speeds that increase as the temperature is raised.
A gas differs from a liquid in that, except during collisions, the molecules of a gas are
widely separated from one another and move in paths that are largely unaffected by
intermolecular forces.

1.1 The states of gases

The physical state of a sample of a substance, its physical condition, is defined by its
physical properties. Two samples of a substance that have the same physical proper-
ties are in the same state. The state of a pure gas, for example, is specified by giving its
volume, V, amount of substance (number of moles), 1, pressure, p, and temperature,
T. However, it has been established experimentally that it is sufficient to specify only
three of these variables, for then the fourth variable is fixed. That is, it is an experi-
mental fact that each substance is described by an equation of state, an equation that
interrelates these four variables.
The general form of an equation of state is

p=AT,V;n) (1.1)

This equation tells us that, if we know the values of T, V, and # for a particular sub-
stance, then the pressure has a fixed value. Each substance is described by its own
equation of state, but we know the explicit form of the equation in only a few special
cases. One very important example is the equation of state of a ‘perfect gas’, which has
the form p=nRT/V, where R is a constant. Much of the rest of this chapter will exam-
ine the origin of this equation of state and its applications.
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Comment 1.1

The International System of units (SI,
from the French Systeme International
d’Unités) is discussed in Appendix 1.
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Fig. 1.1 When a region of high pressure is
separated from a region of low pressure by
a movable wall, the wall will be pushed into
one region or the other, as in (a) and (c).
However, if the two pressures are identical,
the wall will not move (b). The latter
condition is one of mechanical equilibrium
between the two regions.

Table 1.1 Pressure units

Name Symbol Value

pascal 1Pa INm?2 1kgm™ts?

bar 1 bar 10° Pa

atmosphere 1 atm 101.325 kPa

torr 1 Torr (161 325/760) Pa=133.32 ... Pa
millimetres of mercury 1 mmHg 133.322...Pa

pound per square inch 1 psi 6.894757 ... kPa

(a) Pressure

Pressure is defined as force divided by the area to which the force is applied. The
greater the force acting on a given area, the greater the pressure. The origin of the force
exerted by a gas is the incessant battering of the molecules on the walls of its container.
The collisions are so numerous that they exert an effectively steady force, which is
experienced as a steady pressure.

The ST unit of pressure, the pascal (Pa), is defined as 1 newton per metre-squared:

1Pa=1Nm™ [1.2a]
In terms of base units,
1Pa=1kgm's™ [1.2b]

Several other units are still widely used (Table 1.1); of these units, the most commonly
used are atmosphere (1 atm = 1.013 25 x 10° Pa exactly) and bar (1 bar = 10° Pa). A
pressure of 1 bar is the standard pressure for reporting data; we denote it p®.

Self-test 1.1 Calculate the pressure (in pascals and atmospheres) exerted by a mass
of 1.0 kg pressing through the point of a pin of area 1.0 X 107> mm? at the surface
of the Earth. Hint. The force exerted by a mass m due to gravity at the surface of the
Earth is mg, where g is the acceleration of free fall (see endpaper 2 for its standard
value). [0.98 GPa, 9.7 x 103 atm]

If two gases are in separate containers that share a common movable wall (Fig. 1.1),
the gas that has the higher pressure will tend to compress (reduce the volume of ) the
gas that has lower pressure. The pressure of the high-pressure gas will fall as it expands
and that of the low-pressure gas will rise as it is compressed. There will come a stage
when the two pressures are equal and the wall has no further tendency to move. This
condition of equality of pressure on either side of a movable wall (a ‘piston’) is a state
of mechanical equilibrium between the two gases. The pressure of a gas is therefore
an indication of whether a container that contains the gas will be in mechanical equi-
librium with another gas with which it shares a movable wall.

(b) The measurement of pressure

The pressure exerted by the atmosphere is measured with a barometer. The original
version of a barometer (which was invented by Torricelli, a student of Galileo) was an
inverted tube of mercury sealed at the upper end. When the column of mercury is in
mechanical equilibrium with the atmosphere, the pressure at its base is equal to that



exerted by the atmosphere. It follows that the height of the mercury column is pro-
portional to the external pressure.

Example 1.1 Calculating the pressure exerted by a column of liquid

Derive an equation for the pressure at the base of a column of liquid of mass
density p (rtho) and height k at the surface of the Earth.

Method Pressure is defined as p = F/A where F is the force applied to the area A,
and F = mg. To calculate F we need to know the mass # of the column of liquid,
which is its mass density, p, multiplied by its volume, V: m = pV. The first step,
therefore, is to calculate the volume of a cylindrical column of liquid.

Answer Let the column have cross-sectional area A; then its volume is Ak and its
mass is 1 = pAh. The force the column of this mass exerts at its base is

F=mg= pAhg
The pressure at the base of the column is therefore
F  pAhg
= —= — = ]/1 1-3
A= a4 M (1.3)

Note that the pressure is independent of the shape and cross-sectional area of the
column. The mass of the column of a given height increases as the area, but so does
the area on which the force acts, so the two cancel.

Self-test 1.2 Derive an expression for the pressure at the base of a column of liquid
of length [ held at an angle 8 (theta) to the vertical (1). [p=pgl cos O]

The pressure of a sample of gas inside a container is measured by using a pressure
gauge, which is a device with electrical properties that depend on the pressure. For
instance, a Bayard—Alpert pressure gauge is based on the ionization of the molecules
present in the gas and the resulting current of ions is interpreted in terms of the pres-
sure. In a capacitance manometer, the deflection of a diaphragm relative to a fixed elec-
trode is monitored through its effect on the capacitance of the arrangement. Certain
semiconductors also respond to pressure and are used as transducers in solid-state
pressure gauges.

(c¢) Temperature

The concept of temperature springs from the observation that a change in physical
state (for example, a change of volume) can occur when two objects are in contact
with one another, as when a red-hot metal is plunged into water. Later (Section 2.1)
we shall see that the change in state can be interpreted as arising from a flow of energy
as heat from one object to another. The temperature, T, is the property that indicates
the direction of the flow of energy through a thermally conducting, rigid wall. If
energy flows from A to B when they are in contact, then we say that A has a higher
temperature than B (Fig. 1.2).

It will prove useful to distinguish between two types of boundary that can separate
the objects. A boundary is diathermic (thermally conducting) if a change of state is
observed when two objects at different temperatures are brought into contact.! A

! The word dia is from the Greek for ‘through’.
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Equilibriuy %uinbrium

Equilibrium

Fig. 1.3 The experience summarized by the
Zeroth Law of thermodynamics is that, if
an object A is in thermal equilibrium with
B and B is in thermal equilibrium with C,
then C is in thermal equilibrium with A.

metal container has diathermic walls. A boundary is adiabatic (thermally insulating)
if no change occurs even though the two objects have different temperatures. A
vacuum flask is an approximation to an adiabatic container.

The temperature is a property that indicates whether two objects would be in
‘thermal equilibrium’ if they were in contact through a diathermic boundary. Thermal
equilibrium is established if no change of state occurs when two objects A to B are in
contact through a diathermic boundary. Suppose an object A (which we can think of
as a block of iron) is in thermal equilibrium with an object B (a block of copper), and
that B is also in thermal equilibrium with another object C (a flask of water). Then it
has been found experimentally that A and C will also be in thermal equilibrium when
they are put in contact (Fig. 1.3). This observation is summarized by the Zeroth Law
of thermodynamics:

If A is in thermal equilibrium with B, and B is in thermal equilibrium with C, then
Cis also in thermal equilibrium with A.

The Zeroth Law justifies the concept of temperature and the use of a thermometer,
a device for measuring the temperature. Thus, suppose that B is a glass capillary con-
taining a liquid, such as mercury, that expands significantly as the temperature
increases. Then, when A is in contact with B, the mercury column in the latter has a
certain length. According to the Zeroth Law, if the mercury column in B has the same
length when it is placed in thermal contact with another object C, then we can predict
that no change of state of A and C will occur when they are in thermal contact. More-
over, we can use the length of the mercury column as a measure of the temperatures
of Aand C.

In the early days of thermometry (and still in laboratory practice today), tempera-
tures were related to the length of a column of liquid, and the difference in lengths
shown when the thermometer was first in contact with melting ice and then with
boiling water was divided into 100 steps called ‘degrees’, the lower point being labelled
0. This procedure led to the Celsius scale of temperature. In this text, temperatures
on the Celsius scale are denoted 0 and expressed in degrees Celsius (°C). However,
because different liquids expand to different extents, and do not always expand
uniformly over a given range, thermometers constructed from different materials
showed different numerical values of the temperature between their fixed points. The
pressure of a gas, however, can be used to construct a perfect-gas temperature scale
that is independent of the identity of the gas. The perfect-gas scale turns out to be
identical to the thermodynamic temperature scale to be introduced in Section 3.2¢,
so we shall use the latter term from now on to avoid a proliferation of names. On
the thermodynamic temperature scale, temperatures are denoted T and are normally
reported in kelvins, K (not °K). Thermodynamic and Celsius temperatures are related
by the exact expression

T/K = 9/°C +273.15 (1.4)

This relation, in the form 6/°C = T/K — 273.15, is the current definition of the Celsius
scale in terms of the more fundamental Kelvin scale. It implies that a difference in
temperature of 1°C is equivalent to a difference of 1 K.

A note on good practice We write T'= 0, not T'= 0 K for the zero temperature
on the thermodynamic temperature scale. This scale is absolute, and the lowest
temperature is 0 regardless of the size of the divisions on the scale (just as we write
p =0 for zero pressure, regardless of the size of the units we adopt, such as bar or
pascal). However, we write 0°C because the Celsius scale is not absolute.




lllustration 1.1 Converting temperatures

To express 25.00°C as a temperature in kelvins, we use eqn 1.4 to write
T/K =(25.00°C)/°C +273.15=25.00 + 273.15=298.15

Note how the units (in this case, °C) are cancelled like numbers. This is the proced-
ure called ‘quantity calculus’ in which a physical quantity (such as the temperature)
is the product of a numerical value (25.00) and a unit (1°C). Multiplication of both
sides by the unit K then gives T=298.15 K.

A note on good practice When the units need to be specified in an equation, the
approved procedure, which avoids any ambiguity, is to write (physical quantity)/
units, which is a dimensionless number, just as (25.00°C)/°C = 25.00 in this
Hlustration. Units may be multiplied and cancelled just like numbers.

1.2 The gas laws
The equation of state of a gas at low pressure was established by combining a series of

empirical laws.

(a) The perfect gas law

We assume that the following individual gas laws are familiar:

Boyle’s law: pV = constant, at constant n, T (1.5)°
Charles’s law: V = constant x T, at constant #, p (1.6a)°

p=constant x T, at constant #, V. (1.6b)°
Avogadro’s principle:’ V= constant X n at constant p, T (1.7)°

Boyle’s and Charles’s laws are examples of a limiting law, a law that is strictly true only
in a certain limit, in this case p — 0. Equations valid in this limiting sense will be
signalled by a ® on the equation number, as in these expressions. Avogadro’s principle
is commonly expressed in the form ‘equal volumes of gases at the same temperature
and pressure contain the same numbers of molecules’. In this form, it is increasingly
true as p — 0. Although these relations are strictly true only at p = 0, they are
reasonably reliable at normal pressures (p = 1 bar) and are used widely throughout
chemistry.

Figure 1.4 depicts the variation of the pressure of a sample of gas as the volume is
changed. Each of the curves in the graph corresponds to a single temperature and
hence is called an isotherm. According to Boyle’s law, the isotherms of gases are
hyperbolas. An alternative depiction, a plot of pressure against 1/volume, is shown in
Fig. 1.5. The linear variation of volume with temperature summarized by Charles’s
law is illustrated in Fig. 1.6. The lines in this illustration are examples of isobars, or
lines showing the variation of properties at constant pressure. Figure 1.7 illustrates the
linear variation of pressure with temperature. The lines in this diagram are isochores,
or lines showing the variation of properties at constant volume.

2 Avogadro’s principle is a principle rather than a law (a summary of experience) because it depends on
the validity of a model, in this case the existence of molecules. Despite there now being no doubt about the
existence of molecules, it is still a model-based principle rather than a law.

3 To solve this and other Explorations, use either mathematical software or the Living graphs from the
text’s web site.
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Increasing
temp erature, T

Pressure, p

T

Volume, V

Fig. 1.4 The pressure—volume dependence
of a fixed amount of perfect gas at different
temperatures. Each curve is a hyperbola
(pV =constant) and is called an isotherm.

Exploration® Explore how the
& pressure of 1.5 mol CO,(g) varies
with volume as it is compressed at
() 273K, (b) 373 K from 30 dm’ to
15 dm’.

Comment 1.2
A hyperbola is a curve obtained by
plotting y against x with xy = constant.
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Fig. 1.6 Straight lines are obtained when the
pressure is plotted against 1/V at constant
temperature.

Exploration Repeat Exploration 1.4,
2 but plot the data as p against 1/V.
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Fig. 1.7 The pressure also varies linearly
with the temperature at constant volume,

Fig. 1.6 The variation of the volume of a
fixed amount of gas with the temperature

at constant pressure. Note that in each case

the isobars extrapolate to zero volume at

T=0,0or 8=—273°C.

|§: Exploration Explore how the volume
of 1.5 mol CO,(g) in a container

maintained at (a) 1.00 bar, (b) 0.50 bar

and extrapolates to zero at T=0(-273°C).

Exploration Explore how the pressure

ot 1.5 mol CO,(g) in a container of
volume (a) 30 dm?, (b) 15 dm? varies with
temperature as it is cooled from 373 K to
273 K.

varies with temperature as it is cooled from
373 Kto 273 K.

A note on good practice To test the validity of a relation between two quantities, it
is best to plot them in such a way that they should give a straight line, for deviations
from a straight line are much easier to detect than deviations from a curve.

The empirical observations summarized by eqns 1.5-7 can be combined into a
single expression:

pV=constant xnT

This expression is consistent with Boyle’s law (pV = constant) when # and T are con-
stant, with both forms of Charles’s law (p o< T, V o< T) when n and either V or p are
held constant, and with Avogadro’s principle (V o< 11) when p and T are constant. The
constant of proportionality, which is found experimentally to be the same for all
gases, is denoted R and called the gas constant. The resulting expression

pV=nRT (1.8)°

is the perfect gas equation. It is the approximate equation of state of any gas, and
becomes increasingly exact as the pressure of the gas approaches zero. A gas that obeys
eqn 1.8 exactly under all conditions is called a perfect gas (or ideal gas). A real gas,
an actual gas, behaves more like a perfect gas the lower the pressure, and is described
exactly by eqn 1.8 in the limit of p — 0. The gas constant R can be determined by
evaluating R = pV/nT for a gas in the limit of zero pressure (to guarantee that it is



behaving perfectly). However, a more accurate value can be obtained by measuring
the speed of sound in a low-pressure gas (argon is used in practice) and extrapolating

its value to zero pressure. Table 1.2 lists the values of R in a variety of units.

Molecular interpretation 1.1 The kinetic mode/ of gases

The molecular explanation of Boyle’s law is that, if a sample of gas is compressed
to half its volume, then twice as many molecules strike the walls in a given period
of time than before it was compressed. As a result, the average force exerted on
the walls is doubled. Hence, when the volume is halved the pressure of the gas is
doubled, and p x V is a constant. Boyle’s law applies to all gases regardless of their
chemical identity (provided the pressure is low) because at low pressures the aver-
age separation of molecules is so great that they exert no influence on one another
and hence travel independently. The molecular explanation of Charles’s law lies
in the fact that raising the temperature of a gas increases the average speed of its
molecules. The molecules collide with the walls more frequently and with greater
impact. Therefore they exert a greater pressure on the walls of the container.

These qualitative concepts are expressed quantitatively in terms of the kinetic
model of gases, which is described more fully in Chapter 21. Briefly, the kinetic
model is based on three assumptions:

1. The gas consists of molecules of mass #1 in ceaseless random motion.

2. The size of the molecules is negligible, in the sense that their diameters are
much smaller than the average distance travelled between collisions.

3. The molecules interact only through brief, infrequent, and elastic collisions.

An elastic collision is a collision in which the total translational kinetic energy of the
molecules is conserved. From the very economical assumptions of the kinetic
model, it can be deduced (as we shall show in detail in Chapter 21) that the pres-
sure and volume of the gas are related by

pV=1nMc? (1.9)°

where M = mN,, the molar mass of the molecules, and ¢ is the root mean square
speed of the molecules, the square root of the mean of the squares of the speeds, v,
of the molecules:

c= (DI (1.10)

We see that, if the root mean square speed of the molecules depends only on the
temperature, then at constant temperature

pV =constant

which is the content of Boyle’s law. Moreover, for eqn 1.9 to be the equation of
state of a perfect gas, its right-hand side must be equal to #RT. It follows that the
root mean square speed of the molecules in a gas at a temperature T must be

1/2

3RT

c=| = (1.11)°
M

We can conclude that the root mean square speed of the molecules of a gas is propor-
tional to the square root of the temperature and inversely proportional to the square
root of the molar mass. That is, the higher the temperature, the higher the root mean
square speed of the molecules, and, at a given temperature, heavy molecules travel
more slowly than light molecules. The root mean square speed of N, molecules, for
instance, is found from eqn 1.11 to be 515 m stat298 K.
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Table 1.2 The gas constant

R

8.314 47 JK ! mol™!

8.205 74 x 1072 dm? atm K~ mol™!
8.314 47 x 1072 dm?® bar K~ mol ™!
8.314 47 Pam?® K ! mol!
162.364 dm?® Torr K~ mol™!
1.98721 cal K! mol™

Comment 1.3

For an object of mass i moving at a
speed v, the kinetic energy is Ex = +mv?.
The potential energy, E;, or V, of an
object is the energy arising from its
position (not speed). No universal
expression for the potential energy can
be given because it depends on the type
of interaction the object experiences.
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Fig. 1.8 A region of the p,V,T surface of a Fig. 1.9 Sections through the surface shown
fixed amount of perfect gas. The points in Fig. 1.8 at constant temperature give the
forming the surface represent the only isotherms shown in Fig. 1.4 and the isobars
states of the gas that can exist. shown in Fig. 1.6.

The surface in Fig. 1.8 is a plot of the pressure of a fixed amount of perfect gas
against its volume and thermodynamic temperature as given by eqn 1.8. The surface
depicts the only possible states of a perfect gas: the gas cannot exist in states that do not
correspond to points on the surface. The graphs in Figs. 1.4 and 1.6 correspond to the
sections through the surface (Fig. 1.9).

Example 1.2 Using the perfect gas equation

In an industrial process, nitrogen is heated to 500 K in a vessel of constant volume.
If it enters the vessel at 100 atm and 300 K, what pressure would it exert at the
working temperature if it behaved as a perfect gas?

Method We expect the pressure to be greater on account of the increase in tem-
perature. The perfect gas law in the form PV/nT = R implies that, if the conditions
are changed from one set of values to another, then because PV/nT is equal to a
constant, the two sets of values are related by the ‘combined gas law’:

pl‘ll — pZVZ (112)0
mh  mI,

The known and unknown data are summarized in (2).

Initiall Same | 100 | Same | 300 Answer Cancellation of the volumes (because V; = V,) and amounts (because
Final|Same| ? |Same| 500 1, = 11,) on each side of the combined gas law results in

2 n_p
e

which can be rearranged into

5
) T h



Substitution of the data then gives

500K
300 K

o5 X (100 atm) = 167 atm

Experiment shows that the pressure is actually 183 atm under these conditions, so
the assumption that the gas is perfect leads to a 10 per cent error.

Self-test 1.3 What temperature would result in the same sample exerting a pressure
of 300 atm? [900 K]

The perfect gas equation is of the greatest importance in physical chemistry because
itis used to derive a wide range of relations that are used throughout thermodynamics.
However, it is also of considerable practical utility for calculating the properties of a
gas under a variety of conditions. For instance, the molar volume, V_ = V/n, of a per-
fect gas under the conditions called standard ambient temperature and pressure
(SATP), which means 298.15 K and 1 bar (that is, exactly 10° Pa), is easily calculated
from V =RT/p to be 24.789 dm?® mol™. An earlier definition, standard temperature
and pressure (STP), was 0°C and 1 atm; at STP, the molar volume of a perfect gas is
22.414 dm® mol™. Among other applications, eqn 1.8 can be used to discuss processes
in the atmosphere that give rise to the weather.

IMPACT ON ENVIRONMENTAL SCIENCE
11.1 The gas laws and the weather

The biggest sample of gas readily accessible to us is the atmosphere, a mixture of gases
with the composition summarized in Table 1.3. The composition is maintained mod-
erately constant by diffusion and convection (winds, particularly the local turbulence
called eddies) but the pressure and temperature vary with altitude and with the local
conditions, particularly in the troposphere (the ‘sphere of change’), the layer extend-
ing up to about 11 km.

Table 1.3 The composition of dry air at sea level

Percentage
Component By volume By mass
Nitrogen, N, 78.08 75.53
Oxygen, O, 20.95 23.14
Argon, Ar 0.93 1.28
Carbon dioxide, CO, 0.031 0.047
Hydrogen, H, 5.0% 1072 20x107*
Neon, Ne 1.8x1073 1.3x107°
Helium, He 5210 72x 107
Methane, CH, 2.0x107* L1x10™*
Krypton, Kr L1x10™ S0 10y
Nitric oxide, NO 5.0%x10°° 1.7x107°
Xenon, Xe 8.7x10°° 12 105>
Ozone, O5: summer 7.0%107° 1.2x107°

winter 2.0x107¢ 33x10°°

1.2 THE GAS LAWS

11
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Fig. 1.10 The variation of atmospheric
pressure with altitude, as predicted by the
barometric formula and as suggested by the
“US Standard Atmosphere’, which takes
into account the variation of temperature
with altitude.

Exploration How would the graph
2 shown in the illustration change if
the temperature variation with altitude
were taken into account? Construct a graph
allowing for a linear decrease in
temperature with altitude.

g rm—

Fig. 1.1 A typical weather map; in this case,
for the United States on 1 January 2000.
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Fig. 1.12 The flow of air (‘wind’) around
regions of high and low pressure in the
Northern and Southern hemispheres.

In the troposphere the average temperature is 15°C at sea level, falling to —57°C at
the bottom of the tropopause at 11 km. This variation is much less pronounced when
expressed on the Kelvin scale, ranging from 288 K to 216 K, an average of 268 K. If we
suppose that the temperature has its average value all the way up to the tropopause,
then the pressure varies with altitude, h, according to the barometric formula:

p=pee™

where p, is the pressure at sea level and H is a constant approximately equal to 8 km.
More specifically, H = RT/Mg, where M is the average molar mass of air and 7 is the
temperature. The barometric formula fits the observed pressure distribution quite
well even for regions well above the troposphere (see Fig. 1.10). It implies that the
pressure of the air and its density fall to half their sea-level value at h=H In 2, or 6 km.

Local variations of pressure, temperature, and composition in the troposphere
are manifest as ‘weather’. A small region of air is termed a parcel. First, we note that a
parcel of warm air is less dense than the same parcel of cool air. As a parcel rises, it
expands adiabatically (that is, without transfer of heat from its surroundings), so it
cools. Cool air can absorb lower concentrations of water vapour than warm air, so the
moisture forms clouds. Cloudy skies can therefore be associated with rising air and
clear skies are often associated with descending air.

The motion of air in the upper altitudes may lead to an accumulation in some
regions and a loss of molecules from other regions. The former result in the formation
of regions of high pressure (‘highs’ or anticyclones) and the latter result in regions of
low pressure (‘lows’, depressions, or cyclones). These regions are shown as H and L on
the accompanying weather map (Fig. 1.11). The lines of constant pressure—differing
by 4 mbar (400 Pa, about 3 Torr)—marked on it are called isobars. The elongated
regions of high and low pressure are known, respectively, as ridges and troughs.

In meteorology, large-scale vertical movement is called convection. Horizontal
pressure differentials result in the flow of air that we call wind (see Fig.1.12). Winds
coming from the north in the Northern hemisphere and from the south in the
Southern hemisphere are deflected towards the west as they migrate from a region
where the Earth is rotating slowly (at the poles) to where it is rotating most rapidly (at
the equator). Winds travel nearly parallel to the isobars, with low pressure to their
left in the Northern hemisphere and to the right in the Southern hemisphere. At the
surface, where wind speeds are lower, the winds tend to travel perpendicular to the
isobars from high to low pressure. This differential motion results in a spiral outward
flow of air clockwise in the Northern hemisphere around a high and an inward counter-
clockwise flow around a low.

The air lost from regions of high pressure is restored as an influx of air converges
into the region and descends. As we have seen, descending air is associated with clear
skies. It also becomes warmer by compression as it descends, so regions of high pres-
sure are associated with high surface temperatures. In winter, the cold surface air may
prevent the complete fall of air, and result in a temperature inversion, with a layer of
warm air over a layer of cold air. Geographical conditions may also trap cool air, as
in Los Angeles, and the photochemical pollutants we know as smog may be trapped
under the warm layer.

(b) Mixtures of gases

When dealing with gaseous mixtures, we often need to know the contribution that
each component makes to the total pressure of the sample. The partial pressure, p;, of
agas ] in a mixture (any gas, not just a perfect gas), is defined as

py=xp [1.13]



where x is the mole fraction of the component J, the amount of ] expressed as a frac-
tion of the total amount of molecules, #, in the sample:
n
x]:;] =ty + tgt - [1.14]
When no ] molecules are present, x;= 05 when only ] molecules are present, x =1
It follows from the definition of X that, whatever the composition of the mixture,

X, +xp + - - - =1 and therefore that the sum of the partial pressures is equal to the total
pressure:
pA+pB+,,,:(xA+xB+”,)p:p (115)

This relation is true for both real and perfect gases.

When all the gases are perfect, the partial pressure as defined in eqn 1.13 is also
the pressure that each gas would occupy if it occupied the same container alone at
the same temperature. The latter is the original meaning of ‘partial pressure’. That
identification was the basis of the original formulation of Dalton’s law:

The pressure exerted by a mixture of gases is the sum of the pressures that each one
would exist if it occupied the container alone.

Now, however, the relation between partial pressure (as defined in eqn 1.13) and total
pressure (as given by eqn 1.15) is true for all gases and the identification of partial
pressure with the pressure that the gas would exert on its own is valid only for a per-
fect gas.

Example 1.3 Calculating partial pressures

The mass percentage composition of dry air at sea level is approximately N,: 75.5;
0,:23.2; Ar: 1.3. What is the partial pressure of each component when the total
pressure is 1.00 atm?

Method We expect species with a high mole fraction to have a proportionally high
partial pressure. Partial pressures are defined by eqn 1.13. To use the equation, we
need the mole fractions of the components. To calculate mole fractions, which are
defined by eqn 1.14, we use the fact that the amount of molecules ] of molar mass
M; in a sample of mass m; is 13, = 1m;/ M. The mole fractions are independent of the
total mass of the sample, so we can choose the latter to be 100 g (which makes
the conversion from mass percentages very easy). Thus, the mass of N, present is
75.5 per cent of 100 g, which is 75.5 g.

Answer The amounts of each type of molecule present in 100 g of air, in which the
masses of N, O,, and Ar are 75.5 g, 23.2 g, and 1.3 g, respectively, are

75.5 75.5
n(N,) = g = mo
28.02 gmol~!  28.02
23.2 23.2
n0,) = 5 = mo
32.00¢g mol™!  32.00
1.3 1.3
n(Ar) = g = ol

= = m
39.95 gmol~!  39.95

These three amounts work out as 2.69 mol, 0.725 mol, and 0.033 mol, respectively,
for a total of 3.45 mol. The mole fractions are obtained by dividing each of the

1.2 THE GAS LAWS
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Contact

Potential energy

o
|

Attractions
dominant

Repulsions dominant

Fig. 1.13 The variation of the potential
energy of two molecules on their
separation. High positive potential energy
(at very small separations) indicates that
the interactions between them are strongly
repulsive at these distances. At
intermediate separations, where the
potential energy is negative, the attractive
interactions dominate. At large separations
(on the right) the potential energy is zero
and there is no interaction between the
molecules.

above amounts by 3.45 mol and the partial pressures are then obtained by multi-
plying the mole fraction by the total pressure (1.00 atm):

N, 0, Ar
Mole fraction: 0.780 0.210 0.0096
Partial pressure/atm: 0.780 0.210 0.0096

We have not had to assume that the gases are perfect: partial pressures are defined
as p; = x;p for any kind of gas.

Self-test 1.4 When carbon dioxide is taken into account, the mass percentages are
75.52 (N,), 23.15 (O,), 1.28 (Ar), and 0.046 (CO,). What are the partial pressures
when the total pressure is 0.900 atm? [0.703, 0.189, 0.0084, 0.00027 atm |

Real gases

Real gases do not obey the perfect gaslaw exactly. Deviations from the law are particu-
larly important at high pressures and low temperatures, especially when a gas is on the
point of condensing to liquid.

1.3 Molecular interactions

Real gases show deviations from the perfect gas law because molecules interact with
one another. Repulsive forces between molecules assist expansion and attractive forces
assist compression.

Repulsive forces are significant only when molecules are almost in contact: they are
short-range interactions, even on a scale measured in molecular diameters (Fig. 1.13).
Because they are short-range interactions, repulsions can be expected to be important
only when the average separation of the molecules is small. This is the case at high
pressure, when many molecules occupy a small volume. On the other hand, attractive
intermolecular forces have arelatively long range and are effective over several molecu-
lar diameters. They are important when the molecules are fairly close together but not
necessarily touching (at the intermediate separations in Fig. 1.13). Attractive forces
are ineffective when the molecules are far apart (well to the right in Fig. 1.13).
Intermolecular forces are also important when the temperature is so low that the
molecules travel with such low mean speeds that they can be captured by one another.

At low pressures, when the sample occupies a large volume, the molecules are so far
apart for most of the time that the intermolecular forces play no significant role, and
the gas behaves virtually perfectly. At moderate pressures, when the average separa-
tion of the molecules is only a few molecular diameters, the attractive forces dominate
the repulsive forces. In this case, the gas can be expected to be more compressible than
a perfect gas because the forces help to draw the molecules together. At high pressures,
when the average separation of the molecules is small, the repulsive forces dominate
and the gas can be expected to be less compressible because now the forces help to
drive the molecules apart.

(a) The compression factor

The compression factor, Z, of a gas is the ratio of its measured molar volume, V,_ =
V/n, to the molar volume of a perfect gas, V), at the same pressure and temperature:



o
Z=- [1.16]
Vo

Because the molar volume of a perfect gas is equal to RT/p, an equivalent expression
is Z=RT/pV? , which we can write as

pV. =RTZ (1.17)

Because for a perfect gas Z= 1 under all conditions, deviation of Z from 1 is a measure
of departure from perfect behaviour.

Some experimental values of Z are plotted in Fig. 1.14. At very low pressures, all
the gases shown have Z = 1 and behave nearly perfectly. At high pressures, all the
gases have Z > 1, signifying that they have a larger molar volume than a perfect gas.
Repulsive forces are now dominant. At intermediate pressures, most gases have Z< 1,
indicating that the attractive forces are reducing the molar volume relative to that of a
perfect gas.

(b) Virial coefficients

Figure 1.15 shows the experimental isotherms for carbon dioxide. At large molar
volumes and high temperatures the real-gas isotherms do not differ greatly from
perfect-gas isotherms. The small differences suggest that the perfect gas law is in fact
the first term in an expression of the form

pV. =RTA+Bp+C'p*+---) (1.18)

This expression is an example of a common procedure in physical chemistry, in which
a simple law that is known to be a good first approximation (in this case pV =nRT) is

2 A0 s AT .
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g 8
28/ —
//_
-
3
O

\§O4° T
60 — 2Q°C.

Compression factor, Z

20
0 0.2 0.4 0.6
p/atm V. {idm>mol ™)
Fig. 1.14 The variation of the compression Fig. 1.16 Experimental isotherms of carbon
factor, Z, with pressure for several gases at dioxide at several temperatures. The
0°C. A perfect gas has Z=1 at all pressures. ‘critical isotherm’, the isotherm at the
Notice that, although the curves approach critical temperature, is at 31.04°C. The

1 as p — 0, they do so with different slopes. critical point is marked with a star.

1.3 MOLECULAR INTERACTIONS
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Comment 1.4
Series expansions are discussed in
Appendix 2.

Synoptic Table 1.4* Second virial
coefficients, B/(cm’ mol ™)

Temperature

273K 600 K
Ar 521l i)
Co, —149.7 -12.4
N, -10.5 17
Xe =156.7 =196

* More values are given in the Data section.

Compression factor, Z

i ‘Lower i
i temperature

0 Pressure, p

Fig. 1.16 The compression factor, Z,
approaches 1 atlow pressures, but does so
with different slopes. For a perfect gas, the
slope is zero, but real gases may have either
positive or negative slopes, and the slope
may vary with temperature. At the Boyle
temperature, the slope is zero and the gas
behaves perfectly over a wider range of
conditions than at other temperatures.

treated as the first term in a series in powers of a variable (in this case p). A more con-
venient expansion for many applications is

me:RT(1+V£+%+mJ (1.19)
m m

These two expressions are two versions of the virial equation of state.* By comparing
the expression with eqn 1.17 we see that the term in parentheses can be identified with
the compression factor, Z.

The coefficients B, C, . . . , which depend on the temperature, are the second, third,
... virial coefficients (Table 1.4); the first virial coefficient is 1. The third virial
coefficient, C, is usually less important than the second coefficient, B, in the sense that
at typical molar volumes C/V2 < B/V .

We can use the virial equation to demonstrate the important point that, although
the equation of state of a real gas may coincide with the perfect gas law as p — 0, not
all its properties necessarily coincide with those of a perfect gasin that limit. Consider,
for example, the value of dZ/dp, the slope of the graph of compression factor against
pressure. For a perfect gas dZ/dp= 0 (because Z=1 at all pressures), but for a real gas
from eqn 1.18 we obtain

i—Z:B’+2pC’+---+B’ as p—0 (1.20a)
p

However, B is not necessarily zero, so the slope of Z with respect to p does not neces-

sarily approach 0 (the perfect gas value), as we can see in Fig. 1.14. Because several

physical properties of gases depend on derivatives, the properties of real gases do not

always coincide with the perfect gas values at low pressures. By a similar argument,
dz !

——— > BasV _ —oo, correspondingto p—0 (1.20b)

da/v, )

Because the virial coefficients depend on the temperature, there may be a tempera-
ture at which Z — 1 with zero slope at low pressure or high molar volume (Fig. 1.16).
At this temperature, which is called the Boyle temperature, T}, the properties of the
real gas do coincide with those of a perfect gas as p — 0. According to eqn 1.20b, Z has
zero slope as p — 0 if B= 0, so we can conclude that B =0 at the Boyle temperature.
It then follows from eqn 1.19 that pV, = RT} over a more extended range of pres-
sures than at other temperatures because the first term after 1 (that is, B/V, ) in the
virial equation is zero and C/V2 and higher terms are negligibly small. For helium
Tp=22.64 K; for air T, = 346.8 K; more values are given in Table 1.5.

Synoptic Table 1.5* Critical constants of gases

p./atm V_/(em®mol ') T.J/K Z Tp/K
Ar 48.0 755 150.7 0292 411.5
CO, 72,9 94.0 304.2 0.274 714.8
He 2.26 57.8 5.2 0.305 22.64
0, 50.14 78.0 154.8 0.308 405.9

* More values are given in the Data section.

4 The name comes from the Latin word for force. The coefficients are sometimes denoted By Busvvss



1.4 THE VAN DER WAALS EQUATION

(c) Condensation

Now consider what happens when we compress a sample of gas initially in the state
marked A in Fig. 1.15 at constant temperature (by pushing in a piston). Near A, the
pressure of the gas rises in approximate agreement with Boyle’s law. Serious devi-
ations from that law begin to appear when the volume has been reduced to B.

At C (which corresponds to about 60 atm for carbon dioxide), all similarity to per-
fect behaviour is lost, for suddenly the piston slides in without any further rise in pres-
sure: this stage is represented by the horizontal line CDE. Examination of the contents
of the vessel shows that just to the left of C a liquid appears, and there are two phases
separated by a sharply defined surface. As the volume is decreased from C through
D to E, the amount of liquid increases. There is no additional resistance to the piston
because the gas can respond by condensing. The pressure corresponding to the line
CDE, when both liquid and vapour are present in equilibrium, is called the vapour
pressure of the liquid at the temperature of the experiment.

At E, the sample is entirely liquid and the piston rests on its surface. Any further
reduction of volume requires the exertion of considerable pressure, as is indicated
by the sharply rising line to the left of E. Even a small reduction of volume from E to F
requires a great increase in pressure.

(d) Critical constants

The isotherm at the temperature T_ (304.19 K, or 31.04°C for CO,) plays a special role
in the theory of the states of matter. An isotherm slightly below T_ behaves as we have
already described: at a certain pressure, a liquid condenses from the gas and is distin-
guishable from it by the presence of a visible surface. If, however, the compression
takes place at T itself, then a surface separating two phases does not appear and the
volumes at each end of the horizontal part of the isotherm have merged to a single
point, the critical point of the gas. The temperature, pressure, and molar volume
at the critical point are called the critical temperature, T, critical pressure, p_, and
critical molar volume, V, of the substance. Collectively, p_, V_, and T_are the critical
constants of a substance (Table 1.5).

At and above T, the sample has a single phase that occupies the entire volume
of the container. Such a phase is, by definition, a gas. Hence, the liquid phase of a
substance does not form above the critical temperature. The critical temperature of
oxygen, for instance, signifies that it is impossible to produce liquid oxygen by com-
pression alone if its temperature is greater than 155 K: to liquefy oxygen—to obtain a
fluid phase that does not occupy the entire volume—the temperature must first be
lowered to below 155 K, and then the gas compressed isothermally. The single phase
that fills the entire volume when T > T, may be much denser than we normally con-
sider typical of gases, and the name supercritical fluid is preferred.

1.4 The van der Waals equation

We can draw conclusions from the virial equations of state only by inserting specific
values of the coefficients. It is often useful to have a broader, if less precise, view of all
gases. Therefore, we introduce the approximate equation of state suggested by J.D.
van der Waalsin 1873. This equation is an excellent example of an expression that can
be obtained by thinking scientifically about a mathematically complicated but physi-
cally simple problem, that is, it is a good example of ‘model building’.

The van der Waals equation is

2
PO a(ﬁj (1.21a)

V_nb \V

Comment 1.5
The web site contains links to online
databases of properties of gases.
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18 1 THE PROPERTIES OF GASES

Synoptic Table 1.6* van der Waals
coefficients

a/(atm dm® mol™?)  5/(1072 dm® mol™)

Ar 1.337 3.20
CO, 3.610 4.29
He  0.0341 2.38
Xe 4.137 5.16

* More values are given in the Data section.

and a derivation is given in Justification 1.1. The equation is often written in terms of

the molar volume V_ = V/n as
RT  a

V,—b VI

The constants a and b are called the van der Waals coefficients. They are characteris-

tic of each gas but independent of the temperature (Table 1.6).

(1.21b)

p:

Justification 1.1 The van der Waals equation of state

The repulsive interactions between molecules are taken into account by supposing
that they cause the molecules to behave as small but impenetrable spheres. The non-
zero volume of the molecules implies that instead of moving in a volume V they are
restricted to a smaller volume V — nb, where #nb is approximately the total volume
taken up by the molecules themselves. This argument suggests that the perfect gas
law p = nRT/V should be replaced by

nRT
V —nb

when repulsions are significant. The closest distance of two hard-sphere molecules
of radius r, and volume V,j.cue = 37, is 27, so the volume excluded is $7(2r)?, or
8V oleculer The volume excluded per molecule is one-half this volume, or 4V, j.cuie>
sob= 4VmoleculeNA‘

The pressure depends on both the frequency of collisions with the walls and
the force of each collision. Both the frequency of the collisions and their force
are reduced by the attractive forces, which act with a strength proportional to the
molar concentration, #/V, of molecules in the sample. Therefore, because both
the frequency and the force of the collisions are reduced by the attractive forces,
the pressure is reduced in proportion to the square of this concentration. If the
reduction of pressure is written as —a(n/V')%, where a is a positive constant charac-
teristic of each gas, the combined effect of the repulsive and attractive forces is the
van der Waals equation of state as expressed in eqn 1.21.

In this Justification we have built the van der Waals equation using vague argu-
ments about the volumes of molecules and the effects of forces. The equation can be
derived in other ways, but the present method has the advantage that it shows how
to derive the form of an equation out of general ideas. The derivation also has the
advantage of keeping imprecise the significance of the coefficients a and b: they are
much better regarded as empirical parameters than as precisely defined molecular
properties.

Example 1.4 Using the van der Waals equation to estimate a molar volume

Estimate the molar volume of CO, at 500 K and 100 atm by treating it as a van der
Waals gas.

Method To express eqn 1.21b as an equation for the molar volume, we multiply
both sides by (V.. — b) V2, to obtain

(Vo =WIVEp=RIV, —(V;, —bja
and, after division by p, collect powers of V_ to obtain

Vg—(bJrEjvéJr(ijvm—“—b:o
p p p
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Although closed expressions for the roots of a cubic equation can be given, they
are very complicated. Unless analytical solutions are essential, it is usually more
expedient to solve such equations with commercial software.

Answer According to Table 1.6, a = 3.592 dm® atm mol™ and b = 4.267 x 107
dm?® mol™. Under the stated conditions, RT/p = 0.410 dm® mol™. The coefficients
in the equation for V_ are therefore

b+ RT/p=0.453 dm® mol™
alp=3.61x 1072 (dm® mol™)?
ablp=1.55x 10" (dm?® mol™)*
Therefore, on writingx=V,_/ (dm® mol™), the equation to solve is
%3 —0.453x% +(3.61 x 107)x— (1.55x 107°) =0

The acceptable root is x = 0.366, which implies that V,_ = 0.366 dm” mol™. For a
perfect gas under these conditions, the molar volume is 0.410 dm® mol ™.

Self-test 1.5 Calculate the molar volume of argon at 100°C and 100 atm on the
assumption that it is a van der Waals gas. [0.298 dm® mol™]

(a) The reliability of the equation

We now examine to what extent the van der Waals equation predicts the behaviour
of real gases. It is too optimistic to expect a single, simple expression to be the true
equation of state of all substances, and accurate work on gases must resort to the virial
equation, use tabulated values of the coefficients at various temperatures, and analyse
the systems numerically. The advantage of the van der Waals equation, however, is
that it is analytical (that is, expressed symbolically) and allows us to draw some gen-
eral conclusions about real gases. When the equation fails we must use one of the
other equations of state that have been proposed (some are listed in Table 1.7), invent
anew one, or go back to the virial equation.

That having been said, we can begin to judge the reliability of the equation by com-
paring the isotherms it predicts with the experimental isotherms in Fig. 1.15. Some

Table 1.7 Selected equations of state

Critical constants

Equation Reduced form* p. V. T
RT
Perfect gas P=—
Vm
RT 8T, 3 8
van der Waals = -2 p= —— 2 3b =2
V.-b V2 3V. -1 V2 278 27bR
12 12
RT 8T, 3 1(2aR 202
Berthelot = -2 p= L — —| = 3b bl
V,-b TV 3V, -1 TV? 121 30° 3\ 3bR
RTe#RTV, 27 o210V,
Dieterici p=—" pm— — 2b —
V,—b 2V, —1 4e%p? 4bR
RT B(T) (T
Virial p=—1+£+ ( )+---

* Reduced variables are defined in Section 1.5.
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Pressure

Fig. 1.17 The surface of possible states
allowed by the van der Waals equation.
Compare this surface with that shown in
Fig. 1.8.
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Reduced volume, V/V

Fig. 1.18 Van der Waals isotherms at several values of T/T,. Compare these curves with those
in Fig. 1.15. The van der Waals loops are normally replaced by horizontal straight lines. The
critical isotherm is the isotherm for T/T = 1.

Exploration Calculate the molar volume of chlorine gas on the basis of the van der Waals
= equation of state at 250 K and 150 kPa and calculate the percentage difference from the
value predicted by the perfect gas equation.

calculated isotherms are shown in Figs. 1.17 and 1.18. Apart from the oscillations
below the critical temperature, they do resemble experimental isotherms quite well.
The oscillations, the van der Waals loops, are unrealistic because they suggest that
under some conditions an increase of pressure results in an increase of volume.
Therefore they are replaced by horizontal lines drawn so the loops define equal areas
above and below the lines: this procedure is called the Maxwell construction (3). The
van der Waals coefficients, such as those in Table 1.7, are found by fitting the calcu-
lated curves to the experimental curves.

(b) The features of the equation

The principal features of the van der Waals equation can be summarized as follows.

(1) Perfect gas isotherms are obtained at high temperatures and large molar
volumes.

When the temperature is high, RT may be so large that the first term in eqn 1.21b
greatly exceeds the second. Furthermore, if the molar volume is large in the sense
V., > b, then the denominator V — b = V. Under these conditions, the equation
reduces to p=RT/V_, the perfect gas equation.

(2) Liquids and gases coexist when cohesive and dispersing effects are in balance.

The van der Waals loops occur when both terms in eqn 1.2 1b have similar magnitudes.
The first term arises from the kinetic energy of the molecules and their repulsive
interactions; the second represents the effect of the attractive interactions.

(3) The critical constants are related to the van der Waals coefficients.



1.5 THE PRINCIPLE OF CORRESPONDING STATES

For T < T, the calculated isotherms oscillate, and each one passes through a mini-
mum followed by a maximum. These extrema converge as T — T and coincide at
T =T at the critical point the curve has a flat inflexion (4). From the properties of
curves, we know that an inflexion of this type occurs when both the first and second
derivatives are zero. Hence, we can find the critical constants by calculating these
derivatives and setting them equal to zero:

dp RT +2_a
v, V., -b? V3

m

d’p  2RT  6a

davi (V. —bp VL

=0

at the critical point. The solutions of these two equations (and using eqn 1.21b to
calculate p_from V_and T) are

_a _ 8a
27b? ¢ 27Rb

These relations provide an alternative route to the determination of a and b from the
values of the critical constants. They can be tested by noting that the critical com-
pression factor, Z, is predicted to be equal to

V.=3b P.

c

(1.22)

V. 3

z =Pde 2 (1.23)
RT. 8

for all gases. We see from Table 1.5 that, although Z_< % = 0.375, it is approximately

constant (at 0.3) and the discrepancy is reasonably small.

1.5 The principle of corresponding states

An important general technique in science for comparing the properties of objects is
to choose a related fundamental property of the same kind and to set up a relative
scale on that basis. We have seen that the critical constants are characteristic proper-
ties of gases, so it may be that a scale can be set up by using them as yardsticks. We
therefore introduce the dimensionless reduced variables of a gas by dividing the
actual variable by the corresponding critical constant:

v 7
przp£ Vo= L= [1.24]

If the reduced pressure of a gas is given, we can easily calculate its actual pressure by
using p=p, p., and likewise for the volume and temperature. Van der Waals, who first
tried this procedure, hoped that gases confined to the same reduced volume, V,, at the
same reduced temperature, T,, would exert the same reduced pressure, p,. The hope
was largely fulfilled (Fig. 1.19). The illustration shows the dependence of the com-
pression factor on the reduced pressure for a variety of gases at various reduced tem-
peratures. The success of the procedure is strikingly clear: compare this graph with
Fig. 1.14, where similar data are plotted without using reduced variables. The obser-
vation that real gases at the same reduced volume and reduced temperature exert the
same reduced pressure is called the principle of corresponding states. The principle
is only an approximation. It works best for gases composed of spherical molecules;
it fails, sometimes badly, when the molecules are non-spherical or polar.

The van der Waals equation sheds some light on the principle. First, we express
eqn 1.21b in terms of the reduced variables, which gives

__RILT
MV Vv

~
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Fig. 1.19 The compression factors of four of the gases shown in Fig. 1.14 plotted using reduced
variables. The curves are labelled with the reduced temperature T, = T/T.. The use of reduced
variables organizes the data on to single curves.

|| : Exploration Is there a set of conditions at which the compression factor of a van der
= Waals gas passes through a minimum? If so, how does the location and value of the
minimum value of Z depend on the coefficients a and b?

Then we express the critical constants in terms of 4 and b by using eqn 1.22:

ap, 8aT a

I

27b* 2736V, —b)  9b*V?

which can be reorganized into

L 5 (1.25)
pr_3‘/r_l V% #

This equation has the same form as the original, but the coefficients a and b, which
differ from gas to gas, have disappeared. It follows that if the isotherms are plotted in
terms of the reduced variables (as we did in fact in Fig. 1.18 without drawing attention
to the fact), then the same curves are obtained whatever the gas. This is precisely the
content of the principle of corresponding states, so the van der Waals equation is
compatible with it.

Looking for too much significance in this apparent triumph is mistaken, because
other equations of state also accommodate the principle (Table 1.7). In fact, all we
need are two parameters playing the roles of 4 and b, for then the equation can always
be manipulated into reduced form. The observation that real gases obey the principle
approximately amounts to saying that the effects of the attractive and repulsive inter-
actions can each be approximated in terms of a single parameter. The importance of
the principle is then not so much its theoretical interpretation but the way that it
enables the properties of a range of gases to be coordinated on to a single diagram (for
example, Fig. 1.19 instead of Fig. 1.14).
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1. A gas is a form of matter that fills any container it occupies.

2. Anequation of state interrelates pressure, volume,

temperature, and amount of substance: p = f(T,V,n).

3. The pressure is the force divided by the area to which the force
is applied. The standard pressure is p°®=1 bar (10° Pa).

. Mechanical equilibrium is the condition of equality of
pressure on either side of a movable wall.

5. Temperature is the property that indicates the direction of the
flow of energy through a thermally conducting, rigid wall.

125 [ = ) = | f

6. A diathermic boundary is a boundary that permits the passage
of energy as heat. An adiabatic boundary is a boundary that
prevents the passage of energy as heat.

O

. Thermal equilibrium is a condition in which no change of
state occurs when two objects A and B are in contact through
a diathermic boundary.

[] 8. The Zeroth Law of thermodynamics states that, if A is in
thermal equilibrium with B, and B is in thermal equilibrium

with C, then C is also in thermal equilibrium with A.

The Celsius and thermodynamic temperature scales are
related by T/K = 6/°C + 273.15.

A perfect gas obeys the perfect gas equation, pV'=nRT, exactly
under all conditions.

[ o.
[J1o.
1.

Dalton’s law states that the pressure exerted by a mixture of
gases is the sum of the partial pressures of the gases.

Further reading

12.

The partial pressure of any gas is defined as p;=x;p, where
x;=y/n is its mole fraction in a mixture and p is the total
pressure.

us.

In real gases, molecular interactions affect the equation of
state; the true equation of state is expressed in terms of virial
coefficients B, C, ... : pV, =RT(1+ B/V,, + CIVZ + ).

[J14.

The vapour pressure is the pressure of a vapour in equilibrium
with its condensed phase.

a1s.

The critical point is the point at which the volumes at each
end of the horizontal part of the isotherm have merged to

a single point. The critical constants p_, V, and T are the
pressure, molar volume, and temperature, respectively, at the
critical point.

[J1s.

A supercritical fluid is a dense fluid phase above its critical
temperature and pressure.

a7

The van der Waals equation of state is an approximation to
the true equation of state in which attractions are represented
by a parameter a and repulsions are represented by a
parameter b: p=nRT/(V —nb) — a(n/V)?.

A reduced variable is the actual variable divided by the
corresponding critical constant.

[is.
9.

According to the principle of corresponding states, real gases
at the same reduced volume and reduced temperature exert
the same reduced pressure.
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J.L. Pauley and E.H. Davis, P-V-T isotherms of real gases:
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(1986).

M. Ross, Equations of state. In Encyclopedia of applied physics
(ed. G.L. Trigg), 6, 291. VCH, New York (1993).

A.J. Walton, Three phases of matter. Oxford University Press
(1983).

Discussion questions

R.P. Wayne, Chemistry of atmospheres, an introduction to the
chemistry of atmospheres of earth, the planets, and their satellites.
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J.H. Dymond and E.B. Smith, The virial coefficients of pure gases and
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1.1 Explain how the perfect gas equation of state arises by combination of
Boyle’s law, Charles’s law, and Avogadro’s principle.

1.2 Explain the term “partial pressure’ and explain why Dalton’s law is a
limiting law.

1.3 Explain how the compression factor varies with pressure and temperature
and describe how it reveals information about intermolecular interactions in
real gases.

1.4 What is the significance of the critical constants?

1.5 Describe the formulation of the van der Waals equation and suggesta
rationale for one other equation of state in Table 1.7.

1.6 Explain how the van der Waals equation accounts for critical
behaviour.
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Exercises

1.1(a) (a) Could 131 gof xenon gas in a vessel of volume 1.0 dm? exert a
pressure of 20 atm at 25°C if it behaved as a perfect gas? If not, what pressure
would it exert? (b) What pressure would it exert if it behaved as a van der
Waals gas?

1.1(b) (a) Could 25 g of argon gas in a vessel of volume 1.5 dm® exert a
pressure of 2.0 bar at 30°C if it behaved as a perfect gas? If not, what pressure
would it exert? (b) What pressure would it exert if it behaved as a van der
Waals gas?

1.2(a) A perfect gas undergoes isothermal compression, which reduces its
volume by 2.20 dm®. The final pressure and volume of the gas are 5.04 bar
and 4.65 dm?, respectively. Calculate the original pressure of the gasin (a) bar,
(b) atm.

1.2(b) A perfect gas undergoes isothermal compression, which reduces its
volume by 1.80 dm®. The final pressure and volume of the gas are 1.97 bar and
2.14 dm?, respectively. Calculate the original pressure of the gas in (a) bar,

(b) Torr.

1.3(a) A car tyre (i.e. an automobile tire) was inflated to a pressure of 24 Ib in™
(1.00 atm = 14.7 Ib in?) on a winter’s day when the temperature was —5°C.
What pressure will be found, assuming no leaks have occurred and that the
volume is constant, on a subsequent summer’s day when the temperature is
35°C? What complications should be taken into account in practice?

1.3(b) A sample of hydrogen gas was found to have a pressure of 125 kPa
when the temperature was 23°C. What can its pressure be expected to be when
the temperature is 11°C?

1.4{a) A sample of 255 mg of neon occupies 3.00 dm® at 122 K. Use the perfect
gas law to calculate the pressure of the gas.

1.4{b) A homeowner uses 4.00 x 10°> m® of natural gas in a year to heat a
home. Assume that natural gas is all methane, CH,, and that methaneis a
perfect gas for the conditions of this problem, which are 1.00 atm and 20°C.
What is the mass of gas used?

1.5(a) A diving bell has an air space of 3.0 m® when on the deck of a boat.
What is the volume of the air space when the bell has been lowered to a depth
of 50 m? Take the mean density of sea water to be 1.025 g cm™ and assume
that the temperature is the same as on the surface.

1.5(b) What pressure difference must be generated across the length of a
15 cm vertical drinking straw in order to drink a water-like liquid of density
1.0gcm™?

1.6(a) A manometer consists of a U-shaped tube containing a liquid. One side
is connected to the apparatus and the other is open to the atmosphere. The
pressure inside the apparatus is then determined from the difference in
heights of the liquid. Suppose the liquid is water, the external pressure is

770 Torr, and the open side is 10.0 cm lower than the side connected to the
apparatus. What is the pressure in the apparatus? (The density of water at
25°Cis 0.997 07 gcm™.)

1.6(b) A manometer like that described in Exercise 1.6a contained mercury in
place of water. Suppose the external pressure is 760 Torr, and the open side is

10.0 cm higher than the side connected to the apparatus. What is the pressure
in the apparatus? (The density of mercuryat 25°Cis 13.55 g cm™.)

1.7(a) Inan attempt to determine an accurate value of the gas constant, R, a
student heated a container of volume 20.000 dm? filled with 0.251 32 g of
helium gas to 500°C and measured the pressure as 206.402 cm of water ina
manometer at 25°C. Calculate the value of R from these data. (The density of
water at 25°Cis 0.997 07 g cm; the construction of a manometer is described
in Exercise 1.6a.)

1.7(b) The following data have been obtained for oxygen gas at 273.15 K.
Calculate the best value of the gas constant R from them and the best value of
the molar mass of O,.

platm 0.750 000 0.500 000 0.250 000
V,,/(dm? mol™) 29,9649 44,8090 89.6384
pl(gdm) 1.07144 0.714110 0.356975

1.8(a) At500°C and 93.2 kPa, the mass density of sulfur vapour is
3.710 kg m~>. What is the molecular formula of sulfur under these conditions?

1.8(b) At 100°C and 1.60 kPa, the mass density of phosphorus vapour is
0.6388 kg m™>. What is the molecular formula of phosphorus under these
conditions?

1.9(a) Calculate the mass of water vapour present in a room of volume 400 m>
that contains air at 27°C on a day when the relative humidity is 60 per cent.

1.9(b) Calculate the mass of water vapour present in a room of volume 250 m®
that contains air at 23°C on a day when the relative humidity is 53 per cent.

1.10(a) Given that the density of air at 0.987 bar and 27°C is 1.146 kg m™>,
calculate the mole fraction and partial pressure of nitrogen and oxygen
assuming that (a) air consists only of these two gases, (b) air also contains
1.0 mole per cent Ar.

1.10(b) A gas mixture consists of 320 mg of methane, 175 mg of argon, and
225 mg of neon. The partial pressure of neon at 300 K is 8.87 kPa. Calculate
(a) the volume and (b) the total pressure of the mixture.

1.11(a) The density of a gaseous compound was found to be 1.23 kg m™ at
330 K and 20 kPa. What is the molar mass of the compound?

1.11(b) In an experiment to measure the molar mass of a gas, 250 cm? of the
gas was confined in a glass vessel. The pressure was 152 Torr at 298 K and,
after correcting for buoyancy effects, the mass of the gas was 33.5 mg. What s
the molar mass of the gas?

1.12(a) The densities of air at—85°C, 0°C, and 100°C are 1.877 g dm,

1.294 g dm™, and 0.946 g dm™>, respectively. From these data, and assuming
that air obeys Charles’s law, determine a value for the absolute zero of
temperature in degrees Celsius.

1.12(b) A certain sample of a gas has a volume of 20.00 dm? at 0°C and

1.000 atm. A plot of the experimental data of its volume against the Celsius
temperature, 8, at constant p, gives a straight line of slope 0.0741 dm? (°C) ..
From these data alone (without making use of the perfect gas law), determine
the absolute zero of temperature in degrees Celsius.

1.13(a) Calculate the pressure exerted by 1.0 mol C,H, behaving as (a) a
perfect gas, (b) a van der Waals gas when it is confined under the following
conditions: (i) at273.15 K in 22.414 dm?, (ii) at 1000 K in 100 cm?. Use the
data in Table 1.6.

1.13(b) Calculate the pressure exerted by 1.0 mol H,S behaving as (a) a
perfect gas, (b) a van der Waals gas when it is confined under the following
conditions: (i) at273.15 K in 22.414 dm?, (ii) at 500 K in 150 cm?®. Use the data
in Table 1.6.

1.14{a) Bxpress the van der Waals parameters a=0.751 atm dm® mol™ and
b=0.0226 dm® mol ™! in SI base units.

1.14(b) Express the van der Waals parameters a = 1.32 atm dm® mol™ and
b=10.0436 dm® mol ™! in SI base units.

1.15(a) A gasat250 Kand 15 atm has a molar volume 12 per cent smaller
than that calculated from the perfect gas law. Calculate (a) the compression
factor under these conditions and (b) the molar volume of the gas. Which are
dominating in the sample, the attractive or the repulsive forces?



1.15(b) A gasat 350 K and 12 atm has a molar volume 12 per cent larger than
that calculated from the perfect gas law. Calculate (a) the compression factor
under these conditions and (b) the molar volume of the gas. Which are
dominating in the sample, the attractive or the repulsive forces?

1.16(a) Inanindustrial process, nitrogen is heated to 500 K at a constant
volume of 1.000 m>. The gas enters the container at 300 K and 100 atm.
The mass of the gas is 92.4 kg. Use the van der Waals equation to determine
the approximate pressure of the gas at its working temperature of 500 K.
For nitrogen, a = 1.352 dm® atm mol ™2, b=0.0387 dm® mol ™.

1.16(b) Cylinders of compressed gas are typically filled to a pressure of
200 bar. For oxygen, what would be the molar volume at this pressure and
25°C based on (a) the perfect gas equation, (b) the van der Waals equation.
For oxygen, a=1.364 dm® atm mol 2, #=3.19 x 1072 dm® mol .

1.17(a) Suppose that 10.0 mol C,H(g) is confined to 4.860 dm® at27°C.
Predict the pressure exerted by the ethane from (a) the perfect gas and

(b) the van der Waals equations of state. Calculate the compression factor
based on these calculations. For ethane, a = 5.507 dm® atm mol 2,
b=10.0651 dm’ mol ™.

1.17(b) At 300 K and 20 atm, the compression factor of a gas is 0.86. Calculate
(a) the volume occupied by 8.2 mmol of the gas under these conditions and
(b) an approximate value of the second virial coefficient B at 300 K.

1.18(a) A vessel of volume 22.4 dm? contains 2.0 mol H, and 1.0 mol N, at
273.15 K. Calculate (a) the mole fractions of each component, (b) their partial
pressures, and (c) their total pressure.

1.18(b) A vessel of volume 22.4 dm’ contains 1.5 mol H, and 2.5 mol N, at
273.15 K. Calculate (a) the mole fractions of each component, (b) their partial
pressures, and (c) their total pressure.

Problems™

PROBLEMS 25

1.19(a) The critical constants of methane are p_ = 45.6 atm,
V.=98.7 cm® mol ™}, and T, = 190.6 K. Calculate the van der Waals parameters
of the gas and estimate the radius of the molecules.

1.19(b) The critical constants of ethane are p_=48.20 atm, V=148 cm® mol ™),
and T, = 305.4 K. Calculate the van der Waals parameters of the gas and
estimate the radius of the molecules.

1.20(a) Use the van der Waals parameters for chlorine to calculate
approximate values of (a) the Boyle temperature of chlorine and (b) the radius
of a Cl, molecule regarded as a sphere.

1.20(b) Use the van der Waals parameters for hydrogen sulfide to calculate
approximate values of (a) the Boyle temperature of the gas and (b) the
radius of a H,S molecule regarded as a sphere (a = 4.484 dm®atm mol™?,
b=0.0434 dm?® mol™).

1.21(a) Suggest the pressure and temperature at which 1.0 mol of (a) NH,,
(b) Xe, (c) Hewill be in states that correspond to 1.0 mol H, at 1.0 atm and 25°C.

1.21(b) Suggest the pressure and temperature at which 1.0 mol of (a) H,S,
(b) CO,, (¢) Ar will be in states that correspond to 1.0 mol N, at 1.0 atm and
257C.

1.22(a) A certain gas obeys the van der Waals equation with a =0.50 m® Pa mol ™.
Its volume is found to be 5.00 x 10~ m® mol ™ at 273 K and 3.0 MPa. From
this information calculate the van der Waals constant . What is the
compression factor for this gas at the prevailing temperature and pressure?

1.22(b) A certain gas obeys the van der Waals equation with @ =0.76 m® Pa mol ™.
Its volume is found to be 4.00 X 10~ m® mol ™ at 288 K and 4.0 MPa. From
this information calculate the van der Waals constant b. What is the
compression factor for this gas at the prevailing temperature and pressure?

Numerical problems

1.1 Recent communication with the inhabitants of Neptune have revealed
that they have a Celsius-type temperature scale, but based on the melting
point (0°N) and boiling point (100°N) of their most common substance,
hydrogen. Further communications have revealed that the Neptunians know
about perfect gas behaviour and they find that, in the limit of zero pressure,
the value of pVis 28 dm® atm at 0°N and 40 dm® atm at 100°N. What is the
value of the absolute zero of temperature on their temperature scale?

1.2 Deduce the relation between the pressure and mass density, p, of a perfect
gas of molar mass M. Confirm graphically, using the following data on
dimethyl ether at 25°C, that perfect behaviour is reached at low pressures and
find the molar mass of the gas.

p/kPa
pi(kgm™)

12.223
0.225

25.20
0.456

36.97
0.664

60.37
1.062

85.23
1.468

101.3
1.734
1.3 Charles’s law is sometimes expressed in the form V= V(1 + o8), where 8

is the Celsius temperature, o¢is a constant, and V,; is the volume of the sample
at 0°C. The following values for o have been reported for nitrogen at 0°C:

749.7
3.6717

599.6
3.6697

F33L 98.6
3.6665 3.6643

p/Torr
10%a/(°C)~!

For these data calculate the best value for the absolute zero of temperature on
the Celsius scale.

1.4 The molar mass of a newly synthesized fluorocarbon was measured in a
gas microbalance. This device consists of a glass bulb forming one end ofa
beam, the whole surrounded by a closed container. The beam is pivoted, and
the balance point is attained by raising the pressure of gas in the container, so
increasing the buoyancy of the enclosed bulb. In one experiment, the balance
point was reached when the fluorocarbon pressure was 327.10 Torr; for the
same setting of the pivot, a balance was reached when CHF; (M =70.014 g mol ')
was introduced at 423.22 Torr. A repeat of the experiment with a different
setting of the pivot required a pressure of 293.22 Torr of the fluorocarbon and
427.22 Torr of the CHF;. What is the molar mass of the fluorocarbon? Suggest
amolecular formula.

1.5 A constant-volume perfect gas thermometer indicates a pressure of 6.69
kPa at the triple point temperature of water (273.16 K). (a) What change of
pressure indicates a change of 1.00 K at this temperature? (b) What pressure
indicates a temperature of 100.00°C? (¢) What change of pressure indicates a
change of 1.00 K at the latter temperature?

1.6 A vessel of volume 22.4 dm® contains 2.0 mol H, and 1.0 mol N, at
273.15 K initially. All the H, reacted with sufficient N, to form NH,. Calculate
the partial pressures and the total pressure of the final mixture.

1.7 Calculate the molar volume of chlorine gas at 350 K and 2.30 atm using
(a) the perfect gas law and (b) the van der Waals equation. Use the answer to
(a) to calculate a first approximation to the correction term for attraction and
then use successive approximations to obtain a numerical answer for part (b).

* Problems denoted with the symbol # were supplied by Charles Trapp, Carmen Giunta, and Marshall Cady.
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1.8 At273 K measurements on argon gave B=-21.7 cm® mol ™! and

C = 1200 ¢cm® mol™2, where Band C are the second and third virial coefficients
in the expansion of Z in powers of 1/V, . Assuming that the perfect gas law
holds sufficiently well for the estimation of the second and third terms of

the expansion, calculate the compression factor of argon at 100 atm and

273 K. From your result, estimate the molar volume of argon under these
conditions.

1.9 Calculate the volume occupied by 1.00 mol N, using the van der Waals
equation in the form of a virial expansion at (a) its critical temperature,

(b) its Boyle temperature, and (c) its inversion temperature. Assume that
the pressure is 10 atm throughout. At what temperature is the gas most
perfect? Use the following data: T, =126.3 K, a =1.352 dm® atm mol 2,
b=10.0387 dm’ mol .

1.10f The second virial coefficient of methane can be approximated
by the empirical equation B'(T) = a + be ™", where a = —0.1993 bar ™,
b=0.2002 bar %, and ¢= 1131 K? with 300 K < T'< 600 K. What is the
Boyle temperature of methane?

1.11 The mass density of water vapour at 327.6 atm and 776.4 K is 133.2 kg m™>.

Given that for water T,=647.4 K, p_=218.3 atm, a =5.464 dm® atm mol =,
b=0.03049 dm® mol™, and M = 18.02 g mol ™}, calculate (a) the molar
volume. Then calculate the compression factor (b) from the data,

(¢) from the virial expansion of the van der Waals equation.

1.12 The critical volume and critical pressure of a certain gas are

160 cm® mol™! and 40 atm, respectively. Estimate the critical temperature by
assuming that the gas obeys the Berthelot equation of state. Estimate the radii
of the gas molecules on the assumption that they are spheres.

1.13 Estimate the coefficients a and b in the Dieterici equation of state from
the critical constants of xenon. Calculate the pressure exerted by 1.0 mol Xe
when it is confined to 1.0 dm? at 25°C.

Theoretical problems

1.14 Show that the van der Waals equation leads to values of Z<1and Z> 1,
and identify the conditions for which these values are obtained.

1.15 Express the van der Waals equation of state as a virial expansion in
powers of 1/V, and obtain expressions for Band C in terms of the parameters
a and b. The expansion you will need is (1—x) =1+ x+ x>+ --.
Measurements on argon gave B=—21.7 cm® mol™! and C= 1200 cm® mol ™
for the virial coefficients at 273 K. What are the values of @ and & in the
corresponding van der Waals equation of state?

1.16% Derive the relation between the critical constants and the Dieterici
equation parameters. Show that Z, = 2¢ ? and derive the reduced form of the
Dieterici equation of state. Compare the van der Waals and Dieterici
predictions of the critical compression factor. Which is closer to typical
experimental values?

1.17 A scientist proposed the following equation of state:

RT B C
:———+_
Py v

Show that the equation leads to critical behaviour. Find the critical constants
of the gas in terms of B and C and an expression for the critical compression
factor.

1.18 Equations 1.18 and 1.19 are expansions in p and 1/V,, respectively. Find
the relation between B, C and B, C’.

1.19 The second virial coefficient B’ can be obtained from measurements of
the density p of a gas at a series of pressures. Show that the graph of p/p
against p should be a straight line with slope proportional to B'. Use the data
on dimethyl ether in Problem 1.2 to find the values of B’ and B at 25°C.

1.20 The equation of state of a certain gas is given by p =RT/V_ +
(a+bT)/ Vﬁj, where a and b are constants. Find (9V/0T) 5

1.21 The following equations of state are occasionally used for approximate
calculations on gases: (gas A) pV,, =RT(1 + b/V ), (gas B) p(V,,— b) =RT.
Assuming that there were gases that actually obeyed these equations of state,
would it be possible to liquefy either gas A or B? Would they have a critical
temperature? Explain your answer.

1.22 Derive an expression for the compression factor of a gas that obeys the
equation of state p(V —nb) = nRT, where b and R are constants. If the pressure
and temperature are such that V, = 105, what is the numerical value of the
compression factor?

1.23% The discovery of the element argon by Lord Rayleigh and Sir William
Ramsay had its origins in Rayleigh’s measurements of the density of nitrogen
with an eye toward accurate determination of its molar mass. Rayleigh
prepared some samples of nitrogen by chemical reaction of nitrogen-
containing compounds; under his standard conditions, a glass globe filled
with this ‘chemical nitrogen’ had a mass of 2.2990 g. He prepared other
samples by removing oxygen, carbon dioxide, and water vapour from
atmospheric air; under the same conditions, this ‘atmospheric nitrogen” had a
mass of 2.3102 g (Lord Rayleigh, Royal Institution Proceedings 14, 524 (1895)).
With the hindsight of knowing accurate values for the molar masses of
nitrogen and argon, compute the mole fraction of argon in the latter sample
on the assumption that the former was pure nitrogen and the latter a mixture
of nitrogen and argon.

1.24% A substance as elementary and well known as argon still receives
research attention. Stewart and Jacobsen have published a review of
thermodynamic properties of argon (R.B. Stewart and R.T. Jacobsen, J. Phys.
Chem. Ref. Data 18, 639 (1989)) that included the following 300 K isotherm.

p/MPa 0.4000  0.5000  0.6000 0.8000 1.000
V,,/(dm?® mol™) 6.2208 4.9736 4.1423 3.1031 2.4795
p/MPa 1.500 2.000 2.500 3.000 4,000
V,,/(dm?® mol™) 1.6483 1.2328  0.98357  0.81746  0.60998

(a) Compute the second virial coefficient, B, at this temperature. (b) Use
non-linear curve-fitting software to compute the third virial coefficient, C,
at this temperature.

Applications: to environmental science

1.25 Atmospheric pollution is a problem that has received much attention.
Not all pollution, however, is from industrial sources. Volcanic eruptions can
be a significant source of air pollution. The Kilauea volcano in Hawaii emits
200-300 t of SO, per day. If this gas is emitted at 800°C and 1.0 atm, what
volume of gas is emitted?

1.26 Ozone is a trace atmospheric gas that plays an important role in
screening the Farth from harmful ultraviolet radiation, and the abundance

of ozone is commonly reported in Dobson units. One Dobson unit is the
thickness, in thousandths of a centimetre, of a column of gas if it were
collected as a pure gas at 1.00 atm and 0°C. What amount of O, (in moles) is
found in a column of atmosphere with a cross-sectional area of 1.00 dm? if the
abundance is 250 Dobson units (a typical mid-latitude value)? In the seasonal
Antarctic ozone hole, the column abundance drops below 100 Dobson units;
how many moles of ozone are found in such a column of air above a 1.00 dm?
area? Most atmospheric ozone is found between 10 and 50 km above the
surface of the earth. If that ozone is spread uniformly through this portion

of the atmosphere, what is the average molar concentration corresponding to
(a) 250 Dobson units, (b) 100 Dobson units?

1.27 The barometric formula relates the pressure of a gas of molar mass M at
an altitude A to its pressure p, at sea level. Derive this relation by showing that



the change in pressure dp for an infinitesimal change in altitude di where
the density is pis dp =—pgdh. Remember that p depends on the pressure.
Evaluate (a) the pressure difference between the top and bottom of a
laboratory vessel of height 15 cm, and (b) the external atmospheric pressure
at a typical cruising altitude of an aircraft (11 km) when the pressure at
ground level is 1.0 atm.

1.28 Balloons are still used to deploy sensors that monitor meteorological
phenomena and the chemistry of the atmosphere. It is possible to investigate
some of the technicalities of ballooning by using the perfect gas law. Suppose
your balloon has a radius of 3.0 m and that it is spherical. (a) What amount of
H, (in moles) is needed to inflate it to 1.0 atm in an ambient temperature of
25°C at sea level? (b) What mass can the balloon lift at sea level, where the
density of air is 1.22 kg m? (c) What would be the payload if He were used
instead of H,?

PROBLEMS 27

1.29% The preceding problem is most readily solved (see the Solutions
manual) with the use of the Archimedes principle, which states that the lifting
force is equal to the difference between the weight of the displaced air and the
weight of the balloon. Prove the Archimedes principle for the atmosphere
from the barometric formula. Hint. Assume a simple shape for the balloon,
perhaps a right circular cylinder of cross—sectional area A and height A.

1.30 % Chlorofluorocarbons such as CCL,F and CCLF, have been linked

to ozone depletion in Antarctica. As of 1994, these gases were found in
quantities of 261 and 509 parts per trillion (10'?) by volume (World
Resources Institute, World resources 1996-97). Compute the molar
concentration of these gases under conditions typical of (a) the mid-latitude
troposphere (10°C and 1.0 atm) and (b) the Antarctic stratosphere

(200 K and 0.050 atm).
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The First Law

This chapter introduces some of the basic concepts of thermodynamics. It concentrates
on the conservation of energy—the experimental observation that energy can be neither
created nor destroyed—and shows how the principle of the conservation of energy can be
used to assess the energy changes that accompany physical and chemical processes.
Much of this chapter examines the means by which a system can exchange energy with its
surroundings in terms of the work it may do or the heat that it may produce. The target con-
cept of the chapter is enthalpy, which is a very useful book-keeping property for keeping
track of the heat output (or requirements) of physical processes and chemical reactions at
constant pressure. We also begin to unfold some of the power of thermodynamics by
showing how to establish relations between different properties of a system. We shall see
that one very useful aspect of thermodynamics is that a property can be measured indirectly
by measuring others and then combining their values. The relations we derive also enable
us to discuss the liquefaction of gases and to establish the relation between the heat
capacities of a substance under different conditions.

The release of energy can be used to provide heat when a fuel burns in a furnace, to
produce mechanical work when a fuel burns in an engine, and to generate electrical
work when a chemical reaction pumps electrons through a circuit. In chemistry, we
encounter reactions that can be harnessed to provide heat and work, reactions that
liberate energy which is squandered (often to the detriment of the environment) but
which give products we require, and reactions that constitute the processes of life.
Thermodynamics, the study of the transformations of energy, enables us to discuss all
these matters quantitatively and to make useful predictions.

The basic concepts

For the purposes of physical chemistry, the universe is divided into two parts, the sys-
tem and its surroundings. The system is the part of the world in which we have a spe-
cial interest. [t may be a reaction vessel, an engine, an electrochemical cell, a biological
cell, and so on. The surroundings comprise the region outside the system and are
where we make our measurements. The type of system depends on the characteristics
of the boundary that divides it from the surroundings (Fig. 2.1). If matter can be
transferred through the boundary between the system and its surroundings the sys-
tem is classified as open. If matter cannot pass through the boundary the system is
classified as closed. Both open and closed systems can exchange energy with their sur-
roundings. For example, a closed system can expand and thereby raise a weight in the
surroundings; it may also transfer energy to them if they are at a lower temperature.



An isolated system is a closed system that has neither mechanical nor thermal contact
with its surroundings.

2.1 Work, heat, and energy

The fundamental physical property in thermodynamics is work: work is motion
against an opposing force. Doing work is equivalent to raising a weight somewhere
in the surroundings. An example of doing work is the expansion of a gas that pushes
out a piston and raises a weight. A chemical reaction that drives an electric current
through a resistance also does work, because the same current could be driven
through a motor and used to raise a weight.

The energy of a system is its capacity to do work. When work is done on an other-
wise isolated system (for instance, by compressing a gas or winding a spring), the capa-
city of the system to do work is increased; in other words, the energy of the system
is increased. When the system does work (when the piston moves out or the spring
unwinds), the energy of the system is reduced and it can do less work than before.

Experiments have shown that the energy of a system may be changed by means
other than work itself. When the energy of a system changes as a result of a tempera-
ture difference between the system and its surroundings we say that energy has been
transferred as heat. When a heater is immersed in a beaker of water (the system), the
capacity of the system to do work increases because hot water can be used to do more
work than the same amount of cold water. Not all boundaries permit the transfer
of energy even though there is a temperature difference between the system and its
surroundings.

An exothermic process is a process that releases energy as heat into its surround-
ings. All combustion reactions are exothermic. An endothermic process is a pro-
cess in which energy is acquired from its surroundings as heat. An example of an
endothermic process is the vaporization of water. To avoid a lot of awkward circum-
locution, we say that in an exothermic process energy is transferred ‘as heat’ to the
surroundings and in an endothermic process energy is transferred ‘as heat’ from
the surroundings into the system. However, it must never be forgotten that heat is a
process (the transfer of energy as a result of a temperature difference), not an entity.
An endothermic process in a diathermic container results in energy flowing into the
system as heat. An exothermic process in a similar diathermic container results in a
release of energy as heat into the surroundings. When an endothermic process takes
place in an adiabatic container, it results in a lowering of temperature of the system;
an exothermic process results in a rise of temperature. These features are summarized
in Fig. 2.2.

Molecular interpretation 2.1 Heat and work

In molecular terms, heating is the transfer of energy that makes use of disorderly
molecular motion. The disorderly motion of molecules is called thermal motion.
The thermal motion of the molecules in the hot surroundings stimulates the
molecules in the cooler system to move more vigorously and, as a result, the energy
of the system is increased. When a system heats its surroundings, molecules of
the system stimulate the thermal motion of the molecules in the surroundings
(Fig. 2.3).

In contrast, work is the transfer of energy that makes use of organized motion
(Fig. 2.4). When a weight is raised or lowered, its atoms move in an organized way
(up or down). The atoms in a spring move in an orderly way when it is wound; the
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Endothermic Exothermic

(a) {b)

Isothermal

(c) (d)

Fig. 2.2 (2) When an endothermic process
occurs in an adiabatic system, the
temperature falls; (b) if the process is
exothermic, then the temperature rises.

(¢) When an endothermic process occurs
in a diathermic container, energy enters as
heat from the surroundings, and the system
remains at the same temperature. (d) If the
process is exothermic, then energy leaves as
heat, and the process is isothermal.

Energy

Energy

Energy Energy Energy Energy

System System

Fig. 24 When a system does work, it
stimulates orderly motion in the
surroundings. For instance, the atoms
shown here may be part of a weight that is
being raised. The ordered motion of the
atoms in a falling weight does work on the
system.

Fig. 2.3 When energy is transferred to the
surroundings as heat, the transfer
stimulates random motion of the atoms in
the surroundings. Transfer of energy from
the surroundings to the system makes use
of random motion (thermal motion) in the
surroundings.

electrons in an electric current move in an orderly direction when it flows. When a
system does work it causes atoms or electrons in its surroundings to move in an
organized way. Likewise, when work is done on a system, molecules in the sur-
roundings are used to transfer energy to it in an organized way, as the atoms in a
weight are lowered or a current of electrons is passed.

The distinction between work and heat is made in the surroundings. The fact
that a falling weight may stimulate thermal motion in the system is irrelevant to the
distinction between heat and work: work is identified as energy transfer making
use of the organized motion of atoms in the surroundings, and heat is identified as
energy transfer making use of thermal motion in the surroundings. In the com-
pression of a gas, for instance, work is done as the atoms of the compressing weight
descend in an orderly way, but the effect of the incoming piston is to accelerate the
gas molecules to higher average speeds. Because collisions between molecules
quickly randomize their directions, the orderly motion of the atoms of the weight
is in effect stimulating thermal motion in the gas. We observe the falling weight,
the orderly descent of its atoms, and report that work is being done even though it
is stimulating thermal motion.

2.2 The internal energy

In thermodynamics, the total energy of a system is called its internal energy, U. The
internal energy is the total kinetic and potential energy of the molecules in the system
(see Comment 1.3 for the definitions of kinetic and potential energy).! We denote by
AU the change in internal energy when a system changes from an initial state i with
internal energy U, to a final state f of internal energy U,:

AU=U,- T, [2.1]

! The internal energy does not include the kinetic energy arising from the motion of the system as a whole,
such as its kinetic energy as it accompanies the Earth on its orbit round the Sun.



The internal energy is a state function in the sense that its value depends only on the
current state of the system and is independent of how that state has been prepared.
In other words, it is a function of the properties that determine the current state of
the system. Changing any one of the state variables, such as the pressure, results in
a change in internal energy. The internal energy is an extensive property. That the
internal energy is a state function has consequences of the greatest importance, as we
start to unfold in Section 2.10.

Internal energy, heat, and work are all measured in the same units, the joule (J). The
joule, which is named after the nineteenth-century scientist J.P. Joule, is defined as

1J=1kgm?s™

A joule is quite a small unit of energy: for instance, each beat of the human heart con-
sumes about 1 J. Changes in molar internal energy, AU_, are typically expressed in
kilojoules per mole (k] mol™). Certain other energy units are also used, but are more
common in fields other than thermodynamics. Thus, 1 electronvolt (1 eV) is defined
as the kinetic energy acquired when an electron is accelerated from rest through a
potential difference of 1 V; the relation between electronvolts and joules is 1 eV =
0.16 aJ (where 1 aJ = 1078 J). Many processes in chemistry have an energy of several
electronvolts. Thus, the energy to remove an electron from a sodium atom is close to
5 eV. Calories (cal) and kilocalories (kcal) are still encountered. The current definition
of the calorie in terms of joules is

1 cal=4.184 ] exactly

An energy of 1 cal is enough to raise the temperature of 1 g of water by 1°C.

Molecular interpretation 2.2 The internal energy of a gas

A molecule has a certain number of degrees of freedom, such as the ability to trans-
late (the motion of its centre of mass through space), rotate around its centre
of mass, or vibrate (as its bond lengths and angles change). Many physical and
chemical properties depend on the energy associated with each of these modes of
motion. For example, a chemical bond might break if a lot of energy becomes
concentrated in it.

The equipartition theorem of classical mechanics is a useful guide to the average
energy associated with each degree of freedom when the sample is at a temperature
T. First, we need to know that a ‘quadratic contribution’ to the energy means a
contribution that can be expressed as the square of a variable, such as the position
or the velocity. For example, the kinetic energy an atom of mass m as it moves
through space is

Ey = gmv} +gmul + Jmy?
and there are three quadratic contributions to its energy. The equipartition
theorem then states that, for a collection of particles at thermal equilibrium at a
temperature T, the average value of each quadratic contribution to the energy is the
same and equal to %kT, where kis Boltzmann’s constant (k= 1.381 x 1072* J K1),

The equipartition theorem is a conclusion from classical mechanics and is
applicable only when the effects of quantization can be ignored (see Chapters 16
and 17). In practice, it can be used for molecular translation and rotation but not
vibration. At 25°C, %kT: 2 zJ (where 1 zJ = 10721 ]), or about 13 meV.

According to the equipartition theorem, the average energy of each term in the
expression above is 7kT. Therefore, the mean energy of the atoms is kT and the
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Comment 2.1

An extensive property is a property that
depends on the amount of substance in
the sample. An intensive property is a
property that is independent of the
amount of substance in the sample. Two
examples of extensive properties are
mass and volume. Examples of intensive
properties are temperature, mass
density (mass divided by volume), and
pressure.
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Fig. 25 The rotational modes of molecules
and the corresponding average energies at a
temperature T. (a) A linear molecule can
rotate about two axes perpendicular to the
line of the atoms. (b) A nonlinear molecule
can rotate about three perpendicular axes.

total energy of the gas (there being no potential energy contribution) is Nk, or
2nRT (because N=nN, and R= N, k). We can therefore write

U,=U,(0)+3RT

where U_(0) is the molar internal energy at T'= 0, when all translational motion
has ceased and the sole contribution to the internal energy arises from the internal
structure of the atoms. This equation shows that the internal energy of a perfect gas
increases linearly with temperature. At 25°C, %RT: 3.7 k] mol™!, so translational
motion contributes about 4 k] mol™ to the molar internal energy of a gaseous
sample of atoms or molecules (the remaining contribution arises from the internal
structure of the atoms and molecules).

When the gas consists of polyatomic molecules, we need to take into account the
effect of rotation and vibration. A linear molecule, such as N, and CO,, can rotate
around two axes perpendicular to the line of the atoms (Fig. 2.5), so it has two
rotational modes of motion, each contributing a term 17 to the internal energy.
Therefore, the mean rotational energy is kT and the rotational contribution to the
molar internal energy is RT. By adding the translational and rotational contribu-
tions, we obtain

U,=U,0)+ %RT (linear molecule, translation and rotation only)

A nonlinear molecule, such as CH, or water, can rotate around three axes and,
again, each mode of motion contributes a term 3kT to the internal energy.
Therefore, the mean rotational energy is %kT and there is a rotational contribution
of %RTto the molar internal energy of the molecule. That is,

U =U_(0)+3RT (nonlinear molecule, translation and rotation only)

The internal energy now increases twice as rapidly with temperature compared
with the monatomic gas.

The internal energy of interacting molecules in condensed phases also has a
contribution from the potential energy of their interaction. However, no simple
expressions can be written down in general. Nevertheless, the crucial molecular
point is that, as the temperature of a system is raised, the internal energy increases
as the various modes of motion become more highly excited.

It has been found experimentally that the internal energy of a system may be
changed either by doing work on the system or by heating it. Whereas we may know
how the energy transfer has occurred (because we can see if a weight has been raised
or lowered in the surroundings, indicating transfer of energy by doing work, or if ice
has melted in the surroundings, indicating transfer of energy as heat), the system is
blind to the mode employed. Heat and work are equivalent ways of changing a system’s
internal energy. A system is like a bank: it accepts depositsin either currency, but stores
its reserves as internal energy. It is also found experimentally that, if a system is
isolated from its surroundings, then no change in internal energy takes place. This
summary of observations is now known as the First Law of thermodynamics and
expressed as follows:

The internal energy of an isolated system is constant.

We cannot use a system to do work, leave it isolated for a month, and then come back
expecting to find it restored to its original state and ready to do the same work again.
The evidence for this property is that no ‘perpetual motion machine’ (a machine that



does work without consuming fuel or some other source of energy) has ever been
built.

These remarks may be summarized as follows. If we write w for the work done on a
system, g for the energy transferred as heat to a system, and AU for the resulting
change in internal energy, then it follows that

AU=q+w (2.2)

Equation 2.2 is the mathematical statement of the First Law, for it summarizes the
equivalence of heat and work and the fact that the internal energy is constant in an
isolated system (for which g = 0 and w = 0). The equation states that the change in
internal energy of a closed system is equal to the energy that passes through its bound-
ary as heat or work. It employs the ‘acquisitive convention’, in which w >0 or ¢ > 0 if
energy is transferred to the system as work or heat and w < 0 or g < 0 if energy is lost
from the system as work or heat. In other words, we view the flow of energy as work
or heat from the system’s perspective.

lllustration 2.1 The sign convention in thermodynamics

If an electric motor produced 15 kJ of energy each second as mechanical work and
lost 2 k] as heat to the surroundings, then the change in the internal energy of the
motor each second is

AU=-2Kk]-15k]=-17Kk]

Suppose that, when a spring was wound, 100 J of work was done on it but 15 ]
escaped to the surroundings as heat. The change in internal energy of the spring s

AU=+100k] - 15kJ=+85Kk]

2.3 Expansion work

The way can now be opened to powerful methods of calculation by switching atten-
tion to infinitesimal changes of state (such as infinitesimal change in temperature)
and infinitesimal changes in the internal energy dU. Then, if the work done on a sys-
tem is dw and the energy supplied to it as heat is dg, in place of eqn 2.2 we have

dU=dq+dw (2.3)

To use this expression we must be able to relate dg and dw to events taking place in the
surroundings.

We begin by discussing expansion work, the work arising from a change in volume.
This type of work includes the work done by a gas as it expands and drives back the
atmosphere. Many chemical reactions result in the generation or consumption of
gases (for instance, the thermal decomposition of calcium carbonate or the combus-
tion of octane), and the thermodynamic characteristics of a reaction depend on the
work it can do. The term ‘expansion work’ also includes work associated with negat-
ive changes of volume, that is, compression.

(a) The general expression for work

The calculation of expansion work starts from the definition used in physics, which
states that the work required to move an object a distance dz against an opposing force
of magnitude Fis

dw=-Fdz (2.4]

2.3 EXPANSION WORK

33



34 2 THE FIRST LAW

External
pressure, p,,

>
o ®

< <

Area, A Pressure, p

Fig. 2.6 When a piston of area A moves out
through a distance dz, it sweeps out a
volume dV'= Adz. The external pressure p,,
is equivalent to a weight pressing on the
piston, and the force opposing expansion is
F = pexA'

The negative sign tells us that, when the system moves an object against an opposing
force, the internal energy of the system doing the work will decrease. Now consider the
arrangement shown in Fig. 2.6, in which one wall of a system is a massless, frictionless,
rigid, perfectly fitting piston of area A. If the external pressure is p,,, the magnitude of
the force acting on the outer face of the piston is F = p_ A. When the system expands
through a distance dz against an external pressure p,, it follows that the work done is
dw =—p_ Adz. But Adz is the change in volume, dV, in the course of the expansion.
Therefore, the work done when the system expands by dV against a pressure p,, is

dw=—p_dV (2.5)

To obtain the total work done when the volume changes from V; to V; we integrate
this expression between the initial and final volumes:

Vf
W:—J puedV (2.6)

V.

The force acting on the piston, p,, A, is equivalent to a weight that is raised as the sys-
tem expands.

If the system is compressed instead, then the same weight is lowered in the sur-
roundings and eqn 2.6 can still be used, but now V; < V.. It is important to note that it
is still the external pressure that determines the magnitude of the work. This some-
what perplexing conclusion seems to be inconsistent with the fact that the gas inside
the container is opposing the compression. However, when a gas is compressed, the
ability of the surroundings to do work is diminished by an amount determined by the
weight that is lowered, and it is this energy that is transferred into the system.

Other types of work (for example, electrical work), which we shall call either non-
expansion work or additional work, have analogous expressions, with each one the
product of an intensive factor (the pressure, for instance) and an extensive factor (the
change in volume). Some are collected in Table 2.1. For the present we continue with
the work associated with changing the volume, the expansion work, and see what we
can extract from eqns 2.5 and 2.6.

(b) Free expansion

By free expansion we mean expansion against zero opposing force. It occurs when
P =0. According to eqn 2.5, dw = 0 for each stage of the expansion. Hence, overall:

Free expansion: w=20 (2.7)

Table 2.1 Varieties of work*

Type of work dw Comments Unitst
Expansion —pedV Pey is the external pressure Pa
dVis the change in volume m’
Surface expansion vdo 7 is the surface tension Nm!
dois the change in area m?
Extension fdi fis the tension N
dlis the change in length m
Electrical ¢dQ @ is the electric potential v
dQ is the change in charge @

*In general, the work done on a system can be expressed in the form dw =—Fdz, where Fis a ‘generalized force’
and dzis a ‘generalized displacement’.
+ For work in joules (J). Notethat INm=1Jand 1VC=1].



That is, no work is done when a system expands freely. Expansion of this kind occurs
when a system expands into a vacuum.

(c¢) Expansion against constant pressure

Now suppose that the external pressure is constant throughout the expansion. For ex-
ample, the piston may be pressed on by the atmosphere, which exerts the same pres-
sure throughout the expansion. A chemical example of this condition is the expansion
of a gas formed in a chemical reaction. We can evaluate eqn 2.6 by taking the constant
P outside the integral:

Vf
w= _pex‘[ dv= _pex( Vf_ Vl)
4
Therefore, if we write the change in volume as AV =V, -V,

(2.8)

This result is illustrated graphically in Fig. 2.7, which makes use of the fact that an
integral can be interpreted as an area. The magnitude of w, denoted |w/, is equal to the
area beneath the horizontal line at p = p,, lying between the initial and final volumes.
A p,V-graph used to compute expansion work is called an indicator diagram; James
Watt first used one to indicate aspects of the operation of his steam engine.

W=—p, AV

(d) Reversible expansion

A reversible change in thermodynamics is a change that can be reversed by an
infinitesimal modification of a variable. The key word ‘infinitesimal’ sharpens the
everyday meaning of the word ‘reversible’ as something that can change direction. We
say that a system is in equilibrium with its surroundings if an infinitesimal change
in the conditions in opposite directions results in opposite changes in its state. One
example of reversibility that we have encountered already is the thermal equilibrium
of two systems with the same temperature. The transfer of energy as heat between the
two is reversible because, if the temperature of either system is lowered infinitesim-
ally, then energy flows into the system with the lower temperature. If the temperature
of either system at thermal equilibrium is raised infinitesimally, then energy flows out
of the hotter system.

Suppose a gas is confined by a piston and that the external pressure, p,,, is set equal
to the pressure, p, of the confined gas. Such a system is in mechanical equilibrium with
its surroundings (as illustrated in Section 1.1) because an infinitesimal change in the
external pressure in either direction causes changes in volume in opposite directions.
If the external pressure is reduced infinitesimally, then the gas expands slightly. If
the external pressure is increased infinitesimally, then the gas contracts slightly. In
either case the change is reversible in the thermodynamic sense. If, on the other hand,
the external pressure differs measurably from the internal pressure, then changingp,.
infinitesimally will not decrease it below the pressure of the gas, so will not change the
direction of the process. Such a system is not in mechanical equilibrium with its sur-
roundings and the expansion is thermodynamically irreversible.

To achieve reversible expansion we set p,, equal to p at each stage of the expansion.
In practice, this equalization could be achieved by gradually removing weights from
the piston so that the downward force due to the weights always matched the chang-
ing upward force due to the pressure of the gas. When we set p, = p, eqn 2.5 becomes

dw=—-p, dV=—pdV (2.9)

(Equations valid only for reversible processes are labelled with a subscript rev.)
Although the pressure inside the system appears in this expression for the work, it

rev
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Fig. 27 The work done by a gas when it
expands against a constant external
pressure, p.,, is equal to the shaded area in
this example of an indicator diagram.

The value of the integral

Comment 2.2 b
J flx)dxis

a

equal to the area under the graph of f(x)
between x=a and x=b. For instance, the
area under the curve f(x) = x? shown in
the illustration that lies between x=1
and 3 is
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Comment 2.3
An integral that occurs throughout
thermodynamics is

2 b
J —dx= (Inx + constant) z =Iln—
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Fig. 28 The work done by a perfect gas
when it expands reversibly and
isothermally is equal to the area under the
isotherm p = nRT/V. The work done
during the irreversible expansion against
the same final pressure is equal to the
rectangular area shown slightly darker.
Note that the reversible work is greater
than the irreversible work.

Exploration Calculate the work of
= isothermal reversible expansion of
1.0 mol CO,(g) at 298 K from 1.0 m* to
3.0 m® on the basis that it obeys the van
der Waals equation of state.

does so only because p,, has been set equal to p to ensure reversibility. The total work
of reversible expansion is therefore

Vf
W:—J pdV (2‘10)rev

V.

We can evaluate the integral once we know how the pressure of the confined gas
depends on its volume. Equation 2.10 is the link with the material covered in Chap-
ter 1 for, if we know the equation of state of the gas, then we can express p in terms of
Vand evaluate the integral.

(e) Isothermal reversible expansion

Consider the isothermal, reversible expansion of a perfect gas. The expansion is made
isothermal by keeping the system in thermal contact with its surroundings (which
may be a constant-temperature bath). Because the equation of state is pV = nRT, we
know that at each stage p = nRT/V, with V the volume at that stage of the expansion.
The temperature 1'is constant in an isothermal expansion, so (together with # and R)
it may be taken outside the integral. It follows that the work of reversible isothermal
expansion of a perfect gas from V, to V;at a temperature T'is

rev

Vv i

i

~ rav V; .
w=-—nRT| —=-nRTIh— (2.11)

When the final volume is greater than the initial volume, as in an expansion, the
logarithm in eqn 2.11 is positive and hence w < 0. In this case, the system has done
work on the surroundings and the internal energy of the system has decreased as a
result.” The equations also show that more work is done for a given change of volume
when the temperature is increased. The greater pressure of the confined gas then
needs a higher opposing pressure to ensure reversibility.

We can express the result of the calculation as an indicator diagram, for the magni-
tude of the work done is equal to the area under the isotherm p = nRT/V (Fig. 2.8).
Superimposed on the diagram is the rectangular area obtained for irreversible expan-
sion against constant external pressure fixed at the same final value as that reached in
the reversible expansion. More work is obtained when the expansion is reversible (the
area is greater) because matching the external pressure to the internal pressure at each
stage of the process ensures that none of the system’s pushing power is wasted. We
cannot obtain more work than for the reversible process because increasing the external
pressure even infinitesimally at any stage results in compression. We may infer from
this discussion that, because some pushing power is wasted when p > p,,, the maxi-
mum work available from a system operating between specified initial and final states
and passing along a specified path is obtained when the change takes place reversibly.

We have introduced the connection between reversibility and maximum work for
the special case of a perfect gas undergoing expansion. Later (in Section 3.5) we shall
see that it applies to all substances and to all kinds of work.

Example 2.1 Calculating the work of gas production

Calculate the work done when 50 g of iron reacts with hydrochloric acid in (a) a
closed vessel of fixed volume, (b) an open beaker at 25°C.

2 We shall see later that there is a compensating influx of energy as heat, so overall the internal energy is
constant for the isothermal expansion of a perfect gas.



Method We need to judge the magnitude of the volume change and then to decide
how the process occurs. If there isno change in volume, there is no expansion work
however the process takes place. If the system expands against a constant external
pressure, the work can be calculated from eqn 2.8. A general feature of processes in
which a condensed phase changes into a gas is that the volume of the former may
usually be neglected relative to that of the gas it forms.

Answer In (a) the volume cannot change, so no expansion work is done and
w=0.In (b) the gas drives back the atmosphere and therefore w=—p_ AV. We can
neglect the initial volume because the final volume (after the production of gas)
is so much larger and AV=V;— V.= V.= uRT/p_, where n is the amount of H, pro-
duced. Therefore,

nRT
W=—p AV =—p, X——=—nRT
Because the reaction is Fe(s) + 2 HCI(aq) — FeCl,(aq) + H,(g), we know that 1 mol
H, is generated when 1 mol Fe is consumed, and # can be taken as the amount of
Fe atoms that react. Because the molar mass of Fe is 55.85 ¢ mol™, it follows that
50¢g

w~—————x(8.3145] K' mol™) x (298 K)
55.85 g mol ™

=~—22KkJ

The system (the reaction mixture) does 2.2 kJ of work driving back the atmo-
sphere. Note that (for this perfect gas system) the magnitude of the external pres-
sure does not affect the final result: the lower the pressure, the larger the volume
occupied by the gas, so the effects cancel.

Self-test 2.1 Calculate the expansion work done when 50 g of water is electrolysed
under constant pressure at 25°C. [-10KJ]

2.4 Heat transactions
In general, the change in internal energy of a system is
dU=dq+dw, +dw, (2.12)

where dw, is work in addition (e for ‘extra’) to the expansion work, dw,,. For
instance, dw, might be the electrical work of driving a current through a circuit. A
system kept at constant volume can do no expansion work, so dw,,, = 0. If the sys-
tem is also incapable of doing any other kind of work (if it is not, for instance, an
electrochemical cell connected to an electric motor), then dw, = 0 too. Under these

circumstances:
dU=dg (at constant volume, no additional work) (2.13a)

We express this relation by writing dU = dq,,, where the subscript implies a change at
constant volume. For a measurable change,

AU=q, (2.13b)

It follows that, by measuring the energy supplied to a constant-volume system as heat
(g>0) or obtained from it as heat (g < 0) when it undergoes a change of state, we are
in fact measuring the change in its internal energy.

2.4 HEAT TRANSACTIONS
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Oxygen Firing
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Fig. 2.9 A constant-volume bomb
calorimeter. The ‘bomb’ is the central
vessel, which is strong enough to withstand
high pressures. The calorimeter (for which
the heat capacity must be known) is the
entire assembly shown here. To ensure
adiabaticity, the calorimeter is immersed
in a water bath with a temperature
continuously readjusted to that of the
calorimeter at each stage of the
combustion.

Comment 2.4

Electrical charge is measured in
coulombs, C. The motion of charge gives
rise to an electric current, I, measured in
coulombs per second, or amperes, A,
where 1 A=1 Cs7L, If a constant current
Iflows through a potential difference 7
(measured in volts, V), the total energy
supplied in an interval tis

Energy supplied=1V't

Because 1AVs=1(Cs ) Vs=

1 CV=1],the energy is obtained in
joules with the current in amperes, the
potential difference in volts, and the
time in seconds. We write the electrical
power, P, as

P = (energy supplied)/(time interval)
=1vVyt=1v

(a) Calorimetry

Calorimetry is the study of heat transfer during physical and chemical processes. A
calorimeter is a device for measuring energy transferred as heat. The most common
device for measuring AU is an adiabatic bomb calorimeter (Fig. 2.9). The process we
wish to study—which may be a chemical reaction—is initiated inside a constant-
volume container, the ‘bomb’. The bomb is immersed in a stirred water bath, and the
whole device is the calorimeter. The calorimeter is also immersed in an outer water
bath. The water in the calorimeter and of the outer bath are both monitored and
adjusted to the same temperature. This arrangement ensures that there is no net loss
of heat from the calorimeter to the surroundings (the bath) and hence that the
calorimeter is adiabatic.

The change in temperature, AT, of the calorimeter is proportional to the heat
that the reaction releases or absorbs. Therefore, by measuring AT we can determine gy,
and hence find AU. The conversion of AT to q,, is best achieved by calibrating the
calorimeter using a process of known energy output and determining the calorimeter
constant, the constant C in the relation

q=CAT (2.14a)

The calorimeter constant may be measured electrically by passing a constant current,
L from a source of known potential difference, ¥, through a heater for a known period
of time, ¢, for then

q=1I7t (2.14b)

Alternatively, C may be determined by burning a known mass of substance (benzoic
acid is often used) that has a known heat output. With C known, it is simple to inter-
pret an observed temperature rise as a release of heat.

lllustration 2.2 The calibration of a calorimeter

If we pass a current of 10.0 A from a 12 V supply for 300 s, then from eqn 2.14b the
energy supplied as heat is

g=(10.0A) x (12 V) x(300s) =3.6 X 10* A Vs=36 kJ

because 1 AV s=1].If the observed rise in temperature is 5.5 K, then the calorime-
ter constant is C= (36 kJ)/(5.5 K) = 6.5kJ K.

(b) Heat capacity

The internal energy of a substance increases when its temperature is raised. The
increase depends on the conditions under which the heating takes place and for the
present we suppose that the sample is confined to a constant volume. For example,
the sample may be a gas in a container of fixed volume. If the internal energy is plotted
against temperature, then a curve like that in Fig. 2.10 may be obtained. The slope of
the tangent to the curve at any temperature is called the heat capacity of the system at
that temperature. The heat capacity at constant volume is denoted C, and is defined
formally as®

3 If the system can change its composition, it is necessary to distinguish between equilibrium and fixed-
composition values of Cy. All applications in this chapter refer to a single substance, so this complication
can be ignored.
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In this case, the internal energy varies with the temperature and the volume of the
sample, but we are interested only in its variation with the temperature, the volume
being held constant (Fig. 2.11).

lllustration 2.3 Estimating a constant-volume heat capacity

The heat capacity of a monatomic perfect gas can be calculated by inserting the
expression for the internal energy derived in Molecular interpretation 2.2. There we
saw that U_=U_(0) + %RT, so from eqn 2.15

. 8
VST

The numerical value is 12.47 ] K~! mol™.

(U,(0)+3RT)=2R

Heat capacities are extensive properties: 100 g of water, for instance, has 100 times
the heat capacity of 1 g of water (and therefore requires 100 times the energy as heat
to bring about the same rise in temperature). The molar heat capacity at constant
volume, Cym = Cyln, is the heat capacity per mole of material, and is an intensive
property (all molar quantities are intensive). Typical values of Cy,  for polyatomic
gases are close to 25 ] K™ mol™. For certain applications it is useful to know the
specific heat capacity (more informally, the “specific heat’) of a substance, which is
the heat capacity of the sample divided by the mass, usually in grams: C,, = Cy,/m. The
specific heat capacity of water at room temperature is close to 4 ] K™* g, In general,

2.4 HEAT TRANSACTIONS

Comment 2.5

The partial-differential operation
(dz/dx) , consists of taking the first
derivative of z(x,y) with respect to x,
treating y as a constant. For example,
if z(x,y) = x%y, then

0z d[x%y] dx?
s = e
ox ox 4 dx yx
y y
Partial derivatives are reviewed in
Appendix 2.
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Fig. 212 When a system is subjected to
constant pressure and is free to change its
volume, some of the energy supplied as
heat may escape back into the
surroundings as work. In such a case, the
change in internal energy is smaller than
the energy supplied as heat.

heat capacities depend on the temperature and decrease at low temperatures. How-
ever, over small ranges of temperature at and above room temperature, the variation
is quite small and for approximate calculations heat capacities can be treated as almost
independent of temperature.

The heat capacity is used to relate a change in internal energy to a change in tem-
perature of a constant-volume system. It follows from eqn 2.15 that

dU=C,dT (at constant volume) (2.16a)

That is, at constant volume, an infinitesimal change in temperature brings about an
infinitesimal change in internal energy, and the constant of proportionality is Cy. If
the heat capacity is independent of temperature over the range of temperatures of
interest, a measurable change of temperature, AT, brings about a measurable increase
in internal energy, AU, where

AU=C, AT (at constant volume) (2.16b)

Because a change in internal energy can be identified with the heat supplied at con-
stant volume (eqn 2.13b), the last equation can be written

qy=Cy AT (2.17)

This relation provides a simple way of measuring the heat capacity of a sample: a mea-
sured quantity of energy is transferred as heat to the sample (electrically, for example),
and the resulting increase in temperature is monitored. The ratio of the energy trans-
ferred as heat to the temperature rise it causes (g,,/AT) is the constant-volume heat
capacity of the sample.

A large heat capacity implies that, for a given quantity of energy transferred as heat,
there will be only a small increase in temperature (the sample has a large capacity for
heat). An infinite heat capacity implies that there will be no increase in temperature
however much energy is supplied as heat. At a phase transition, such as at the boiling
point of water, the temperature of a substance does not rise as energy is supplied as
heat: the energy is used to drive the endothermic transition, in this case to vaporize
the water, rather than to increase its temperature. Therefore, at the temperature of
a phase transition, the heat capacity of a sample is infinite. The properties of heat
capacities close to phase transitions are treated more fully in Section 4.7.

2.5 Enthalpy

The change in internal energy is not equal to the energy transferred as heat when the
system is free to change its volume. Under these circumstances some of the energy
supplied as heat to the system is returned to the surroundings as expansion work
(Fig. 2.12), so dU is less than dq. However, we shall now show that in this case the
energy supplied as heat at constant pressure is equal to the change in another
thermodynamic property of the system, the enthalpy.

(a) The definition of enthalpy
The enthalpy, H, is defined as

H=U+pV [2.18]

where p is the pressure of the system and V is its volume. Because U, p, and V are all
state functions, the enthalpy is a state function too. As is true of any state function, the
change in enthalpy, AH, between any pair of initial and final states is independent of
the path between them.



Although the definition of enthalpy may appear arbitrary, it hasimportant implica-
tions for thermochemisty. For instance, we show in the following Justification that eqn
2.18 implies that the change in enthalpy is equal to the energy supplied as heat at constant
pressure (provided the system does no additional work):

dH=dgq (at constant pressure, no additional work) (2.19a)
For a measurable change,

AH=q, (2.19b)

Justification 2.1 The relation AH = q,

For a general infinitesimal change in the state of the system, U changes to U + dU,
p changes to p + dp, and V changes to V + dV, so from the definition in eqn 2.18,
H changes from U + pV to

H+dH=(U+dU) + (p+dp)(V+dV)
=U+dU+pV+pdV+Vdp+dpdV

The last term is the product of two infinitesimally small quantities and can therefore
be neglected. As a result, after recognizing U + pV = H on the right, we find that H
changes to

H+dH=H+dU+pdV+ Vdp

and hence that
dH=dU+pdV+ Vdp

If we now substitute dU = dg + dw into this expression, we get
dH=dq+dw+pdV+Vdp

If the system is in mechanical equilibrium with its surroundings at a pressure p and
does only expansion work, we can write dw=—pdV and obtain

dH=dq+ Vdp

Now we impose the condition that the heating occurs at constant pressure by writ-
ingdp=0.Then

dH=dgq (at constant pressure, no additional work)

asin eqn 2.19a.

Theresult expressed in eqn 2.19 states that, when a system is subjected to a constant
pressure, and only expansion work can occur, the change in enthalpy is equal to the
energy supplied as heat. For example, if we supply 36 kJ of energy through an electric
heater immersed in an open beaker of water, then the enthalpy of the water increases
by 36 kJ and we write AH=+36 kJ.

(b) The measurement of an enthalpy change

An enthalpy change can be measured calorimetrically by monitoring the temperature
change that accompanies a physical or chemical change occurring at constant pres-
sure. A calorimeter for studying processes at constant pressure is called an isobaric
calorimeter. A simple example is a thermally insulated vessel open to the atmosphere:
the heat released in the reaction is monitored by measuring the change in temperature

2.5 ENTHALPY
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Fig. 213 A constant-pressure flame
calorimeter consists of this component
immersed in a stirred water bath.
Combustion occurs as a known amount of
reactant is passed through to fuel the flame,
and the rise of temperature is monitored.

of the contents. For a combustion reaction an adiabatic flame calorimeter may be
used to measure AT when a given amount of substance burns in a supply of oxygen
(Fig. 2.13). Another route to AH is to measure the internal energy change by using
a bomb calorimeter, and then to convert AU to AH. Because solids and liquids have
small molar volumes, for them pV,_ is so small that the molar enthalpy and molar
internal energy are almost identical (H_ = U_+ pV_ = U_). Consequently, if a pro-
cess involves only solids or liquids, the values of AH and AU are almost identical.
Physically, such processes are accompanied by a very small change in volume, the
system does negligible work on the surroundings when the process occurs, so the
energy supplied as heat stays entirely within the system. The most sophisticated way
to measure enthalpy changes, however, is to use a differential scanning calorimeter
(DSC). Changes in enthalpy and internal energy may also be measured by noncalori-
metric methods (see Chapter 7).

Example 2.2 Relating AH and AU

The internal energy change when 1.0 mol CaCO; in the form of calcite converts to
aragonite is+0.21 kJ. Calculate the difference between the enthalpy change and the
change in internal energy when the pressure is 1.0 bar given that the densities of the
solids are 2.71 g cm™ and 2.93 g cm™, respectively.

Method The starting point for the calculation is the relation between the enthalpy
of a substance and its internal energy (eqn 2.18). The difference between the two
quantities can be expressed in terms of the pressure and the difference of their
molar volumes, and the latter can be calculated from their molar masses, M, and
their mass densities, p, by using p=M/V .

Answer The change in enthalpy when the transition occurs is

AH = H(aragonite) — H(calcite)
=1{U(a) +pV(a)} —{U(c) + pV(c)}
=AU+ piV(a) - V(c)} =AU+ pAV

The volume of 1.0 mol CaCO, (100 g) as aragonite is 34 cm?, and that of 1.0 mol
CaCO, as calcite is 37 cm?. Therefore,

pAV=(1.0x10°Pa) X (34—37) X 107 m*>=-0.3]
(because 1 Pam?®=17). Hence,
AH—-AU=-03]

which is only 0.1 per cent of the value of AU. We see that it is usually justifiable to
ignore the difference between the enthalpy and internal energy of condensed
phases, except at very high pressures, when pV is no longer negligible.

Self-test 2.2 Calculate the difference between AH and AU when 1.0 mol Sn(s, grey)
of density 5.75 g cm™ changes to Sn(s, white) of density 7.31 g cm™ at 10.0 bar. At
298 K, AH=+2.1kJ. [AH—AU=-4.4]]

The enthalpy of a perfect gas is related to its internal energy by using pV = nRT in
the definition of H:

H=U+pV=U+nRT (2.20)°
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This relation implies that the change of enthalpy in a reaction that produces or con-
sumes gas is

AH=AU+ An RT (2.21)°

where An, is the change in the amount of gas molecules in the reaction.

lllustration 2.4 The refation between AH and AU for gas-phase reactions

In the reaction 2 H,(g) + O,(g) — 2 H,0(1), 3 mol of gas-phase molecules is
replaced by 2 mol of liquid-phase molecules, so An, =—3 mol. Therefore, at 298 K,
when RT = 2.5 k] mol™, the enthalpy and internal energy changes taking place in
the system are related by

AH—AU=(-3mol) x RT=—-7.4k]

Note that the difference is expressed in kilojoules, not joules asin Example 2.2. The
enthalpy change is smaller (in this case, less negative) than the change in internal
energy because, although heat escapes from the system when the reaction occurs,
the system contracts when the liquid is formed, so energy is restored to it from the
surroundings.

Example 2.3 Calculating a change in enthalpy

Water is heated to boiling under a pressure of 1.0 atm. When an electric current of
0.50 A from a 12 V supply is passed for 300 s through a resistance in thermal con-
tact with it, it is found that 0.798 g of water is vaporized. Calculate the molar inter-
nal energy and enthalpy changes at the boiling point (373.15 K).

Method Because the vaporization occurs at constant pressure, the enthalpy change
is equal to the heat supplied by the heater. Therefore, the strategy is to calculate the
energy supplied as heat (from g = [¥t), express that as an enthalpy change, and
then convert the result to a molar enthalpy change by division by the amount of
H,O molecules vaporized. To convert from enthalpy change to internal energy
change, we assume that the vapour is a perfect gas and use eqn 2.21.

Answer The enthalpy change is
AH =g, =(0.50 A) X (12 V) x (300 5) =+(0.50 x 12 x 300) J

Here we have used 1 AV s = 1] (see Comment 2.4). Because 0.798 g of water is
(0.798 ¢)/(18.02 g mol™') = (0.798/18.02) mol H,O, the enthalpy of vaporization
per mole of H,O is

0.50x12x300]

AH_ =+ =+41kJ mol™!
(0.798/18.02) mol

In the process H,O(l) — H,0(g) the change in the amount of gas molecules is
Ang =+1 mol, so

AU, =AH_ - RT=+38 k] mol™

The plus sign is added to positive quantities to emphasize that they represent an
increase in internal energy or enthalpy. Notice that the internal energy change is
smaller than the enthalpy change because energy has been used to drive back the
surrounding atmosphere to make room for the vapour.
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Fig. 2.14 The slope of the tangent to a curve
of the enthalpy of a system subjected to a
constant pressure plotted against
temperature is the constant-pressure heat
capacity. The slope may change with
temperature, in which case the heat
capacity varies with temperature. Thus, the
heat capacities at A and B are different. For
gases, at a given temperature the slope of
enthalpy versus temperature is steeper than
that of internal energy versus temperature,
and C, , islarger than Cy, .

Seif-test 2.3 The molar enthalpy of vaporization of benzene at its boiling point
(353.25 K) is 30.8 k] mol™. What is the molar internal energy change? For how
long would the same 12 V source need to supply a 0.50 A current in order to
vaporize a 10 g sample? [+27.9 k] mol ™, 660 s]

(c) The variation of enthalpy with temperature

The enthalpy of a substance increases as its temperature is raised. The relation be-
tween the increase in enthalpy and the increase in temperature depends on the condi-
tions (for example, constant pressure or constant volume). The most important
condition is constant pressure, and the slope of the tangent to a plot of enthalpy
against temperature at constant pressure is called the heat capacity at constant pres-
sure, C, at a given temperature (Fig. 2.14). More formally:

C(aH] 2.22]
Po\or ), '

The heat capacity at constant pressure is the analogue of the heat capacity at constant
volume, and is an extensive property.* The molar heat capacity at constant pressure,
C,m» i the heat capacity per mole of material; it is an intensive property.

The heat capacity at constant pressure is used to relate the change in enthalpy to a
change in temperature. For infinitesimal changes of temperature,

dH= deT (at constant pressure) (2.23a)

If the heat capacity is constant over the range of temperatures of interest, then for a
measurable increase in temperature

AH= CPAT (at constant pressure) (2.23b)

Because an increase in enthalpy can be equated with the energy supplied as heat at
constant pressure, the practical form of the latter equation is

4,=G,AT (2.24)

This expression shows us how to measure the heat capacity of a sample: a measured
quantity of energy is supplied as heat under conditions of constant pressure (as in a
sample exposed to the atmosphere and free to expand), and the temperature rise is
monitored.

The variation of heat capacity with temperature can sometimes be ignored if the
temperature range is small; this approximation is highly accurate for a monatomic
perfect gas (for instance, one of the noble gases at low pressure). However, when it is
necessary to take the variation into account, a convenient approximate empirical
expression is

c
Cp)mzﬂ-i- bT-i-? (225)

The empirical parameters a, b, and c are independent of temperature (Table 2.2).

1 As in the case of Cy, if the system can change its composition it is necessary to distinguish between
equilibrium and fixed-composition values. All applications in this chapter refer to pure substances, so this
complication can be ignored.
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Synoptic Table 2.2* Temperature variation of molar heat capacities, C,,./(J K!mol )=

a+bT+c/T?

a b/(107°K) c/(10°K?)
C(s, graphite) 16.86 4.77 —8.54
CO,(g) 4422 8.79 —8.62
H,O(1) 75.29 0 0
N,(g) 28.58 3.77 —0.50

* More values are given in the Data section.

Example 2.4 Evaluating an increase in enthalpy with temperature

What is the change in molar enthalpy of N, when it is heated from 25°C to 100°C?
Use the heat capacity information in Table 2.2.

Method The heat capacity of N, changes with temperature, so we cannot use eqn
2.23b (which assumes that the heat capacity of the substance is constant). There-
fore, we must use eqn 2.23a, substitute eqn 2.25 for the temperature dependence of
the heat capacity, and integrate the resulting expression from 25°C to 100°C.

Answer For convenience, we denote the two temperatures T, (298 K) and 7T, (373 K).
The integrals we require are

H(T) T, .
J dH:J [a+bT+—de
TZ
H(T,) T,

Notice how the limits of integration correspond on each side of the equation: the
integration over H on the left ranges from H(T)), the value of H at T, up to H(T,),
the value of H at T, while on the right the integration over the temperature ranges
from T, to T,. Now we use the integrals

dx 1 Comment 2.6
de =x+ constant Jx dx=$x?+ constant J —-=——+ constant Integrals commonly encountered in
x * physical chemistry are listed inside the
to obtain front cover.

1 1
H(T,)— H(T,) = a(T,~ T,) + 1b(T3— T3 — {?_?}
2 1

Substitution of the numerical data results in
H(373 K) = H(298 K) + 2.20 k] mol™

If we had assumed a constant heat capacity of 29.14 ] K™ mol™ (the value given
by eqn 2.25 at 25°C), we would have found that the two enthalpies differed by
2.19 kJ mol™.

Self-test 2.4 At very low temperatures the heat capacity of a solid is proportional
to T°, and we can write e aT?. What s the change in enthalpy of such a substance
when it is heated from 0 to a temperature T (with T close to 0)? [AE = %aT“]

Most systems expand when heated at constant pressure. Such systems do work on
the surroundings and therefore some of the energy supplied to them as heat escapes
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Fig. 2156 A differential scanning calorimeter.
The sample and a reference material are
heated in separate but identical metal heat
sinks. The output is the difference in power
needed to maintain the heat sinks at equal
temperatures as the temperature rises.
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Fig.2.16 A thermogram for the protein
ubiquitin at pH = 2.45. The protein retains
its native structure up to about 45°C and
then undergoes an endothermic
conformational change. (Adapted from B.
Chowdhry and S. LeHarne, J. Chem. Educ.
74, 236 (1997).)

back to the surroundings. As a result, the temperature of the system rises less than
when the heating occurs at constant volume. A smaller increase in temperature
implies a larger heat capacity, so we conclude that in most cases the heat capacity at
constant pressure of a system is larger than its heat capacity at constant volume.
We show later (Section 2.11) that there is a simple relation between the two heat
capacities of a perfect gas:

C,— Cy=nR (2.26)°

It follows that the molar heat capacity of a perfect gas is about 8 ] K™ mol™ larger at
constant pressure than at constant volume. Because the heat capacity at constant vol-
ume of a monatomic gas is about 12 J K™! mol™, the difference is highly significant
and must be taken into account.

IMPACT ON BIOCHEMISTRY AND MATERIALS SCIENCE
12.1 Differential scanning calorimetry

A differential scanning calorimeter (DSC) measures the energy transferred as heat to or
from a sample at constant pressure during a physical or chemical change. The term
‘differential’ refers to the fact that the behaviour of the sample is compared to that of
areference material which does not undergo a physical or chemical change during the
analysis. The term ‘scanning’ refers to the fact that the temperatures of the sample and
reference material are increased, or scanned, during the analysis.

A DSC consists of two small compartments that are heated electrically at a constant
rate. The temperature, T, at time ¢ during a linear scan is T'= T;,+ at, where T} is the
initial temperature and ¢ris the temperature scan rate (in kelvin per second, Ks™). A
computer controls the electrical power output in order to maintain the same temper-
ature in the sample and reference compartments throughout the analysis (see Fig. 2.15).

The temperature of the sample changes significantly relative to that of the reference
material if a chemical or physical process involving the transfer of energy as heat
occurs in the sample during the scan. To maintain the same temperature in both
compartments, excess energy is transferred as heat to or from the sample during the
process. For example, an endothermic process lowers the temperature of the sample
relative to that of the reference and, as a result, the sample must be heated more
strongly than the reference in order to maintain equal temperatures.

If no physical or chemical change occurs in the sample at temperature T, we write
the heat transferred to the sample as g, = C, AT, where AT = T — T, and we have
assumed that C, is independent of temperature. The chemical or physical process
requires the transfer of g, + q,,,, Where g, is excess energy transferred as heat, to
attain the same change in temperature of the sample. We interpret g, ., in terms of an
apparent change in the heat capacity at constant pressure of the sample, C,, during the
temperature scan. Then we write the heat capacity of the sample as C,+ C, ., and

Gpt Gpex = (Cp + C, ) AT

Pyex

It follows that

p
Cp = qP,ex - qP,ex _ &
’ AT ot o

where P, =q,, ., /t is the excess electrical power necessary to equalize the temperature
of the sample and reference compartments.

A DSCtrace, also called a thermogram, consists of a plot of P, or C, ., against T (see
Fig. 2.16). Broad peaks in the thermogram indicate processes requiring transfer of

energy as heat. From eqn 2.23a, the enthalpy change associated with the process is
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AH= J CpexdT

T

where T, and T, are, respectively, the temperatures at which the process begins and
ends. This relation shows that the enthalpy change is then the area under the curve of
Cpex against T. With a DSC, enthalpy changes may be determined in samples of
masses as low as 0.5 mg, which is a significant advantage over bomb or flame
calorimeters, which require several grams of material.

Differential scanning calorimetry is used in the chemical industry to characterize
polymers and in the biochemistry laboratory to assess the stability of proteins, nucleic
acids, and membranes. Large molecules, such as synthetic or biological polymers,
attain complex three-dimensional structures due to intra- and intermolecular inter-
actions, such as hydrogen bonding and hydrophobic interactions (Chapter 18).
Disruption of these interactions is an endothermic process that can be studied with a
DSC. For example, the thermogram shown in the illustration indicated that the pro-
tein ubiquitin retains its native structure up to about 45°C. At higher temperatures,
the protein undergoes an endothermic conformational change that results in the loss
of its three-dimensional structure. The same principles also apply to the study of
structural integrity and stability of synthetic polymers, such as plastics.

2.6 Adiabatic changes

We are now equipped to deal with the changes that occur when a perfect gas expands
adiabatically. A decrease in temperature should be expected: because work is done but
no heat enters the system, the internal energy falls, and therefore the temperature of
the working gas also falls. In molecular terms, the kinetic energy of the molecules falls
as work is done, so their average speed decreases, and hence the temperature falls.
The change in internal energy of a perfect gas when the temperature is changed
from T, to Tyand the volume is changed from V; to V; can be expressed as the sum of
two steps (Fig. 2.17). In the first step, only the volume changes and the temperature is
held constant at its initial value. However, because the internal energy of a perfect
gasisindependent of the volume the molecules occupy, the overall change in internal
energy arises solely from the second step, the change in temperature at constant
volume. Provided the heat capacity is independent of temperature, this change is

AU=C(Ts— Ty = C,AT

Because the expansion is adiabatic, we know that g = 0; because AU = g + w, it then
follows that AU = w,,. The subscript ‘ad’ denotes an adiabatic process. Therefore,
by equating the two values we have obtained for AU, we obtain

W= GpNT (2.27)

That is, the work done during an adiabatic expansion of a perfect gas is proportional
to the temperature difference between the initial and final states. That is exactly what
we expect on molecular grounds, because the mean kinetic energy is proportional
to T, so a change in internal energy arising from temperature alone is also expected
to be proportional to AT. In Further information 2.1 we show that the initial and
final temperatures of a perfect gas that undergoes reversible adiabatic expansion
(reversible expansion in a thermally insulated container) can be calculated from

Tf: ., ( Vl \1/5

\Ve)

(2.28a)°

rev
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Fig. 217 To achieve a change of state from
one temperature and volume to another
temperature and volume, we may consider
the overall change as composed of two
steps. In the first step, the system expands
at constant temperature; there is no change
in internal energy if the system consists of a
perfect gas. In the second step, the
temperature of the system is reduced at
constant volume. The overall change in
internal energy is the sum of the changes
for the two steps.
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Isotherm, p < 1/V

Adiabat, p o 1/V”

Pressure, p ______ 5

(a)

Isotherm

Adiabat

Pressure, p

(b) ¥ Volume, V %

Fig. 218 An adiabat depicts the variation of
pressure with volume when a gas expands

adiabatically. (a) An adiabat for a perfect

gas undergoing reversible expansion.

(b) Note that the pressure declines more
steeply for an adiabat than it does for an

isotherm because the temperature
decreases in the former.

|| : Exploration Explore how the

parameter yaffects the dependence

of the pressure on the volume. Does the

pressure—volume dependence become
stronger or weaker with increasing volume?

where c=Cy, /R, or equivalently
ViTi=ViI} (2.28b)°,,

This result is often summarized in the form VT* = constant.

lllustration 2.5 Work of adiabalic expansion

Consider the adiabatic, reversible expansion of 0.020 mol Ar, initially at 25°C,
from 0.50 dm” to 1.00 dm®. The molar heat capacity of argon at constant volume is
12.48 T K~ mol™, so ¢ = 1.501. Therefore, from eqn 2.28a,

(050dm* )"

It follows that AT=—-110 K, and therefore, from eqn 2.27, that
w=14(0.020 mol) X (12.48 TK™' mol™ )} x (=110 K) =—277]

Note that temperature change is independent of the amount of gas but the work
isnot.

Seif-test 2.5 Calculate the final temperature, the work done, and the change of
internal energy when ammonia is used in a reversible adiabatic expansion from
0.50 dm* to 2.00 dm?, the other initial conditions being the same.

[195 K, —56 J, =56 J]

We also show in Further information 2.1 that the pressure of a perfect gas that
undergoes reversible adiabatic expansion from a volume V; to a volume V/ is related
to its initial pressure by

pVi=p VY (2.29)°

rev

where y= C, /Cy, . This result is summarized in the form pV? = constant. For a
monatomic perfect gas, Cy, = 5R (see lllustration 2.3), and from eqn 2.26 o™ 2R;
so 7= 2. For a gas of nonlinear polyatomic molecules (which can rotate as well as
translate), Cym=3R, s0 y= %. The curves of pressure versus volume for adiabatic
change are known as adiabats, and one for a reversible path is illustrated in Fig. 2.18.
Because y > 1, an adiabat falls more steeply (p o 1/V?) than the corresponding
isotherm (p o< 1/V)). The physical reason for the difference is that, in an isothermal
expansion, energy flows into the system as heat and maintains the temperature; as a
result, the pressure does not fall as much as in an adiabatic expansion.

lllustration 2.6 The pressure change accompanying adiabatic expansion

When a sample of argon (for which 7 =3 ) at 100 kPa expands reversibly and adia-
batically to twice its initial volume the final pressure will be

! | )" (100 kPa) =32 kP
AL a a

For an isothermal doubling of volume, the final pressure would be 50 kPa.




2.7 STANDARD ENTHALPY CHANGES

Thermochemistry

The study of the energy transferred as heat during the course of chemical reactions is
called thermochemistry. Thermochemistry is a branch of thermodynamics because
a reaction vessel and its contents form a system, and chemical reactions result in the
exchange of energy between the system and the surroundings. Thus we can use
calorimetry to measure the energy supplied or discarded as heat by a reaction, and can
identify g with a change in internal energy (if the reaction occurs at constant volume)
or a change in enthalpy (if the reaction occurs at constant pressure). Conversely, if
we know AU or AH for a reaction, we can predict the energy (transferred as heat) the
reaction can produce.

We have already remarked that a process that releases energy by heating the sur-
roundings is classified as exothermic and one that absorbs energy by cooling the sur-
roundings is classified as endothermic. Because the release of energy by heating the
surroundings signifies a decrease in the enthalpy of a system (at constant pressure), we
can now see that an exothermic process at constant pressure is one for which AH <0.
Conversely, because the absorption of energy by cooling the surroundings results in
an increase in enthalpy, an endothermic process at constant pressure has AH > 0.

2.7 Standard enthalpy changes

Changes in enthalpy are normally reported for processes taking place under a set
of standard conditions. In most of our discussions we shall consider the standard
enthalpy change, AH?, the change in enthalpy for a process in which the initial and
final substances are in their standard states:

The standard state of a substance at a specified temperature is its pure form at
1 bar.®

For example, the standard state of liquid ethanol at 298 K is pure liquid ethanol at
298 K and 1 bar; the standard state of solid iron at 500 K is pure iron at 500 K and
1 bar. The standard enthalpy change for a reaction or a physical process is the differ-
ence between the products in their standard states and the reactants in their standard
states, all at the same specified temperature.

As an example of a standard enthalpy change, the standard enthalpy of vaporization,
A _H?, is the enthalpy change per mole when a pure liquid at 1 bar vaporizes to a gas

vap
at 1 bar, asin

H,0(1) = H,0(g) A, H?(373 K) = +40.66 k] mol™

As implied by the examples, standard enthalpies may be reported for any tempera-
ture. However, the conventional temperature for reporting thermodynamic data is
298.15 K (corresponding to 25.00°C). Unless otherwise mentioned, all thermody-
namic data in this text will refer to this conventional temperature.

A note on good practice The attachment of the name of the transition to the
symbol A, asin AvapH, is the modern convention. However, the older convention,
AH,,, is still widely used. The new convention is more logical because the sub-

scriptidentifies the type of change, not the physical observable related to the change.

5> The definition of standard state is more sophisticated for a real gas (Further information 3.2) and for
solutions (Sections 5.6 and 5.7).
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Enthalpy, H

Enthalpy, H

'sub

AH®(A - B)

¢

)

AH®*(B — A)

Synoptic Table 2.3* Standard enthalpies of fusion and vaporization at the transition
temperature, A _H*/(k] mol ™)

'trs

T;/K Fusion T,/K Vaporization
Ar 83.81 1.188 87.29 6.506
C,Hy 278.61 1059 353.7 30.8
H,0 21515 6.008 SVl 40.656 (44.016 at 298 K)
He 3.5 0.021 4.22 0.084

* More values are given in the Data section.

(a) Enthalpies of physical change

The standard enthalpy change that accompanies a change of physical state is called the
standard enthalpy of transition and is denoted A H® (Table 2.3). The standard
enthalpy of vaporization, A,, [H®, is one example. Another is the standard enthalpy
of fusion, Ay H?, the standard enthalpy change accompanying the conversion of a
solid to aliquid, as in

H,0(s) — H,0(1) A, %273 K) =+6.01 k] mol™!

Asin this case, it is sometimes convenient to know the standard enthalpy change at the
transition temperature as well as at the conventional temperature.

Because enthalpy is a state function, a change in enthalpyis independent of the path
between the two states. This feature is of great importance in thermochemistry, for it
implies that the same value of A H*® will be obtained however the change is brought
about between the same initial and final states. For example, we can picture the con-
version of a solid to a vapour either as occurring by sublimation (the direct conversion
from solid to vapour),

H,0(s) - H,0(g) A, H®
or as occurring in two steps, first fusion (melting) and then vaporization of the result-
ing liquid:
H,0(s) — H,0(1) Ag H®
H,0(1) —» H,0(g) B EL
Overall: H,0(s) — H,0(g) A Ho+ A, H®
Because the overall result of the indirect path is the same as that of the direct path, the

overall enthalpy change is the same in each case (1), and we can conclude that (for
processes occurring at the same temperature)

AsubH-e: AfusHe“l‘ AVapHe (2.30)

An immediate conclusion is that, because all enthalpies of fusion are positive, the
enthalpy of sublimation of a substance is greater than its enthalpy of vaporization (at
a given temperature).

Another consequence of H being a state function is that the standard enthalpy
changes of a forward process and its reverse differ in sign (2):

AH®(A — B)=—AH*(B — A) (2.31)

For instance, because the enthalpy of vaporization of water is +44 kJ mol™ at 298 K,
its enthalpy of condensation at that temperature is —44 kJ mol™.
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Table 2.4 Enthalpies of transition

Transition Process Symbol*
Transition Phase ot — phase 3 A H
Fusion s—1 A H
Vaporization l->g AR
Sublimation s—>g A H
Mixing Pure — mixture A H
Solution Solute — solution AqH
Hydration X*(g) — X*(aq) A oH
Atomization Species(s, 1, g) — atoms(g) AH
Tonization X(g) > X(g)+e (g A H
Electron gain X(g)+e (g > X (g) AegH
Reaction Reactants — products AH
Combustion Compounds(s, 1, g) + O,(g) — CO,(g), H,0(l, g) AH
Formation Elements — compound AH
Activation Reactants — activated complex AH

* [UPAC recommendations. In common usage, the transition subscript is often attached to AH, asin AH,.

The different types of enthalpies encountered in thermochemistry are summarized
in Table 2.4. We shall meet them again in various locations throughout the text.

(b) Enthalpies of chemical change

Now we consider enthalpy changes that accompany chemical reactions. There are two
ways of reporting the change in enthalpy that accompanies a chemical reaction. One
is to write the thermochemical equation, a combination of a chemical equation and
the corresponding change in standard enthalpy:

CH,(g)+20,(g) = CO,(g) +2 H,0(1)  AH®*=-890k]

AH?is the change in enthalpy when reactants in their standard states change to prod-
ucts in their standard states:

Pure, separate reactants in their standard states
— pure, separate products in their standard states

Except in the case of ionic reactions in solution, the enthalpy changes accompanying
mixing and separation are insignificant in comparison with the contribution from the
reaction itself. For the combustion of methane, the standard value refers to the reac-
tion in which 1 mol CH, in the form of pure methane gas at 1 bar reacts completely
with 2 mol O, in the form of pure oxygen gas to produce 1 mol CO, as pure carbon
dioxide at 1 bar and 2 mol H,O as pure liquid water at 1 bar; the numerical value is for
the reaction at 298 K.

Alternatively, we write the chemical equation and then report the standard reaction
enthalpy, A, H*®. Thus, for the combustion of reaction, we write

CH,(g) +2 0,(g) — CO,(g) +2 H,0(1) A, H®=-890 k] mol™
For the reaction

2A+B—=3C+D
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H OH
HO
HO
H
3

Synoptic Table 2.5* Standard enthalpies of formation and combustion of organic
compounds at 298 K

A H®(k] mol™!) A _H®/(k] mol™!)
Benzene, C.H,(1) +49.0 —3268
Ethane, C,H,(g) —84.7 —1560
Glucose, C;H,04(s) —1274 —2808
Methane, CH,(g) —74.8 —890
Methanol, CH;OH(1) —238.7 -721

* More values are given in the Data section.

the standard reaction enthalpy is
A H®={3H7(C) + H3(D)} — {2HG(A) + HE (B)}

where H? (]) is the standard molar enthalpy of species ] at the temperature of interest.
Note how the ‘per mole’ of A_H*® comes directly from the fact that molar enthalpies
appear in this expression. We interpret the ‘per mole’ by noting the stoichiometic
coefficients in the chemical equation. In this case ‘per mole’ in A H® means ‘per 2 mol
A’ ‘per mole B’, ‘per 3 mol C, or ‘per mol D’. In general,

AH®= D VHY Y vy, (2.32)
Products Reactants

where in each case the molar enthalpies of the species are multiplied by their stoichio-
metric coefficients, v.°

Some standard reaction enthalpies have special names and a particular significance.
For instance, the standard enthalpy of combustion, A_HI*, is the standard reaction
enthalpy for the complete oxidation of an organic compound to CO, gas and liquid
H,O if the compound contains C, H, and O, and to N, gas if N is also present. An
example is the combustion of glucose:

CH,,04(s) + 6 O,(g) — 6 CO,(g) + 6 H,O(1) A H*=-2808 k] mol™!

The value quoted shows that 2808 k] of heat is released when 1 mol C;H;,0O, burns
under standard conditions (at 298 K). Some further values are listed in Table 2.5.

IMPACT ON BIOLOGY
12.2 Food and energy reserves

The thermochemical properties of fuels Table 2.6 and foods are commonly discussed
in terms of their specific enthalpy, the enthalpy of combustion per gram of material.
Thus, if the standard enthalpy of combustion is A_H® and the molar mass of the com-
pound is M, then the specific enthalpy is A. H®/M. Table 2.6 lists the specific enthalpies
of several fuels.

A typical 18-20 year old man requires a daily input of about 12 MJ; a woman of the
same age needs about 9 MJ. If the entire consumption were in the form of glucose
(3; which has a specific enthalpy of 16 k] ™), that would require the consumption of
750 g of glucose for a man and 560 g for a woman. In fact, digestible carbohydrates
have a slightly higher specific enthalpy (17 k] g™') than glucose itself, so a carbohydrate

¢ Tn this and similar expressions, all stoichiometric coefficients are positive. For a more sophisticated way
of writing eqn 2.32, see Section 7.2.
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Table 2.6 Thermochemical properties of some fuels

A H®/ Specific enthalpy/ Enthalpy density/

Fuel Combustion equation (k] mol™) (kg™ (k] dm™)
Hydrogen H,(g) + % 0,(g)

—H,0(I) —286 142 13
Methane CH,(g) +2 O,(g)

— CO,(g) + 2 H,0() —890 55 40
Octane C.H (1) + % 0,(g)

— 8 CO,(g) +9H,0) —5471 48 3.8 x10*
Methanol CH,0H(1) + 2 0,(g)

— CO,(g) +2 H,0() 726 25 1.8 x10*

diet is slightly less daunting than a pure glucose diet, as well as being more appropri-
ate in the form of fibre, the indigestible cellulose that helps move digestion products
through the intestine.

The specific enthalpy of fats, which are long-chain esters like tristearin (beef fat), is
much greater than that of carbohydrates, at around 38 k] g%, slightly less than the value
for the hydrocarbon oils used as fuel (48 k] g™!). Fats are commonly used as an energy
store, to be used only when the more readily accessible carbohydrates have fallen into
short supply. In Arctic species, the stored fat also acts as a layer of insulation; in desert
species (such as the camel), the fat is also a source of water, one of its oxidation products.

Proteins are also used as a source of energy, but their components, the amino
acids, are often too valuable to squander in this way, and are used to construct other
proteins instead. When proteins are oxidized (to urea, CO(NH,),), the equivalent
enthalpy density is comparable to that of carbohydrates.

The heat released by the oxidation of foods needs to be discarded in order to
maintain body temperature within its typical range of 35.6-37.8°C. A variety of
mechanisms contribute to this aspect of homeostasis, the ability of an organism to
counteract environmental changes with physiological responses. The general uni-
formity of temperature throughout the body is maintained largely by the flow of
blood. When heat needs to be dissipated rapidly, warm blood is allowed to flow
through the capillaries of the skin, so producing flushing. Radiation is one means of
discarding heat; another is evaporation and the energy demands of the enthalpy of
vaporization of water. Evaporation removes about 2.4 k] per gram of water perspired.
When vigorous exercise promotes sweating (through the influence of heat selectors
on the hypothalamus), 1-2 dm?® of perspired water can be produced per hour, cor-
responding to a heat loss of 2.4-5.0 MJ h™L.

(c) Hess’s law

Standard enthalpies of individual reactions can be combined to obtain the enthalpy of
another reaction. This application of the First Law is called Hess’s law:

The standard enthalpy of an overall reaction is the sum of the standard enthalpies
of the individual reactions into which a reaction may be divided.

The individual steps need not be realizable in practice: they may be hypothetical
reactions, the only requirement being that their chemical equations should balance.
The thermodynamic basis of the law is the path-independence of the value of A H®
and the implication that we may take the specified reactants, pass through any (pos-
sibly hypothetical) set of reactions to the specified products, and overall obtain the
same change of enthalpy. The importance of Hess’s law is that information about a
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Synoptic Table 2.7* Standard
enthalpies of formation of inorganic

compounds at 298 K

reaction of interest, which may be difficult to determine directly, can be assembled
from information on other reactions.

Example 2.5 Using Hess'’s law

AH®/(K] mol™)

H,0()
HZO(g)
NH;(g

N,H, (D)
Noz(g)
N,0,(g)
NacCl(s)
KCl(s)

—285.83
—187.78
—46.11
+50.63
33.18
+9.16
—411.15
—436.75

* More values are given in the Data section.

Comment 2.7

The NIST WebBook listed in the web
site for this book links to online
databases of thermochemical data.

The standard reaction enthalpy for the hydrogenation of propene,
CH,=CHCH,(g) + H,(g) - CH,CH,CH,(g)

is—124 k] mol™.. The standard reaction enthalpy for the combustion of propane,
CH,CH,CH,(g) + 5 O,(g) — 3 CO,(g) +4 H,0(D)

is —2220 k] mol™'. Calculate the standard enthalpy of combustion of propene.

Method The skill to develop is the ability to assemble a given thermochemical
equation from others. Add or subtract the reactions given, together with any
others needed, so as to reproduce the reaction required. Then add or subtract the
reaction enthalpies in the same way. Additional data are in Table 2.5.

Answer The combustion reaction we require is
CyHg(g) + 5 O,(g) = 3 CO,(g) + 3 H,0()
This reaction can be recreated from the following sum:

A, H?/(kJ mol™)

C3Hy(g) + Hy(g) — CiHqg(g) —124
C,Hy(g) +50,(g) = 3CO,(g) +4H,0(1)  —2220
H,0(1) — Hy(g) + 3 O,(g) 1286

CiH(g) +35 0,(g) — 3CO,(g) +3H,0(1)  —2058

Self-test 2.6 Calculate the enthalpy of hydrogenation of benzene from its enthalpy
of combustion and the enthalpy of combustion of cyclohexane. [-205 k] mol™]

2.8 Standard enthalpies of formation

The standard enthalpy of formation, A;H®, of a substance is the standard reaction
enthalpy for the formation of the compound from its elements in their reference
states. The reference state of an element is its most stable state at the specified tem-
perature and 1 bar. For example, at 298 K the reference state of nitrogen is a gas of N,
molecules, that of mercury is liquid mercury, that of carbon is graphite, and that of tin
is the white (metallic) form. There is one exception to this general prescription of refer-
ence states: the reference state of phosphorus is taken to be white phosphorus despite
this allotrope not being the most stable form but simply the more reproducible form
of the element. Standard enthalpies of formation are expressed as enthalpies per mole
of molecules or (for ionic substances) formula units of the compound. The standard
enthalpy of formation of liquid benzene at 298 K, for example, refers to the reaction

6 C(s, graphite) + 3 H,(g) — C,H(D)

and is +49.0 k] mol™. The standard enthalpies of formation of elements in their refer-
ence states are zero at all temperatures because they are the enthalpies of such ‘null’
reactions asN,(g) — N, (g). Some enthalpies of formation are listed in Tables 2.5 and 2.7.
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The standard enthalpy of formation of ions in solution poses a special problem
because it is impossible to prepare a solution of cations alone or of anions alone. This
problem is solved by defining one ion, conventionally the hydrogen ion, to have zero
standard enthalpy of formation at all temperatures:

AH®(HY, aq)=0 [2:33]

Thus, if the enthalpy of formation of HBr(aq) is found to be —122 kJ mol™!, then the
whole of that value is ascribed to the formation of Br™(aq), and we write A (H*(Br™, aq)
=—122 kJ mol™". That value may then be combined with, for instance, the enthalpy
formation of AgBr(aq) to determine the value of A;H®(Ag", aq), and so on. In essence,
this definition adjusts the actual values of the enthalpies of formation of ions by a fixed
amount, which is chosen so that the standard value for one of them, H*(aq), has the
value zero.

(a) The reaction enthalpy in terms of enthalpies of formation

Conceptually, we can regard a reaction as proceeding by decomposing the reactants
into their elements and then forming those elements into the products. The value of
A_H? for the overall reaction is the sum of these ‘unforming’ and forming enthalpies.
Because ‘unforming’ is the reverse of forming, the enthalpy of an unforming step is
the negative of the enthalpy of formation (4). Hence, in the enthalpies of formation of
substances, we have enough information to calculate the enthalpy of any reaction by
using

A H®= szfHﬁ— z/vAfHG (2.34)
Products Reactants

where in each case the enthalpies of formation of the species that occur are multiplied
by their stoichiometric coefficients.

lllustration 2.7 Using standard enthalpies of formation

The standard reaction enthalpy of 2 HN,(1) + 2 NO(g) — H,0,(1) + 4 N,(g) is cal-
culated as follows:
A H®={A:H*(H,0,,1) + 4A;H*(N,,2) } — 12A:H(HN,, 1) + 2A:H(NO,g) }
={—187.78 + 4(0)} kJ mol™ — {2(264.0) + 2(90.25)} k] mol™!
=-896.3 k] mol™

(b) Enthalpies of formation and molecular modelling

We have seen how to construct standard reaction enthalpies by combining standard
enthalpies of formation. The question that now arises is whether we can construct
standard enthalpies of formation from a knowledge of the chemical constitution
of the species. The short answer is that there is no thermodynamically exact way of
expressing enthalpies of formation in terms of contributions from individual atoms
and bonds. In the past, approximate procedures based on mean bond enthalpies,
AH(A—B), the average enthalpy change associated with the breaking of a specific
A—Bbond,

A—B(g) - A(g)+B(g)  AH(A—B)

Enthalpy, H

Elements
.
............. Reactants
AH®
b <~ Products
4
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Enthalpy, H

Temperature, T

Fig. 2.19 An illustration of the content of
Kirchhoff’s law. When the temperature is
increased, the enthalpy of the products and
the reactants both increase, but may do so
to different extents. In each case, the
change in enthalpy depends on the heat
capacities of the substances. The change in
reaction enthalpy reflects the difference in
the changes of the enthalpies.

have been used. However, this procedure is notoriously unreliable, in part because
the AH(A—B) are average values for a series of related compounds. Nor does the
approach distinguish between geometrical isomers, where the same atoms and bonds
may be present but experimentally the enthalpies of formation might be significantly
different.

Computer-aided molecular modelling has largely displaced this more primitive
approach. Commercial software packages use the principles developed in Chapter 11
to calculate the standard enthalpy of formation of a molecule drawn on the computer
screen. These techniques can be applied to different conformations of the same
molecule. In the case of methylcyclohexane, for instance, the calculated conforma-
tional energy difference ranges from 5.9 to 7.9 k] mol ™}, with the equatorial conformer
having the lower standard enthalpy of formation. These estimates compare favour-
ably with the experimental value of 7.5 k] mol™'. However, good agreement between
calculated and experimental values is relatively rare. Computational methods almost
always predict correctly which conformer is more stable but do not always predict the
correct magnitude of the conformational energy difference.

2.9 The temperature-dependence of reaction enthalpies

The standard enthalpies of many important reactions have been measured at differ-
ent temperatures. However, in the absence of this information, standard reaction
enthalpies at different temperatures may be calculated from heat capacities and the
reaction enthalpy at some other temperature (Fig. 2.19). In many cases heat capacity
data are more accurate that reaction enthalpies so, providing the information is avail-
able, the procedure we are about to describe is more accurate that a direct measure-
ment of a reaction enthalpy at an elevated temperature.

It follows from eqn 2.23a that, when a substance is heated from 7] to T), its en-
thalpy changes from H(T)) to

H(T,)=H(T)) +J C,dT (2.35)

(We have assumed that no phase transition takes place in the temperature range of
interest.) Because this equation applies to each substance in the reaction, the standard
reaction enthalpy changes from A H*(T,) to

TZ
A H(T,) = AH(T)) + J ACSdT (2.36)

T

where A,C7 is the difference of the molar heat capacities of products and reactants
under standard conditions weighted by the stoichiometric coefficients that appear in
the chemical equation:

Arcg: zvcg,m - zvcg,m [237]

Products Reactants

Equation 2.36 is known as Kirchhoff’s law. It is normally a good approximation to
assume that A,C, is independent of the temperature, at least over reasonably limited
ranges, as illustrated in the following example. Although the individual heat capacities
may vary, their difference varies less significantly. In some cases the temperature
dependence of heat capacities is taken into account by using eqn 2.25.



2.10 EXACT AND INEXACT DIFFERENTIALS

Example 2.6 Using Kirchhoff's law

The standard enthalpy of formation of gaseous H,O at 298 K is —241.82 kJ mol™".
Estimate its value at 100°C given the following values of the molar heat capacities
at constant pressure: H,O(g): 33.58 ] K™! mol™; H,(g): 28.84 ] K™! mol™}; O,(g):
29.37 JK™' mol™. Assume that the heat capacities are independent of temperature.

Method When ACT is independent of temperature in the range T} to T, the
integral in eqn 2.36 evaluates to (T, — T;)A,C7. Therefore,

AH(Ty) = A HYT) + (T, - T)ACS

To proceed, write the chemical equation, identify the stoichiometric coefficients,
and calculate ArC*; from the data.
Answer The reaction is H,(g) + % 0,(g) - H,0(g), so
ACe=CP (H,0, g) — {C2 (Hy, g) + 3C2,(0y, )} =—9.94 T K~ mol™
It then follows that

AH®(373 K) =—241.82 k] mol ™ + (75 K) X (=9.94 ] K™! mol™) =—242.6 k] mol™!

Self-test 2.7 Estimate the standard enthalpy of formation of cyclohexene at 400 K
from the data in Table 2.5. [-163 k] mol™]

State functions and exact differentials

We saw in Section 2.2 that a ‘state function’ is a property that is independent of how a
sample is prepared. In general, such properties are functions of variables that define
the current state of the system, such as pressure and temperature. The internal energy
and enthalpy are examples of state functions, for they depend on the current state of

the system and are independent of its previous history. Processes that describe the Ien:g:rg]\alll v g

preparation of the state are called path functions. Examples of path functions are the l:s,tr; %'
work and heating that are done when preparing a state. We do not speak of a system Path 1, q'#0
in a particular state as possessing work or heat. In each case, the energy transferred as w=0,g=0

work or heat relates to the path being taken between states, not the current state itself.
We can use the mathematical properties of state functions to draw far-reaching
; ; ; . A Temperature, T
conclusions about the relations between physical properties and establish connec- —
tions that may be completely unexpected. The practical importance of these results is

f
that we can combine measurements of different properties to obtain the value of a
property we require.
2.10 Exact and inexact differentials Volume, V

Consider a system undergoing the changes depicted in Fig. 2.20. The initial state of the
system is i and in this state the internal energy is U,. Work is done by the system as it
expands adiabatically to a state f. In this state the system has an internal energy Uy and
the work done on the system as it changes along Path 1 from i to f is w. Notice our path are shown as Path 1 and Path 2,

use of language: Uis a property of the state; wis a property of the path. Now consider respectively: they correspond to different
another process, Path 2, in which the initial and final states are the same as those in values of g and w but to the same value

Path 1 but in which the expansion is not adiabatic. The internal energy of both the ~ of AU.
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Fig. 220 As the volume and temperature of
a system are changed, the internal energy
changes. An adiabatic and a non-adiabatic
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initial and the final states are the same as before (because U is a state function).
However, in the second path an energy q” enters the system as heat and the work w” is
not the same as w. The work and the heat are path functions. In terms of the moun-
taineering analogy in Section 2.2, the change in altitude (a state function) is
independent of the path, but the distance travelled (a path function) does depend on
the path taken between the fixed endpoints.

If a system is taken along a path (for example, by heating it), U changes from U; to
Uy and the overall change is the sum (integral) of all the infinitesimal changes along
the path:

£
AU:J dUu (2.38)
The value of AU depends on the initial and final states of the system but is independ-
ent of the path between them. This path-independence of the integral is expressed
by saying that dU is an ‘exact differential’. In general, an exact differential is an
infinitesimal quantity that, when integrated, gives a result that is independent of the
path between the initial and final states.

When a system is heated, the total energy transferred as heat is the sum of all indi-
vidual contributions at each point of the path:

£
q= J dq (2.39)
i, path

Notice the difference between this equation and eqn 2.38. First, we do not write Aq,
because g is not a state function and the energy supplied as heat cannot be expressed
as g;— q;. Secondly, we must specify the path of integration because q depends on the
path selected (for example, an adiabatic path has g = 0, whereas a nonadiabatic path
between the same two states would have g # 0). This path-dependence is expressed
by saying that dq is an ‘inexact differential’. In general, an inexact differential is an
infinitesimal quantity that, when integrated, gives a result that depends on the path
between the initial and final states. Often dg is written dg to emphasize that it is in-
exact and requires the specification of a path.

The work done on a system to change it from one state to another depends on
the path taken between the two specified states; for example, in general the work is
different if the change takes place adiabatically and non-adiabatically. It follows that
dw is an inexact differential. It is often written dw.

Example 2.7 Calculating work, heat, and internal energy

Consider a perfect gas inside a cylinder fitted with a piston. Let the initial state be
T, V; and the final state be T, V. The change of state can be brought about in many
ways, of which the two simplest are the following: Path 1, in which there is free
expansion against zero external pressure; Path 2, in which there is reversible,
isothermal expansion. Calculate w, ¢, and AU for each process.

Method To find a starting point for a calculation in thermodynamics, it is often
a good idea to go back to first principles, and to look for a way of expressing
the quantity we are asked to calculate in terms of other quantities that are easier
to calculate. We saw in Molecular interpretation 2.2 that the internal energy of a
perfect gas depends only on the temperature and is independent of the volume
those molecules occupy, so for any isothermal change, AU= 0. We also know that
in general AU = q + w. The question depends on being able to combine the two
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expressions. In this chapter, we derived a number of expressions for the work done
in a variety of processes, and here we need to select the appropriate ones.

Answer Because AU = 0 for both paths and AU = g + w, in each case g = —w.
The work of free expansion is zero (Section 2.3b); so in Path 1, w=0and g=0. For
Path 2, the work is given by eqn 2.11, so w = —nRT In(V}/V}) and consequently
q=nRT In(V,/V.). These results are consequences of the path independence of U,
a state function, and the path dependence of g and w, which are path functions.

Self-test 2.8 Calculate the values of g, w, and AU for an irreversible isothermal

expansion of a perfect gas against a constant nonzero external presstre.
[q=p, AV, w=—p AV,AU=0]

2.11 Changes in internal energy

We begin to unfold the consequences of dU being an exact differential by exploring a
closed system of constant composition (the only type of system considered in the rest
of this chapter). The internal energy U can be regarded as a function of V, T, and p,
but, because there is an equation of state, stating the values of two of the variables fixes
the value of the third. Therefore, it is possible to write Uin terms of just two independ-
ent variables: Vand T, p and T, or p and V. Expressing U as a function of volume and
temperature fits the purpose of our discussion.

(a) General considerations

When V changes to V + dV at constant temperature, U changes to

)
U=U+|—|dV
v ).

The coefficient (dU/0V) , the slope of a plot of U against V at constant temperature,
is the partial derivative of U with respect to V (Fig. 2.21). If, instead, T changes to T+
dT at constant volume (Fig. 2.22), then the internal energy changes to

Internal Internal U+(6U o7
energy, U+(ﬂj)dv energy, 6T)v
¥ vy U

U

Volume, V Volume, V a7
Fig. 221 The partial derivative (dU/dV ) is Fig. 222 The partial derivative (dU/dT ), is
the slope of U with respect to V' with the the slope of U with respect to T with the

temperature Theld constant. volume V'held constant.
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| |
5:2:33, us(57)av+{Ze)ar

Volume, V

Fig. 2.23 An overall change in U, which is
denoted dU, arises when both Vand T
are allowed to change. If second-order
infinitesimals are ignored, the overall
change is the sum of changes for each
variable separately.

Internal
energy,
U

o
l/ff’peratu,e, >
dV

Volume, V

Fig. 224 The internal pressure, 7, is the
slope of U with respect to Vwith the
temperature Theld constant.

) (9U)
U=U+|—|dT
\at J,
Now suppose that V and T both change infinitesimally (Fig. 2.23). The new internal

energy, neglecting second-order infinitesimals (those proportional to dVdT), is the
sum of the changes arising from each increment:

(aU] [auj
U=U+|—| dV+|—| dT
v )y aT ),

As a result of the infinitesimal changes in conditions, the internal energy U’ differs
from U by the infinitesimal amount dU, so we an write U’ = U+ dU. Therefore, from
the last equation we obtain the very important result that

U U
dU= (—j dv+ (—j dr (2.40)
v ), ar ),

The interpretation of this equation is that, in a closed system of constant composition,
any infinitesimal change in the internal energy is proportional to the infinitesimal
changes of volume and temperature, the coefficients of proportionality being the two
partial derivatives.

In many cases partial derivatives have a straightforward physical interpretation,
and thermodynamics gets shapeless and difficult only when that interpretation is not
kept in sight. In the present case, we have already met (dU/0T) in eqn 2.15, where we
saw that it is the constant-volume heat capacity, C,. The other coefficient, (dU/dV ),
plays a major role in thermodynamics because it is a measure of the variation of
the internal energy of a substance as its volume is changed at constant temperature
(Fig.2.24). We shall denote it 77, and, because it has the same dimensions as pressure,
call it the internal pressure:

= [g—zj [2.41]
T
In terms of the notation Cy, and 7}, eqn 2.40 can now be written
dU=mdV+ CydT (2.42)

(b) The Joule experiment

When there are no interactions between the molecules, the internal energy is inde-
pendent of their separation and hence independent of the volume of the sample (see
Molecular interpretation 2.2). Therefore, for a perfect gas we can write 7z = 0. The
statement 7= 0 (that is, the internal energy is independent of the volume occupied
by the sample) can be taken to be the definition of a perfect gas, for later we shall see
thatit implies the equation of state pV =#nRT. If the internal energy increases (dU>0)
as the volume of the sample expands isothermally (dV > 0), which is the case when
there are attractive forces between the particles, then a plot of internal energy against
volume slopes upwards and 7> 0 (Fig. 2.25).

James Joule thought that he could measure 7 by observing the change in temper-
ature of a gas when it is allowed to expand into a vacuum. He used two metal vessels
immersed in a water bath (Fig. 2.26). One was filled with air at about 22 atm and the
other was evacuated. He then tried to measure the change in temperature of the water
of the bath when a stopcock was opened and the air expanded into a vacuum. He
observed no change in temperature.
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Thermometer
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High
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Volume, V gas

Fig. 2.26 For a perfect gas, the internal Fig. 2.26 A schematic diagram of the
energy is independent of the volume (at apparatus used by Joule in an attempt to
constant temperature). If attractions are measure the change in internal energy
dominant in a real gas, the internal energy when a gas expands isothermally. The heat
increases with volume because the absorbed by the gas is proportional to the
molecules become farther apart on average. change in temperature of the bath.

If repulsions are dominant, the internal
energy decreases as the gas expands.

The thermodynamic implications of the experiment are as follows. No work was
done in the expansion into a vacuum, so w= 0. No energy entered or left the system
(the gas) as heat because the temperature of the bath did not change, so g = 0.
Consequently, within the accuracy of the experiment, AU = 0. It follows that U does
not change much when a gas expands isothermally and therefore that 7,=0.

Joule’s experiment was crude. In particular, the heat capacity of the apparatus
was so large that the temperature change that gases do in fact cause was too small to
measure. From his experiment Joule extracted an essential limiting property of a gas,
a property of a perfect gas, without detecting the small deviations characteristic of real
gases.

(c¢) Changes in internal energy at constant pressure

Partial derivatives have many useful properties and some that we shall draw on
frequently are reviewed in Appendix 2. Skilful use of them can often turn some
unfamiliar quantity into a quantity that can be recognized, interpreted, or measured.

As an example, suppose we want to find out how the internal energy varies with
temperature when the pressure of the system is kept constant. If we divide both sides
of eqn 2.42 by dT and impose the condition of constant pressure on the resulting
differentials, so that dU/d T on the left becomes (dU/dT) » We obtain

(aU] [avj ;
=i | T | Ther
T ), T ),

It is usually sensible in thermodynamics to inspect the output of a manipulation like
this to see if it contains any recognizable physical quantity. The partial derivative on
the right in this expression is the slope of the plot of volume against temperature (at

61



62 2 THE FIRST LAW

Synoptic Table 2.8* Expansion
coefficients (&) and isothermal
compressibilities (i) at 298 K

a/(107°K™h)  x./(10¢ bar™)
Benzene 12.4 90.9
Diamond 0.030 0.185
Lead 0.861 2.18
Water 24 49.0

* More values are given in the Data section.

constant pressure). This property is normally tabulated as the expansion coefficient,
o, of a substance,” which is defined as

1[avj
P ol [2.43]
V\oT ),

and physically is the fractional change in volume that accompanies a rise in tem-
perature. A large value of o means that the volume of the sample responds strongly to
changes in temperature. Table 2.8 lists some experimental values of o and of the
isothermal compressibility, i (kappa), which is defined as

D [2.44]
~ vl ),

The isothermal compressibility is a measure of the fractional change in volume when
the pressure is increased by a small amount; the negative sign in the definition ensures
that the compressibility is a positive quantity, because an increase of pressure, imply-
ing a positive dp, brings about a reduction of volume, a negative dV.

Example 2.8 Calculating the expansion coefficient of a gas

Derive an expression for the expansion coefficient of a perfect gas.

Method The expansion coefficient is defined in eqn 2.43. To use this expression,
substitute the expression for V in terms of T obtained from the equation of state
for the gas. As implied by the subscript in eqn 2.43, the pressure, p, is treated as a
constant.

Answer Because pV =nRT, we can write
1 (8 nRT/p)\ 1 nR dT" nR 1
“v\Tar Jy Vo dr v T

The higher the temperature, the less responsive is the volume of a perfect gas to a
change in temperature.

Self-test 2.9 Derive an expression for the isothermal compressibility of a perfect
gas. [Kp.=1/p]

When we introduce the definition of erinto the equation for (QU/dT) p We obtain

oU
— | =on V+Cy (2.45)
oT
P
This equation is entirely general (provided the system is closed and its composition is
constant). It expresses the dependence of the internal energy on the temperature at
constant pressure in terms of Cy, which can be measured in one experiment, in terms
of o, which can be measured in another, and in terms of the quantity 7. For a perfect
gas, =0, so then

(BUJ C (2.46)°
— :V 2
E)Tp

7 Asfor heat capacities, the expansion coefficients of a mixture depends on whether or not the composition
is allowed to change. Throughout this chapter, we deal only with pure substances, so this complication can
be disregarded.
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That is, although the constant-volume heat capacity of a perfect gas is defined as the
slope of a plot of internal energy against temperature at constant volume, for a perfect
gas Cy s also the slope at constant pressure.

Equation 2.46 provides an easy way to derive the relation between C, and Cy for a
perfect gas expressed in eqn 2.26. Thus, we can use it to express both heat capacities in
terms of derivatives at constant pressure:

C_C :(B_H\ _(B_U\ (2.47)°
v ar), Lar ),

Then we introduce H= U+ pV = U+ nRT into the first term, which results in

c.—c, =Y r_|2Y R (2.48)
—Cy=|— | +nR—|— | =n A48)°
rorer T
P r
which is eqn 2.26. We show in Further information 2.2 that in general
a*TV
C,—Cy= (2.49)
K

Equation 2.49 applies to any substance (that is, it is ‘universally true’). It reduces to
eqn 2.48 for a perfect gas when we set @ = 1/T and x; = 1/p. Because expansion
coefficients o of liquids and solids are small, it is tempting to deduce from eqn 2.49
that for them C, = Cy. But this is not always so, because the compressibility & might
also be small, so or?/ i, might be large. That is, although only a little work need be done
to push back the atmosphere, a great deal of work may have to be done to pull atoms
apart from one another as the solid expands. As an illustration, for water at 25°C, eqn
2.49 gives C, = 75.3 ] K™ mol™" compared with Cy,, = 74.8 ] K™ mol™". In some
cases, the two heat capacities differ by as much as 30 per cent.

2.12 The Joule-Thomson effect

We can carry out a similar set of operations on the enthalpy, H= U+ pV. The quantities
U, p, and V are all state functions; therefore H is also a state function and dH is an exact
differential. It turns out that H is a useful thermodynamic function when the pressure
is under our control: we saw a sign of that in the relation AH =g, (eqn 2.19). We shall
therefore regard H as a function of p and T, and adapt the argument in Section 2.10 to
find an expression for the variation of H with temperature at constant volume. As set
out in Justification 2.2, we find that for a closed system of constant composition,

dH=—-uCdp+C,dT (2.50)
where the Joule-Thomson coefficient, y (mu), is defined as
_(31)
e 3, [2.51]

This relation will prove useful for relating the heat capacities at constant pressure and
volume and for a discussion of the liquefaction of gases.

Justification 2.2 The variation of enthalpy with pressure and temperature

By the same argument that led to eqn 2.40 but with Hregarded as a function of p and
T we can write

dH It d ot ar (2.52)
= — +|— .
ap Tp .
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Gas at
Thermocouples low pressure

Pl

Porous Gas at /

barrier high pressure

Fig. 2.27 The apparatus used for measuring
the Joule-Thomson effect. The gas expands
through the porous barrier, which acts as a
throttle, and the whole apparatus is
thermally insulated. As explained in the
text, this arrangement corresponds to an
isenthalpic expansion (expansion at
constant enthalpy). Whether the expansion
results in a heating or a cooling of the gas
depends on the conditions.

The second partial derivative is C ; our task here is to express (dH/dp)in terms
of recognizable quantities. The chain relation (see Further information 2.2) lets us
write

OH) 1
d ), (Op/dT)y(dT/oH),

and both partial derivatives can be brought into the numerator by using the
reciprocal identity (see Further information 2.2) twice:

OHY  QT/3p)y (9T (9HY - )55
), @ram, (ap ) \ar ) T H s

We have used the definitions of the constant-pressure heat capacity, C,, and the
Joule—Thomson coefficient, ¢t (eqn 2.51). Equation 2.50 now follows directly.

The analysis of the Joule~Thomson coefficient is central to the technological prob-
lems associated with the liquefaction of gases. We need to be able to interpret it phys-
ically and to measure it. As shown in the Justification below, the cunning required to
impose the constraint of constant enthalpy, so that the process is isenthalpic, was
supplied by Joule and William Thomson (later Lord Kelvin). They let a gas expand
through a porous barrier from one constant pressure to another, and monitored
the difference of temperature that arose from the expansion (Fig. 2.27). The whole
apparatus was insulated so that the process was adiabatic. They observed a lower tem-
perature on the low pressure side, the difference in temperature being proportional to
the pressure difference they maintained. This cooling by isenthalpic expansion is now
called the Joule-Thomson effect.

Justification 2.3 The Joule—Thomson effect

Here we show that the experimental arrangement results in expansion at constant
enthalpy. Because all changes to the gas occur adiabatically,

q=0, which implies AU=w

Consider the work done as the gas passes through the barrier. We focus on the pas-
sage of a fixed amount of gas from the high pressure side, where the pressure is p;,
the temperature T}, and the gas occupies a volume V; (Fig. 2.28). The gas emerges on
the low pressure side, where the same amount of gas has a pressure p;, a temperature
T, and occupies a volume V. The gas on the left is compressed isothermally by the
upstream gas acting as a piston. The relevant pressure is p; and the volume changes
from V; to 0; therefore, the work done on the gas is

wi=—p(0-V)=pV;

The gas expands isothermally on the right of the barrier (but possibly at a different
constant temperature) against the pressure p;provided by the downstream gas act-
ing as a piston to be driven out. The volume changes from 0 to V¢, so the work done
on the gas in this stage is

wy=—pp(Vi=0) =—p;V;
The total work done on the gas is the sum of these two quantities, or

w=w; +w,=pVi—pVy
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It follows that the change of internal energy of the gas as it moves adiabatically from
one side of the barrier to the other is

U= U=w=p;V; - piV¢
Reorganization of this expression gives
Upt psVy= U + V5, or Hy= H;

Therefore, the expansion occurs without change of enthalpy.

The property measured in the experiment is the ratio of the temperature change to
the change of pressure, AT/Ap. Adding the constraint of constant enthalpy and taking
the limit of small Ap implies that the thermodynamic quantity measured is (dT/dp)
which is the Joule-Thomson coefficient, y. In other words, the physical interpretation
of 1 is that it is the ratio of the change in temperature to the change in pressure when
a gas expands under conditions that ensure there is no change in enthalpy.

The modern method of measuring p is indirect, and involves measuring the
isothermal Joule-Thomson coefficient, the quantity

_(E)Hj
Ur= P .

which is the slope of a plot of enthalpy against pressure at constant temperature
(Fig. 2.29). Comparing eqns 2.53 and 2.54, we see that the two coefficients are related
by:

[2.54]

fr=—C,p (2.55)

To measure i+, the gas is pumped continuously at a steady pressure through a heat
exchanger (which brings it to the required temperature), and then through a porous
plug inside a thermally insulated container. The steep pressure drop is measured,
and the cooling effect is exactly offset by an electric heater placed immediately after
the plug (Fig. 2.30). The energy provided by the heater is monitored. Because the
energy transferred as heat can be identified with the value of AH for the gas (because

Heater
Gas flow

Enthalpy, H

\\ Pplug
e Thermometer
D= (dH/dp),

Fig. 2.30 A schematic diagram of the

Torm
- oer, lturg 5
Pressure, p 4

Fig. 2.29 The isothermal Joule-Thomson
coefficient is the slope of the enthalpy with
respect to changing pressure, the
temperature being held constant.

apparatus used for measuring the
isothermal Joule—Thomson coefficient.
The electrical heating required to offset
the cooling arising from expansion is
interpreted as AH and used to calculate
(dH/dp )4, which is then converted to ji as
explained in the text.
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Upstream pressure
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——— p" ‘/"7; I=pf

Fig. 228 The thermodynamic basis of
Joule-Thomson expansion. The pistons
represent the upstream and downstream
gases, which maintain constant pressures
either side of the throttle. The transition
from the top diagram to the bottom
diagram, which represents the passage of a
given amount of gas through the throttle,
occurs without change of enthalpy.
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Synoptic Table 2.9* Inversion
temperatures (7T7), normal freezing (7) and
boiling (T}) points, and Joule-Thomson
coefficient () at 1 atm and 298 K

T/K TyK T/K p/(Kbar™)
Ar 723 838 873
CO, 1500 1947 +1.10
He 40 42 —0.060

N, 621 63.3 774  +0.25

* More values are given in the Data section.

Isenthalps

Cooling

Temperature, T

Heating

_\

Pressure, p

Fig. 2.31 The sign of the Joule-Thomson
coefficient, g, depends on the conditions.
Inside the boundary, the shaded area, it is
positive and outside it is negative. The
temperature corresponding to the
boundary at a given pressure is the
‘inversion temperature’ of the gas at that
pressure. For a given pressure, the
temperature must be below a certain value
if cooling is required but, if it becomes too
low, the boundary is crossed again and
heating occurs. Reduction of pressure
under adiabatic conditions moves the
system along one of the isenthalps, or
curves of constant enthalpy. The inversion
temperature curve runs through the points
of the isenthalps where their slope changes
from negative to positive.

AH=gq,), and the pressure change Ap is known, we can find yiyfrom the limiting value
of AH/Ap as Ap — 0, and then convert it to y. Table 2.9 lists some values obtained in
this way.

Real gases have nonzero Joule-Thomson coefficients. Depending on the identity of
the gas, the pressure, the relative magnitudes of the attractive and repulsive inter-
molecular forces (see Molecular interpretation 2.1), and the temperature, the sign of
the coefficient may be either positive or negative (Fig. 2.31). A positive sign implies
that d7 is negative when dp is negative, in which case the gas cools on expansion.
Gases that show a heating effect (u < 0) at one temperature show a cooling effect
(4 > 0) when the temperature is below their upper inversion temperature, 1;
(Table 2.9, Fig. 2.32). As indicated in Fig. 2.32, a gas typically has two inversion tem-
peratures, one at high temperature and the other at low.

The ‘Linde refrigerator’ makes use of Joule-Thompson expansion to liquefy gases
(Fig. 2.33). The gas at high pressure is allowed to expand through a throttle; it cools
and is circulated past the incoming gas. That gas is cooled, and its subsequent expan-
sion coolsit still further. There comes a stage when the circulating gas becomes so cold
that it condenses to a liquid.

For a perfect gas, u = 0; hence, the temperature of a perfect gas is unchanged
by Joule-Thomson expansion.® This characteristic points clearly to the involvement
of intermolecular forces in determining the size of the effect. However, the Joule—
Thomson coefficient of a real gas does not necessarily approach zero as the pressure is
reduced even though the equation of state of the gas approaches that of a perfect gas.
The coefficient behaves like the properties discussed in Section 1.3b in the sense that
it depends on derivatives and not on p, V, and T themselves.

600 — <0
{heating)
Upper
inversion

- temperature
TIK Nitrogen
400 —

u>0
{cooling)
Heat
exchanger
200
Lower
inversion
B Hy dro;grperature Compressor
Helium
0 | | | | Fig. 233 The principle of the Linde
0 200 400 refrigerator is shown in this diagram. The
gas is recirculated, and so long as it is
p/atm beneath its inversion temperature it cools

on expansion through the throttle. The
cooled gas cools the high-pressure gas,
which cools still further as it expands.
Eventually liquefied gas drips from the
throttle.

Fig. 2.32 The inversion temperatures for
three real gases, nitrogen, hydrogen, and
helium.

8 Simple adiabatic expansion does cool a perfect gas, because the gas does work; recall Section 2.6.
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Molecular interpretation 2.3 Molecular interactions and the Joule—Thomson effect

The kinetic model of gases (Molecular interpretation 1.1) and the equipartition
theorem (Molecular interpretation 2.2) imply that the mean kinetic energy of
molecules in a gas is proportional to the temperature. It follows that reducing the
average speed of the molecules is equivalent to cooling the gas. If the speed of the
molecules can be reduced to the point that neighbours can capture each other by
their intermolecular attractions, then the cooled gas will condense to a liquid.

To slow the gas molecules, we make use of an effect similar to that seen when a
ball is thrown into the air: as it rises it slows in response to the gravitational attrac-
tion of the Earth and its kinetic energy is converted into potential energy. We
saw in Section 1.3 that molecules in a real gas attract each other (the attraction is
not gravitational, but the effect is the same). It follows that, if we can cause the
molecules to move apart from each other, like a ball rising from a planet, then they
should slow. It is very easy to move molecules apart from each other: we simply
allow the gas to expand, which increases the average separation of the molecules.
To cool a gas, therefore, we allow it to expand without allowing any energy to enter
from outside as heat. As the gas expands, the molecules move apart to fill the avail-
able volume, struggling as they do so against the attraction of their neighbours.
Because some kinetic energy must be converted into potential energy to reach
greater separations, the molecules travel more slowly as their separation increases.
This sequence of molecular events explains the Joule—~Thomson effect: the cooling
of a real gas by adiabatic expansion. The cooling effect, which corresponds to
U >0, is observed under conditions when attractive interactions are dominant
(Z< 1, eqn 1.17), because the molecules have to climb apart against the attractive
force in order for them to travel more slowly. For molecules under conditions
when repulsions are dominant (£ > 1), the Joule-Thomson effect results in the gas
becoming warmer, or (£ <0.

Checklist of key ideas

|
|

O s.

] 4,
 s.

Thermodynamics is the study of the transformations of
energy.

The system is the part of the world in which we have a special
interest. The surroundings is the region outside the system
where we make our measurements.

An open system has a boundary through which matter can be
transferred. A closed system has a boundary through which
matter cannot be transferred. An isolated system has a
boundary through which neither matter nor energy can be
transferred.

Energy is the capacity to do work. The internal energy is the
total energy of a system.

Work is the transfer of energy by motion against an opposing
force, dw =—Fdz . Heat is the transfer of energy as a result of a
temperature difference between the system and the
surroundings.

d s.

1 s.
d o.

[10.
1.

An exothermic process releases energy as heat to the
surroundings. An endothermic process absorbs energy as heat
from the surroundings.

. A state function is a property that depends only on the current

state of the system and is independent of how that state has
been prepared.

The First Law of thermodynamics states that the internal
energy of an isolated system is constant, AU= g+ w.

Expansion work is the work of expansion (or compression) of
a system, dw=—p_ dV. The work of free expansion is w=0.
The work of expansion against a constant external pressure is
w =—pAV. The work of isothermal reversible expansion of a
perfect gas is w=—nRTIn(V;/V}).

A reversible change is a change that can be reversed by an
infinitesimal modification of a variable.

Maximum work is achieved in a reversible change.
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Eli2.
us.

Calorimetry is the study of heat transfers during physical and
chemical processes.

The heat capacity at constant volume is defined as
Cy=(dU/dT)y. The heat capacity at constant pressure is
C,=(0H/0T),. For a perfect gas, the heat capacities are related
by C,— Cy=nR.

The enthalpy is defined as H= U+ pV. The enthalpy change is
the energy transferred as heat at constant pressure, AH=¢q,,

4.
Oz1s.

During a reversible adiabatic change, the temperature of a
perfect gas varies according to Ty= Ty(Vy/ V)5, ¢= Cy, /R
The pressure and volume are related by pV7= constant, with
Y= Cp,m/CV,m'

The standard enthalpy change is the change in enthalpy for a
process in which the initial and final substances are in their
standard states. The standard state is the pure substance at

1 bar.

Enthalpy changes are additive, as in A, H* = A H*+ A, [ H®.
The enthalpy change for a process and its reverse are related
bY Ap pardH ® = —Aeyerse -

The standard enthalpy of combustion is the standard reaction
enthalpy for the complete oxidation of an organic compound

to CO, gas and liquid H,O if the compound contains C, H,
and O, and to N, gas if N is also present.

[J1e.

iz
[aus.

[J1o.

[]20.

Hess’s law states that the standard enthalpy of an overall
reaction is the sum of the standard enthalpies of the individual
reactions into which a reaction may be divided.

Further reading

[J21. The standard enthalpy of formation (A H®) is the standard
reaction enthalpy for the formation of the compound from its
elements in their reference states. The reference state is the
most stable state of an element at the specified temperature

and 1 bar.

The standard reaction enthalpy may be estimated
by combining enthalpies of formation,
ArI_I0 - 2‘ProductSVAfI_Ie o 2‘ReactantSVAfI_Ie'
The temperature dependence of the reaction enthalpy is given
TZ

ACYdT.
Tl
An exact differential is an infinitesimal quantity that, when
integrated, gives a result that is independent of the path
between the initial and final states. An inexact differential
is an infinitesimal quantity that, when integrated, gives a
result that depends on the path between the initial and final
states.

[d22.

[J2s.
by Kirchhoff’s law, A H*(T,) = A H*(T)) + J

[]24.

a2s.
[Jazs.
[Fl27

The internal pressure is defined as 7= (dU/dV );. For a
perfect gas, 7, =0.

The Joule-Thomson effect is the cooling of a gas by
isenthalpic expansion.

The Joule-Thomson coefficient is defined as pt= (dT/p )y
The isothermal Joule-Thomson coefficient is defined as
= (9H/dp)r=—Cput.

The inversion temperature is the temperature at which the
Joule-Thomson coefficient changes sign.

[Ja2s.
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Further information 2.1 Adiabatic processes

Consider a stage in a reversible adiabatic expansion when the
pressure inside and out is p. The work done when the gas expands by
dVis dw =—pdV; however, for a perfect gas, dU= C,,dT.
Therefore, because for an adiabatic change (dg=0) dU=dw + dgq=

dw, we can equate these two expressions for dU and write

CydT=—pdV
We are dealing with a perfect gas, so we can replace p by nRT/V and
obtain

CydT  nRAV

TV

To integrate this expression we note that T'is equal to T; when Vis
equal to V;, and is equal to Tywhen Vis equal to Vat the end of the
expansion. Therefore,

Ldr Vedv
“l TV
T Vi

(We are taking C,, to be independent of temperature.) Then, because
Jdx/x=1n x+ constant, we obtain
Ty Vi
Cyln—=—-nRIn—
i i
Because In(x/y) =—In(y/x), this expression rearranges to
Cy. Ty

Sy g S P &

nR T Vi

1

With ¢= Cy,/nR we obtain (because In x*=aln x)

T\ v,
In| —| =In| —
1 Vi

which implies that (T;/T,)¢= (V,/V;) and, upon rearrangement,
eqn 2.28.

The initial and final states of a perfect gas satisfy the perfect gas law
regardless of how the change of state takes place, so we can use
pV=nRTtowrite

Vi 4
Ve Tp

However, we have just shown that

l/c 71
L_(Y) (X
It \% Vi
where we use the definition of the heat capacity ratio where
7= Cym/ Cyn and the fact that, for a perfect gas, C, , — Cy,, = R (the

molar version of eqn 2.26). Then we combine the two expressions, to
obtain

71 ¥
A Ve (V) (M
e Vi Vi Vi

which rearranges to p,V7=p;V'¥, which is eqn 2.29.

Further information 2.2 The relation between heat capacities

A useful rule when doing a problem in thermodynamics is to go back
to first principles. In the present problem we do this twice, first by
expressing C, and Cy in terms of their definitions and then by
inserting the definition H=U+pV:

" C_[E)H] [aU]
v er), \or),

= —| + |
ar), "\ o), a1,

We have already calculated the difference of the first and third terms
on the right, and eqn 2.45 lets us write this difference as V. The
factor arV gives the change in volume when the temperature is raised,
and 7= (dU/dV ) converts this change in volume into a change in
internal energy. We can simplify the remaining term by noting that,
because p is constant,

IpV)) (V) v
oT p—p aT p—ap

The middle term of this expression identifies it as the contribution to
the work of pushing back the atmosphere: (dV/dT), is the change of
volume caused by a change of temperature, and multiplication by p
converts this expansion into work.

Collecting the two contributions gives

CP—CV:a(p+7rT)V (2.56)

As just remarked, the first term on the right, apV, is a measure of the
work needed to push back the atmosphere; the second term on the
right, am;V, is the work required to separate the molecules
composing the system.

At this point we can go further by using the result we prove in
Section 3.8 that

ap
:T — —
=135

When this expression is inserted in the last equation we obtain

dp
Gy~ Cy= el V| =
aT ),

We now transform the remaining partial derivative. It follows from
Euler’s chain relation that

)5

Comment 2.8
The Euler chain relation states that, for a differentiable function
z=z(x,y),

23

For instance, if z(x,y) = x%y,

(2.57)
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dy o(z/x?) d(1/x?) 2z
350+

ox Azly)V? 1 dz'2 1
[g]y:[ dz ]y: y2 dz :2()/2)1/2

0z d(x%y) ,
—| = —=| =x*—=x
dy ). dy ). dy

Multiplication of the three terms together gives the result —1.

and therefore that

AN 1
aT ), (9T/V),(dV/dp)y

Unfortunately, (d7/0V) , occurs instead of (QV/I9T) ,- However, the
‘reciprocal identity’ allows us to invert partial derivatives and to
write

) @VRD, o
aT ), (VIop)y Kp

Discussion questions

Comment 2.9
The reciprocal identity states that

dy) 1
ox Z_ (9x/9y),

For example, for the function z(x,y) = x%y,

) A(z/x?) B d(l/xz)_ 2z
gz_ ox Z—z A 2

We can also write x= (z/y)/2, in which case

0x A(zly)'? 1/Zd(llyllz)
— - e — z —
Iy ). dy ’ dy

1/2 1/2 x3

z

2y . 2(z/x2)32 T

z

which is the reciprocal of the coefficient derived above.

Insertion of this relation into eqn 2.57 produces eqn 2.49.

2.1 Provide mechanical and molecular definitions of work and heat.

2.2 Consider the reversible expansion of a perfect gas. Provide a physical
interpretation for the fact that pV?= constant for an adiabatic change, whereas
pV=constant for an isothermal change.

2.3 Explain the difference between the change in internal energy and the
change in enthalpy accompanying a chemical or physical process.

2.4 Explain the significance of a physical observable being a state function and
compile a list of as many state functions as you can identify.

Exercises

2.5 Explain the significance of the Joule and Joule-Thomson experiments.
What would Joule observe in a more sensitive apparatus?

2.6 Suggest (with explanation) how the internal energy of a van der Waals gas
should vary with volume at constant temperature.

2.7 In many experimental thermograms, such as that shown in Fig. 2.16, the
baseline below T is at a different level from that above T,. Explain this
observation.

Assume all gases are perfect unless stated otherwise. Unless otherwise stated,
thermochemical data are for 298.15 K.

2.1(a) Calculate the work needed for a 65 kg person to climb through 4.0 m
on the surface of (a) the Barth and (b) the Moon (g=1.60 m 572).

2.1(b) Calculate the work needed for a bird of mass 120 g to fly to a height of
50 m from the surface of the Earth.

2.2(a) A chemical reaction takes place in a container of cross-sectional area
100 cm?. As a result of the reaction, a piston is pushed out through 10 cm
against an external pressure of 1.0 atm. Calculate the work done by the system.

2.2(b) A chemical reaction takes place in a container of cross-sectional area
50.0 cm?. As aresult of the reaction, a piston is pushed out through 15 cm
against an external pressure of 121 kPa. Calculate the work done by the
system.

2.3(a) A sample consisting of 1.00 mol Ar is expanded isothermally at 0°C
from 22.4 dm? to 44.8 dm? (a) reversibly, (b) against a constant external
pressure equal to the final pressure of the gas, and (c) freely (against zero
external pressure). For the three processes calculate ¢, w, AU, and AH.

2.3(b) A sample consisting of 2.00 mol He is expanded isothermally at 22°C
from 22.8 dm® to 31.7 dm? (a) reversibly, (b) against a constant external
pressure equal to the final pressure of the gas, and (c) freely (against zero
external pressure). For the three processes calculate g, w, AU, and AH.

2.4(a) A sample consisting of 1.00 mol of perfect gas atoms, for which
Cym= 3R, initially at p, = 1.00 atm and T, =300 K, is heated reversibly to
400 K at constant volume. Calculate the final pressure, AU, ¢, and w.

2.4(b) A sample consisting of 2.00 mol of perfect gas molecules, for which
Cym= 3R, initially at p; = 111 kPa and T; =277 K, is heated reversibly to 356 K
at constant volume. Calculate the final pressure, AU, ¢, and w.

2.5(a) A sample of 4.50 g of methane occupies 12.7 dm?®at 310 K.

(a) Calculate the work done when the gas expands isothermally against a
constant external pressure of 200 Torr until its volume has increased by
3.3 dm?. (b) Calculate the work that would be done if the same expansion
occurred reversibly.

2.5(b) A sample of argon of mass 6.56 g occupies 18.5 dm? at 305 K.
(a) Calculate the work done when the gas expands isothermally against a



constant external pressure of 7.7 kPa until its volume has increased by 2.5 dm?.
(b) Calculate the work that would be done if the same expansion occurred
reversibly.

2.6(a) Asample of 1.00 mol H,O(g) is condensed isothermally and reversibly
to liquid water at 100°C. The standard enthalpy of vaporization of water at
100°C is 40.656 kJ mol ™. Find w, g, AU, and AH for this process.

2.6(b) A sample of 2.00 mol CH;OH(g) is condensed isothermally and
reversibly to liquid at 64°C. The standard enthalpy of vaporization of
methanol at 64°C is 35.3 kJ mol ™. Find w, g, AU, and AH for this process.

2.7(a) A strip of magnesium of mass 15 gis dropped into a beaker of dilute
hydrochloric acid. Calculate the work done by the system as a result of the
reaction. The atmospheric pressure is 1.0 atm and the temperature 25°C.

2.7(b) A piece of zinc of mass 5.0 g is dropped into a beaker of dilute
hydrochloric acid. Calculate the work done by the system as a result of the
reaction. The atmospheric pressure is 1.1 atm and the temperature 23°C.

2.8(a) The constant-pressure heat capacity of a sample of a perfect gas was
found to vary with temperature according to the expression C,/(J K =20.17
+0.3665(T/K). Calculate g, w, AU, and AH when the temperature is raised
from 25°C to 200°C (a) at constant pressure, (b) at constant volume.

2.8(b) The constant-pressure heat capacity of a sample of a perfect gas was
found to vary with temperature according to the expression C,/(J K =20.17
+ 0.4001(7/K). Calculate g, w, AU, and AH when the temperature is raised
from 0°C to 100°C (a) at constant pressure, (b) at constant volume.

2.9(a) Calculate the final temperature of a sample of argon of mass 12.0 g that
is expanded reversibly and adiabatically from 1.0 dm® at 273.15 K to 3.0 dm>.

2.9(b) Calculate the final temperature of a sample of carbon dioxide of mass
16.0 g that is expanded reversibly and adiabatically from 500 cm® at 298.15 K
t0 2.00 dm”.

2.10(a) A sample of carbon dioxide of mass 2.45 gat 27.0°C is allowed to
expand reversibly and adiabatically from 500 cm® to 3.00 dm®. What is the
work done by the gas?

2.10(b) A sample of nitrogen of mass 3.12 gat 23.0°C is allowed to expand
reversibly and adiabatically from 400 cm® to 2.00 dm>. What is the work done
by the gas?

2.11(a) Calculate the final pressure of a sample of carbon dioxide that
expands reversibly and adiabatically from 57.4 kPaand 1.0 dm® to a final
volume of 2.0 dm?. Take y=1.4.

2.11(b) Calculate the final pressure of a sample of water vapour that expands
reversibly and adiabatically from 87.3 Torr and 500 cm” to a final volume of
3.0dm?. Take y=1.3.

2.12(a) When 229 ] of energy is supplied as heat to 3.0 mol Ar(g), the
temperature of the sample increases by 2.55 K. Calculate the molar heat
capacities at constant volume and constant pressure of the gas.

2.12(b) When 1787 of energy is supplied as heat to 1.9 mol of gas molecules,
the temperature of the sample increases by 1.78 K. Calculate the molar heat
capacities at constant volume and constant pressure of the gas.

2.13(a) When 3.0 mol O, is heated at a constant pressure of 3.25 atm, its
temperature increases from 260 K to 285 K. Given that the molar heat capacity
of O, at constant pressure is 29.4J K™ ! mol™, calculate g, AH, and AU.

2.13(b) When 2.0 mol CO, is heated at a constant pressure of 1.25 atm, its
temperature increases from 250 K to 277 K. Given that the molar heat capacity
of CO, at constant pressure is 37.11 ] K™ mol™, calculate g, AH, and AU.

2.14{a) A sample of 4.0 mol O, is originally confined in 20 dm? at 270 K and
then undergoes adiabatic expansion against a constant pressure of 600 Torr
until the volume has increased by a factor of 3.0. Calculate g, w, AT, AU, and
AH. (The final pressure of the gas is not necessarily 600 Torr.)
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2.14(b) A sample of 5.0 mol CO, is originally confined in 15 dm? at 280 K and
then undergoes adiabatic expansion against a constant pressure of 78.5 kPa
until the volume has increased by a factor of 4.0. Calculate g, w, AT, AU, and
AH. (The final pressure of the gas is not necessarily 78.5 kPa.)

2.15(a) A sample consisting of 1.0 mol of perfect gas molecules with Cy,=
20.8] K is initially at 3.25 atm and 310 K. It undergoes reversible adiabatic
expansion until its pressure reaches 2.50 atm. Calculate the final volume and
temperature and the work done.

2.15(b) A sample consisting of 1.5 mol of perfect gas molecules with
Com=20.8] K ! mol ! is initially at 230 kPa and 315 K. It undergoes reversible
adiabatic expansion until its pressure reaches 170 kPa. Calculate the final

volume and temperature and the work done.

2.16(a) A certain liquid has AvaPH"= 26.0 kJ mol ™. Calculate g, w, AH, and
AU when 0.50 mol is vaporized at 250 K and 750 Torr.

2.16(b) A certain liquid has AvaPH ©=32.0 kJ mol™". Calculate g, w, AH, and
AU when 0.75 mol is vaporized at 260 K and 765 Torr.

2.17{a) The standard enthalpy of formation of ethylbenzene is —12.5 k] mol ™.
Calculate its standard enthalpy of combustion.

2.17(b) The standard enthalpy of formation of phenol is —165.0 kJ mol™.
Calculate its standard enthalpy of combustion.

2.18(a) The standard enthalpy of combustion of cyclopropane is —2091 kJ
mol ™! at 25°C. From this information and enthalpy of formation data for
CO,(g) and H,0(g), calculate the enthalpy of formation of cyclopropane. The
enthalpy of formation of propene is +20.42 k] mol™. Calculate the enthalpy of
isomerization of cyclopropane to propene.

2.18(b) From the following data, determine AcH® for diborane, B,H(g), at
298 K:
(1) B,H(g) +3 0,(g) > B,0,(s) + 3H,0(g)
(2) 2B(s) +3 0,(g) — B,O4(s)
(3) Hy(g)+7 O5(g) > H,0(g)
2.19(a) When 120 mg of naphthalene, C,,Hg(s), was burned in a bomb
calorimeter the temperature rose by 3.05 K. Calculate the calorimeter

constant. By how much will the temperature rise when 10 mg of phenol,
C¢H,OH(s), is burned in the calorimeter under the same conditions?

AH®=-1941 K] mol !
AH®=-2368 k] mol !
AH®=-241.8 K mol

2.19(b) When 2.25 mg of anthracene, C,,H,,(s), was burned in a bomb
calorimeter the temperature rose by 1.35 K. Calculate the calorimeter
constant. By how much will the temperature rise when 135 mg of phenol,
CcH,OH(s), is burned in the calorimeter under the same conditions?
(AH®(C H,y, 5) =—7061 kJ mol™L.)

2.20(a) Calculate the standard enthalpy of solution of AgCl(s) in water from
the enthalpies of formation of the solid and the aqueous ions.

2.20(b) Calculate the standard enthalpy of solution of AgBr(s) in water from
the enthalpies of formation of the solid and the aqueous ions.

2.21(a) The standard enthalpy of decomposition of the yellow complex
H,NSO, into NH; and SO, is +40 k] mol™!. Calculate the standard enthalpy of
formation of H;NSO,.

2.21(b) Given that the standard enthalpy of combustion of graphite is
—393.51 k] mol™ and that of diamond is —395.41 kJ mol ™, calculate the
enthalpy of the graphite-to-diamond transition.

2.22(a) Given the reactions (1) and (2) below, determine (a) A, H®and A, U*
for reaction (3), (b) AcH® for both HCI(g) and H,O(g) allat 298 K.

(1) Hy(g) +ClL(g) »2HCl(g)

(2) 2H,(g) +0,(g) »2H,0(g)

(3) 4HCI(g) +0,(g) - CL(g) +2 H,0(g)

AH®=-184.62 k] mol™
AH®=-483.64 k] mol™
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2.22(b) Given the reactions (1) and (2) below, determine (a) A_LH®and
A U? for reaction (3), (b) A¢H® for both HCI(g) and H,O(g) all at 298 K.
(1) Hy(g) +1,(s) > 2 HI(g)
(2) 2H,(g) +0,(g) > 2H,0(g)
(3) 4HI(g)+0,(g) =2 L(5) +2 H,0(g)

AH®=+52.96k] mol ™
A, H®=-483.64 k] mol™!

2.23(a) For the reaction C,H;OH(I) +3 O,(g) — 2 CO,(g) + 3 H,0(g),
A U?=-1373 k] mol " at 298 K. Calculate A, H®.

2.23(b) For the reaction 2 CH,COOH(s) + 13 O,(g) — 12 CO,(g) +
6 H,0(g), A,U*=-772.7 k] mol ' at 298 K. Calculate A, FH°.

2.24(a) Calculate the standard enthalpies of formation of (a) KClO,(s) from

the enthalpy of formation of KCl, (b) NaHCO4(s) from the enthalpies of

formation of CO, and NaOH together with the following information:
2KClO4(s) - 2 KCl(s) + 3 O,(g)
NaOH(s) + CO,(g) — NaHCO,(s)

A H®=-89.4 k] mol™!
AH®=-1275Kk] mol™

2.24(b) Calculate the standard enthalpy of formation of NOCl(g) from the
enthalpy of formation of NO given in Table 2.5, together with the following
information:

2NOCl(g) =2 NO(g) + Cl,(g) AH?=+755K mol !

2.25(a) Use the information in Table 2.5 to predict the standard reaction
enthalpy of 2 NO,(g) — N,0,(g) at 100°C from its value at 25°C.

2.25(b) Use the information in Table 2.5 to predict the standard reaction
enthalpy of 2 H,(g) + O,(g) — 2 H,O(]) at 100°C from its value at 25°C.

2.26(a) From the data in Table 2.5, calculate AL H® and A U® at (a) 298 K,
(b) 378 K for the reaction C(graphite) + H,0(g) — CO(g) + H,(g). Assume
all heat capacities to be constant over the temperature range of interest.

2.26(b) Calculate A, H®and A, U®at298 K and A, H®at 348 K for the
hydrogenation of ethyne (acetylene) to ethene (ethylene) from the enthalpy of
combustion and heat capacity data in Tables 2.5 and 2.7. Assume the heat
capacities to be constant over the temperature range involved.

2.27(a) Calculate A H* for the reaction Zn(s) + CuSO,(aq) — ZnSO,(aq) +
Cu(s) from the information in Table 2.7 in the Data section.

2.27(b) Calculate A, H® for the reaction NaCl(aq) + AgNO;(aq) — AgCl(s) +
NaNO,(aq) from the information in Table 2.7 in the Data section.

2.28(a) Set up athermodynamic cycle for determining the enthalpy of
hydration of Mg*" ions using the following data: enthalpy of sublimation of
Mg(s), +167.2 k] mol™; first and second ionization enthalpies of Mg(g),
7.646 ¢V and 15.035 eV; dissociation enthalpy of Cl,(g), +241.6 kJ mol™;
electron gain enthalpy of Cl(g), —3.78 ¢V; enthalpy of solution of MgCl,(s),
—150.5 k] mol™}; enthalpy of hydration of CI"(g), —383.7 k] mol™..

2.28(b) Set up a thermodynamic cycle for determining the enthalpy of
hydration of Ca*" ions using the following data: enthalpy of sublimation
of Ca(s), +178.2 kJ mol™; first and second ionization enthalpies of Ca(g),
589.7 k] mol™ and 1145 k] mol™; enthalpy of vaporization of bromine,
+30.91 kJ mol™}; dissociation enthalpy of Br,(g), +192.9 kJ mol™%; electron
gain enthalpy of Br(g), —331.0 k] mol™}; enthalpy of solution of

CaBr,(s), —103.1 k] mol™}; enthalpy of hydration of Br(g), —337 kJ mol".

2.29(a) When a certain freon used in refrigeration was expanded adiabatically
from an initial pressure of 32 atm and 0°C to a final pressure of 1.00 atm, the
temperature fell by 22 K. Calculate the Joule—Thomson coefficient, y, at 0°C,
assuming it remains constant over this temperature range.

2.29(b) A vapour at22 atm and 5°C was allowed to expand adiabatically to a
final pressure of 1.00 atm; the temperature fell by 10 K. Calculate the
Joule-Thomson coefficient, , at 5°C, assuming it remains constant over this
temperature range.

2.30(a) Foravan der Waals gas, = a/V?%,. Calculate AU, for the isothermal
expansion of nitrogen gas from an initial volume of 1.00 dm® to 24.8 dm? at
298 K. What are the values of g and w?

2.30(b) Repeat Exercise 2.30(a) for argon, from an initial volume of 1.00 dm®
t022.1 dm®at 298 K.

2.31(a) The volume of a certain liquid varies with temperature as
V=V"{0.75+3.9 x 1074(T/K) + 1.48 x 10°(T/K)*}
where V"’ is its volume at 300 K. Calculate its expansion coefficient, o, at 320 K.
2.31(b) The volume of a certain liquid varies with temperature as
V=V"0.77 + 3.7 x 1074 T/K) + 1.52 x 10~%(T/K)*}
where V"’ is its volume at 298 K. Calculate its expansion coefficient, ¢, at 310 K.

2.32(a) The isothermal compressibility of copper at 293 K is 7.35 x
1077 atm ™. Calculate the pressure that must be applied in order to increase its
density by 0.08 per cent.

2.32(b) The isothermal compressibility of lead at 293 K is 2.21 x 107 atm ™.
Calculate the pressure that must be applied in order to increase its density by
0.08 per cent.

2.33(a) Given that tt=0.25 K atm™ for nitrogen, calculate the value of its
isothermal Joule-Thomson coefficient. Calculate the energy that must be
supplied as heat to maintain constant temperature when 15.0 mol N, flows
through a throttle in an isothermal Joule—Thomson experiment and the
pressure drop is 75 atm.

2.33(b) Given that t=1.11 K atm™ for carbon dioxide, calculate the value of
its isothermal Joule—Thomson coefficient. Calculate the energy that must be
supplied as heat to maintain constant temperature when 12.0 mol CO, flows
through a throttle in an isothermal Joule—Thomson experiment and the
pressure drop is 55 atm.
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Assume all gases are perfect unless stated otherwise. Note that 1 atm =
1.013 25 bar. Unless otherwise stated, thermochemical data are for 298.15 K.

Numerical problems

2.1 Asample consisting of 1 mol of perfect gas atoms (for which

Cym= 2R) is taken through the cycle shown in Fig. 2.34. (a) Determine the
temperature at the points 1, 2, and 3. (b) Calculate g, w, AU, and AH for each
step and for the overall cycle. If a numerical answer cannot be obtained from
the information given, then write in+, —, 0, or ? as appropriate.

1 2

1.00

Pressure, p/atm

e
(3]
©

Volume, Vidm®

Fig. 2.34

2.2 Asample consisting of 1.0 mol CaCOs(s) was heated to 800°C, when it
decomposed. The heating was carried out in a container fitted with a piston
that was initially resting on the solid. Calculate the work done during
complete decomposition at 1.0 atm. What work would be done if instead of
having a piston the container was open to the atmosphere?

2.3 Asample consisting of 2.0 mol CO, occupies a fixed volume of 15.0 dm?®
at 300 K. When it is supplied with 2.35 kJ of energy as heat its temperature
increases to 341 K. Assume that CO, is described by the van der Waals
equation of state, and calculate w, AU, and AH.

2.4 Asample of 70 mmol Kr(g) expands reversibly and isothermally at 373 K
from 5.25 cm’ to 6.29 cm?, and the internal energy of the sample is known to
increase by 83.5 J. Use the virial equation of state up to the second coefficient
B=-28.7 cm® mol™ to calculate w, g, and AH for this change of state.

2.5 Asample of 1.00 mol perfect gas molecules with C, =ZRis put through
the following cycle: (a) constant-volume heating to twice its initial volume,
(b) reversible, adiabatic expansion back to its initial temperature, (c)
reversible isothermal compression back to 1.00 atm. Calculate g, w, AU, and
AH for each step and overall.

2.6 Calculate the work done during the isothermal reversible expansion of a
van der Waals gas. Account physically for the way in which the coefficients a
and b appear in the final expression. Plot on the same graph the indicator
diagrams for the isothermal reversible expansion of (a) a perfect gas,

(b) a van der Waals gas in which a=0and b=5.11 x 10 dm® mol™}, and
(c) a=4.2 dm® atm mol™ and b = 0. The values selected exaggerate the
imperfections but give rise to significant effects on the indicator diagrams.
Take V;=1.0dm>, n=1.0 mol, and T=298 K.

2.7 The molar heat capacity of ethane is represented in the temperature range

298 K to 400 K by the empirical expression C,, . /(J K™" mol™!) = 14.73 +
0.1272(T/K). The corresponding expressions for C(s) and H,(g) are given in

Table 2.2. Calculate the standard enthalpy of formation of ethane at 350 K
from its value at 298 K.

2.8 Asample of the sugar p-ribose (C;H,,O5) of mass 0.727 g was placed

in a calorimeter and then ignited in the presence of excess oxygen. The
temperature rose by 0.910 K. In a separate experiment in the same calorimeter,
the combustion of 0.825 g of benzoic acid, for which the internal energy of
combustion is —=3251 kJ mol ™}, gave a temperature rise of 1.940 K. Calculate
the internal energy of combustion of p-ribose and its enthalpy of formation.

2.9 The standard enthalpy of formation of the metallocene
bis(benzene)chromium was measured in a calorimeter. It was found for the
reaction Cr(C Hy),(s) — Cr(s) + 2 C;H(g) that A U®(583 K) = +8.0 k] mol L.
Find the corresponding reaction enthalpy and estimate the standard enthalpy
of formation of the compound at 583 K. The constant-pressure molar

heat capacity of benzene is 136.1 ] K™* mol ™ in its liquid range and

81.67J K 'moltasa gas.

2.10f From the enthalpy of combustion data in Table 2.5 for the

alkanes methane through octane, test the extent to which the relation
AH?=K{(M/(g mol™)}" holds and find the numerical values for k and n.
Predict A_H* for decane and compare to the known value.

2.11 TItis possible to investigate the thermochemical properties of
hydrocarbons with molecular modelling methods. (a) Use electronic structure
software to predict A_[H® values for the alkanes methane through pentane. To
calculate A H*® values, estimate the standard enthalpy of formation of
C,Hy(,,1)(g) by performing semi-empirical calculations (for example, AM1

or PM3 methods) and use experimental standard enthalpy of formation
values for CO,(g) and H,O(1). (b) Compare your estimated values with the
experimental values of A H® (Table 2.5) and comment on the reliability of

the molecular modelling method. (c) Test the extent to which the relation
AH®=K{(M/(g mol™)}* holds and find the numerical values for k and n.

2.12t When 1.3584 g of sodium acetate trihydrate was mixed into 100.0 cm®
0f0.2000 m HCl(aq) at 25°C in a solution calorimeter, its temperature fell by
0.397°C on account of the reaction:

H,;0%(aq) + NaCH,CO, - 3 H,O(s)
— Na'(aq) + CH,COOH(aq) +4 H,0(D).

The heat capacity of the calorimeter is 91.0 ] K™ and the heat capacity density
of the acid solution is 4.144 ] K~ cm ™. Determine the standard enthalpy of
formation of the aqueous sodium cation. The standard enthalpy of formation
of sodium acetate trihydrate is —1064 k] mol™..
2.13% Since their discovery in 1985, fullerenes have received the attention of
many chemical researchers. Kolesov et al. reported the standard enthalpy of
combustion and of formation of crystalline C, based on calorimetric
measurements (V.P. Kolesov, S.M. Pimenova, VK. Pavlovich, N.B. Tamm,
and A.A. Kurskaya, J. Chem. Thermodynamics 28, 1121 (1996)). In one of their
runs, they found the standard specific internal energy of combustion to be
—36.0334 kJ g! at 298.15 K Compute A_H®and A;H® of C,.
2.14% A thermodynamic study of DyCl, (E.H.P. Cordfunke, A.S. Booji, and
M. Yu. Furkaliouk, J. Chem. Thermodynamics 28, 1387 (1996)) determined its
standard enthalpy of formation from the following information

(1) DyCly(s) — DyCly(aq, in 4.0 M HCI) AH®=-180.06 k] mol ™!

(2) Dy(s)+3 HCl(ag, 4.0 M) —>

DyCl,(aq, in 4.0 M HCl(aq)) + %Hz(g)
(3) $Hy(g)+ 5 Cly(g) - HCl(ag, 4.0 )

Determine AH®(DyCl,, s) from these data.

Y R

AH®=-699.43 k] mol ™!
AH?=-158.31 k] mol™*

* Problems denoted with the symbol # were supplied by Charles Trapp, Carmen Giunta, and Marshall Cady.
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2.15% Silylene (SiH,) is a key intermediate in the thermal decomposition of
silicon hydrides such as silane (SiH,) and disilane (Si,H). Moffat et al. (H.K.
Moffat, K.F. Jensen, and R.-W. Carr, J. Phys. Chem. 95, 145 (1991)) report
AHP(SiH,) =+274 kJ mol™\. If A(H®(SiH,) =+34.3 k] mol ™! and
AH®(Si,Hy) =+80.3 kJ mol™ (CRC Handbook (2004)), compute the
standard enthalpies of the following reactions:

(a) SiH,(g) — SiH,(g) + H,(g)
(b) Si,H,(g) — SiH,(g) + SiH,(g)

2.16% Silanone (SiH,0) and silanol (SiH,;OH) are species believed to be
important in the oxidation of silane (SiH,). These species are much more
elusive than their carbon counterparts. C.L. Darling and H.B. Schlegel

(J. Phys. Chem. 97, 8207 (1993)) report the following values (converted from
calories) from a computational study: A.H®(SiH,0) =-98.3 k] mol™! and
AH®(SiH,OH) =-282 k] mol ! . Compute the standard enthalpies of the
following reactions:

(a) Sil,(g) +10,(g) — SIH;0H(g)
(b) SiH,(g) + O,(g) — SiH,0(g) + H,O(1)
(¢) SiH,OH(g) — SiH,0(g) + H,(g)

Note that A;H®(SiH,, g) =+34.3 k] mol™ (CRC Handbook (2004)).

2.17 The constant-volume heat capacity of a gas can be measured by
observing the decrease in temperature when it expands adiabatically and
reversibly. If the decrease in pressure is also measured, we can use it to infer
the value of y = Cp/ Cy and hence, by combining the two values, deduce the
constant-pressure heat capacity. A fluorocarbon gas was allowed to expand
reversibly and adiabatically to twice its volume; as a result, the temperature
fell from 298.15 K to 248.44 K and its pressure fell from 202.94 kPa to
81.840 kPa. Evaluate C,,.

2.18 A sample consisting of 1.00 mol of a van der Waals gas is compressed
from 20.0 dm> to 10.0 dm? at 300 K. In the process, 20.2 kJ of work is done
on the gas. Given that pt={(2a/RT) = b}/C,, ., with C, , =38.4] K ! mol™,

Py

a=3.60 dm® atm mol™, and b= 0.44 dm> mol™, calculate AH for the process.

2.19 Take nitrogen to be a van der Waals gas with a = 1.352 dm® atm mol™
and b=0.0387 dm® mol™}, and calculate AH,, when the pressure on the gas is
decreased from 500 atm to 1.00 atm at 300 K. For a van der Waals gas,
u=1{Q2a/RT) - b}/C, .. Assume C, = IR,

Theoretical problems

2.20 Show that the following functions have exact differentials: (a) x*y + 3y?,
(b) x cos xy, (c) x°2, (d) tt+e%) +5.

2.21 (a) Whatis the total differential of z=x? + 2y* — 2xy + 2x — 4y — 87 (b)
Show that 0°z/dydx = 0°z/dxdy for this function. (c) Letz=xy—y+Inx+2.
Find dz and show that it is exact.

2.22 (a) Express (dCy,/0V )y as a second derivative of U and find its relation
to (QU/AV)pand (acp/ dp)yas a second derivative of H and find its relation
to (dH/dp)y. (b) From these relations show that (dC,,/dV) ;=0 and
(9C,/dp)y=0 for a perfect gas.

2.23 (a) Derive the relation C, =—(9U/0V)(dV/dT) from the expression
for the total differential of U(T,V) and (b) starting from the expression for
the total differential of H(T,p), express (dH/dp)in terms of C,and the
Joule—Thomson coefficient, .

2.24 Starting from the expression C,— Cy = T(ap/aT)V(aV/aT)P, use the
appropriate relations between partial derivatives to show that
T(aV/aT)f7

(@V/oT)

p VT

Evaluate C,— Cy for a perfect gas.

2.25 (a) By direct differentiation of H= U+ pV, obtain a relation between
(aH/aU)P and (aU/aV)P. (b) Confirm that (aH/aU)p =1 +p(aV/aU)P by

expressing (0H/0U), as the ratio of two derivatives with respect to volume
and then using the definition of enthalpy.

2.26 (a) Write expressions for dVand dp given that Vis a function of p and
T and p is a function of Vand T. (b) Deduce expressions fordIn Vand dIn p
in terms of the expansion coefficient and the isothermal compressibility.

2.27 Calculate the work done during the isothermal reversible expansion of a
gas that satisfies the virial equation of state, eqn 1.19. Evaluate (a) the work
for 1.0 mol Ar at 273 K (for data, see Table 1.3) and (b) the same amount of a
perfect gas. Let the expansion be from 500 cm® to 1000 cm? in each case.

2.28 Express the work of isothermal reversible expansion of a van der Waals
gas in reduced variables and find a definition of reduced work that makes the
overall expression independent of the identity of the gas. Calculate the work

of isothermal reversible expansion along the critical isotherm from V_ to xV_.

2.29% A gas obeying the equation of state p(V— nb) = nRT is subjected to a
Joule—-Thomson expansion. Will the temperature increase, decrease, or
remain the same?

2.30 Use the fact that (9U/9V)y=a/VZ for a van der Waals gas to show that
UC, 1, = (2a/RT) — b by using the definition of 1 and appropriate relations
between partial derivatives. (Hint. Use the approximation pV,, = RT when it
is justifiable to do so.)

2.31 Rearrange the van der Waals equation of state to give an expression for
T as afunction of p and V (with n constant). Calculate (9T/dp), and confirm
that (9T/dp), = 1/(dp/dT),. Go on to confirm Euler’s chain relation.

2.32 Calculate the isothermal compressibility and the expansion coefficient
of a van der Waals gas. Show, using Euler’s chain relation, that
KpR= oV, —b).

2.33 Given thatuC,= T(aV/aT)P— V, derive an expression for gt in terms of
the van der Waals parameters a and b, and express it in terms of reduced
variables. Evaluate u at 25°C and 1.0 atm, when the molar volume of the gas
is 24.6 dm® mol ™. Use the expression obtained to derive a formula for the
inversion temperature of a van der Waals gas in terms of reduced variables,
and evaluate it for the xenon sample.

2.34 The thermodynamic equation of state (QU/QV)p=T(dp/0T), — p was
quoted in the chapter. Derive its partner

oH oV
—| =—T|—=| +V
ap ), aT -

from it and the general relations between partial differentials.

2.35 Show that for a van der Waals gas,

o AR 11(3‘/‘_1)2
pm ™ v = 2T Ter

and evaluate the difference for xenon at 25°C and 10.0 atm.

2.36 The speed of sound, ¢, in a gas of molar mass M is related to the ratio of
heat capacities y by ¢,= (yRT/M) 2. Show that ¢, = (yp/p)'”?, where p is the
mass density of the gas. Calculate the speed of sound in argon at 25°C.

2.37% A gas obeys the equation of state V,,= RT/p +aT? and its constant-
pressure heat capacity is givenby C, , = A + BT + Cp, where a, A, B, and Care
constants independent of T and p. Obtain expressions for (a) the
Joule-Thomson coefficient and (b) its constant-volume heat capacity.

Applications: to biology, materials science, and the
environment

2.38 Itis possible to see with the aid of a powerful microscope that a long
piece of double-stranded DNA is flexible, with the distance between the ends
of the chain adopting a wide range of values. This flexibility is important
because it allows DNA to adopt very compact conformations as it is packaged
in a chromosome (see Chapter 18). It is convenient to visualize a long piece



of DNA as a freely jointed chain, a chain of N small, rigid units of length [
that are free to make any angle with respect to each other. The length /, the
persistence length, is approximately 45 nm, corresponding to approximately
130 base pairs. You will now explore the work associated with extending a
DNA molecule. (a) Suppose thata DNA molecule resists being extended
from an equilibrium, more compact conformation with a restoring force
F=—kpx, where xis the difference in the end-to-end distance of the chain
from an equilibrium value and k; is the force constant. Systems showing this
behaviour are said to obey Hooke’s law. (i) What are the limitations of this
model of the DNA molecule? (ii) Using this model, write an expression for
the work that must be done to extend a DNA molecule by x. Draw a graph
of your conclusion. (b) A better model of a DNA molecule is the one-
dimensional freely jointed chain, in which a rigid unit of length / can only
make an angle of 0° or 180° with an adjacent unit. In this case, the restoring
force of a chain extended by x= nlis given by

kT 1+v
F=—=In v=n/N

Y E Y

where k=1.381 x 1072% ] K~ is Boltzmann’s constant (not a force constant).
(i) What are the limitations of this model? (ii) What is the magnitude of the
force that must be applied to extend a DNA molecule with N =200 by 90 nm?
(iii) Plot the restoring force against v, noting that v can be either positive or
negative. How is the variation of the restoring force with end-to-end distance
different from that predicted by Hooke’s law? (iv) Keeping in mind that the
difference in end-to-end distance from an equilibrium value is x = n/ and,
consequently, dx =Idn = Nidv, write an expression for the work of extending
a DNA molecule. (v) Calculate the work of extending a DNA molecule from
v=0to v=1.0. Hint. You must integrate the expression for w. The task can
be accomplished easily with mathematical software. (¢) Show that for small
extensions of the chain, when v << 1, the restoring force is given by

vkT  nkT

l NI

Hint. See Appendix 2 for a review of series expansions of functions. (d) Is the
variation of the restoring force with extension of the chain given in part
(¢) different from that predicted by Hooke’s law? Explain your answer.

2.39 There are no dietary recommendations for consumption of
carbohydrates. Some nutritionists recommend diets that are largely devoid of
carbohydrates, with most of the energy needs being met by fats. However, the
most common recommendation is that at least 65 per cent of our food
calories should come from carbohydrates. A 2-cup serving of pasta contains
40 g of carbohydrates. What percentage of the daily calorie requirement for a
person on a 2200 Calorie diet (1 Cal=1 kcal) does this serving represent?

2.40 Anaverage human produces about 10 MJ of heat each day through
metabolic activity. If a human body were an isolated system of mass 65 kg
with the heat capacity of water, what temperature rise would the body
experience? Human bodies are actually open systems, and the main
mechanism of heat loss is through the evaporation of water. What mass of
water should be evaporated each day to maintain constant temperature?

2.41 Glucose and fructose are simple sugars with the molecular formula
CgH,, 0. Sucrose, or table sugar, is a complex sugar with molecular formula
C,,H,,0,, that consists of a glucose unit covalently bound to a fructose unit
(a water molecule is given off as a result of the reaction between glucose and
fructose to form sucrose). (a) Calculate the energy released as heat when a
typical table sugar cube of mass 1.5 g is burned in air. (b) To what height
could you climb on the energy a table sugar cube provides assuming 25 per
cent of the energy is available for work? (¢) The mass of a typical glucose
tabletis 2.5 g. Calculate the energy released as heat when a glucose tablet is
burned in air. (d) To what height could you climb on the energy a cube
provides assuming 25 per cent of the energy is available for work?

2.42 Inbiological cells that have a plentiful supply of O,, glucose is oxidized
completely to CO, and H,O by a process called aerobic oxidation. Muscle cells
may be deprived of O, during vigorous exercise and, in that case, one
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molecule of glucose is converted to two molecules of lactic acid

(CH,CH (OH)COOH) by a process called anaerobic glycolysis (see

Impact 17.2). (a) When 0.3212 g of glucose was burned in a bomb
calorimeter of calorimeter constant 641 J K™! the temperature rose by
7.793 K. Calculate (i) the standard molar enthalpy of combustion, (ii) the
standard internal energy of combustion, and (iii) the standard enthalpy of
formation of glucose. (b) What is the biological advantage (in kilojoules
per mole of energy released as heat) of complete aerobic oxidation
compared with anaerobic glycolysis to lactic acid?

2.43 You have at your disposal a sample of pure polymer P and a sample of P
that has just been synthesized in a large chemical reactor and that may
contain impurities. Describe how you would use differential scanning
calorimetry to determine the mole percentage composition of P in the
allegedly impure sample.

2.44% Alkyl radicals are important intermediates in the combustion

and atmospheric chemistry of hydrocarbons. Seakins et al. (P.W.
Seakins, M.J. Pilling, J.T. Niiranen, D. Gutman, and L.N. Krasnoperov,

J. Phys. Chem. 96, 9847 (1992)) report AcH® for a variety of alkyl radicals
in the gas phase, information that is applicable to studies of pyrolysis and
oxidation reactions of hydrocarbons. This information can be combined
with thermodynamic data on alkenes to determine the reaction enthalpy
for possible fragmentation of a large alkyl radical into smaller radicals and
alkenes. Use the following set of data to compute the standard reaction
enthalpies for three possible fates of the rert-butyl radical, namely,

(a) tert-C{Hy — sec-C H,, (b) tert-C,H, — C;H, + CHj, () rerr-C\H, —
CH,+CH..

Species: C,H; sec-C,Hy tert-C,Hy
AHS/(Kmol™)  +121.0  +67.5 +51.3

2.45% In 1995, the Intergovernmental Panel on Climate Change (IPCC)
considered a global average temperature rise of 1.0-3.5°C likely by the year
2100, with 2.0°C its best estimate. Predict the average rise in sea level due to
thermal expansion of sea water based on temperature rises of 1.0°C, 2.0°C,
and 3.5°C given that the volume of the Barth’s oceans is 1.37 x 10° km® and
their surface area is 361 x 10° km?, and state the approximations that go into
the estimates.

2.46% Concerns over the harmful effects of chlorofluorocarbons on
stratospheric ozone have motivated a search for new refrigerants. One such
alternative is 2,2-dichloro-1,1,1-trifluoroethane (refrigerant 123). Younglove
and McLinden published a compendium of thermophysical properties of this
substance (B.A. Younglove and M. McLinden, J. Phys. Chem. Ref. Data 23,7
(1994)), from which properties such as the Joule—Thomson coefficient

can be computed. (a) Compute ttat 1.00 bar and 50°C given that (9H/dp)
=-329x10%*] MPa~! mol™ and Cpm=110.0] K 'mol™. (b) Compute the
temperature change that would accompany adiabatic expansion of 2.0 mol

of this refrigerant from 1.5 bar to 0.5 bar at 50°C.

2.47% Another alternative refrigerant (see preceding problem) is 1,1,1,2-
tetrafluoroethane (refrigerant HFC-134a). Tillner-Roth and Bachr published
a compendium of thermophysical properties of this substance (R. Tillner-
Roth and H.D. Baehr, J. Phys. Chem. Ref. Data 23, 657 (1994)), from which
properties such as the Joule-Thomson coefficient ¢t can be computed. (a)
Compute tat 0.100 MPa and 300 K from the following data (all referring

to 300 K):

p/MPa 0.080 0.100 0.12
Specific enthalpy/(k] kg ™) 426.48 426.12 425.76

(The specific constant-pressure heat capacity is 0.7649 k] K™ kg™..)
(b) Compute g at 1.00 MPa and 350 K from the following data (all referring
to 350 K):

p/MPa 0.80 1.00 1.2
Specific enthalpy/(k] kg ™) 461.93 459.12 456.15

(The specific constant-pressure heat capacityis 1.0392 k] K kg™L.)
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The Second Law

The purpose of this chapter is to explain the origin of the spontaneity of physical and chem-
ical change. We examine two simple processes and show how to define, measure, and use
a property, the entropy, to discuss spontaneous changes quantitatively. The chapter also
introduces a major subsidiary thermodynamic property, the Gibbs energy, which lets us ex-
press the spontaneity of a process in terms of the properties of a system. The Gibbs energy
also enables us to predict the maximum non-expansion work that a process can do. As we
began to see in Chapter 2, one application of thermodynamics is to find relations between
properties that might not be thought to be related. Several relations of this kind can be
established by making use of the fact that the Gibbs energy is a state function. We also see
how to derive expressions for the variation of the Gibbs energy with temperature and pres-
sure and how to formulate expressions that are valid for real gases. These expressions will
prove useful later when we discuss the effect of temperature and pressure on equilibrium
constants.

Some things happen naturally; some things don’t. A gas expands to fill the available
volume, a hot body cools to the temperature of its surroundings, and a chemical reac-
tion runs in one direction rather than another. Some aspect of the world determines
the spontaneous direction of change, the direction of change that does not require
work to be done to bring it about. A gas can be confined to a smaller volume, an object
can be cooled by using a refrigerator, and some reactions can be driven in reverse
(as in the electrolysis of water). However, none of these processes is spontaneous;
each one must be brought about by doing work. An important point, though, is that
throughout this text ‘spontaneous’ must be interpreted as a natural tendency that may
or may not be realized in practice. Thermodynamics is silent on the rate at which a
spontaneous change in fact occurs, and some spontaneous processes (such as the con-
version of diamond to graphite) may be so slow that the tendency is never realized
in practice whereas others (such as the expansion of a gas into a vacuum) are almost
instantaneous.

The recognition of two classes of process, spontaneous and non-spontaneous, is
summarized by the Second Law of thermodynamics. This law may be expressed in a
variety of equivalent ways. One statement was formulated by Kelvin:

No process is possible in which the sole result is the absorption of heat from a reser-
voir and its complete conversion into work.

For example, it has proved impossible to construct an engine like that shown in
Fig. 3.1, in which heat is drawn from a hot reservoir and completely converted into
work. All real heat engines have both a hot source and a cold sink; some energy is
always discarded into the cold sink as heat and not converted into work. The Kelvin



statement is a generalization of another everyday observation, that a ball at rest on a
surface has never been observed to leap spontaneously upwards. An upward leap of
the ball would be equivalent to the conversion of heat from the surface into work.

The direction of spontaneous change

What determines the direction of spontaneous change? It is not the total energy of the
isolated system. The First Law of thermodynamics states that energy is conserved in
any process, and we cannot disregard that law now and say that everything tends
towards a state of lower energy: the total energy of an isolated system is constant.

Is it perhaps the energy of the systern that tends towards a minimum? Two argu-
ments show that this cannot be so. First, a perfect gas expands spontaneously into a
vacuum, yet its internal energy remains constant as it does so. Secondly, if the energy
of a system does happen to decrease during a spontaneous change, the energy of its
surroundings must increase by the same amount (by the First Law). The increase in
energy of the surroundings is just as spontaneous a process as the decrease in energy
of the system.

When a change occurs, the total energy of an isolated system remains constant but
itis parcelled out in different ways. Can it be, therefore, that the direction of change is
related to the distribution of energy? We shall see that this idea is the key, and that
spontaneous changes are always accompanied by a dispersal of energy.

3.1 The dispersal of energy

We can begin to understand the role of the distribution of energy by thinking about a
ball (the system) bouncing on a floor (the surroundings). The ball does not rise as
high after each bounce because there are inelastic losses in the materials of the ball and
floor. The kinetic energy of the ball’s overall motion is spread out into the energy of
thermal motion of its particles and those of the floor that it hits. The direction of
spontaneous change is towards a state in which the ball is at rest with all its energy dis-
persed into random thermal motion of molecules in the air and of the atoms of the
virtually infinite floor (Fig. 3.2).

A ball resting on a warm floor has never been observed to start bouncing. For
bouncing to begin, something rather special would need to happen. In the first place,
some of the thermal motion of the atoms in the floor would have to accumulate in a
single, small object, the ball. This accumulation requires a spontaneous localization of
energy from the myriad vibrations of the atoms of the floor into the much smaller
number of atoms that constitute the ball (Fig. 3.3). Furthermore, whereas the thermal
motion is random, for the ball to move upwards its atoms must all move in the same
direction. The localization of random, disorderly motion as concerted, ordered
motion is so unlikely that we can dismiss it as virtually impossible.!

We appear to have found the signpost of spontaneous change: we look for the
direction of change that leads to dispersal of the total energy of the isolated system. This
principle accounts for the direction of change of the bouncing ball, because its energy
is spread out as thermal motion of the atoms of the floor. The reverse process is not
spontaneous because it is highly improbable that energy will become localized, leading
to uniform motion of the ball’s atoms. A gas does not contract spontaneously because

I Concerted motion, but on a much smaller scale, is observed as Brownian motion, the jittering motion of
small particles suspended in water.
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Hot source

Flow of
energy

Heat

Fig. 3.1 The Kelvin statement of the Second
Law denies the possibility of the process
illustrated here, in which heat is changed
completely into work, there being no other
change. The process is not in conflict with
the First Law because energy is conserved.

Fig. 3.2 The direction of spontaneous
change for a ball bouncing on a floor. On
each bounce some of its energy is degraded
into the thermal motion of the atoms

of the floor, and that energy disperses.

The reverse has never been observed to
take place on a macroscopic scale.
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Fig. 3.3 The molecular interpretation of the
irreversibility expressed by the Second Law.
(a) A ball resting on a warm surface; the
atoms are undergoing thermal motion
(vibration, in this instance), as indicated by
the arrows. (b) For the ball to fly upwards,
some of the random vibrational motion
would have to change into coordinated,
directed motion. Such a conversion is
highly improbable.

to do so the random motion of its molecules, which spreads out the distribution of
kinetic energy throughout the container, would have to take them all into the same
region of the container, thereby localizing the energy. The opposite change, spontane-
ous expansion, is a natural consequence of energy becoming more dispersed as the gas
molecules occupy a larger volume. An object does not spontaneously become warmer
than its surroundings because it is highly improbable that the jostling of randomly
vibrating atoms in the surroundings will lead to the localization of thermal motion
in the object. The opposite change, the spreading of the object’s energy into the sur-
roundings as thermal motion, is natural.

It may seem very puzzling that the spreading out of energy and matter, the collapse
into disorder, can lead to the formation of such ordered structures as crystals or pro-
teins. Nevertheless, in due course, we shall see that dispersal of energy and matter
accounts for change in all its forms.

3.2 Entropy

The First Law of thermodynamics led to the introduction of the internal energy, U.
The internal energy is a state function that lets us assess whether a change is permiss-
ible: only those changes may occur for which the internal energy of an isolated system
remains constant. The law that is used to identify the signpost of spontaneous change,
the Second Law of thermodynamics, may also be expressed in terms of another state
function, the entropy, S. We shall see that the entropy (which we shall define shortly,
but is a measure of the energy dispersed in a process) lets us assess whether one state
is accessible from another by a spontaneous change. The First Law uses the internal
energy to identify permissible changes; the Second Law uses the entropy to identify the
spontaneous changes among those permissible changes.
The Second Law of thermodynamics can be expressed in terms of the entropy:

The entropy of an isolated system increases in the course of a spontaneous change:
AS >0

tot

where S, is the total entropy of the system and its surroundings. Thermodynamically
irreversible processes (like cooling to the temperature of the surroundings and the
free expansion of gases) are spontaneous processes, and hence must be accompanied
by an increase in total entropy.

(a) The thermodynamic definition of entropy

The thermodynamic definition of entropy concentrates on the change in entropy,
dS, that occurs as a result of a physical or chemical change (in general, as a result of
a ‘process’). The definition is motivated by the idea that a change in the extent to
which energy is dispersed depends on how much energy is transferred as heat. As we
have remarked, heat stimulates random motion in the surroundings. On the other
hand, work stimulates uniform motion of atoms in the surroundings and so does not
change their entropy.
The thermodynamic definition of entropy is based on the expression

dQI‘eV
o

ds (3.1]

For a measurable change between two states i and f this expression integrates to

£
dq
AS=| ==X 3.2
J 7 (3:2)

i



That is, to calculate the difference in entropy between any two states of a system, we
find a reversible path between them, and integrate the energy supplied as heat at each

stage of the path divided by the temperature at which heating occurs.

Example 3.1 Calculating the entropy change for the isothermal expansion of a
perfect gas

Calculate the entropy change of a sample of perfect gas when it expands isother-
mally from a volume V; to a volume V.

Method The definition of entropy instructs us to find the energy supplied as heat
for a reversible path between the stated initial and final states regardless of the
actual manner in which the process takes place. A simplification is that the expan-
sion is isothermal, so the temperature is a constant and may be taken outside the
integral in eqn 3.2. The energy absorbed as heat during a reversible isothermal
expansion of a perfect gas can be calculated from AU = q + w and AU = 0, which
implies that g=—win general and therefore that g . =—w,, for areversible change.

rev
The work of reversible isothermal expansion was calculated in Section 2.3.

Answer Because the temperature is constant, eqn 3.2 becomes

e q
AS=— dgrev ==
T/. T

1

From eqn 2.11, we know that

Qrev = Wiy = nRTIn —

1

It follows that

Vi
AS=nRIn—
V.

1

As an illustration of this formula, when the volume occupied by 1.00 mol of any
perfect gas molecules is doubled at any constant temperature, V;/V;=2 and

AS=(1.00 mol) X (8.3145 T K ' mol™) xIn2=+5.76 JK~!

A note on good practice Accordingto eqn 3.2, when the energy transferred as heat
is expressed in joules and the temperature is in kelvins, the units of entropy are
joules per kelvin (] K™!). Entropy is an extensive property. Molar entropy, the
entropy divided by the amount of substance, is expressed in joules per kelvin per
mole (J K™ mol™).? The molar entropy is an intensive property.

Self-test 3.1 Calculate the change in entropy when the pressure of a perfect gas is
changed isothermally from p; to p;. [AS=nR In(p,/py)]

We can use the definition in eqn 3.1 to formulate an expression for the change in
Consider an infinitesimal transfer of heat dg_,.
to the surroundings. The surroundings consist of a reservoir of constant volume, so
the energy supplied to them by heating can be identified with the change in their

entropy of the surroundings, AS

sur®

2 The units of entropy are the same as those of the gas constant, R, and molar heat capacities.
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internal energy, dU,,..> The internal energy is a state function, and dU,, is an exact
differential. As we have seen, these properties imply that dU,, is independent of how
the change is brought about and in particular is independent of whether the process s
reversible or irreversible. The same remarks therefore apply to dg,,,,, to which dU, . is

equal. Therefore, we can adapt the definition in eqn 3.1 to write

dqsur,rev dqsur
sur i - i

sur sur

ds (3.32)

Furthermore, because the temperature of the surroundings is constant whatever the
change, for a measurable change

QSLII'
AS,, =— (3.3b)
T

sur

That is, regardless of how the change is brought about in the system, reversibly or
irreversibly, we can calculate the change of entropy of the surroundings by dividing
the heat transferred by the temperature at which the transfer takes place.

Equation 3.3 makes it very simple to calculate the changes in entropy of the surround-
ings that accompany any process. For instance, for any adiabatic change, g,,,. =0, so

For an adiabatic change: AS,,=0 (3.4)

This expression is true however the change takes place, reversibly or irreversibly, pro-
vided no local hot spots are formed in the surroundings. That is, it is true so long as the
surroundings remain in internal equilibrium. If hot spots do form, then the localized
energy may subsequently disperse spontaneously and hence generate more entropy.

lllustration 3.1 Calculating the entropy change in the surroundings

To calculate the entropy change in the surroundings when 1.00 mol H,O(l) is
formed from its elements under standard conditions at 298 K, we use AH® =
—286 k] from Table 2.7. The energy released as heat is supplied to the surroundings,
now regarded as being at constant pressure, so g, =+286 kJ. Therefore,

2.86 x10°]
208K

=+960 J K

sur

This strongly exothermic reaction results in an increase in the entropy of the sur-
roundings as energy is released as heat into them.

Seif-test 3.2 Calculate the entropy change in the surroundings when 1.00 mol
N,O,(g) is formed from 2.00 mol NO,(g) under standard conditions at 298 K.
[-192T K]

Molecular interpretation 3.1 The statistical view of entropy

The entry point into the molecular interpretation of the Second Law of thermo-
dynamics is the realization that an atom or molecule can possess only certain
energies, called its ‘energy levels’. The continuous thermal agitation that molecules

3 Alternatively, the surroundings can be regarded as being at constant pressure, in which case we could
equate dg,, to dH, .



experience in a sample at T'> 0 ensures that they are distributed over the available
energy levels. One particular molecule may be in one low energy state at one
instant, and then be excited into a high energy state a moment later. Although
we cannot keep track of the energy state of a single molecule, we can speak of
the population of the state, the average number of molecules in each state; these
populations are constant in time provided the temperature remains the same.
Only the lowest energy state is occupied at T=0. Raising the temperature excites
some moleculesinto higher energy states, and more and more states become access-
ible as the temperature is raised further (Fig. 3.4). Nevertheless, whatever the tem-
perature, there is always a higher population in a state of low energy than one of high
energy. The only exception occurs when the temperature is infinite: then all states
of the system are equally populated. These remarks were summarized quantitat-
ively by the Austrian physicist Ludwig Boltzmann in the Boltzmann distribution:

Ne—E,' /kT

N=———
2 BT
i

where k= 1.381 x 107 ] K™! and N, is the number of molecules in a sample of
N molecules that will be found in a state with an energy E, when it is part of a sys-
tem in thermal equilibrium at a temperature T. Care must be taken with the exact
interpretation, though, because more than one state may correspond to the same
energy: that is, an energy level may consist of several states.

Boltzmann also made the link between the distribution of molecules over energy
levels and the entropy. He proposed that the entropy of a system is given by

S=klnW (3.5)

where Wis the number of microstates, the ways in which the molecules of a system
can be arranged while keeping the total energy constant. Each microstate lasts only
for an instant and has a distinct distribution of molecules over the available energy
levels. When we measure the properties of a system, we are measuring an average
taken over the many microstates the system can occupy under the conditions of
the experiment. The concept of the number of microstates makes quantitative the
ill-defined qualitative concepts of ‘disorder’ and ‘the dispersal of matter and energy’
that are used widely to introduce the concept of entropy: a more ‘disorderly’ dis-
tribution of energy and matter corresponds to a greater number of microstates
associated with the same total energy.

Equation 3.5 is known as the Boltzmann formula and the entropy calculated
from it is sometimes called the statistical entropy. We see that if W = 1, which
corresponds to one microstate (only one way of achieving a given energy, all
molecules in exactly the same state), then S = 0 because In 1 = 0. However, if the
system can exist in more than one microstate, then W> 1 and S > 0. But, if more
molecules can participate in the distribution of energy, then there are more
microstates for a given total energy and the entropy is greater than when the energy
is confined so a smaller number of molecules. Therefore, the statistical view of
entropy summarized by the Boltzmann formula is consistent with our previous
statement that the entropy is related to the dispersal of energy.

The molecular interpretation of entropy advanced by Boltzmann also suggests
the thermodynamic definition given by eqn 3.1. To appreciate this point, consider
that molecules in a system at high temperature can occupy a large number of the
available energy levels, so a small additional transfer of energy as heat will lead to a
relatively small change in the number of accessible energy levels. Consequently, the

3.2 ENTROPY 81

Energy —>
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Population

(a) (b)

Fig. 3.4 The Boltzmann distribution
predicts that the population of a state
decreases exponentially with the energy of
the state. (a) At low temperatures, only the
lowest states are significantly populated;
(b) at high temperatures, there is
significant population in high-energy states
as well as in low-energy states. At infinite
temperature (not shown), all states are
equally populated.
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Pressure, p

Volume, V

Fig. 35 In a thermodynamic cycle, the
overall change in a state function (from the
initial state to the final state and then back
to the initial state again) is zero.

T\: Adiabat

Pressure, p

Volume, V

Fig. 3.6 The basic structure of a Carnot
cycle. In Step 1, there is isothermal
reversible expansion at the temperature T}
Step 2 is a reversible adiabatic expansion in
which the temperature falls from T; to T..
In Step 3 there is an isothermal reversible
compression at T, and that isothermal
step is followed by an adiabatic reversible
compression, which restores the system to
its initial state.

number of microstates does not increase appreciably and neither does the entropy
of the system. In contrast, the molecules in a system at low temperature have access
to far fewer energy levels (at T'=0, only the lowest level is accessible), and the trans-
fer of the same quantity of energy by heating will increase the number of accessible
energy levels and the number of microstates rather significantly. Hence, the change
in entropy upon heating will be greater when the energy is transferred to a cold
body than when it is transferred to a hot body. This argument suggests that the
change in entropy should be inversely proportional to the temperature at which
the transfer takes place, asin eqn 3.1.

(b) The entropy as a state function

Entropy is a state function. To prove this assertion, we need to show that the integral
of dS is independent of path. To do so, it is sufficient to prove that the integral of
eqn 3.1 around an arbitrary cycle is zero, for that guarantees that the entropy is the
same at the initial and final states of the system regardless of the path taken between
them (Fig. 3.5). That is, we need to show that

qu'eV
—=0 3.6
jL = (3.6)

where the symbol { denotes integration around a closed path. There are three steps in
the argument:

1. First, to show thateqn 3.6 is true for a special cycle (a ‘Carnot cycle’) involving a
perfect gas.

2. Then to show that the result is true whatever the working substance.

3. Finally, to show that the result is true for any cycle.

A Carnot cycle, which is named after the French engineer Sadi Carnot, consists of
four reversible stages (Fig. 3.6):

1. Reversible isothermal expansion from A to B at T}; the entropy change is q,/T},
where g, is the energy supplied to the system as heat from the hot source.

2. Reversible adiabatic expansion from B to C. No energy leaves the system as heat,
so the change in entropyis zero. In the course of this expansion, the temperature falls
from 1) to T,, the temperature of the cold sink.

3. Reversible isothermal compression from C to D at T.. Energy is released as heat
to the cold sink; the change in entropy of the system is g_/T; in this expression q_ is
negative.

4. Reversible adiabatic compression from D to A. No energy enters the system as
heat, so the change in entropy is zero. The temperature rises from T to T}.

The total change in entropy around the cycle is

ds= I + %
Th Tc
However, we show in Justification 3.1 that, for a perfect gas:
T
&, 2 (3.7)rey
2. L

Substitution of this relation into the preceding equation gives zero on the right, which
is what we wanted to prove.



Justification 3.1 Heating accompanying reversible adiabatic expansion

This Justification is based on the fact that the two temperatures in eqn 3.7 lie on the
same adiabat in Fig. 3.6. As explained in Example 3.1, for a perfect gas:

=nRT, In— =nRT. In—
n n n n
4n h V:A qc c VC

From the relations between temperature and volume for reversible adiabatic pro-
cesses (eqn 2.28):

Vaili=WTI¢  VI=VT4
Multiplication of the first of these expressions by the second gives
VAV = VpVaThI ¢

which simplifies to

Va W
Vi Ve
Consequently,

Vb Va Vs
g.=nRT.In—=nRT In—=—nRT_In—
Ve Vi Va

and therefore

q, nRTyIn(V;/V,) Ty

q. -nRT.In(Vy/Vy) T.

[

asin eqn 3.7.

In the second step we need to show that eqn 3.7 applies to any material, not just a
perfect gas (which is why, in anticipation, we have not labelled it with a °). We begin
this step of the argument by introducing the efficiency, € (epsilon), of a heat engine:

work performed ||
S S ———_. (3.8]
heat absorbed I
The definition implies that, the greater the work output for a given supply of heat
from the hot reservoir, the greater is the efficiency of the engine. We can express the
definition in terms of the heat transactions alone, because (as shown in Fig. 3.7) the
energy supplied as work by the engine is the difference between the energy supplied as
heat by the hot reservoir and returned to the cold reservoir:

+
e g T (3.9)
In In
(Remember that g_<0.) It then follows from eqn 3.7 that
Eey=1—— (3.10),0y

T

Now we are ready to generalize this conclusion. The Second Law of thermodynamics
implies that all reversible engines have the same efficiency regardless of their construction.
To see the truth of this statement, suppose two reversible engines are coupled together
and run between the same two reservoirs (Fig. 3.8). The working substances and
details of construction of the two engines are entirely arbitrary. Initially, suppose that
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T, Hot source

Cold sink

Fig. 3.7 Suppose an energy gy, (for example,
20KJ) is supplied to the engine and q_ is lost
from the engine (for example, g.=-15KkJ)
and discarded into the cold reservoir. The
work done by the engine is equal to g, + q.
(for example, 20Kk] + (=15k]) =5kJ). The
efficiency is the work done divided by the
energy supplied as heat from the hot
source.



84 3 THE SECOND LAW

Fig. 3.8 (a) The demonstration of the
equivalence of the efficiencies of all
reversible engines working between the
same thermal reservoirs is based on the
flow of energy represented in this diagram.
(b) The net effect of the processes is the
conversion of heat into work without there
being a need for a cold sink: this is contrary
to the Kelvin statement of the Second Law.

T Hot source

Cancel

Q Survive
g

G qa, 2
w
o
a

A B

q. q.

w’
Volume, V
T. Cold sink

Fig. 3.9 A general cycle can be divided into
(a) small Carnot cycles. The match is exact in
the limit of infinitesimally small cycles.
Paths cancel in the interior of the
collection, and only the perimeter, an
increasingly good approximation to the
true cycle as the number of cycles increases,
survives. Because the entropy change
around every individual cycle is zero,

the integral of the entropy around the
perimeter is zero too.

Hot source

(b)

engine A is more efficient than engine B and that we choose a setting of the controls
that causes engine B to acquire energy as heat g_from the cold reservoir and to release
a certain quantity of energy as heat into the hot reservoir. However, because engine A
is more efficient than engine B, not all the work that A produces is needed for this pro-
cess, and the difference can be used to do work. The net result is that the cold reservoir
is unchanged, work has been done, and the hot reservoir has lost a certain amount of
energy. This outcome is contrary to the Kelvin statement of the Second Law, because
some heat has been converted directly into work. In molecular terms, the random
thermal motion of the hot reservoir has been converted into ordered motion charac-
teristic of work. Because the conclusion is contrary to experience, the initial assump-
tion that engines A and B can have different efficiencies must be false. It follows that
the relation between the heat transfers and the temperatures must also be independ-
ent of the working material, and therefore that eqn 3.7 is always true for any substance
involved in a Carnot cycle.

For the final step in the argument, we note that any reversible cycle can be approx-
imated as a collection of Carnot cycles and the cyclic integral around an arbitrary path
is the sum of the integrals around each of the Carnot cycles (Fig. 3.9). This approx-
imation becomes exact as the individual cycles are allowed to become infinitesimal.
The entropy change around each individual cycle is zero (as demonstrated above), so
the sum of entropy changes for all the cycles is zero. However, in the sum, the entropy
change along any individual path is cancelled by the entropy change along the path it
shares with the neighbouring cycle. Therefore, all the entropy changes cancel except
for those along the perimeter of the overall cycle. That is,

PE-SIP)

all perimeter

QI'GV — 0
r




In the limit of infinitesimal cycles, the non-cancelling edges of the Carnot cycles
match the overall cycle exactly, and the sum becomes an integral. Equation 3.6 then
follows immediately. This result implies that dS is an exact differential and therefore
that S is a state function.

IMPACT ON ENGINEERING
13.1 Refrigeration

The discussion of the text is the basis of the thermodynamic assessment of the power
needed to cool objects in refrigerators. First, we consider the work required to cool an
object, and refer to Fig. 3.10.

When an energy |q.| is removed from a cool source at a temperature T_ and then
deposited in a warmer sink at a temperature 71}, asin a typical refrigerator, the change
in entropy is

lg.] 1q.l
+

€ Th

AS=— <0

The process is not spontaneous because not enough entropy is generated in the warm
sink to overcome the entropy loss from the hot source. To generate more entropy,
energy must be added to the stream that enters the warm sink. Our task is to find the
minimum energy that needs to be supplied. The outcome is expressed as the coefficient
of performance, c:

energy transferred as heat  |g_|

L=
energy transferred aswork  |w|
The less the work that is required to achieve a given transfer, the greater the coefficient
of performance and the more efficient the refrigerator.
Because |gq_| is removed from the cold source, and the work |w| is added to the
energy stream, the energy deposited as heat in the hotsink is | gy |=|q.|+|w/|. Therefore,

1 lqpl =19l gl ,
¢ 4. | 4]
We can now use eqn 3.7 to express this result in terms of the temperatures alone,

which is possible if the transfer is performed reversibly. This substitution leads to

T

c

T, — T

c

E=

for the thermodynamically optimum coefficient of performance. For a refrigerator
withdrawing heat from ice-cold water (1. = 273 K) in a typical environment (1, =
293 K), ¢ = 14, so, to remove 10 kJ (enough to freeze 30 g of water), requires transfer
of at least 0.71 k] as work. Practical refrigerators, of course, have a lower coefficient of
performance.

The work to maintain a low temperature is also relevant to the design of refrigera-
tors. No thermal insulation is perfect, so there is always a flow of energy as heat into
the sample at a rate proportional to the temperature difference. If the rate at which
energy leaks in is written A(1}, — 1), where A is a constant that depends on the size of
the sample and the details of the insulation, then the minimum power, P, required to
maintain the original temperature difference by pumping out that energy by heating
the surroundings is

2

PziXA(Th— T) :Ax@

¢

C
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T“ 1
Hot sink A
Entropy
G change
L
Cold source
(a)
Y
T,
Hot sink/\
w. Entropy
change
qC
7; L
Cold source
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Fig. 3.10 (a) The flow of energy as heat
from a cold source to a hot sink is not
spontaneous. As shown here, the entropy
increase of the hot sink is smaller than
the entropy increase of the cold source,
so there is a net decrease in entropy.

(b) The process becomes feasible if work is
provided to add to the energy stream. Then
the increase in entropy of the hot sink can
be made to cancel the entropy decrease of

the hot source.
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Comment 3.1

The triple point of a substance
represents the set of conditions at which
the three phases coexist in equilibrium.
For water, the triple point occurs at
273.16 K and 611 Pa. See Section 4.2 for
details.

dS=—|dq|/T,
7 Hot source 1
[ele]
T. Cold sink
dS=+dq|/T,

Fig. 3.11 When energy leaves a hot reservoir
as heat, the entropy of the reservoir
decreases. When the same quantity of
energy enters a cooler reservoir, the
entropy increases by a larger amount.
Hence, overall there is an increase in
entropy and the process is spontaneous.
Relative changes in entropy are indicated
by the sizes of the arrows.

We see that the power increases as the square of the temperature difference we are try-
ing to maintain. For this reason, air-conditioners are much more expensive to run on
hot days than on mild days.

(c¢) The thermodynamic temperature

Suppose we have an engine that is working reversibly between a hot source at a tem-
perature T} and a cold sink at a temperature T; then we know from eqn 3.10 that

T=(1-¢T, (3.11)

This expression enabled Kelvin to define the thermodynamic temperature scale
in terms of the efficiency of a heat engine. The zero of the scale occurs for a Carnot
efficiency of 1. The size of the unit is entirely arbitrary, but on the Kelvin scale is
defined by setting the temperature of the triple point of water as 273.16 K exactly.
Then, if the heat engine has a hot source at the triple point of water, the temperature
of the cold sink (the object we want to measure) is found by measuring the efficiency
of the engine. This result is independent of the working substance.

(d) The Clausius inequality

We now show that the definition of entropy is consistent with the Second Law. To
begin, we recall that more energy flows as work under reversible conditions than
under irreversible conditions. That is, —dw,,, = —dw, or dw — dw, = 0. Because the

internal energy is a state function, its change is the same for irreversible and reversible
paths between the same two states, so we can also write:

dU=dg+dw=dq,, +dw,_,

It follows that dq,,,— dg = dw—dw,, >0, or dg,,, = dg, and therefore that dq, /T >
dg/T. Now we use the thermodynamic definition of the entropy (eqn 3.1; dS =
dg,., /1) to write

dq

ds>— 3.12
- (3.12)

This expression is the Clausius inequality. It will prove to be of great importance for
the discussion of the spontaneity of chemical reactions, as we shall see in Section 3.5.

lllustration 3.2 Spontaneous cooling

Consider the transfer of energy as heat from one system—the hot source—at a
temperature 7} to another system—the cold sink—at a temperature T_(Fig. 3.11).
When |dq| leaves the hot source (so dg;, < 0), the Clausius inequality implies that
dS > dg;/T,. When |dq| enters the cold sink the Clausius inequality implies that
dS>dq /T, (with dg. > 0). Overall, therefore,

d d

dsp A, (et

Th Tc

However, dg, =—dg, so

T L T

which is positive (because dg.>0and T} > T,). Hence, cooling (the transfer of heat
from hot to cold) is spontaneous, as we know from experience.

ek R




3.3 ENTROPY CHANGES ACCOMPANYING SPECIFIC PROCESSES

We now suppose that the system is isolated from its surroundings, so that dg=0.
The Clausius inequality implies that

ds>0

and we conclude that in an isolated system the entropy cannot decrease when a spon-
taneous change occurs. This statement captures the content of the Second Law.

3.3 Entropy changes accompanying specific processes

We now see how to calculate the entropy changes that accompany a variety of basic
processes.

(a) Expansion

We established in Example 3.1 that the change in entropy of a perfect gas that expands
isothermally from V; to V;is

Ve .
AS=nRIn— (3.13)
¥
Because S is a state function, the value of AS of the system is independent of the path
between the initial and final states, so this expression applies whether the change
of state occurs reversibly or irreversibly. The logarithmic dependence of entropy on
volume is illustrated in Fig. 3.12.
The total change in entropy, however, does depend on how the expansion takes
place. For any process dg,,,, = —dg, and for a reversible change we use the expression
in Example 3.1; consequently, from eqn 3.3b

)o
rev

v
ASsur: e :_h:_nR h’l_f (314
T T :

1

This change is the negative of the change in the system, so we can conclude that AS,
= 0, which is what we should expect for a reversible process. If the isothermal expan-
sion occurs freely (w=0) and irreversibly, then g=0 (because AU=0). Consequently,
AS, .= 0, and the total entropy change is given by eqn 3.13 itself:

Vf -
AS, ,=nRln— (3.15)

In this case, AS, , > 0, as we expect for an irreversible process.

(b) Phase transition

The degree of dispersal of matter and energy changes when a substance freezes or boils
as a result of changes in the order with which the molecules pack together and the
extent to which the energy is localized or dispersed. Therefore, we should expect the
transition to be accompanied by a change in entropy. For example, when a substance
vaporizes, a compact condensed phase changes into a widely dispersed gas and we can
expect the entropy of the substance to increase considerably. The entropy of a solid
also increases when it melts to a liquid and when that liquid turns into a gas.
Consider a system and its surroundings at the normal transition temperature,
T, the temperature at which two phases are in equilibrium at 1 atm. This temper-
ature is 0°C (273 K) for ice in equilibrium with liquid water at 1 atm, and 100°C
(373 K) for water in equilibrium with its vapour at 1 atm. At the transition temperature,
any transfer of energy as heat between the system and its surroundings is reversible

4 .....................................................
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Fig. 3.12 The logarithmic increase in
entropy of a perfect gas as it expands
isothermally.

Exploration Evaluate the change in
“ entropy that accompanies the
expansion of 1.00 mol CO,(g) from
0.001 m’ to 0.010 m’ at 298 K, treated
as a van der Waals gas.
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Synoptic Table 3.1* Standard entropies (and temperatures) of phase transitions,
A SHJ K mol )

Fusion (at T) Vaporization (at T})
Argon, Ar 14.17 (at 83.8 K) 74.53 (at 87.3 K)
Benzene, C.H, 38.00 (at 279 K) 87.19 (at 353 K)
Water, H,0 22.00 (at 273.15 K) 109.0 (at 373.15K)
Helium, He 4.8 (at 8 K and 30 bar) 19.9 (at 4.22K)

* More values are given in the Data section.

Synoptic Table 3.2* The standard entropies of vaporization of liquids

A, H(IJ mol™) 6,/°C A,pS(J K mol™)
Benzene 30.8 80.1 87.2
Carbon tetrachloride 30 76.7 85.8
Cyclohexane 30.1 80.7 85.1
Hydrogen sulfide 18.7 —60.4 87.9
Methane 8.18 —161.5 752
Water 40.7 100.0 109.1

* More values are given in the Data section.

because the two phases in the system are in equilibrium. Because at constant pressure

q=AH, the change in molar entropy of the system is*
A, S AuH (3.16)
trs® = E
T

trs

If the phase transition is exothermic (A, H <0, asin freezing or condensing), then the
entropy change is negative. This decrease in entropy is consistent with localization of
matter and energy that accompanies the formation of a solid from a liquid or a liquid
from a gas. If the transition is endothermic (A, [H > 0, asin melting and vaporization),
then the entropy change is positive, which is consistent with dispersal of energy and
matter in the system.

Table 3.1 lists some experimental entropies of transition. Table 3.2 lists in more
detail the standard entropies of vaporization of several liquids at their boiling points.
An interesting feature of the data is that a wide range of liquids give approximately the
same standard entropy of vaporization (about 85 J K™ mol™): this empirical observa-
tion is called Trouton’s rule.

Molecular interpretation 3.2 Troufon’s rule

The explanation of Trouton’s rule is that a comparable change in volume occurs
(with an accompanying change in the number of accessible microstates) when any
liquid evaporates and becomes a gas. Hence, all liquids can be expected to have
similar standard entropies of vaporization.

1 Recall from Section 2.7 that A H is an enthalpy change per mole of substance; so A, S is also a molar
quantity.
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Liquids that show significant deviations from Trouton’s rule do so on account
of strong molecular interactions that restrict molecular motion. As a result, there
is a greater dispersal of energy and matter when the liquid turns into a vapour than
would occur for a liquid in which molcular motion is less restricted. An example
is water, where the large entropy of vaporization reflects the presence of structure
arising from hydrogen-bonding in the liquid. Hydrogen bonds tend to organize
the molecules in the liquid so that they are less random than, for example, the
molecules in liquid hydrogen sulfide (in which there is no hydrogen bonding).

Methane has an unusually low entropy of vaporization. A part of the reason
is that the entropy of the gas itself is slightly low (186 ] K™' mol™ at 298 K); the
entropy of N, under the same conditions is 192 ] K™ mol™. As we shall see in
Chapter 13, small molecules are difficult to excite into rotation; as a result, only a
few rotational states are accessible at room temperature and, consequently, the
number of rotational energy levels among which energy can be dispersed is low.

lllustration 3.3 Using Trouton’s rule

There is no hydrogen bonding in liquid bromine and Br, is a heavy molecule that
is unlikely to display unusual behaviour in the gas phase, so it is probably safe to
use Trouton’s rule. To predict the standard molar enthalpy of vaporization of
bromine given that it boils at 59.2°C, we use the rule in the form

A H®=T,x(85] K~! mol™)
Substitution of the data then gives
A, H®=(332.4K) x (85] K ' mol™)=+2.8 x 10° T mol™ = +28 k] mol™!

The experimental value is +29.45 kJ mol ™.

Self-test 3.3 Predict the enthalpy of vaporization of ethane from its boiling point,
—88.6°C. [16 k] mol™]

(c) Heating

We can use eqn 3.2 to calculate the entropy of a system at a temperature T} from a
knowledge of its entropy at a temperature 7; and the heat supplied to change its tem-
perature from one value to the other:

Tf qu'eV

- (3.17)

S(Tf):S(Ti)JrJ

T,

We shall be particularly interested in the entropy change when the system is subjected
to constant pressure (such as from the atmosphere) during the heating. Then, from
the definition of constant-pressure heat capacity (eqn 2.22), dg,,,= C,d T provided the
system is doing no non-expansion work. Consequently, at constant pressure:

frcdr
T

S(Tf)=S(Ti)+J (3.18)

T,

The same expression applies at constant volume, but with C, replaced by Cy,. When
C, isindependent of temperature in the temperature range of interest, it can be taken
outside the integral and we obtain
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15 ...................................................... .
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Fig. 3.13 The logarithmic increase in
entropy of a substance as it is heated at
constant volume. Different curves
correspond to different values of the
constant-volume heat capacity (which is
assumed constant over the temperature
range) expressed as Cy, /R.

Exploration Plot the change in
= entropy of a perfect gas of (a) atoms,
(b) linear rotors, (¢) nonlinear rotors as the
sample is heated over the same range under
conditions of (i) constant volume,
(ii) constant pressure.

fidr T,
S(Tp=8(T)+C,| —=S(T)+C,In—

i i

i

(3.19)

with a similar expression for heating at constant volume. The logarithmic dependence
of entropy on temperature is illustrated in Fig. 3.13.

Example 3.2 Calculating the entropy change

Calculate the entropy change when argon at 25°C and 1.00 bar in a container of
volume 0.500 dm? is allowed to expand to 1.000 dm® and is simultaneously heated
to 100°C.

Method Because S is a state function, we are free to choose the most convenient
path from the initial state. One such path is reversible isothermal expansion to the
final volume, followed by reversible heating at constant volume to the final tem-
perature. The entropy change in the first step is given by eqn 3.13 and that of the
second step, provided C,, is independent of temperature, by eqn 3.19 (with C,,
in place of Cp). In each case we need to know #, the amount of gas molecules, and
can calculate it from the perfect gas equation and the data for the initial state from
n= prl/RT The heat capacity at constant volume is given by the equipartition
theorem as 2R. (The equipartition theorem is reliable for monatomic gases: for
others and in general use experimental data like that in Table 2.7, converting to the
value at constant volume by using the relation C, ,, = Cy, . =R.)

Answer Because n=p.V./RT, from eqn 3.13

V; V. pV. V
AS(Step 1) = (%]XRln—f:hln—f

i i i i

The entropy change in the second step, from 298 K to 373 K at constant volume, is

Tf p11 (Tf\wz
L= 1 \T)

i 1

AS(Step 2) = {pll} 2R1In

The overall entropy change, the sum of these two changes, is

AS = plvl H Vf+ plvl (Tf\wz pl i {Vf(Tf\alz}

7" T 7

1 1 1
At this point we substitute the data and obtain (by using 1 Pam®=1])
(1.00 x 10° Pa) x (0.500 x 103 m3)1 1.000 (373 )"
— n —
298 K 0.5001 298

=+0.173 ] K™

A note on good practice 1t is sensible to proceed as generally as possible before
inserting numerical data so that, if required, the formula can be used for other data
and to avoid rounding errors.

Self-test 3.4 Calculate the entropy change when the same initial sample is com-
pressed to 0.0500 dm?® and cooled to —25°C. [-0.44] K
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(d) The measurement of entropy

The entropy of a system at a temperature T is related to its entropy at T'= 0 by meas-
uring its heat capacity C, at different temperatures and evaluating the integral in eqn
3.18, taking care to add the entropy of transition (A, H/T,,,) for each phase transition
between T'= 0 and the temperature of interest. For example, if a substance melts at 1}

and boils at T, then its entropy above its boiling temperature is given by

Tf
S(T) = 5(0) + J GET AnHl

o T T

he(dr A, H [T Clg)dT
+ + +
g T T, T

f

(3.20)

5

All the properties required, except S(0), can be measured calorimetrically, and the
integrals can be evaluated either graphically or, as is now more usual, by fitting a
polynomial to the data and integrating the polynomial analytically. The former
procedure is illustrated in Fig. 3.14: the area under the curve of C,/T against T'is the
integral required. Because d1/T = d In T, an alternative procedure is to evaluate the
area under a plot of C, against In 7.

One problem with the determination of entropy is the difficulty of measuring heat
capacities near T = 0. There are good theoretical grounds for assuming that the heat
capacity is proportional to T° when T is low (see Section 8.1), and this dependence
is the basis of the Debye extrapolation. In this method, C, is measured down to as
low a temperature as possible, and a curve of the form aT? is fitted to the data. That fit
determines the value of a, and the expression Cp =aT?{s assumed valid down to T=0.

lllustration 3.4 Calculating a standard molar entropy

The standard molar entropy of nitrogen gas at 25°C has been calculated from the
following data:

$®/(J K™ mol™)

Debye extrapolation 1.92
Integration, from 10 K to 35.61 K 25.25
Phase transition at 35.61 K 6.43
Integration, from 35.61 K to 63.14 K 23.38
Fusion at 63.14 K 11.42
Integration, from 63.14 K to 77.32 K 11.41
Vaporization at 77.32 K 72.13
Integration, from 77.32 K to 298.15 K 39.20
Correction for gas imperfection 0.92

Total 192.06

Therefore,
S..(298.15K)=S,_(0)+192.1 ] K~ mol™

Example 3.3 Calculating the entropy at low temperatures

The molar constant-pressure heat capacity of a certain solid at 4.2 Kis 0.43 ] K™
mol ™. What is its molar entropy at that temperature?

®
Melt

[ o

c/T

approximation

Debye

g
=)
T
] Gas
r 1, T
(b)
Avaps
S
AfLISS
S(0) |
0 T . T

Fig. 3.14 The calculation of entropy from
heat capacity data. (a) The variation of
C,/Twith the temperature for a sample.
(b) The entropy, which is equal to the area
beneath the upper curve up to the
corresponding temperature, plus the
entropy of each phase transition passed.

Exploration Allow for the
= temperature dependence of the heat
capacity by writing C=a+bT+ ¢/T?%, and
plot the change in entropy for different
values of the three coefficients (including
negative values of ¢).
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Method Because the temperature is so low, we can assume that the heat capacity
varies with temperature as aT?, in which case we can use eqn 3.18 to calculate the
entropy at a temperature 1 in terms of the entropy at T'= 0 and the constant 4.
When the integration is carried out, it turns out that the result can be expressed in
terms of the heat capacity at the temperature 7, so the data can be used directly to
calculate the entropy.

Answer The integration required is

TaT?dT T
= =5(0)+a| T2dT =S(0)+1aT?
0

S(T):S(0)+J

0

However, because aT* is the heat capacity at the temperature T,
S(T)=S(0) + %CP(T)
from which it follows that

S (10K)=S_(0)+0.14] K™ mol™

Self-test 3.5 For metals, there is also a contribution to the heat capacity from the
electrons which is linearly proportional to T when the temperature is low. Find its
contribution to the entropy at low temperatures. [S(T)=S8(0) + CP(T)]

3.4 The Third Law of thermodynamics

At T=0, all energy of thermal motion has been quenched, and in a perfect crystal all
the atoms or ions are in a regular, uniform array. The localization of matter and the
absence of thermal motion suggest that such materials also have zero entropy. This
conclusion is consistent with the molecular interpretation of entropy, because S=0 if
there is only one way of arranging the molecules and only one microstate is accessible
(the ground state).

(a) The Nernst heat theorem

The experimental observation that turns out to be consistent with the view that the
entropy of a regular array of molecules is zero at T'= 0 is summarized by the Nernst
heat theorem:

The entropy change accompanying any physical or chemical transformation
approaches zero as the temperature approaches zero: AS — 0 as T— 0 provided all
the substances involved are perfectly crystalline.

lllustration 3.5 Using the Nernst heat theorem

Consider the entropy of the transition between orthorhombic sulfur, S(a), and
monoclinic sulfur, S(), which can be calculated from the transition enthalpy
(—402 ] mol™) at the transition temperature (369 K):

A, S=S_ (o) =S (B) —(_402] ol 1.09 J Kt mol™
= o) — = = =1 mo
trs m m 369 K

The two individual entropies can also be determined by measuring the heat capa-
cities from T'=0 up to T'=369 K. It is found that S, (o) =S, (0,0) + 37 ] K™ mol™
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and S_(B) =S..(B,0) + 38 ] K™l mol™". These two values imply that at the transition
temperature

A, S=S5,(0,0)—8S (B,0)=—1] K mol™

trs

On comparing this value with the one above, we conclude that S_(0,0) — S_.(3,0)
=0, in accord with the theorem.

It follows from the Nernst theorem that, if we arbitrarily ascribe the value zero
to the entropies of elements in their perfect crystalline form at T'= 0, then all perfect
crystalline compounds also have zero entropy at T'=0 (because the change in entropy
that accompanies the formation of the compounds, like the entropy of all transforma-
tions at that temperature, is zero). This conclusion is summarized by the Third Law
of thermodynamics:

The entropy of all perfect crystalline substances is zero at T'= 0.

As far as thermodynamics is concerned, choosing this common value as zero is then a
matter of convenience. The molecular interpretation of entropy, however, justifies
the value S=0at T=0.

Molecular interpretation 3.3 The statistical view of the Third Law of thermodynamics

We saw in Molecular interpretation 3.1 that, according to the Boltzmann formula,
the entropy is zero if there is only one accessible microstate (W= 1). In most cases,
W=1 at T'=0 because there is only one way of achieving the lowest total energy:
put all the molecules into the same, lowest state. Therefore, S=0at =0, in accord
with the Third Law of thermodynamics. In certain cases, though, W may differ
from 1 at T'=0. This is the case if there is no energy advantage in adopting a par-
ticular orientation even at absolute zero. For instance, for a diatomic molecule AB
there may be almost no energy difference between the arrangements . . . AB AB AB

.and...BAABBA...,so W>levenat T=0.If S$>0 at T'=0 we say that the
substance has a residual entropy. Ice has a residual entropy of 3.4 ] K™! mol™%. It
stems from the arrangement of the hydrogen bonds between neighbouring water
molecules: a given O atom has two short O—H bonds and two long O---H bonds to
its neighbours, but there is a degree of randomness in which two bonds are short
and which two are long.

(b) Third-Law entropies

Entropies reported on the basis that S(0) = 0 are called Third-Law entropies (and
often just ‘entropies’). When the substance is in its standard state at the temperature
T, the standard (Third-Law) entropy is denoted S®(T'). A list of values at 298 K is
given in Table 3.3.

The standard reaction entropy, A S®, is defined, like the standard reaction en-
thalpy, as the difference between the molar entropies of the pure, separated products
and the pure, separated reactants, all substances being in their standard states at the
specified temperature:

ASe= Dvst— Y vse (3.21)

Products Reactants
In this expression, each term is weighted by the appropriate stoichiometric coefficient.
Standard reaction entropies are likely to be positive if there is a net formation of gasin
areaction, and are likely to be negative if there is a net consumption of gas.

Synoptic Table 3.3* Standard
Third-Law entropies at 298 K

S$2/(JK ' mol™)

Solids

Graphite, C(s) b7
Diamond, C(s) 2.4
Sucrose, C;,H,,0,,(s) 360.2
Todine, I,(s) 116.1
Liquids

Benzene, C;H,(1) 173.3
Water, H,O(]) 69.9
Mercury, Hg(l) 76.0
Gases

Methane, CH,(g) 186.3
Carbon dioxide, CO,(g)  213.7
Hydrogen, H,(g) 130.7
Helium, He 126.2
Ammonia, NH,(g) 126.2

* More values are given in the Data section.
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lllustration 3.6 Calculating a standard reaction entropy

To calculate the standard reaction entropy of H,(g) + %Oz(g) — H,0(l) at 25°C,
we use the data in Table 2.7 of the Data Section to write
AS®=52(H,0,1)— {S(H,, g) +252(0,, g)}
=69.9 J K™ mol™ - {130.7 + 3(205.0)} ] K mol™
=-163.4J K™ mol™

The negative value is consistent with the conversion of two gases to a compact liquid.

A note on good practice Do not make the mistake of setting the standard molar
entropies of elements equal to zero: they have non-zero values (provided 17> 0), as
we have already discussed.

Self-test 3.6 Calculate the standard reaction entropy for the combustion of
methane to carbon dioxide and liquid water at 25°C. [<243 T K~ mol™]

Just as in the discussion of enthalpies in Section 2.8, where we acknowledged that
solutions of cations cannot be prepared in the absence of anions, the standard molar
entropies of ions in solution are reported on a scale in which the standard entropy of
the H* ions in water is taken as zero at all temperatures:

S®(H*, aq)=0 [3.22]

The values based on this choice are listed in Table 2.7 in the Data section.” Because the
entropies of ions in water are values relative to the hydrogen ion in water, they may be
either positive or negative. A positive entropy means that an ion has a higher molar
entropy than H* in water and a negative entropy means that the ion has a lower molar
entropy than H* in water. For instance, the standard molar entropy of CI™(aq) is +57
J K! mol™ and that of Mg?*(aq) is —128 ] K™ mol™. Ton entropies vary as expected
on the basis that they are related to the degree to which the ions order the water
molecules around them in the solution. Small, highly charged ions induce local struc-
ture in the surrounding water, and the disorder of the solution is decreased more than
in the case of large, singly charged ions. The absolute, Third-Law standard molar
entropy of the proton in water can be estimated by proposing a model of the structure
it induces, and there is some agreement on the value —21 ] K™ mol™. The negative
value indicates that the proton induces order in the solvent.

Concentrating on the system

Entropy is the basic concept for discussing the direction of natural change, but to use
it we have to analyse changes in both the system and its surroundings. We have seen
that it is always very simple to calculate the entropy change in the surroundings, and
we shall now see that it is possible to devise a simple method for taking that contribu-
tion into account automatically. This approach focuses our attention on the system

> In terms of the language to be introduced in Section 5.1, the entropies of ions in solution are actually par-
tial molar entropies, for their values include the consequences of their presence on the organization of the
solvent molecules around them.
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and simplifies discussions. Moreover, it is the foundation of all the applications of
chemical thermodynamics that follow.

3.5 The Helmholtz and Gibbs energies

Consider a system in thermal equilibrium with its surroundings at a temperature 7.
When a change in the system occurs and there is a transfer of energy as heat between
the system and the surroundings, the Clausius inequality, eqn 3.12, reads

dq
48—~ —hf (3.23)
T

We can develop this inequality in two ways according to the conditions (of constant
volume or constant pressure) under which the process occurs.

(a) Criteria for spontaneity

First, consider heating at constant volume. Then, in the absence of non-expansion
work, we can write dq,, = dU; consequently

dU
J8=—>0 (3.24)
T

The importance of the inequality in this form is that it expresses the criterion for
spontaneous change solely in terms of the state functions of the system. The inequal-
ity is easily rearranged to

TdS>dU (constant V, no additional work)® (3.25)

At either constant internal energy (dU=0) or constant entropy (dS=0), this expres-
sion becomes, respectively,

dSyy=0  dUg,<0 (3.26)

where the subscripts indicate the constant conditions.

Equation 3.26 expresses the criteria for spontaneous change in terms of properties
relating to the system. The first inequality states that, in a system at constant volume
and constant internal energy (such as an isolated system), the entropy increases in a
spontaneous change. That statement is essentially the content of the Second Law. The
second inequality is less obvious, for it says that, if the entropy and volume of the sys-
tem are constant, then the internal energy must decrease in a spontaneous change. Do
not interpret this criterion as a tendency of the system to sink to lower energy. It is
a disguised statement about entropy, and should be interpreted as implying that, if
the entropy of the system is unchanged, then there must be an increase in entropy of
the surroundings, which can be achieved only if the energy of the system decreases as
energy flows out as heat.

When energy is transferred as heat at constant pressure, and there is no work other
than expansion work, we can write dg, = dH and obtain

TdS>dH (constant p, no additional work) (3.27)
At either constant enthalpy or constant entropy this inequality becomes, respectively,
dsy,>0  dH,,<0 (3.28)
The interpretations of these inequalities are similar to those of eqn 3.26. The entropy

of the system at constant pressure must increase if its enthalpy remains constant (for

¢ Recall that ‘additional work’ is work other than expansion work.
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there can then be no change in entropy of the surroundings). Alternatively, the
enthalpy must decrease if the entropy of the system is constant, for then it is essential
to have an increase in entropy of the surroundings.

Because eqns 3.25 and 3.27 have the forms dU— TdS< 0 and dH — TdS <0, respect-
ively, they can be expressed more simply by introducing two more thermodynamic
quantities. One is the Helmholtz energy, A, which is defined as

A=U-TS [3.29]
The other is the Gibbs energy, G:
G=H-TS [3.30]

All the symbols in these two definitions refer to the system.
When the state of the system changes at constant temperature, the two properties
change as follows:

(a) dA=dU-1TdS (b) dG=dH-TdS (3.31)

When we introduce eqns 3.25 and 3.27, respectively, we obtain the criteria of spon-
taneous change as

(a) dAgyS0  (b) dGyp,<0 (3.32)

These inequalities are the most important conclusions from thermodynamics for
chemistry. They are developed in subsequent sections and chapters.

(b) Some remarks on the Helmholtz energy

A change in a system at constant temperature and volume is spontaneous if dA;, < 0.
That is, a change under these conditions is spontaneous if it corresponds to a decrease
in the Helmholtz energy. Such systems move spontaneously towards states of lower
A if a path is available. The criterion of equilibrium, when neither the forward nor
reverse process has a tendency to occur, is

dApy=0 (3.33)

The expressions dA=dU— TdS and dA < 0 are sometimes interpreted as follows. A
negative value of dA is favoured by a negative value of dU and a positive value of TdS.
This observation suggests that the tendency of a system to move to lower A is due to
its tendency to move towards states of lower internal energy and higher entropy.
However, this interpretation is false (even though it is a good rule of thumb for
remembering the expression for dA) because the tendency to lower A is solely a ten-
dency towards states of greater overall entropy. Systems change spontaneously if in
doing so the total entropy of the system and its surroundings increases, not because
they tend to lower internal energy. The form of dA may give the impression that
systems favour lower energy, but that is misleading: dS is the entropy change of the
system, —dU/T is the entropy change of the surroundings (when the volume of the
system is constant), and their total tends to a maximum.

(¢) Maximum work

It turns out that A carries a greater significance than being simply a signpost of spon-
taneous change: the change in the Helmholtz function is equal to the maximum work
accompanying a process:

dw,  =dA (3.34)
Asaresult, A issometimes called the ‘maximum work function’, or the ‘work function’.”

7 Arbeit is the German word for work; hence the symbol A.
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Justification 3.2 Maximum work

To demonstrate that maximum work can be expressed in terms of the changes in
Helmholtz energy, we combine the Clausius inequality dS>dq/T in the form TdS >
dq with the First Law, dU=dq + dw, and obtain

dULTdS +dw

(dUis smaller than the term on the right because we are replacing dgq by TdS, which
in general is larger.) This expression rearranges to

dw>dU-TdS

It follows that the most negative value of dw, and therefore the maximum energy
that can be obtained from the system as work, is given by

dw,, =dU—Tds

and that this work is done only when the path is traversed reversibly (because then
the equality applies). Because at constant temperature dA = dU— TdS, we conclude
that dw,, = dA.

When a macroscopic isothermal change takes place in the system, eqn 3.34 becomes

w_. =AA (3.35)
with
AA=AU-TAS (3.36)

This expression shows that in some cases, depending on the sign of TAS, not all the
change in internal energy may be available for doing work. If the change occurs with
a decrease in entropy (of the system), in which case TAS <0, then the right-hand side
of this equation is not as negative as AU itself, and consequently the maximum work
is less than AU. For the change to be spontaneous, some of the energy must escape as
heat in order to generate enough entropy in the surroundings to overcome the reduc-
tion in entropy in the system (Fig. 3.15). In this case, Nature is demanding a tax on the
internal energy as it is converted into work. This is the origin of the alternative name
‘Helmbholtz free energy’ for A, because AA is that part of the change in internal energy
that we are free to use to do work.

Molecular interpretation 3.4 Maximum work and the Helmholtz energy

Further insight into the relation between the work that a system can do and the
Helmbholtz energy is obtained by recalling that work is energy transferred to the
surroundings as the uniform motion of atoms. We can interpret the expression
A = U~ TS as showing that A is the total internal energy of the system, U, less
a contribution that is stored as energy of thermal motion (the quantity TS).
Because energy stored in random thermal motion cannot be used to achieve
uniform motion in the surroundings, only the part of U that is not stored in that
way, the quantity U — T8, is available for conversion into work.

If the change occurs with an increase of entropy of the system (in which case
TAS > 0), the right-hand side of the equation is more negative than AU. In this case,
the maximum work that can be obtained from the system is greater than AU. The
explanation of this apparent paradox is that the system is not isolated and energy may

—— g

AU<O
AS<0 |
System
|w| <|AU
Surroundings AS,, >0

Fig. 3.16 In asystem not isolated from its
surroundings, the work done may be
different from the change in internal
energy. Moreover, the process is
spontaneous if overall the entropy of
the global, isolated system increases.

In the process depicted here, the entropy
of the system decreases, so that of the
surroundings must increase in order for the
process to be spontaneous, which means
that energy must pass from the system to
the surroundings as heat. Therefore, less
work than AU can be obtained.
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AU<0 7

AS>0

System |
|w| > |AU|

Surroundings AS,, <0

Fig. 3.16 In this process, the entropy of the
system increases; hence we can afford to
lose some entropy of the surroundings.
That is, some of their energy may belost as
heat to the system. This energy can be
returned to them as work. Hence the work
done can exceed AU.

flow in as heat as work is done. Because the entropy of the system increases, we can
afford a reduction of the entropy of the surroundings yet still have, overall, a spontan-
eous process. Therefore, some energy (no more than the value of TAS) may leave the
surroundings as heat and contribute to the work the change is generating (Fig. 3.16).
Nature is now providing a tax refund.

Example 3.4 Calculating the maximum available work

When 1.000 mol C.H,,0, (glucose) is oxidized to carbon dioxide and water at
25°C according to the equation C.H,,0.(s) + 6 O,(g) — 6 CO,(g) + 6 H,O(1),
calorimetric measurements give A U® = —2808 k] mol™ and AS=+1824] =t
mol ™! at 25°C. How much of this energy change can be extracted as (a) heat at con-
stant pressure, (b) work?

Method We know that the heat released at constant pressure is equal to the value
of AH, so we need torelate A H® to A U*, which is given. To do so, we suppose that
all the gases involved are perfect, and use eqn2.21 in the form A H=A, U+ Av,RT.
For the maximum work available from the process we use eqn 3.34.

Answer (a) Because Avg =0, we know that A, H®=A U®=-2808 k] mol~!. There-
fore, at constant pressure, the energy available as heat is 2808 kJ mol~.. (b) Because
T=298 K, the value of A A®is

A A®=A U - TA §®*=-2862 k] mol™

Therefore, the combustion of 1.000 mol C.H,,0, can be used to produce up to
2862 k] of work. The maximum work available is greater than the change in inter-
nal energy on account of the positive entropy of reaction (which is partly due to the
generation of a large number of small molecules from one big one). The system can
therefore draw in energy from the surroundings (so reducing their entropy) and
make it available for doing work.

Self-test 3.7 Repeat the calculation for the combustion of 1.000 mol CH,(g) under
the same conditions, using data from Table 2.5. (] q,|=890 K], |w 813 KJ]

maxl =

(d) Some remarks on the Gibbs energy

The Gibbs energy (the ‘free energy’) is more common in chemistry than the Helmholtz
energy because, at least in laboratory chemistry, we are usually more interested in
changes occurring at constant pressure than at constant volume. The criterion dG,
< 0 carries over into chemistry as the observation that, at constant temperature and
pressure, chemical reactions are spontaneous in the direction of decreasing Gibbs energy.
Therefore, if we want to know whether a reaction is spontaneous, the pressure and
temperature being constant, we assess the change in the Gibbs energy. If G decreases
as the reaction proceeds, then the reaction has a spontaneous tendency to convert the
reactants into products. If G increases, then the reverse reaction is spontaneous.

The existence of spontaneous endothermic reactions provides an illustration of the
role of G. In such reactions, H increases, the system rises spontaneously to states
of higher enthalpy, and dH > 0. Because the reaction is spontaneous we know that
dG < 0 despite dH > 0; it follows that the entropy of the system increases so much that
TdS outweighs dH in dG=dH — TdS. Endothermic reactions are therefore driven by
the increase of entropy of the system, and this entropy change overcomes the reduc-
tion of entropy brought about in the surroundings by the inflow of heat into the sys-
tem (dS,,,, =—dH/T at constant pressure).
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(e) Maximum non-expansion work

The analogue of the maximum work interpretation of AA, and the origin of the name
‘free energy’, can be found for AG. In the Justification below, we show that, at constant
temperature and pressure, the maximum additional (non-expansion) work, w.
is given by the change in Gibbs energy:

dw =dG (3.37)

add,max’

add,max

The corresponding expression for a measurable change is
Wadd,max =AG (338)

This expression is particularly useful for assessing the electrical work that may be pro-
duced by fuel cells and electrochemical cells, and we shall see many applications of it.

Justification 3.3 Maximum non-expansion work

Because H= U+ pV, for a general change in conditions, the change in enthalpy is
dH=dgq+dw+d(pV)

The corresponding change in Gibbs energy (G=H—TS) is
dG=dH-TdS-SdT=dq+dw+d(pV)—TdS—SdT

When the change is isothermal we can set dT'= 0; then
dG=dgq+dw+d(pV)—TdS

When the change is reversible, dw = dw,, and dq = dg,, = TdS, so for a reversible,

isothermal process
dG=TdS+dw,, +d(pV) - TdS=dw,,, +d(pV)

The work consists of expansion work, which for a reversible change is given by
—pdV, and possibly some other kind of work (for instance, the electrical work of
pushing electrons through a circuit or of raising a column of liquid); this additional
work we denote dw, . Therefore, with d(pV) = pdV + Vdp,

dG = (—pdV + dw,qq e) + pdV + Vdp =dw,qq oy + Vdp

If the change occurs at constant pressure (as well as constant temperature), we can
set dp =0 and obtain dG = dw,y .- Therefore, at constant temperature and pres-
sure, dwadd)reV =dG. However, because the processis reversible, the work done must
now have its maximum value, so eqn 3.37 follows.

Example 3.5 Calculating the maximum non-expansion work of a reaction

How much energy is available for sustaining muscular and nervous activity from
the combustion of 1.00 mol of glucose molecules under standard conditions at
37°C (blood temperature)? The standard entropy of reaction is +182.4 ] K~ mol ™.

Method The non-expansion work available from the reaction is equal to the
change in standard Gibbs energy for the reaction (A ,G®, a quantity defined more
fully below). To calculate this quantity, it is legitimate to ignore the temperature-
dependence of the reaction enthalpy, to obtain A H® from Table 2.5, and to sub-
stitute the datainto A G®*=A H® - TA S°.

Answer Because the standard reaction enthalpy is —2808 k] mol™, it follows that
the standard reaction Gibbs energy is

A,G®=-2808 k] mol™" — (310 K) x (182.4 ] K™ mol™!) =-2865 k] mol™!

99
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Synoptic Table 3.4* Standard Gibbs
energies of formation (at 298 K)

A;G®/(k] mol ™)

Diamond, C(s) +2.9
Benzene, C.H,(1) +124.3
Methane, CH,(g) —50.7
Carbon dioxide, CO,(g) —394.4
Water, H,O(1) —237.1
Ammonia, NH,(g) -16.5

Sodium chloride, NaCl(s) —384.1

* More values are given in the Data section.

Therefore, w, 44 1., = —2865 k] for the combustion of 1 mol glucose molecules, and
the reaction can be used to do up to 2865 kJ of non-expansion work. To place this
result in perspective, consider that a person of mass 70 kg needs to do 2.1 kJ of work
to climb vertically through 3.0 m; therefore, at least 0.13 g of glucose is needed to

complete the task (and in practice significantly more).

Self-test 3.8 How much non-expansion work can be obtained from the com-
bustion of 1.00 mol CH,(g) under standard conditions at 298 K? Use A S® =
—243 T K ' mol™. [818 kJ]

3.6 Standard reaction Gibbs energies

Standard entropies and enthalpies of reaction can be combined to obtain the stand-
ard Gibbs energy of reaction (or ‘standard reaction Gibbs energy’), A.G*:

AG®=AH®—TAS® 3.39]

The standard Gibbs energy of reaction is the difference in standard molar Gibbs
energies of the products and reactants in their standard states at the temperature
specified for the reaction as written. As in the case of standard reaction enthalpies, it is
convenient to define the standard Gibbs energies of formation, A;G?, the standard
reaction Gibbs energy for the formation of a compound from its elements in their ref-
erence states.® Standard Gibbs energies of formation of the elements in their reference
states are zero, because their formation is a ‘null’ reaction. A selection of values for
compounds is given in Table 3.4. From the values there, it is a simple matter to obtain
the standard Gibbs energy of reaction by taking the appropriate combination:

AG®= szfGe = szfGe (3.40)

Products Reactants

with each term weighted by the appropriate stoichiometric coefficient.

lllustration 3.7 Calculating a standard Gibbs energy of reaction

To calculate the standard Gibbs energy of the reaction CO(g) + % 0,(g) - CO,(g)
at 25°C, we write
AG®=A;G®*(CO,, g) - {AG%(CO, g) + 3A,G*(0,, )}
=—394.4kJ mol™ — {(~137.2) + 3(0)} k] mol™*
=-257.2 k] mol™

Self-test 3.9 Calculate the standard reaction Gibbs energy for the combustion of
CH,(g) at298 K. [-818 kJ mol™|

Just as we did in Section 2.8, where we acknowledged that solutions of cations
cannot be prepared without their accompanying anions, we define one ion, conven-
tionally the hydrogen ion, to have zero standard Gibbs energy of formation at all
temperatures:

AGP®(HY, aq)=0 [3.41]

8 The reference state of an element was defined in Section 2.7.
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In essence, this definition adjusts the actual values of the Gibbs energies of formation
of ions by a fixed amount, which is chosen so that the standard value for one of them,
H*(aq), has the value zero. Then for the reaction

1 H,(g) + 1 Cly(g) — H¥(aq) + Cl(aq) A,G*=-131.23 k] mol™
we can write
A G*=AG*(H" aq) + A,G*(Cl, aq) = A;G*(Cl 7, aq)

and hence identify A,G®(CI", aq) as —131.23 kJ mol™". All the Gibbs energies of for-
mation of ions tabulated in the Data section were calculated in the same way.

lllustration 3.8 Calculating the standard Gibbs energy of formation of an ion

With the value of A,G®(CI", aq) established, we can find the value of A,G*(Ag", aq)
from

Ag(s) + 5 Cl,(g) — Ag*(aq) + Cl™(aq)
which leads to A,G®*(Ag", aq) =+77.11 k] mol™.

A,G®=-54.12 k] mol™

The factors responsible for the magnitude of the Gibbs energy of formation of an
ion in solution can be identified by analysing it in terms of a thermodynamic cycle. As
an illustration, we consider the standard Gibbs energies of formation of CI™ in water,
which is —131 k] mol™. We do so by treating the formation reaction

% H,(g) + % X,(g) — H*(aq) + X(aq)

as the outcome of the sequence of steps shown in Fig. 3.17 (with values taken from the
Data section). The sum of the Gibbs energies for all the steps around a closed cycle is
Z€ro, $0

A:G®(CI7, aq) = 1272 k) mol ™ + A, G*(H) + A, ,G®(CI")
H'(g) + Cl -

g +-blg)e Hg) + lig) + e
e oo 83
Mita) + 5CLa) + & ~#3 FH{g) + 11(g) + & T

Hig) + Clg) v gl Ay
A | Ge(le) Asolvc;e(l_)
+1312 +1312 Hg) + I'(aq)
H{g) + Cl{aq) |, =
H(g) + 3Cl{g) H(g) + 1l,(s)

LT  —— T
+218 AsoIvG (H ) +218 AsoIvG (H )
zH,{g) +3Cl{g) 3H,(g) + 3L(g)

Y N oo o .

—{0G° (H', ag) + AG®(CI, aq)} TG ag) + AGII, aq)
b2 H'(aq) + I'(aq)

(a) H'(aq) + Cl'(aq) (b)

Fig. 3.17 The thermodynamic cycles for the discussion of the Gibbs energies of solvation
(hydration) and formation of (a) chloride ions, (b) iodide ions in aqueous solution. The sum
of the changes in Gibbs energies around the cycle sum to zero because G is a state function.

Comment 3.2

The standard Gibbs energies of
formation of the gas-phase ions are
unknown. We have therefore used
ionization energies (the energies
associated with the removal of electrons
from atoms or cations in the gas phase)
or electron affinities (the energies
associated with the uptake of electrons
by atoms or anions in the gas phase) and
have assumed that any differences from
the Gibbs energies arising from
conversion to enthalpy and the
inclusion of entropies to obtain Gibbs
energies in the formation of H* are
cancelled by the corresponding terms in
the electron gain of X, The conclusions
from the cycles are therefore only
approximate.
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Comment 3.3

The NIST WebBook is a good source of
links to online databases of
thermochemical data.

An important point to note is that the value of A;G* of an ion X is not determined by
the properties of X alone but includes contributions from the dissociation, ionization,
and hydration of hydrogen.

Gibbs energies of solvation of individual ions may be estimated from an equation
derived by Max Born, who identified A, G*® with the electrical work of transferring an
ion from a vacuum into the solvent treated as a continuous dielectric of relative per-
mittivity €. The resulting Born equation, which is derived in Further information 3.1, 1s

7.2
zieNA(

A 8meyr; K

s

solv

1—&} (3.422)

where z, is the charge number of the ion and r; its radius (N is Avogadro’s constant).

Note that A, G®* <0, and that A_, G* is strongly negative for small, highly charged
ions in media of high relative permittivity. For water at 25°C,
z2
Ay G¥=——"—x%(6.86 x 10* kJ mol™) (3.42b)
(r/pm)

lllustration 3.9 Using the Born equation

To see how closely the Born equation reproduces the experimental data, we calcu-
late the difference in the values of A;G* for CI” and I” in water, for which £,=78.54
at 25°C, given their radii as 181 pm and 220 pm (Table 20.3), respectively, is

11
AwNG%CF)—AwNG%FO:—(——nﬂ——jx(686xlwkhnd*)
181 220
=—67 k] mol™!

This estimated difference is in good agreement with the experimental difference,
which is—61 k] mol™.

Self-test 3.10 Estimate the value of A, G®*(CI’, aq) — A
perimental data and from the Born equation.
[<26 k] mol™! experimental; —29 k] mol ™! calculated]

G*®(Br7, aq) from ex-

solv

Calorimetry (for AH directly, and for S via heat capacities) is only one of the ways
of determining Gibbs energies. They may also be obtained from equilibrium con-
stants and electrochemical measurements (Chapter 7), and for gases they may be cal-
culated using data from spectroscopic observations (Chapter 17).

Combining the First and Second Laws

The First and Second Laws of thermodynamics are both relevant to the behaviour of
matter, and we can bring the whole force of thermodynamics to bear on a problem by
setting up a formulation that combines them.

3.7 The fundamental equation

We have seen that the First Law of thermodynamics may be written dU=dg+ dw. For
areversible change in a closed system of constant composition, and in the absence of
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any additional (non-expansion) work, we may set dw,,,=—pdV and (from the defini-
tion of entropy) dq,., = TdS, where p is the pressure of the system and T its tempera-
ture. Therefore, for a reversible change in a closed system,

dU=TdS— pdV (3.43)

However, because dU is an exact differential, its value is independent of path. There-
fore, the same value of dU is obtained whether the change is brought about irreversibly
or reversibly. Consequently, egrn 3.43 applies to any change—reversible or irreversible—
of a closed system that does no additional (non-expansion) work. We shall call this com-
bination of the First and Second Laws the fundamental equation.

The fact that the fundamental equation applies to both reversible and irreversible
changes may be puzzling at first sight. The reason is that onlyin the case of a reversible
change may TdS be identified with dg and —pdV with dw. When the change is irre-
versible, TdS > dg (the Clausius inequality) and —pdV > dw. The sum of dw and dg
remains equal to the sum of TdS and —pdV, provided the composition is constant.

3.8 Properties of the internal energy

Equation 3.43 shows that the internal energy of a closed system changes in a simple way
when either S or Vis changed (dUe< dSand dU e dV). These simple proportionalities
suggest that U should be regarded as a function of S and V. We could regard U as a
function of other variables, such as S and p or T'and V, because they are all interrelated;
but the simplicity of the fundamental equation suggests that U(S,V') is the best choice.

The mathematical consequence of U being a function of S and V is that we can
express an infinitesimal change dU in terms of changes dS and dV by

a0-(22) s (2o

The two partial derivatives are the slopes of the plots of Uagainst S and V, respectively.
When this expression is compared to the thermodynamic relation, eqn 3.43, we see
that, for systems of constant composition,

(aU) U
- — T R _p
s )y Lav)s
The first of these two equations is a purely thermodynamic definition of temperature
(a Zeroth-Law concept) as the ratio of the changes in the internal energy (a First-Law
concept) and entropy (a Second-Law concept) of a constant-volume, closed, constant-
composition system. We are beginning to generate relations between the properties of

a system and to discover the power of thermodynamics for establishing unexpected
relations.

(3.44)

(3.45)

(a) The Maxwell relations

An infinitesimal change in a function f(x,y) can be written df=gdx+ hdy where g and
h are functions of x and y. The mathematical criterion for df being an exact differen-
tial (in the sense that its integral is independent of path) is that

(%) _(2h)
oy ), \ox),
Because the fundamental equation, eqn 3.43, is an expression for an exact differential,

the functions multiplying dS and dV (namely T and —p) must pass this test. Therefore,
it must be the case that

(3.46)

Comment 3.4

Partial derivatives were introduced in
Comment 2.5 and are reviewed in
Appendix 2, The type of result in eqn
3,44 was first obtained in Section 2.11,
where we treated U as a function of T
and V.

Comment 3.5

To illustrate the criterion set by eqn
3.46, let’s test whether df= 2xydx + x2dy
is an exact differential. We identify
g=2xyand h=x? and form

og d(2xy)

—| = -

dy . dy . *

oh ox?

x| |ox |~ 2

y y

Because these two coefficients are equal,
dfis exact.
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Table 3.5 The Maxwell relations

From E oT _(av
rom fii1: ap S— aS )
e AN ( 9S
rom A: aT V— aV .
e (2]
rom G: — | == =—
oT p dp ).

(1) _(an) .

v las),

We have generated a relation between quantities that, at first sight, would not seem to
be related.

Equation 3.47 is an example of a Maxwell relation. However, apart from being
unexpected, it does not look particularly interesting. Nevertheless, it does suggest that
there may be other similar relations that are more useful. Indeed, we can use the fact
that H, G, and A are all state functions to derive three more Maxwell relations. The
argument to obtain them runs in the same way in each case: because H, G, and A are
state functions, the expressions for dH, dG, and dA satisfy relations like eqn 3.47. All
four relations are listed in Table 3.5 and we put them to work later in the chapter.

(b) The variation of internal energy with volume

The quantity 7= (dU/dV), which represents how the internal energy changes as the
volume of a system is changed isothermally, played a central role in the manipulation
of the First Law, and in Further information 2.2 we used the relation

%) _

This relation is called a thermodynamic equation of state because it is an expression
for pressure in terms of a variety of thermodynamic properties of the system. We are
now ready to derive it by using a Maxwell relation.

Justification 3.4 The thermodynamic equation of state

We obtain an expression for the coefficient 7, by dividing both sides of eqn 3.43 by
dV, imposing the constraint of constant temperature, which gives

) (). ) ).

Next, we introduce the two relations in eqn 3.45 and the definition of 77, to obtain

. 0S
op= E)_VT_p

The third Maxwell relation in Table 3.5 turns (8S/0V)yinto (dp/dT),,, which com-
pletes the proof of eqn 3.48.

Example 3.6 Deriving a thermodynamic relation

Show thermodynamically that 7, = 0 for a perfect gas, and compute its value for a
van der Waals gas.

Method Proving a result ‘thermodynamically’ means basing it entirely on general
thermodynamic relations and equations of state, without drawing on molecular
arguments (such as the existence of intermolecular forces). We know that for a
perfect gas, p = nRT/V, so this relation should be used in eqn 3.48. Similarly, the
van der Waals equation is given in Table 1.7, and for the second part of the ques-
tion it should be used in eqn 3.48.

Answer For a perfect gas we write
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(B_p] _[a(nRT/V)j R
ar), \ or ), Vv

Then, eqn 3.48 becomes
nRT

T

The equation of state of a van der Waals gas is

nRT n?
= = —
V—nb V?

P

Because a and b are independent of temperature,

() __nR
kBTJV_ V —nb

Therefore, from eqn 3.48,

nRT nRT n? n?
- +a—=a0—
V-nb V—-nb V2 V?

ﬂ:T =

This result for 7z, implies that the internal energy of a van der Waals gas increases
when it expands isothermally (that is, (dU/dV) ;> 0), and that the increase is
related to the parameter a, which models the attractive interactions between the
particles. A larger molar volume, corresponding to a greater average separation
between molecules, implies weaker mean intermolecular attractions, so the total
energy is greater.

Self-test 3.11 Calculate 7w, for a gas that obeys the virial equation of state
(Table 1.7). (7w =RT*0B/AT)y/VEi+---]

3.9 Properties of the Gibbs energy

The same arguments that we have used for U can be used for the Gibbs energy G=H
— TS. They lead to expressions showing how G varies with pressure and temperature
that are important for discussing phase transitions and chemical reactions.

(a) General considerations

When the system undergoes a change of state, G may change because H, T, and S all
change. Asin Justification 2.1, we write for infinitesimal changes in each property

dG=dH-d(TS)=dH—-TdS—8dT
Because H= U+ pV, we know that

dH=dU+d(pV)=dU+pdV + Vdp
and therefore

dG=dU+pdV+ Vdp—TdS—SdT

For a closed system doing no non-expansion work, we can replace dU by the funda-
mental equation dU = TdS — pdV and obtain

dG=TdS —pdV+pdV+ Vdp— TdS—SdT

105



106

3 THE SECOND LAW

Four terms now cancel on the right, and we conclude that, for a closed system in the
absence of non-expansion work and at constant composition,

dG=Vdp—SdT (3.49)

This expression, which shows that a change in G is proportional to a change in p or
T, suggests that G may be best regarded as a function of p and T. It confirms that G
is an important quantity in chemistry because the pressure and temperature are usu-
ally the variables under our control. In other words, G carries around the combined
consequences of the First and Second Laws in a way that makes it particularly suitable

for chemical applications.
The same argument that led to eqn 3.45, when applied to the exact differential dG

= Vdp — SdT, now gives

oG oG
{_} s {_} _y (350
aT ; ap )¢
These relations show how the Gibbs energy varies with temperature and pressure
(Fig. 3.18). The first implies that:

+ Because S> 0 for all substances, G always decreases when the temperature is raised
(at constant pressure and composition).

+ Because (BG/BT)p becomes more negative as S increases, G decreases most
sharply when the entropy of the system is large.

Therefore, the Gibbs energy of the gaseous phase of a substance, which has a high
molar entropy, is more sensitive to temperature than its liquid and solid phases
(Fig. 3.19). Similarly, the second relation implies that:

+ Because V> 0 for all substances, G always increases when the pressure of the sys-
tem is increased (at constant temperature and composition).

Gibbs
energy,

Slope = 7

Gibbs energy, G

Temperature, T

Fig. 3.18 The variation of the Gibbs energy Fig. 3.19 The variation of the Gibbs energy
of a system with (a) temperature at with the temperature is determined by
constant pressure and (b) pressure at the entropy. Because the entropy of the
constant temperature. The slope of the gaseous phase of a substance is greater than
former is equal to the negative of the that of the liquid phase, and the entropy of
entropy of the system and that of the latter the solid phase is smallest, the Gibbs energy
is equal to the volume. changes most steeply for the gas phase,

followed by the liquid phase, and then
the solid phase of the substance.
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* Because (dG/dp); increases with V, G is more sensitive to pressure when the
volume of the system is large.

Because the molar volume of the gaseous phase of a substance is greater than that of
its condensed phases, the molar Gibbs energy of a gas is more sensitive to pressure
than its liquid and solid phases (Fig. 3.20).

(b) The variation of the Gibbs energy with temperature

Aswe remarked in the introduction, because the equilibrium composition of a system
depends on the Gibbs energy, to discuss the response of the composition to tempera-
ture we need to know how G varies with temperature.

The first relation in eqn 3.50, (dG/dT), = =S, is our starting point for this discus-
sion. Although it expresses the variation of G in terms of the entropy, we can express
itin terms of the enthalpy by using the definition of G to write S=(H — G)/T. Then

(aG] _G-H
ar), T

We shall see later that the equilibrium constant of a reaction is related to G/T rather
than to G itself,” and it is easy to deduce from the last equation (see the Justification
below) that

9G) H
BTTP_ T2

This expression is called the Gibbs—Helmholtz equation. It shows that if we know the
enthalpy of the system, then we know how G/7 varies with temperature.

(3.51)

(3.52)

Justification 3.5 The Gibbs—-Helmholtz equation

First, we note that

3 GY 1(aG Gdl 1faey @ 1[{acy ©
orT), T\aT p+ dT T T|oT p_TZ_T oT p_T

Then we use eqn 3.51 in the form

G G H
o), T T

It follows that

Jd G 1 H H
o) T T

which is eqn 3.52.

The Gibbs—Helmholtz equation is most useful when it is applied to changes,
including changes of physical state and chemical reactions at constant pressure. Then,
because AG = G;— G, for the change of Gibbs energy between the final and initial states
and because the equation applies to both Gyand G;, we can write

® In Section 7.2b we derive the result that the equilibrium constant for a reaction is related to its standard
reaction Gibbs energy by A G®/T=-RIn K.

Gas
O
=
2
Q
e
[¢b)
[72]
o
2
Q

Liquid

Solid

Pressure, p

Fig. 3.20 The variation of the Gibbs energy
with the pressure is determined by the
volume of the sample. Because the volume
of the gaseous phase of a substance is
greater than that of the same amount of
liquid phase, and the entropy of the solid
phase is smallest (for most substances), the
Gibbs energy changes most steeply for the
gas phase, followed by the liquid phase, and
then the solid phase of the substance.
Because the volumes of the solid and liquid
phases of a substance are similar, their
molar Gibbs energies vary by similar
amounts as the pressure is changed.

Comment 3.6
For this step, we use the rule for
differentiating a product of functions
(which is valid for partial derivatives as
well as ordinary derivatives):

dwv dv du

—=—u—tv—

dx dx  dx

For instance, to differentiate x%e®, we
write

d(2e™)  de®
= et ——
dx dx dx
= ax’e™ + 2xe™
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0 AG AH
ﬁ? Z—F (353)
P

This equation shows that, if we know the change in enthalpy of a system that is
undergoing some kind of transformation (such as vaporization or reaction), then we
know how the corresponding change in Gibbs energy varies with temperature. As we
shall see, this is a crucial piece of information in chemistry.

(c) The variation of the Gibbs energy with pressure

To find the Gibbs energy at one pressure in terms of its value at another pressure, the
temperature being constant, we set d1T'= 0 in eqn 3.49, which gives dG = Vdp, and
integrate:

Pr
Glpg = Glpy) + J Vdp (3.54a)
by
Volume For molar quantities,
assumed égflhjr?!ne P
constant G.(p)=G_(p) +J V_dp (3.54b)
b
o This expression is applicable to any phase of matter, but to evaluate it we need to know
N how the molar volume, V,_, depends on the pressure.
£ The molar volume of a condensed phase changes only slightly as the pressure
§ changes (Fig. 3.21), so we can treat V_ as a constant and take it outside the integral:
Fr
» Ap " Gm(pf) = Gm(pl) + Vm‘[ dp = Gm(pl) + (pf_pi)vm (3.55)
i - b
b P

Pressure, p

Fig. 3.21 The difference in Gibbs energy of a
solid or liquid at two pressures is equal to
the rectangular area shown. We have
assumed that the variation of volume with
pressure is negligible.

Volume, V

[vdp

b b
Pressure, p
Fig. 3.22 The difference in Gibbs energy for

a perfect gas at two pressures is equal to the
area shown below the perfect-gas isotherm.

Self-test 3.12 Calculate the change in G, for ice at —10°C, with density 917 kg m™,
when the pressure is increased from 1.0 bar to 2.0 bar. [+2.0 ] mol™]

Under normal laboratory conditions (p;— p;) V| is very small and may be neglected.
Hence, we may usually suppose that the Gibbs energies of solids and liquids are inde-
pendent of pressure. However, if we are interested in geophysical problems, then
because pressures in the Earth’s interior are huge, their effect on the Gibbs energy can-
not be ignored. If the pressures are so great that there are substantial volume changes
over the range of integration, then we must use the complete expression, eqn 3.54.

lllustration 3.10 Gibbs energies at high pressures

Suppose that for a certain phase transition of a solid A, V'=+1.0 cm” mol™ inde-
pendent of pressure. Then, for an increase in pressure to 3.0 Mbar (3.0 X 10! Pa)
from 1.0 bar (1.0 X 10° Pa), the Gibbs energy of the transition changes from
A, .G(1 bar) to

trs
A, G(3Mbar)=A,_ G(1bar) +(1.0x 10"°m’ mol ™) x (3.0x 10" Pa— 1.0 x 10° Pa)
=A,. .G(1bar) + 3.0 x 10> k] mol™!

trs

where we have used 1 Pam®=17.

The molar volumes of gases are large, so the Gibbs energy of a gas depends
strongly on the pressure. Furthermore, because the volume also varies markedly with
the pressure, we cannot treat it as a constant in the integral in eqn 3.54b (Fig. 3.22).



For a perfect gas we substitute V_, = RT/p into the integral, treat RT as a constant,
and find

s - Pfdp ~ P .
(P =G (p)+RT| —=G,(p)+RTIn— (3.56)

n P b
This expression shows that when the pressure isincreased tenfold at room temperature,
the molar Gibbs energy increases by RT In 10 = 6 k] mol ™. It also follows from this
equation that, if we set p,= p* (the standard pressure of 1 bar), then the molar Gibbs
energy of a perfect gas at a pressure p (set p;=p) is related to its standard value by
Gm(p):Gg—irRTlnﬂ (3.57)°
pe

Self-test 3.13 Calculate the change in the molar Gibbs energy of water vapour
(treated as a perfect gas) when the pressure is increased isothermally from 1.0 bar
to 2.0 bar at 298 K. Note that, whereas the change in molar Gibbs energy for a con-
densed phase (Self-test 3.12) is a few joules per mole, the answer you should get for
a gas is of the order of kilojoules per mole. [+1.7 kJ mol™]

The logarithmic dependence of the molar Gibbs energy on the pressure predicted
by eqn 3.57 is illustrated in Fig. 3.23. This very important expression, the conse-
quences of which we unfold in the following chapters, applies to perfect gases (which
is usually a good enough approximation). Further information 3.2 describes how to
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Molar Gibbs energy, G,

—

Pressure, p

Fig. 3.23 The molar Gibbs energy potential
of a perfect gas is proportional to1n p, and
the standard state is reached at p®. Note
that, as p — 0, the molar Gibbs energy
becomes negatively infinite.

Exploration Show how the first
~ derivative of G, (dG/dp)y, varies
with pressure, and plot the resulting
expression over a pressure range. What is
the physical significance of (dG/dp) 2

take into account gas imperfections.

Checklist of key ideas

[Gli1;

o0 O O

Kelvin statement of the Second Law of thermodynamics: No
process is possible in which the sole result is the absorption
of heat from a reservoir and its complete conversion into
work.

. The Second Law in terms of entropy: The entropy of an

isolated system increases in the course of a spontaneous
change: AS, > 0.

. The thermodynamic definition of entropy is dS=dq,,/T.

The statistical definition of entropy is given by the Boltzmann
formula, S=kln W.

. A Carnot cycle is a cycle composed of a sequence of

isothermal and adiabatic reversible expansions and
compressions.

. The efficiency of a heat engine is £=|w]|/q,. The Carnot

efficiency is £,., = 1 - T /T,

. The Kelvin scale is a thermodynamic temperature scale in

which the triple point of water defines the point 273.16 K.

. The Clausius inequality is dS> dg/T.

. The normal transition temperature, T, is the temperature at

which two phases are in equilibrium at 1 atm. The entropy of

transition at the transition temperature, A, S=A, H/T, .

'trs trs

2.

as.
4.
5.

. Trouton’s rule states that many normal liquids have

approximately the same standard entropy of vaporization
(about 85 J K ' mol™).

. The variation of entropy with temperature is given by

T;
(C,/T)dT.
T

i

ﬂm:ﬂm+J

. The entropy of a substance is measured from the area under a

graph of C,/T'against T, using the Debye extrapolation atlow
temperatures, C, = aT?as T— 0.

The Nernst heat theorem states that the entropy change
accompanying any physical or chemical transformation
approaches zero as the temperature approaches zero: AS — 0
as T — O provided all the substances involved are perfectly
ordered.

Third Law of thermodynamics: The entropy of all perfect
crystalline substances is zero at T=0.

The standard reaction entropy is calculated from

Ar50 a 2‘Productsvsgi . 2‘Reactantsvsgi'

The standard molar entropies of ions in solution are reported
on a scale in which S®(H", aq) = 0 at all temperatures.
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[]16. The Helmholtz energy is A= U~ TS. The Gibbs energy is
G=H-TS.

[]17. The criteria of spontaneity may be written as: (a) dSy; ;>0
and dUs,<0, or (b) dAry < 0and dG,<0.

[]18. The criterion of equilibrium at constant temperature and

volume, dAr,,= 0. The criterion of equilibrium at constant
temperature and pressure, dGr, ,= 0.

[119. The maximum work and the Helmholtz energy are related by
Wpae = AA. The maximum additional (non-expansion) work
and the Gibbs energy are related by w. =AG.

[]20. The standard Gibbs energy of reaction is given by

ArGez ArI_I0 - TArsez 2‘ProductSVGgi . 2‘Reactants‘/Ggi'

The standard Gibbs energy of formation (A;G®) is the

standard reaction Gibbs energy for the formation of a

compound from its elements in their reference states.

add,max

[J21.

[[]22. The standard Gibbs energy of reaction may be expressed in
terms OfAfGe’ ArG0 = 2‘ProductSVAfGe - 2‘ReactantSVAfGe'

Further reading”

23. The standard Gibbs energies of formation of ions are reported
g P
on a scale in which A;G°(H, aq) =0 at all temperatures.

[]24. The fundamental equation is dU= TdS— pdV.
[[]25. The Maxwell relations are listed in Table 3.5.

[]26. A thermodynamic equation of state is an expression
for pressure in terms of thermodynamic quantities,
7p=T(dpldT ) — p.

[]27. The Gibbs energy is best described as a function of pressure
and temperature, dG = Vdp — SdT. The variation of Gibbs
energy with pressure and temperature are, respectively,
(0G/dp)p=Vand (E)G/E)T)p ==§,

[[]128. The temperature dependence ofthe Gibbs energy is given by

the Gibbs-Helmholtz equation, (d(G/ T)/aT)p =—H/T%

For a condensed phase, the Gibbs energy varies with pressure

as G(pg) = G(p,) + V,Ap. For a perfect gas, G(pg) = G(p,) +

nRTIn( pe/p;).

[J29.
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Further information 3.1 The Born equation

The electrical concepts required in this derivation are reviewed in
Appendix 3. The strategy of the calculation is to identify the Gibbs
energy of solvation with the work of transferring an ion from a
vacuum into the solvent. That work is calculated by taking the
difference of the work of charging an ion when it is in the solution
and the work of charging the same ion when it is in a vacuum.

The Coulomb interaction between two charges g, and g, separated
by a distance 7 is described by the Coulombic potential energy:

_ 4%

V=
imter

where ¢is the medium’s permittivity. The permittivity of vacuum is
£,=8.854 x 10712 "L C? m . The relative permittivity (formerly

called the “dielectric constant’) of a substance is defined as £, = £/¢,,.
Tons do not interact as strongly in a solvent of high relative
permittivity (such as water, with £, = 80 at 293 K) asthey doin a
solvent of lower relative permittivity (such as ethanol, with £, =25 at
293 K). See Chapter 18 for more details. The potential energy of a
charge g, in the presence of a charge g, can be expressed in terms of
the Coulomb potential, ¢:

%D
imter

V=q,¢ (0

We model an ion as a sphere of radius r, immersed in a medium
of permittivity &. It turns out that, when the charge of the sphere is
g, the electric potential, ¢, at its surface is the same as the potential
due to a point charge at its centre, so we can use the last expression
and write

10" See Further readingin Chapter 2 for additional articles, texts, and sources of thermochemical data.
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4mer;

¢

The work of bringing up a charge dg to the sphere is ¢dg. Therefore,
the total work of charging the sphere from 0 to ze is

ze 1 ze Zizez
w=| ¢dg=—1 qdq=
4mer, 8ner,

0 1J0

This electrical work of charging, when multiplied by Avogadro’s
constant, is the molar Gibbs energy for charging the ions.
The work of charging an ion in a vacuum is obtained by setting

£ =gy, the vacuum permittivity. The corresponding value for
charging the ion in a medium is obtained by setting £ = €,&,, where €,
is the relative permittivity of the medium. It follows that the change
in molar Gibbs energy that accompanies the transfer of ions from a
vacuum to a solvent is the difference of these two quantities:

A% z%’N, B z%’N, _ z%’N, B Z%’N, _ Z%’N, [1 1 ]

solv

£

8mer,  8meyr, 8megy,  SmEr 8meyr; e

which is eqn 3.42.

Further information 3.2 Real gases: the fugacity

At various stages in the development of physical chemistry it is
necessary to switch from a consideration of idealized systems to real
systems. In many cases it is desirable to preserve the form of the
expressions that have been derived for an idealized system. Then
deviations from the idealized behaviour can be expressed most
simply. For instance, the pressure-dependence of the molar Gibbs
energy of a real gas might resemble that shown in Fig. 3.24. To adapt
eqn 3.57 to this case, we replace the true pressure, p, by an effective
pressure, called the fugacity,!! f, and write

G, =G°+RTIn iﬂ
p

The fugacity, a function of the pressure and temperature, is defined
so that this relation is exactly true. Although thermodynamic
expressions in terms of fugacities derived from this expression are
exact, they are useful only if we know how to interpret fugacities in
terms of actual pressures. To develop this relation we write the
fugacity as

J=pp
where ¢ is the dimensionless fugacity coefficient, which in general
depends on the temperature, the pressure, and the identity of the gas.

Equation 3.54b is true for all gases whether real or perfect.
Expressing it in terms of the fugacity by using eqn 3.58 turns it into

[3.58]

[3.59]

SIS

4 ’
J Vodp=G(p)—G(p) :{ G? + RTlnie} —{ G2+ RTlnf—0
» p p

=RTIn i,
f
In this expression, fis the fugacity when the pressure is p and f” is the
fugacity when the pressure is p’. If the gas were perfect, we would
write

FURTHER INFORMATION 111
Attractions Repulsions
dominant dominant
(f<p)

(f> p)\

Perfect ,

Real
gas

Molar Gibbs energy, G,
@
[

/ Pressure
L , P

Fig. 3.24 The molar Gibbs energy of a real gas. As p — 0, the molar
Gibbs energy coincides with the value for a perfect gas (shown by
the black line). When attractive forces are dominant (at intermediate
pressures), the molar Gibbs energy is less than that of a perfect

gas and the molecules have a lower ‘escaping tendency’. At high
pressures, when repulsive forces are dominant, the molar Gibbs
energy of a real gas is greater than that of a perfect gas. Then the
‘escaping tendency’ is increased.

’ p
4[ Vperfect, mdp =RTIn S
» p
The difference between the two equations is

P i
J (Ve = Vooreer, n)dp=RT [lni,— lnﬁ,] =RTIn [ff, ]
" fop plp
=RTIn [i, X p_]
fop
which can be rearranged into

’ 1 P
In [ixp_/] :_J (Vm_ Vperfect,m)dp
p f RT ”

When p” — 0, the gas behaves perfectly and f* becomes equal to the
pressure, p’. Therefore, f’/p” — 1 as p” — 0. If we take this limit,
which means setting f'/p” =1 on the left and p” =0 on the right, the
last equation becomes

’

1 f_1 P( V.-V )d
n—=— =
p RT . m perfect, m p
Then, with ¢ =f/p,

1 (?

In ¢ = EJ (Vm - Vperfect,m)dp
0

Fora perfect gas, Vi, e m = RT/p. For a real gas, V,,, = RTZ/p, where
Z is the compression factor of the gas (Section 1.3). With these two
substitutions, we obtain

1 The name ‘fugacity’ comes from the Latin for ‘fleetness’ in the sense of ‘escaping tendency’; fugacity has the same dimensions as pressure.
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Fig. 228 "Thre fugacity coefhictentiola sam g [ e 150 (o — _— —_— — 5
der Waals gas plotted using the reduced 3.
variables of the gas. The curves are labelled i
with the reduced temperature T, = T/T..
E Exploration Evaluate the fugacity & 7] S R R S &
= coefficient as a function of the I Il 1.00 i 1o/
reduced volume of a van der Waals gas and @: ﬂ:
plot the outcome for a selection of reduced ‘qc: g
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Reduced pressure, p/p

J PE=1
Ing=| ——dp (3.60)
4] p

Provided we know how Z varies with pressure up to the pressure of
interest, this expression enable us to determine the fugacity
coefficient and hence, through eqn 3.59, to relate the fugacity to the
pressure of the gas.

We see from Fig. 1.14 that for most gases Z < 1 up to moderate
pressures, but that Z > 1 at higher pressures. If Z < 1 throughout the
range of integration, then the integrand in eqn 3.60 is negative and
¢ < 1. This value implies that f < p (the molecules tend to stick
together) and that the molar Gibbs energy of the gas is less than that
of a perfect gas. At higher pressures, the range over which Z > 1 may
dominate the range over which Z < 1. The integral is then positive,
¢>1, and f> p (the repulsive interactions are dominant and tend to
drive the particles apart). Now the molar Gibbs energy of the gas is
greater than that of the perfect gas at the same pressure.

Figure 3.25, which has been calculated using the full van der Waals
equation of state, shows how the fugacity coefficient depends on the

Discussion questions

Reduced pressure, p/p,

Synoptic table 3.6* The fugacity of
nitrogen at 273 K

platm flatm
1 0.999 55
10 9.9560
100 97.03
1000 1839

* More values are given in the Data section.

pressure in terms of the reduced variables (Section 1.5). Because
critical constants are available in Table 1.6, the graphs can be used for
quick estimates of the fugacities of a wide range of gases. Table 3.6
gives some explicit values for nitrogen.

3.1 The evolution of life requires the organization of a very large number of
molecules into biological cells. Does the formation of living organisms violate
the Second Law of thermodynamics? State your conclusion clearly and present
detailed arguments to support it.

3.2 You received an unsolicited proposal from a self-declared inventor who is
seeking investors for the development of his latest idea: a device that uses heat
extracted from the ground by a heat pump to boil water into steam that is
used to heat a home and to power a steam engine that drives the heat pump.
This procedure is potentially very lucrative because, after an initial extraction
of energy from the ground, no fossil fuels would be required to keep the device
running indefinitely. Would you invest in this idea? State your conclusion
clearly and present detailed arguments to support it.

3.3 The following expressions have been used to establish criteria
for spontaneous change: AS, > 0, dS;,=2 0 and dUs 1, <0, dA7 <0,

and dGy, < 0. Discuss the origin, significance, and applicability of each
criterion.

3.4 The following expressions have been used to establish criteria for
reversibility: dAy, ;=0 and dGy, ,= 0. Discuss the origin, significance, and
applicability of each criterion.

3.5 Discuss the physical interpretation of any one Maxwell relation.

3.6 Account for the dependence of 7y of a van der Waals gas in terms of the
significance of the parameters a and b.

3.7 Suggesta physical interpretation of the dependence of the Gibbs energy
on the pressure.

3.8 Suggesta physical interpretation of the dependence of the Gibbs energy
on the temperature.
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EXERCISES 113

Assume that all gases are perfect and that data refer to 298.15 K unless
otherwise stated.

3.1(a) Calculate the change in entropy when 25 kJ of energy is transferred
reversibly and isothermally as heat to a large block of iron at (a) 0°C,
(b) 100°C.

3.1(b) Calculate the change in entropy when 50 kJ of energy is transferred
reversibly and isothermally as heat to a large block of copper at (a) 0°C,
(b) 70°C.

3.2(a) Calculate the molar entropy of a constant-volume sample of neon at
500K given that it is 146.22 ] K~! mol ™ at 298 K.

3.2(b) Calculate the molar entropy of a constant-volume sample of argon at
250K given that it is 154.84 ] K~! mol ™ at 298 K.

3.3(a) Calculate AS (for the system) when the state of 3.00 mol of perfect gas
atoms, for which Cp,m = %R, is changed from 25°C and 1.00 atm to 125°C and
5.00 atm. How do you rationalize the sign of AS?

3.3(b) Calculate AS (for the system) when the state 0of 2.00 mol diatomic
perfect gas molecules, for which C, = ZR, is changed from 25°C and
1.50 atm to 135°C and 7.00 atm. How do you rationalize the sign of AS?

3.4(a) A sample consisting of 3.00 mol of diatomic perfect gas molecules at
200 K is compressed reversibly and adiabatically until its temperature reaches
250 K. Given that Cy, ; =27.5] K mol™, calculate g, w, AU, AH, and AS.

3.4(b) Asample consisting of 2.00 mol of diatomic perfect gas molecules at
250 K is compressed reversibly and adiabatically until its temperature reaches
300 K. Given that Cy,; =27.5] K™ ! mol™, calculate g, w, AU, AH, and AS.

3.5(a) Calculate AH and AS, , when two copper blocks, each of mass 10.0 kg,
one at 100°C and the other at 0°C, are placed in contact in an isolated
container. The specific heat capacity of copper is 0.385 ] K™! ¢! and may be
assumed constant over the temperature range involved.

3.5(b) Calculate AH and AS,, when two iron blocks, each of mass 1.00 kg, one
at 200°C and the other at 25°C, are placed in contact in an isolated container.
The specific heat capacity of iron is 0.449] K™! g and may be assumed
constant over the temperature range involved.

3.6(a) Consider a system consisting of 2.0 mol CO,(g), initially at 25°C and
10 atm and confined to a cylinder of cross-section 10.0 cm?. It is allowed to
expand adiabatically against an external pressure of 1.0 atm until the piston
has moved outwards through 20 cm. Assume that carbon dioxide may be
considered a perfect gas with Cy, ; = 28.8] K-' mol ™ and calculate (a) g,

(b) w, (¢) AU, (d) AT, (e) AS.

3.6(b) Consider a system consisting of 1.5 mol CO,(g), initially at 15°C and
9.0 atm and confined to a cylinder of cross-section 100.0 cm?. The sample is
allowed to expand adiabatically against an external pressure of 1.5 atm until
the piston has moved outwards through 15 cm. Assume that carbon dioxide
may be considered a perfect gas with Cy, ; =28.8 K mol ™", and calculate
(a) g, (b) w, (c) AU, (d) AT, (e) AS.

3.7(a) The enthalpy of vaporization of chloroform (CHCL,) is 29.4 kJ mol ! at
its normal boiling point of 334.88 K. Calculate (a) the entropy of vaporization
of chloroform at this temperature and (b) the entropy change of the
surroundings.

3.7(b) The enthalpy of vaporization of methanol is 35.27 k] mol ™ at its
normal boiling point of 64.1°C. Calculate (a) the entropy of vaporization
of methanol at this temperature and (b) the entropy change of the
surroundings.

3.8(a) Calculate the standard reaction entropy at 298 K of

(a) 2 CH,CHO(g) + O,(g) — 2 CH,COOH(I)
(b) 2 AgCl(s) +Br,(1) — 2 AgBr(s) + CL,(g)
(¢) Hg(l) + Cl,(g) - HgCl,(s)

3.8(b) Calculate the standard reaction entropy at 298 K of

(a) Zn(s)+ Cu**(aq) = Zn**(aq) + Cu(s)
(b) C,H,,0,,(s)+12 O,(g) = 12 CO,(g) + 11 H,O(D)

3.9(a) Combine the reaction entropies calculated in Exercise 3.8a with the
reaction enthalpies, and calculate the standard reaction Gibbs energies at
298 K.

3.9(b) Combine the reaction entropies calculated in Exercise 3.8b with the
reaction enthalpies, and calculate the standard reaction Gibbs energies at
298 K.

3.10(a) Use standard Gibbs energies of formation to calculate the standard
reaction Gibbs energies at 298 K of the reactions in Exercise 3.8a.

3.10(b) Use standard Gibbs energies of formation to calculate the standard
reaction Gibbs energies at 298 K of the reactions in Exercise 3.8b.

3.11(a) Calculate the standard Gibbs energy of the reaction 4 HCl(g) + O,(g)
—2 CL(g)+2 H,0() at 298 K, from the standard entropies and enthalpies of
formation given in the Data section.

3.11(b) Calculate the standard Gibbs energy of the reaction CO(g) +
CH,0H(l) - CH;COOH(I) at 298 K, from the standard entropies and
enthalpies of formation given in the Data section.

3.12(a) The standard enthalpy of combustion of solid phenol (C;H.OH) is
—3054 kJ mol™ at 298 K and its standard molar entropy is 144.0 J K™ mol™%.
Calculate the standard Gibbs energy of formation of phenol at 298 K.

3.12(b) The standard enthalpy of combustion of solid urea (CO(NH,),) is
—632 k] mol™! at 298 K and its standard molar entropy is 104.60 ] K™! mol™..
Calculate the standard Gibbs energy of formation of urea at 298 K.

3.13(a) Calculate the change in the entropies of the system and the
surroundings, and the total change in entropy, when a sample of nitrogen gas
of mass 14 g at 298 K and 1.00 bar doubles its volume in (a) an isothermal
reversible expansion, (b) an isothermal irreversible expansion against p,,. = 0,
and (¢) an adiabatic reversible expansion.

3.13(b) Calculate the change in the entropies of the system and the
surroundings, and the total change in entropy, when the volume of a sample
of argon gas of mass 21 g at 298 K and 1.50 bar increases from 1.20 dm? to
4.60 dm’ in (a) an isothermal reversible expansion, (b) an isothermal
irreversible expansion against p,, = 0, and (c) an adiabatic reversible
expansion.

3.14(a) Calculate the maximum non-expansion work per mole that may be
obtained from a fuel cell in which the chemical reaction is the combustion of
methane at 298 K.

3.14(b) Calculate the maximum non-expansion work per mole that may be
obtained from a fuel cell in which the chemical reaction is the combustion of
propane at 298 K.

3.15(a) (a) Calculate the Carnot efficiency of a primitive steam engine
operating on steam at 100°C and discharging at 60°C. (b) Repeat the
calculation for a modern steam turbine that operates with steam at 300°C
and discharges at 80°C.
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3.15(b) A certain heat engine operates between 1000 K and 500 K. (a) What is
the maximum efficiency of the engine? (b) Calculate the maximum work that
can be done by for each 1.0 kJ of heat supplied by the hot source. (¢) How
much heat is discharged into the cold sink in a reversible process for each

1.0 kJ supplied by the hot source?

3.16(a) Suppose that 3.0 mmol N,(g) occupies 36 cm® at 300 K and expands
to 60 cm®. Calculate AG for the process.

3.16(b) Suppose that2.5 mmol Ar(g) occupies 72 dm? at 298 K and expands
to 100 dm°. Calculate AG for the process.

3.17(a) The change in the Gibbs energy of a certain constant-pressure process
was found to fit the expression AG/J =—85.40 + 36.5(T/K). Calculate the value
of AS for the process.

3.17(b) The change in the Gibbs energy of a certain constant-pressure process
was found to fit the expression AG/] =—73.1 4+ 42.8(T/K). Calculate the value
of AS for the process.

3.18(a) Calculate the change in Gibbs energy of 35 g of ethanol (mass density
0.789 g cm™>) when the pressure is increased isothermally from 1 atm to
3000 atm.

3.18(b) Calculate the change in Gibbs energy of 25 g of methanol (mass
density 0.791 g cm™) when the pressure is increased isothermally from
100 kPa to 100 MPa.

Problems™

3.19(a) Calculate the change in chemical potential of a perfect gas when its
pressure is increased isothermally from 1.8 atm to 29.5 atm at 40°C.

3.19(b) Calculate the change in chemical potential of a perfect gas when its
pressure is increased isothermally from 92.0 kPa to 252.0 kPa at 50°C.

3.20(a) The fugacity coefficient of a certain gas at 200 K and 50 bar is 0.72.
Calculate the difference of its molar Gibbs energy from that of a perfect gas in
the same state.

3.20(b) The fugacity coefficient of a certain gas at 290 K and 2.1 MPa is 0.68.
Calculate the difference of its molar Gibbs energy from that of a perfect gas in
the same state.

3.21(a) Estimate the change in the Gibbs energy of 1.0 dm® of benzene when
the pressure acting on it is increased from 1.0 atm to 100 atm.

3.21(b) Estimate the change in the Gibbs energy of 1.0 dm?® of water when the
pressure acting on it is increased from 100 kPa to 300 kPa.

3.22(a) Calculate the change in the molar Gibbs energy of hydrogen gas
when its pressure is increased isothermally from 1.0 atm to 100.0 atm at
298 K.

3.22(b) Calculate the change in the molar Gibbs energy of oxygen when its
pressure is increased isothermally from 50.0 kPa to 100.0 kPa at 500 K.

Assume that all gases are perfect and that data refer to 298 K unless otherwise
stated.

Numerical problems

3.1 Calculate the difference in molar entropy (a) between liquid water and
ice at =5°C, (b) between liquid water and its vapour at 95°C and 1.00 atm.
The differences in heat capacities on melting and on vaporization are

37.3J K mol! and —41.9 ] K™! mol ™, respectively. Distinguish between
the entropy changes of the sample, the surroundings, and the total system,
and discuss the spontaneity of the transitions at the two temperatures.

3.2 The heat capacity of chloroform (trichloromethane, CHCL,) in the range
240K to 330 Kis given by C,, /(] K'mol')=91.474+75x102(T/K).Ina
particular experiment, 1.00 mol CHCl, is heated from 273 K to 300 K.
Calculate the change in molar entropy of the sample.

3.3 Ablockof copper of mass 2.00 kg (C,, ,, =24.44] K !'mol™!) and
temperature 0°C is introduced into an insulated container in which there is
1.00 mol H,0O(g) at 100°C and 1.00 atm. (a) Assuming all the steam is
condensed to water, what will be the final temperature of the system, the heat
transferred from water to copper, and the entropy change of the water,
copper, and the total system? (b) In fact, some water vapour is present at
equilibrium. From the vapour pressure of water at the temperature calculated
in (a), and assuming that the heat capacities of both gaseous and liquid water
are constant and given by their values at that temperature, obtain an improved
value of the final temperature, the heat transferred, and the various entropies.
(Hint. You will need to make plausible approximations.)

3.4 Consider a perfect gas contained in a cylinder and separated by a
frictionless adiabatic piston into two sections A and B. All changes in B is
isothermal; that is, a thermostat surrounds B to keep its temperature constant.
There is 2.00 mol of the gas in each section. Initially, T, = Ty =300 K, V, =V}

=2.00 dm®. Energy is supplied as heat to Section A and the piston moves to
the right reversibly until the final volume of Section B is 1.00 dm®. Calculate
(a) AS, and ASg, (b) AA, and AAg, (¢) AG, and AGy, (d) AS of the total
system and its surroundings. If numerical values cannot be obtained, indicate
whether the values should be positive, negative, or zero or are indeterminate
from the information given. (Assume Cy,;;=20J K™' moI"".)

3.5 A Carnot cycle uses 1.00 mol of a monatomic perfect gas as the working
substance from an initial state of 10.0 atm and 600 K. It expands isothermally
to a pressure of 1.00 atm (Step 1), and then adiabatically to a temperature of
300 K (Step 2). This expansion is followed by an isothermal compression
(Step 3), and then an adiabatic compression (Step 4) back to the initial state.
Determine the values of g, w, AU, AH, AS, AS,,, and AG for each stage of the
cycle and for the cycle as a whole. Express your answer as a table of values.

3.6 1.00 mol of perfect gas molecules at 27°C is expanded isothermally from
an initial pressure of 3.00 atm to a final pressure of 1.00 atm in two ways:

(a) reversibly, and (b) against a constant external pressure of 1.00 atm.
Determine the values of g, w, AU, AH, AS, AS,, AS,, for each path.

sur?

3.7 The standard molar entropy of NH,(g) is 192.45 ] K™! mol™ at 298 K, and
its heat capacity is given by eqn 2.25 with the coefficients given in Table 2.2.
Calculate the standard molar entropy at (a) 100°C and (b) 500°C.

3.8 A block of copper of mass 500 g and initially at 293 K is in thermal contact
with an electric heater of resistance 1.00 k€2 and negligible mass. A current of
1.00 A is passed for 15.0 s. Calculate the change in entropy of the copper,
taking C, ,, =24.4] K™! mol™. The experiment is then repeated with the
copper immersed in a stream of water that maintains its temperature at 293 K.
Calculate the change in entropy of the copper and the water in this case.

3.9 Find an expression for the change in entropy when two blocks of the same
substance and of equal mass, one at the temperature T, and the other at T, are
brought into thermal contact and allowed to reach equilibrium. Evaluate the

* Problems denoted with the symbol # were supplied by Charles Trapp, Carmen Giunta, and Marshall Cady.



change for two blocks of copper, each of mass 500 g, with C, |, =24.4] Kt
mol !, taking T, =500 K and T,=250K.

3.10 A gaseous sample consisting of 1.00 mol molecules is described by the
equation of state pV,, = RT(1 + Bp). Initially at 373 K, it undergoes Joule—
Thomson expansion from 100 atm to 1.00 atm. Given that Cp = %R, u=
0.21 Katm™, B=—-0.525(K/T) atm ™', and that these are constant over the
temperature range involved, calculate AT and AS for the gas.

3.11 The molar heat capacity of lead varies with temperature as follows:

TIK 10 15 20 95 30 50
Cpm/J K mol™) 2.8 7.0 10.8 14.1 16.5 21.4
TIK 70 100 150 200 250 298

Com/UK 1 mol) 233 245 253 258 262 266

Calculate the standard Third-Law entropy of lead at (a) 0°C and (b) 25°C.

3.12 From standard enthalpies of formation, standard entropies, and
standard heat capacities available from tables in the Data section, calculate the
standard enthalpies and entropies at 298 K and 398 K for the reaction CO,(g)
+ H,(g) > CO(g) + H,0O(g). Assume that the heat capacities are constant over
the temperature range involved.

3.13 The heat capacity of anhydrous potassium hexacyanoferrate(II) varies
with temperature as follows:

TK  Co/0K'mo™) TK G, /0K mol?)
10 2.09 100 1796

20 14.43 10 1928

30 36.44 150 237.6

40 62.55 160 2473

50 87.03 170 2565

60 111.0 180 265.1

70 1314 190 2730

80 149.4 200 2803

90 165.3

Calculate the molar enthalpy relative to its value at T'=0 and the Third-Law
entropy at each of these temperatures.

3.14 The compound 1,3,5-trichloro-2,4,6-trifluorobenzene is an intermediate
in the conversion of hexachlorobenzene to hexafluorobenzene, and its
thermodynamic properties have been examined by measuring its heat capacity
over a wide temperature range (R.L. Andon and J.F. Martin, J. Chesm. Soc.
Faraday Trans. 1. 871 (1973)). Some of the data are as follows:

TIK 14.14 1633 2003 3115 4408  64.81
Com /UK mol ™) 9492 1270 1818 3254 4686  66.36
TIK 100.90 14086 18359 22510  262.99  298.06
Com/UK 1 mol) 9505 1213 1444 1637 1802 1964

Calculate the molar enthalpy relative to its value at T'=0 and the Third-Law
molar entropy of the compound at these temperatures.

3.15% Given that $¢ =29.79 ] K™! mol™! for bismuth at 100 K and the
following tabulated heat capacities data (D.G. Archer, J. Chem. Eng. Data 40,
1015 (1995)), compute the standard molar entropy of bismuth at 200 K.

T/IK 100 120 140 150 160 180 200
Cp,m/(] Klmol™) 2300 23.74 2425 2444 2461 24.89 25.11

Compare the value to the value that would be obtained by taking the heat
capacity to be constant at 24.44 J K™ mol™! over this range.

3.16 Calculate A G®(375 K) for the reaction 2 CO(g) + O,(g) — 2 CO,(g) from
the value of A, G*(298 K), A,LH®(298 K), and the Gibbs—Helmholtz equation.
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3.17 Estimate the standard reaction Gibbs energy of N,(g) + 3 H,(g) —
2 NH,(g) at (a) 500 K, (b) 1000 K from their values at 298 K.

3.18 At200K, the compression factor of oxygen varies with pressure as
shown below. Evaluate the fugacity of oxygen at this temperature and
100 atm.

7.00000
0.97880

10.0000
0.96956

40.00
0.8734

70.00
0.7764

100.0
0.6871

p/atm  1.0000  4.00000
¥4 0.9971 0.98796

Theoretical problems

3.19 Represent the Carnot cycle on a temperature—entropy diagram and show
that the area enclosed by the cycle is equal to the work done.

3.20 Prove that two reversible adiabatic paths can never cross. Assume that
the energy of the system under consideration is a function of temperature
only. (Hint. Suppose that two such paths can intersect, and complete a cycle
with the two paths plus one isothermal path. Consider the changes
accompanying each stage of the cycle and show that they conflict with the
Kelvin statement of the Second Law.)

3.21 Prove that the perfect gas temperature scale and the thermodynamic
temperature scale based on the Second Law of thermodynamics differ from
each other by at most a constant numerical factor.

3.22 The molar Gibbs energy of a certain gas is given by G, =RTInp+ A+
Bp+ %sz + %Dps, where A, B, C, and D are constants. Obtain the equation of
state of the gas.

3.23 Evaluate (95/0V)for (a) a van der Waals gas, (b) a Dieterici gas
(Table 1.7). For an isothermal expansion, for which kind of gas
(and a perfect gas) will AS be greatest? Explain your conclusion.

3.24 Show that, for a perfect gas, (AU/9S)y,= T and (QU/QV ) =—p.

3.25 Two of the four Maxwell relations were derived in the text, but two were
not. Complete their derivation by showing that (95/0V) = (dp/dT),, and
(@T/dp)s= (aV/aS)P.

3.26 Use the Maxwell relations to express the derivatives (a) (95/0V)pand
(aV/aS)P and (b) (9p/0S), and (aV/as)P in terms of the heat capacities, the
expansion coefficient o, and the isothermal compressibility, &

3.27 Use the Maxwell relations to show that the entropy of a perfect gas
depends on the volume as Se< RIn V.

3.28 Derive the thermodynamic equation of state

oH oV
— | =V l—
a ) aT ,

Derive an expression for (9H/dp)for (a) a perfect gas and (b) a van der Waals
gas. In the latter case, estimate its value for 1.0 mol Ar(g) at 298 K and 10 atm.
By how much does the enthalpy of the argon change when the pressure is
increased isothermally to 11 atm?

3.29 Show that if B(T') is the second virial coefficient of a gas, and
AB=B(T")—B(T"), AT=T" —T’, and T is the mean of 7" and T”, then
7op=RT?AB/V? AT. Estimate 7 for argon given that B(250 K) =—28.0 cm?
mol ™! and B(300 K) =—15.6 cm® mol ! at 275 K at (a) 1.0 atm, (b) 10.0 atm.

3.30 The Joule coefficient, 4, is defined as ti; = (0T/0V) . Show that
wCy=p—oT/kr.
3.31 Evaluate 7 for a Dieterici gas (Table 1.7). Justify physically the form of

the expression obtained.

3.32 The adiabatic compressibility, «, is defined like & (eqn 2.44) but at
constant entropy. Show that for a perfect gas pyx;= 1 (where 7is the ratio of
heat capacities).
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3.33 Suppose that Sis regarded as a function of p and T. Show that
TdS=C,dT - oTVdp. Hence, show that the energy transferred as heat when
the pressure on an incompressible liquid or solid is increased by Ap is equal to
—0TVAp. Evaluate g when the pressure acting on 100 cm® of mercury at 0°C is
increased by 1.0 kbar. (¢=1.82 x 1071 K1)

3.34 Suppose that (a) the attractive interactions between gas particles can be
neglected, (b) the attractive interaction is dominant in a van der Waals gas,
and the pressure is low enough to make the approximation 4ap/(RT)? < 1.
Find expressions for the fugacity of a van der Waals gas in terms of the
pressure and estimate its value for ammonia at 10.00 atm and 298.15 K

in each case.

3.35 Find an expression for the fugacity coefficient of a gas that obeys the
equation of state pV,, = RT(1+ B/V_,+ C/V2). Use the resulting expression to
estimate the fugacity of argon at 1.00 atm and 100 K using B=-21.13 cm®
mol ! and C=1054 cm® mol .

Applications: to biology, environmental science, polymer
science, and engineering

3.36 The protein lysozyme unfolds at a transition temperature of 75.5°C and
the standard enthalpy of transition is 509 k] mol™!. Calculate the entropy of
unfolding of lysozyme at 25.0°C, given that the difference in the constant-
pressure heat capacities upon unfolding is 6.28 kJ] K™! mol™ and can be
assumed to be independent of temperature. Hint. Imagine that the transition
at 25.0°C occurs in three steps: (i) heating of the folded protein from 25.0°C to
the transition temperature, (ii) unfolding at the transition temperature, and
(iii) cooling of the unfolded protein to 25.0°C. Because the entropy is a state
function, the entropy change at 25.0°C is equal to the sum of the entropy
changes of the steps.

3.37 At298K the standard enthalpy of combustion of sucrose is =5797 kJ
mol™ and the standard Gibbs energy of the reaction is —6333 kJ mol ™.
Estimate the additional non-expansion work that may be obtained by raising
the temperature to blood temperature, 37°C.

3.38 Inbiological cells, the energy released by the oxidation of foods (Irmpact
on Biology 12.2) is stored in adenosine triphosphate (ATP or ATPY"). The
essence of ATP’s action is its ability to lose its terminal phosphate group by
hydrolysis and to form adenosine diphosphate (ADP or ADP*"):

ATP*(aq) + H,0(l) — ADP*(aq) + HPOZ (aq) + H;0"(aq)

AtpH=7.0and 37°C (310 K, blood temperature) the enthalpy and Gibbs
energy of hydrolysisare A, H=-20kJ mol™! and AG=-31K] mol™,
respectively. Under these conditions, the hydrolysis of 1 mol ATP*(aq) results
in the extraction of up to 31 kJ of energy that can be used to do non-expansion
work, such as the synthesis of proteins from amino acids, muscular
contraction, and the activation of neuronal circuits in our brains. (a) Calculate
and account for the sign of the entropy of hydrolysis of ATP at pH=7.0 and
310 K. (b) Suppose that the radius of a typical biological cell is 10 ptm and that
inside it 10° ATP molecules are hydrolysed each second. What is the power
density of the cell in watts per cubic metre (1 W =17 s7!)? A computer battery
delivers about 15 W and has a volume of 100 cm®. Which has the greater
power density, the cell or the battery? (¢) The formation of glutamine from
glutamate and ammonium ions requires 14.2 k] mol™ of energy input. It is
driven by the hydrolysis of ATP to ADP mediated by the enzyme glutamine
synthetase. How many moles of ATP must be hydrolysed to form 1 mol
glutamine?

3.39% In 1995, the Intergovernmental Panel on Climate Change (IPCC)
considered a global average temperature rise of 1.0-3.5°C likely by the year
2100, with 2.0°C its best estimate. Because water vapour is itself a greenhouse
gas, the increase in water vapour content of the atmosphere is of some
concern to climate change experts. Predict the relative increase in water

vapour in the atmosphere based on a temperature rises of 2.0 K, assuming that
the relative humidity remains constant. (The present global mean temperature
is 290 K, and the equilibrium vapour pressure of water at that temperature is
0.0189 bar.)

3.40% Nitric acid hydrates have received much attention as possible catalysts
for heterogeneous reactions that bring about the Antarctic ozone hole.
Worsnop et al. investigated the thermodynamic stability of these hydrates
under conditions typical of the polar winter stratosphere (D. R. Worsnop, L.E.
Fox, M.S. Zahniser, and S.C. Wofsy, Science 259, 71 (1993)). They report
thermodynamic data for the sublimation of mono-, di-, and trihydrates to
nitric acid and water vapours, HNO;- #H,0 (s) - HNO,(g) +nH,0(g),

for n=1,2,and 3. Given A .G®and A H* for these reactions at 220 K, use the
Gibbs-Helmholtz equation to compute A,.G®at 190 K.

n 1 ) 3
A, G (K] mol™) 46.2 69.4 93.2
AH/(Kmol™) 127 188 237

3.41% J. Gao and J. H. Weiner in their study of the origin of stress on the
atomic level in dense polymer systems (Science 266, 748 (1994)), observe
that the tensile force required to maintain the length, /, of a long linear chain
of N freely jointed links each of length a, can be interpreted as arising from
an entropic spring. For such a chain, S(/) =—3kP/2Na’ + C, where ks the
Boltzmann constant and Cis a constant. Using thermodynamic relations of
this and previous chapters, show that the tensile force obeys Hooke’s law,
==k, if we assume that the energy U is independent of L

3.42 Suppose that an internal combustion engine runs on octane, for which
the enthalpy of combustion is —5512 k] mol™ and take the mass of 1 gallon of
fuel as 3 kg. What is the maximum height, neglecting all forms of friction, to
which a car of mass 1000 kg can be driven on 1.00 gallon of fuel given that the
engine cylinder temperature is 2000°C and the exit temperature is 800°C?

3.43 The cycle involved in the operation of an internal combustion engine is
called the Otto cycle. Air can be considered to be the working substance and
can be assumed to be a perfect gas. The cycle consists of the following steps:
(1) reversible adiabatic compression from A to B, (2) reversible constant-
volume pressure increase from B to C due to the combustion of a small
amount of fuel, (3) reversible adiabatic expansion from C to D, and (4)
reversible and constant-volume pressure decrease back to state A. Determine
the change in entropy (of the system and of the surroundings) for each step of
the cycle and determine an expression for the efficiency of the cycle, assuming
that the heat is supplied in Step 2. Evaluate the efficiency for a compression
ratio of 10:1. Assume that, in state A, V=4.00 dm>, p=1.00atm, and
T=300K, that V= 10V, pc/py=>5, and that C, , = TR.

3.44 To calculate the work required to lower the temperature of an object,
we need to consider how the coefficient of performance changes with the
temperature of the object. (a) Find an expression for the work of cooling an
object from T; to Ty when the refrigerator is in a room at a temperature T;,.
Hint. Write dw = dq/c(T), relate dg to dT through the heat capacity C,,

and integrate the resulting expression. Assume that the heat capacity is
independent of temperature in the range of interest. (b) Use the result in part
(a) to calculate the work needed to freeze 250 g of water in a refrigerator at
293 K. How long will it take when the refrigerator operates at 100 W?

3.45 The expressions that apply to the treatment of refrigerators also describe
the behaviour of heat pumps, where warmth is obtained from the back of a
refrigerator while its front is being used to cool the outside world. Heat pumps
are popular home heating devices because they are very efficient. Compare
heating of a room at 295 K by each of two methods: (a) direct conversion of
1.00 kJ of electrical energy in an electrical heater, and (b) use of 1.00 kJ of
electrical energy to run a reversible heat pump with the outside at 260 K.
Discuss the origin of the difference in the energy delivered to the interior

of the house by the two methods.



Physical
transformations of
pure substances

The discussion of the phase transitions of pure substances is among the simplest applica-
tions of thermodynamics to chemistry. We shall see that a phase diagram is a map of the
pressures and temperatures at which each phase of a substance is the most stable. First,
we describe the interpretation of empirically determined phase diagrams for a selection of
materials. Then we turn to a consideration of the factors that determine the positions and
shapes of the boundaries between the regions on a phase diagram. The practical import-
ance of the expressions we derive is that they show how the vapour pressure of a sub-
stance varies with temperature and how the melting point varies with pressure. We shall see
that the transitions between phases can be classified by noting how various thermodynamic
functions change when the transition occurs. This chapter also introduces the chemical
potential, a property that is at the centre of discussions of phase transitions and chemical
reactions.

Vaporization, melting, and the conversion of graphite to diamond are all examples of
changes of phase without change of chemical composition. In this chapter we describe
such processes thermodynamically, using as the guiding principle the tendency of sys-
tems at constant temperature and pressure to minimize their Gibbs energy.

Phase diagrams

One of the most succinct ways of presenting the physical changes of state that a sub-
stance can undergo is in terms of its phase diagram. We present the concept in this
section.

41 The stabilities of phases

A phase of a substance is a form of matter that is uniform throughout in chemical
composition and physical state. Thus, we speak of solid, liquid, and gas phases of a
substance, and of its various solid phases, such as the white and black allotropes of
phosphorus. A phase transition, the spontaneous conversion of one phase into
another phase, occurs at a characteristic temperature for a given pressure. Thus, at
1 atm, ice is the stable phase of water below 0°C, but above 0°C liquid water is more
stable. This difference indicates that below 0°C the Gibbs energy decreases as liquid
water changes into ice and that above 0°C the Gibbs energy decreases as ice changes
into liquid water. The transition temperature, T, , is the temperature at which the
two phases are in equilibrium and the Gibbs energy is minimized at the prevailing
pressure.

Phase diagrams

4.1 The stabilities of phases
4.2 Phase boundaries

14.1 Impact on engineering and
technology: Supercritical fluids

4.3 Three typical phase diagrams

Phase stability and phase
transitions

4.4 The thermodynamic criterion
of equilibrium

4.5 The dependence of stability on
the conditions

4.6 The location of phase
boundaries

4.7 The Ehrenfest classification of
phase transitions

Checklist of key ideas
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Critical
point

Pressure, p

17
Temperature, T

S |

Fig. 41 The general regions of pressure and
temperature where solid, liquid, or gas is
stable (that is, has minimum molar Gibbs
energy) are shown on this phase diagram.
For example, the solid phase is the most
stable phase at low temperatures and high
pressures. In the following paragraphs we
locate the precise boundaries between the
regions.

Vapour,
pressure, p

Liquid
or solid

Fig. 42 The vapour pressure of aliquid or
solid is the pressure exerted by the vapour
in equilibrium with the condensed phase.

Comment 4.1

The NIST Chemistry WebBook is a good
source of links to online databases of
data on phase transitions.

As we stressed at the beginning of Chapter 3, we must distinguish between the
thermodynamic description of a phase transition and the rate at which the transition
occurs. A transition that is predicted from thermodynamics to be spontaneous may
occur too slowly to be significant in practice. For instance, at normal temperatures
and pressures the molar Gibbs energy of graphite is lower than that of diamond, so
there is a thermodynamic tendency for diamond to change into graphite. However,
for this transition to take place, the C atoms must change their locations, which is an
immeasurably slow process in a solid except at high temperatures. The discussion of
the rate of attainment of equilibrium is a kinetic problem and is outside the range of
thermodynamics. In gases and liquids the mobilities of the molecules allow phase
transitions to occur rapidly, but in solids thermodynamic instability may be frozen in.
Thermodynamically unstable phases that persist because the transition is kinetically
hindered are called metastable phases. Diamond is a metastable phase of carbon
under normal conditions.

4.2 Phase boundaries

The phase diagram of a substance shows the regions of pressure and temperature at
which its various phases are thermodynamically stable (Fig. 4.1). The lines separating
the regions, which are called phase boundaries, show the values of p and T at which
two phases coexist in equilibrium.

Consider a liquid sample of a pure substance in a closed vessel. The pressure of a
vapour in equilibrium with the liquid is called the vapour pressure of the substance
(Fig. 4.2). Therefore, the liquid—vapour phase boundary in a phase diagram shows
how the vapour pressure of the liquid varies with temperature. Similarly, the solid—
vapour phase boundary shows the temperature variation of the sublimation vapour
pressure, the vapour pressure of the solid phase. The vapour pressure of a substance
increases with temperature because at higher temperatures more molecules have
sufficient energy to escape from their neighbours.

(a) Critical points and boiling points

When aliquid is heated in an open vessel, the liquid vaporizes from its surface. At the
temperature at which its vapour pressure would be equal to the external pressure,
vaporization can occur throughout the bulk of the liquid and the vapour can expand
freelyinto the surroundings. The condition of free vaporization throughout the liquid
is called boiling. The temperature at which the vapour pressure of a liquid is equal to
the external pressure is called the boiling temperature at that pressure. For the special
case of an external pressure of 1 atm, the boiling temperature is called the normal
boiling point, T;,. With the replacement of 1 atm by 1 bar as standard pressure, there
is some advantage in using the standard boiling point instead: this is the temperature
at which the vapour pressure reaches 1 bar. Because 1 bar is slightly less than 1 atm
(1.00 bar = 0.987 atm), the standard boiling point of a liquid is slightly lower than
its normal boiling point. The normal boiling point of water is 100.0°C; its standard
boiling point is 99.6°C.

Boiling does not occur when a liquid is heated in a rigid, closed vessel. Instead, the
vapour pressure, and hence the density of the vapour, rise as the temperature is raised
(Fig.4.3). At the same time, the density of the liquid decreases slightly as a result of its
expansion. There comes a stage when the density of the vapour is equal to that of the
remaining liquid and the surface between the two phases disappears. The temperature
at which the surface disappears is the critical temperature, T, of the substance. We
first encountered this property in Section 1.3d. The vapour pressure at the critical
temperature is called the critical pressure, p_. At and above the critical temperature, a
single uniform phase called a supercritical fluid fills the container and an interface no



longer exists. That is, above the critical temperature, the liquid phase of the substance
does not exist.

(b) Melting points and triple points

The temperature at which, under a specified pressure, the liquid and solid phases of a
substance coexist in equilibrium is called the melting temperature. Because a sub-
stance melts at exactly the same temperature as it freezes, the melting temperature of
a substance is the same as its freezing temperature. The freezing temperature when
the pressure is 1 atm is called the normal freezing point, T}, and its freezing point
when the pressure is 1 bar is called the standard freezing point. The normal and stand-
ard freezing points are negligibly different for most purposes. The normal freezing
point is also called the normal melting point.

There is a set of conditions under which three different phases of a substance
(typically solid, liquid, and vapour) all simultaneously coexist in equilibrium. These
conditions are represented by the triple point, a point at which the three phase
boundaries meet. The temperature at the triple point is denoted T5. The triple point
of a pure substance is outside our control: it occurs at a single definite pressure and
temperature characteristic of the substance. The triple point of water lies at 273.16 K
and 611 Pa (6.11 mbar, 4.58 Torr), and the three phases of water (ice, liquid water, and
water vapour) coexist in equilibrium at no other combination of pressure and tem-
perature. This invariance of the triple point is the basis of its use in the definition of
the thermodynamic temperature scale (Section 3.2¢).

As we can see from Fig. 4.1, the triple point marks the lowest pressure at which a
liquid phase of a substance can exist. If (as is common) the slope of the solid-liquid
phase boundary is as shown in the diagram, then the triple point also marks the
lowest temperature at which the liquid can exist; the critical temperature is the upper
limit.

IMPACT ON CHEMICAL ENGINEERING AND TECHNOLOGY
I4.1 Supercritical fluids

Supercritical carbon dioxide, scCO,, is the centre of attention for an increasing num-
ber of solvent-based processes. The critical temperature of CO,, 304.2 K (31.0°C) and
its critical pressure, 72.9 atm, are readily accessible, it is cheap, and it can readily be re-
cycled. The density of scCO, at its critical point is 0.45 g cm™. However, the transport
properties of any supercritical fluid depend strongly on its density, which in turn is
sensitive to the pressure and temperature. For instance, densities may be adjusted
from a gas-like 0.1 g cm™ to a liquid-like 1.2 g cm™. A useful rule of thumb is that the
solubility of a solute is an exponential function of the density of the supercritical fluid,
so small increases in pressure, particularly close to the critical point, can have very
large effects on solubility.

A great advantage of scCO, is that there are no noxious residues once the solvent
has been allowed to evaporate, so, coupled with its low critical temperature, scCO, is
ideally suited to food processing and the production of pharmaceuticals. It is used, for
instance, to remove caffeine from coffee. The supercritical fluid is also increasingly
being used for dry cleaning, which avoids the use of carcinogenic and environment-
ally deleterious chlorinated hydrocarbons.

Supercritical CO, has been used since the 1960s as a mobile phase in supercritical
fluid chromatography (SEC), but it fell out of favour when the more convenient tech-
nique of high-performance liquid chromatography (HPLC) was introduced. However,
interest in SFC has returned, and there are separations possible in SFC that cannot
easily be achieved by HPLC, such as the separation of lipids and of phospholipids.
Samples as small as 1 pg can be analysed. The essential advantage of SFC is that
diffusion coefficients in supercritical fluids are an order of magnitude greater than in
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(a) (b) (c)

Fig. 43 (a) A liquid in equilibrium with its
vapour. (b) When aliquid is heated in a
sealed container, the density of the vapour
phase increases and that of the liquid
decreases slightly. There comes a stage,

(¢), at which the two densities are equal
and the interface between the fluids
disappears. This disappearance occurs at
the critical temperature. The container
needs to be strong: the critical temperature
of water is 374°C and the vapour pressure is
then 218 atm.
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Fig. 44 The experimental phase diagram for
carbon dioxide. Note that, as the triple
point lies at pressures well above
atmospheric, liquid carbon dioxide does
not exist under normal conditions (a
pressure of at least 5.11 atm must be
applied).

liquids, so there is less resistance to the transfer of solutes through the column, with
the result that separations may be effected rapidly or with high resolution.

The principal problem with scCO,, though, is that the fluid is not a very good
solvent and surfactants are needed to induce many potentially interesting solutes to
dissolve. Indeed, scCO,-based dry cleaning depends on the availability of cheap sur-
factants; so too does the use of scCO, as a solvent for homogeneous catalysts, such
as metal complexes. There appear to be two principal approaches to solving the
solubilization problem. One solution is to use fluorinated and siloxane-based poly-
meric stabilizers, which allow polymerization reactions to proceed in scCO,. The dis-
advantage of these stabilizers for commercial use is their great expense. An alternative
and much cheaper approach is poly(ether-carbonate) copolymers. The copolymers can
be made more soluble in scCO, by adjusting the ratio of ether and carbonate groups.

The critical temperature of water is 374°C and its pressure is 218 atm. The condi-
tions for using scH,O are therefore much more demanding than for scCO, and the
properties of the fluid are highly sensitive to pressure. Thus, as the density of scH,O
decreases, the characteristics of a solution change from those of an aqueous solution
through those of a non-aqueous solution and eventually to those of a gaseous solu-
tion. One consequence is that reaction mechanisms may change from those involving
ions to those involving radicals.

4.3 Three typical phase diagrams

We shall now see how these general features appear in the phase diagrams of pure
substances.

(a) Carbon dioxide

The phase diagram for carbon dioxide is shown in Fig. 4.4. The features to notice in-
clude the positive slope of the solid—liquid boundary (the direction of this line is char-
acteristic of most substances), which indicates that the melting temperature of solid
carbon dioxide rises as the pressure is increased. Notice also that, as the triple point
lies above 1 atm, the liquid cannot exist at normal atmospheric pressures whatever the
temperature, and the solid sublimes when left in the open (hence the name ‘dryice’).
To obtain the liquid, it is necessary to exert a pressure of at least 5.11 atm. Cylinders
of carbon dioxide generally contain the liquid or compressed gas; at 25°C that implies
a vapour pressure of 67 atm if both gas and liquid are present in equilibrium. When
the gas squirts through the throttle it cools by the Joule~Thomson effect, so when
it emerges into a region where the pressure is only 1 atm, it condenses into a finely
divided snow-like solid.

(b) Water

Figure 4.5 is the phase diagram for water. The liquid—vapour boundary in the phase
diagram summarizes how the vapour pressure of liquid water varies with tempera-
ture. It also summarizes how the boiling temperature varies with pressure: we simply
read off the temperature at which the vapour pressure is equal to the prevailing
atmospheric pressure. The solid-liquid boundary shows how the melting tempera-
ture varies with the pressure. Its very steep slope indicates that enormous pressures
are needed to bring about significant changes. Notice that the line has a negative slope
up to 2 kbar, which means that the melting temperature falls as the pressure is raised.
The reason for this almost unique behaviour can be traced to the decrease in volume
that occurs on melting, and hence it being more favourable for the solid to transform
into the liquid as the pressure is raised. The decrease in volume is a result of the very
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Fig. 45 The experimental phase diagram for water showing the different solid phases.

open molecular structure of ice: as shown in Fig 4.6, the water molecules are held
apart, as well as together, by the hydrogen bonds between them but the structure par-
tially collapses on melting and the liquid is denser than the solid.

Figure 4.5 shows that water has one liquid phase but many different solid phases
other than ordinary ice (‘ice I, shown in Fig. 4.5). Some of these phases melt at high
temperatures. Ice VII, for instance, melts at 100°C but exists only above 25 kbar. Note
that five more triple points occur in the diagram other than the one where vapour,
liquid, and ice I coexist. Each one occurs at a definite pressure and temperature that
cannot be changed. The solid phases of ice differ in the arrangement of the water
molecules: under the influence of very high pressures, hydrogen bonds buckle and the
H,O molecules adopt different arrangements. These polymorphs, or different solid
phases, of ice may be responsible for the advance of glaciers, for ice at the bottom of
glaciers experiences very high pressures where it rests on jagged rocks.

(¢) Helium

Figure 4.7 shows the phase diagram of helium. Helium behaves unusually at low tem-
peratures. For instance, the solid and gas phases of helium are never in equilibrium
however low the temperature: the atoms are so light that they vibrate with a large-
amplitude motion even at very low temperatures and the solid simply shakes itself
apart. Solid helium can be obtained, but only by holding the atoms together by apply-
ing pressure.

When considering helium at low temperatures it is necessary to distinguish between
the isotopes *He and *He. Pure helium-4 has two liquid phases. The phase marked
He-Iin the diagram behaves like a normal liquid; the other phase, He-11, is a superfluid;

Fig. 46 A fragment of the structure of ice
(ice-1). Each O atom is linked by two
covalent bonds to H atoms and by two
hydrogen bonds to a neighbouring O atom,
in a tetrahedral array.
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Fig. 47 The phase diagram for helium
(*He). The A-line marks the conditions
under which the two liquid phases are in
equilibrium. Helium-II is the superfluid
phase. Note that a pressure of over 20 bar
must be exerted before solid helium can be
obtained. The labels hcp and bee denote
different solid phases in which the atoms
pack together differently: hcp denotes
hexagonal closed packing and bee denotes
body-centred cubic (see Section 20.1 for a
description of these structures).
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Fig. 48 When two or more phases are in
equilibrium, the chemical potential

of a substance (and, in a mixture, a
component) is the same in each phase and
is the same at all points in each phase.

it is so called because it flows without viscosity.! Provided we discount the liquid
crystalline substances discussed in Section 6.6, helium is the only known substance
with a liquid-liquid boundary, shown as the A-line (lambda line) in Fig. 4.7. The
phase diagram of helium-3 differs from the phase diagram of helium-4, but it also
possesses a superfluid phase. Helium-3 is unusual in that the entropy of the liquid is
lower than that of the solid, and melting is exothermic.

Phase stability and phase transitions

We shall now see how thermodynamic considerations can account for the features of
the phase diagrams we have just described. All our considerations will be based on the
Gibbs energy of a substance, and in particular on its molar Gibbs energy, G, . In fact,
this quantity will play such an important role in this chapter and the rest of the text
that we give it a special name and symbol, the chemical potential, gz (mu). For a one-
component system, ‘molar Gibbs energy” and ‘chemical potential’ are synonyms, so i
=G, butin Chapter 5 we shall see that chemical potential has a broader significance
and a more general definition. The name ‘chemical potential’ is also instructive: as we
develop the concept, we shall see that y is a measure of the potential that a substance
has for undergoing change in a system. In this chapter, it reflects the potential of a sub-
stance to undergo physical change. In Chapter 7 we shall see that g is the potential of
a substance to undergo chemical change.

4.4 The thermodynamic criterion of equilibrium

We base our discussion on the following consequence of the Second Law: at equilibrium,
the chemical potential of a substance is the same throughout a sample, regardless of how many
phases are present. When the liquid and solid phases of a substance are in equilibrium,
the chemical potential of the substance is the same throughout the system (Fig. 4.8).

To see the validity of this remark, consider a system in which the chemical poten-
tial of a substance is i, at one location and y, at another location. The locations may
be in the same or in different phases. When an amount d# of the substance is trans-
ferred from one location to the other, the Gibbs energy of the system changes by
—1,dn when material is removed from location 1, and it changes by +u,dn when
that material is added to location 2. The overall change is therefore dG = (u, — y,)dn.
If the chemical potential at location 1 is higher than that at location 2, the transfer is
accompanied by a decrease in G, and so has a spontaneous tendency to occur. Only if
Uy = 1, is there no change in G, and only then is the system at equilibrium. We con-
clude that the transition temperature, T, , is the temperature at which the chemical
potentials of two phases are equal.

45 The dependence of stability on the conditions

At low temperatures and provided the pressure is not too low, the solid phase of a
substance has the lowest chemical potential and is therefore the most stable phase.
However, the chemical potentials of different phases change with temperature in
different ways, and above a certain temperature the chemical potential of another
phase (perhaps another solid phase, a liquid, or a gas) may turn out to be the lowest.
When that happens, a transition to the second phase is spontaneous and occurs if it is
kinetically feasible to do so.

! Recent work has suggested that water may also have a superfluid liquid phase.
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(a) The temperature dependence of phase stability

The temperature dependence of the Gibbs energy is expressed in terms of the entropy
of the system by eqn 3.50 ((dG/dT), = —S). Because the chemical potential of a pure
substance is just another name for its molar Gibbs energy, it follows that

0
-
aT ),

This relation shows that, as the temperature is raised, the chemical potential of a pure
substance decreases: S > 0 for all substances, so the slope of a plot of y against T is
negative.

Equation 4.1 implies that the slope of a plot of g against temperature is steeper for
gases than for liquids, because S_(g) > S, (1). The slope is also steeper for a liquid than
the corresponding solid, because S (1) > S, (s) almost always. These features are illus-
trated in Fig. 4.9. The steep negative slope of u(1) results in its falling below u(s) when
the temperature is high enough, and then the liquid becomes the stable phase: the
solid melts. The chemical potential of the gas phase plunges steeply downwards as the
temperature is raised (because the molar entropy of the vapour is so high), and there
comes a temperature at which it lies lowest. Then the gas is the stable phase and vapor-
ization is spontaneous.

(4.1

(b) The response of melting to applied pressure

Most substances melt at a higher temperature when subjected to pressure. It is as
though the pressure is preventing the formation of the less dense liquid phase. Excep-
tions to this behaviour include water, for which the liquid is denser than the solid.
Application of pressure to water encourages the formation of the liquid phase. That is,
water freezes at a lower temperature when it is under pressure.

We can rationalize the response of melting temperatures to pressure as follows. The
variation of the chemical potential with pressure is expressed (from the second of
eqn 3.50) by

0
3)
b Jr

This equation shows that the slope of a plot of chemical potential against pressure is
equal to the molar volume of the substance. An increase in pressure raises the chemical
potential of any pure substance (because V> 0). In most cases, V(1) >V_(s) and the
equation predicts that an increase in pressure increases the chemical potential of the
liquid more than that of the solid. As shown in Fig. 4.10a, the effect of pressure in such
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Fig. 49 The schematic temperature
dependence of the chemical potential of the
solid, liquid, and gas phases of a substance
(in practice, the lines are curved). The
phase with the lowest chemical potential at
a specified temperature is the most stable
one at that temperature. The transition
temperatures, the melting and boiling
temperatures (Tyand T}, respectively), are
the temperatures at which the chemical
potentials of the two phases are equal.

Fig. 410 The pressure dependence of the
chemical potential of a substance depends
on the molar volume of the phase. The
lines show schematically the effect of
increasing pressure on the chemical
potential of the solid and liquid phases

(in practice, the lines are curved), and the
corresponding effects on the freezing
temperatures. (2) In this case the molar
volume of the solid is smaller than that of
theliquid and p(s) increases less than pi(1).
As a result, the freezing temperature rises.
(b) Here the molar volume is greater for
the solid than the liquid (as for water), u(s)
increases more strongly than g(1), and the
freezing temperature is lowered.
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Fig. 411 Pressure may be applied to a
condensed phases either (a) by
compressing the condensed phase or (b) by
subjecting it to an inert pressurizing gas.
When pressure is applied, the vapour
pressure of the condensed phase increases.

a case is to raise the melting temperature slightly. For water, however, V(1) < V_(s),
and an increase in pressure increases the chemical potential of the solid more than
that of the liquid. In this case, the melting temperature is lowered slightly (Fig. 4.10b).

Example 4.1 Assessing the effect of pressure on the chemical potential

Calculate the effect on the chemical potentials of ice and water of increasing the
pressure from 1.00 bar to 2.00 bar at 0°C. The density of ice is 0.917 g cm™ and that
of liquid water is 0.999 g cm™ under these conditions.

Method From eqn 4.2, we know that the change in chemical potential of an incom-
pressible substance when the pressure is changed by Ap is Au= V,_Ap. Therefore,
to answer the question, we need to know the molar volumes of the two phases of
water. These values are obtained from the mass density, p, and the molar mass, M,
by using V. = M/p. We therefore use the expression Ay = MAp/p.

Answer The molar mass of water is 18.02 g mol™ (1.802 x 1072 kg mol™); therefore,

(1.802 x 107 kg mol™) x (1.00 X 10° Pa)

STy =+1.97 ] mol™
gm

Aufice) =

(1.802 x 1072 kg mol™) x (1.00 X 10° Pa)
999 kg m™

Au(water) = =+1.80 ] mol™

We interpret the numerical results as follows: the chemical potential of ice rises
more sharply than that of water, so if they are initially in equilibrium at 1 bar, then
there will be a tendency for the ice to melt at 2 bar.

Self-test 4.1 Calculate the effect of an increase in pressure of 1.00 bar on the liquid
and solid phases of carbon dioxide (of molar mass 44.0 g mol™) in equilibrium
with densities 2.35 g cm™ and 2.50 g cm™, respectively.

[Au(l) =+1.87 ] mol™%, Au(s) =+1.76 ] mol™%; solid forms]

(c) The effect of applied pressure on vapour pressure

When pressure is applied to a condensed phase, its vapour pressure rises: in effect,
molecules are squeezed out of the phase and escape as a gas. Pressure can be exerted
on the condensed phases mechanically or by subjecting it to the applied pressure of an
inert gas (Fig. 4.11); in the latter case, the vapour pressure is the partial pressure of the
vapour in equilibrium with the condensed phase, and we speak of the partial vapour
pressure of the substance. One complication (which we ignore here) is that, if the
condensed phase is a liquid, then the pressurizing gas might dissolve and change the
properties of the liquid. Another complication is that the gas phase molecules might
attract molecules out of the liquid by the process of gas solvation, the attachment of
molecules to gas phase species.

As shown in the following Justification, the quantitative relation between the
vapour pressure, p, when a pressure AP is applied and the vapour pressure, p*, of the
liquid in the absence of an additional pressure is

p :p*evm(l)AP/RT (4.3)

This equation shows how the vapour pressure increases when the pressure acting on
the condensed phase is increased.
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Justification 4.1 The vapour pressure of a pressurized fiquid

We calculate the vapour pressure of a pressurized liquid by using the fact that at
equilibrium the chemical potentials of the liquid and its vapour are equal: y(l) =
u(g). It follows that, for any change that preserves equilibrium, the resulting change
in g(1) must be equal to the change in p(g); therefore, we can write du(g) = du(l).
When the pressure P on the liquid is increased by dP, the chemical potential of the
liquid changes by du(1) = V,,(1)dP. The chemical potential of the vapour changes by
du(g) =V (g)dp where dp is the change in the vapour pressure we are trying to find.
If we treat the vapour as a perfect gas, the molar volume can be replaced by V, (g) =
RT/p, and we obtain

RTdp
dpi(g) =——
p
Next, we equate the changes in chemical potentials of the vapour and the liquid:
RTdp
—=V,()dP
p

We can integrate this expression once we know the limits of integration.

When there is no additional pressure acting on the liquid, P (the pressure experi-
enced by the liquid) is equal to the normal vapour pressure p*, so when P=p*, p=
P too. When there is an additional pressure AP on the liquid, with the result that
P =p+ AP, the vapour pressure is p (the value we want to find). Provided the effect
of pressure on the vapour pressure is small (as will turn out to be the case) a good
approximation is to replace the p in p + AP by p* itself, and to set the upper limit of
the integral to p* + AP. The integrations required are therefore as follows:

P dp DPY+AP
RTJ —=J V_()dP
A S

We now divide both sides by RT and assume that the molar volume of the liquid is
the same throughout the small range of pressures involved:

Pdp v () [P
J _p:ﬁj dp

» P RT Jp
Then both integrations are straightforward, and lead to
P Vi)
In—=
p* RT

which rearranges to eqn 4.3 because e * = x.

lllustration 4.1 The effect of applied pressure on the vapour pressure of liquid water

For water, which has density 0.997 g cm™ at 25°C and therefore molar volume
18.1 cm®mol ™, when the pressure is increased by 10 bar (that is, AP=1.0 X 10° Pa)

V,(DAP  (1.81x 107 m® mol™) x (1.0 x 10°Pa) 1.81x1.0x 10

RT (8.3145 T K  mol™) x (298 K) 8.3145 x 298

where we have used 1 J = 1 Pa m®. It follows that p = 1.0073p*, an increase of
0.73 per cent.

Self-test 4.2 Calculate the effect of an increase in pressure of 100 bar on the vapour
pressure of benzene at 25°C, which has density 0.879 g cm™. [43 per cent]

125
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Fig. 412 When pressure is applied to a
system in which two phases are in
equilibrium (at a), the equilibrium is
disturbed. It can be restored by changing
the temperature, so moving the state of the
system to b. It follows that there is a
relation between dp and d7 that ensures
that the system remains in equilibrium as
either variable is changed.

Solid

Liquid

Pressure, p

Temperature, T

Fig. 413 A typical solid-liquid phase
boundary slopes steeply upwards. This
slope implies that, as the pressure is raised,
the melting temperature rises. Most
substances behave in this way.

46 The location of phase boundaries

We can find the precise locations of the phase boundaries—the pressures and tem-
peratures at which two phases can coexist—by making use of the fact that, when two
phases are in equilibrium, their chemical potentials must be equal. Therefore, where
the phases oc and B are in equilibrium,

o (p,T) = pig(p,T) (4.4)

By solving this equation for p in terms of T, we get an equation for the phase boundary.

(a) The slopes of the phase boundaries

It turns out to be simplest to discuss the phase boundaries in terms of their slopes,
dp/dT. Let p and T be changed infinitesimally, but in such a way that the two phases o
and [ remain in equilibrium. The chemical potentials of the phases are initially equal
(the two phases are in equilibrium). They remain equal when the conditions are
changed to another point on the phase boundary, where the two phases continue to
be in equilibrium (Fig. 4.12). Therefore, the changes in the chemical potentials of the
two phases must be equal and we can write dt, = dz. Because, from eqn 3.49 (dG =
Vdp — SdT), we know that du=-S_dT+ V_dp for each phase, it follows that

—By AT+ V= —Sﬁ)de + Vﬁ)mdp

where S, and S, are the molar entropies of the phasesand V,, ,, and V3, are their
molar volumes. Hence

(VBm = Vo) 4P = (Sp = Soum)dT (4.5)
which rearranges into the Clapeyron equation:

dp  A.S

LS (4.6)

dT A,V

trs
In this expression Ay S =83, — S, and A [V =V -V,  are the entropy and
volume of transition, respectively. The Clapeyron equation is an exact expression for
the slope of the phase boundary and applies to any phase equilibrium of any pure sub-
stance. It implies that we can use thermodynamic data to predict the appearance of
phase diagrams and to understand their form. A more practical application is to the
prediction of the response of freezing and boiling points to the application of pressure.

(b) The solid-liquid boundary

Melting (fusion) is accompanied by a molar enthalpy change A; H and occurs at a
temperature 1. The molar entropy of melting at 1'is therefore A, H/T (Section 3.3),
and the Clapeyron equation becomes

dp AfusH

— = (4.7)
dT  TA,V

where AV is the change in molar volume that occurs on melting. The enthalpy of
melting is positive (the only exception is helium-3) and the volume change is usually
positive and always small. Consequently, the slope dp/d T is steep and usually positive
(Fig. 4.13).

We can obtain the formula for the phase boundary by integrating dp/d T, assuming
that Ag, H and A,V change so little with temperature and pressure that they can be
treated as constant. If the melting temperature is T* when the pressure is p*, and T
when the pressure is p, the integration required is
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J P A H J Tdr
dp= —
v AV T

Therefore, the approximate equation of the solid-liquid boundary is

A H T
p=pf+——In— (4.8)
AV T
This equation was originally obtained by yet another Thomson—James, the brother
of William, Lord Kelvin. When T'is close to T*, the logarithm can be approximated by
using

therefore,
PzP*JFT;V(T— ™) (4.9)

This expression is the equation of a steep straight line when p is plotted against T (as
in Fig. 4.13).

(c) The liquid-vapour boundary

The entropy of vaporization at a temperature T'is equal to A, H/T; the Clapeyron
equation for the liquid—vapour boundary is therefore

dp AvapH

= (4.10)
dT  TA,V

The enthalpy of vaporization is positive; A, ,Vis large and positive. Therefore, dp/dT
is positive, but it is much smaller than for the solid-liquid boundary. It follows that
dT/dp is large, and hence that the boiling temperature is more responsive to pressure
than the freezing temperature.

Example 4.2 Estimating the effect of pressure on the boiling temperature

Estimate the typical size of the effect of increasing pressure on the boiling point of
aliquid.

Method To use eqn 4.10 we need to estimate the right-hand side. At the boiling
point, the term A, H/T is Trouton’s constant (Section 3.3b). Because the molar
volume of a gas is so much greater than the molar volume of a liquid, we can write

AVapV: Vm(g) - Vm(l) =V, (g)

m

and take for V| (g) the molar volume of a perfect gas (at low pressures, at least).

Answer Trouton’s constant has the value 85 ] K~ mol™. The molar volume of a
perfect gas is about 25 dm® mol™ at 1 atm and near but above room temperature.
Therefore,

dp 85J K~ mol™!

=~ =3.4x10°PaK!
dT  2.5%x102m’mol™!

Comment 4.2

Calculations involving natural
logarithms often become simpler if we
note that, provided -1 <x< 1,In(1 +x)
=x—12+3x3 - Ifx<x1,agood
approximation isIn(1 + x) = x.
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Fig. 414 A typical liquid—vapour phase
boundary. The boundary can be regarded
as a plot of the vapour pressure against the
temperature. Note that, in some depictions
of phase diagrams in which a logarithmic
pressure scale is used, the phase boundary
has the opposite curvature (see Fig. 4.7).
This phase boundary terminates at the
critical point (not shown).

We have used 1 J=1Pam?. This value corresponds to 0.034 atm K1, and hence to
dT/dp=29 K atm™. Therefore, a change of pressure of +0.1 atm can be expected to
change a boiling temperature by about +3 K.

Self-test 4.3 Estimate dT/dp for water at its normal boiling point using the infor-
mation in Table 3.2 and V,_(g) = RT/p. [28 K atm™]

Because the molar volume of a gas is so much greater than the molar volume of a
liquid, we can write A, ,V = V| (g) (as in Example 4.2). Moreover, if the gas behaves
perfectly, V, (g) = RT/p. These two approximations turn the exact Clapeyron equa-
tion into

At
dT  T(RT/p)

which rearranges into the Clausius—Clapeyron equation for the variation of vapour
pressure with temperature:

dinp A, H

4,11
dT  RT* (410

(We have used dx/x=d In x.) Like the Clapeyron equation, the Clausius—Clapeyron
equation is important for understanding the appearance of phase diagrams, particu-
larly the location and shape of the liquid—vapour and solid—vapour phase boundaries.
It lets us predict how the vapour pressure varies with temperature and how the boil-
ing temperature varies with pressure. For instance, if we also assume that the enthalpy of
vaporization is independent of temperature, this equation can be integrated as follows:

JIHP AvapHJT dT  AGH(1 1)

TR T R T T

where p* is the vapour pressure when the temperature is T* and p the vapour pressure
when the temperature is 1. Therefore, because the integral on the left evaluates to
In(p/p*), the two vapour pressures are related by

H({1 1
p=pret x=—AV;P {TF} (4.12)°

Equation 4.12 is plotted as the liquid—vapour boundary in Fig. 4.14. The line does not
extend beyond the critical temperature T, because above this temperature the liquid
does not exist.

lllustration 4.2 The effect of temperature on the vapour pressure of a liquid

Equation 4.12 can be used to estimate the vapour pressure of a liquid at any tem-
perature from its normal boiling point, the temperature at which the vapour pres-
sure is 1.00 atm (101 kPa). Thus, because the normal boiling point of benzene is
80°C (353 K) and (from Table 2.3), AvapH*}: 30.8 k] mol™, to calculate the vapour
pressure at 20°C (293 K), we write

_3.08><104]mol—1( 1 1 \ 3.08><104(1 1\

T 83145)K'mol! \ 293K 353K ) 83145 (293 353)

X
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and substitute this value into eqn 4.12 with p* = 101 kPa. The result is 12 kPa. The
experimental value is 10 kPa.

A note on good practice Because exponential functions are so sensitive, it is good
practice to carry out numerical calculations like this without evaluating the inter-
mediate steps and using rounded values.

(d) The solid-vapour boundary

The only difference between this case and the last is the replacement of the enthalpy
of vaporization by the enthalpy of sublimation, A, H. Because the enthalpy of sub-
limation is greater than the enthalpy of vaporization (A, ,H = Ap, H + A, H), the
equation predicts a steeper slope for the sublimation curve than for the vaporiza-
tion curve at similar temperatures, which is near where they meet at the triple point

(Fig. 4.15).

4.7 The Ehrenfest classification of phase transitions

There are many different types of phase transition, including the familiar examples of
fusion and vaporization and the less familiar examples of solid—solid, conducting—
superconducting, and fluid—superfluid transitions. We shall now see that it is possible
to use thermodynamic properties of substances, and in particular the behaviour of the
chemical potential, to classify phase transitions into different types. The classification
scheme was originally proposed by Paul Ehrenfest, and is known as the Ehrenfest
classification.

Many familiar phase transitions, like fusion and vaporization, are accompanied by
changes of enthalpy and volume. These changes have implications for the slopes of the
chemical potentials of the phases at either side of the phase transition. Thus, at the
transition from a phase o to another phase f3,

() ()

e )y (ap Jp P Vom™ e

(30 (a \——sﬁm+s AmszAmH
KBTJP T,

trs
Because A,V and A, H are non-zero for melting and vaporization, it follows that for
such transitions the slopes of the chemical potential plotted against either pressure or
temperature are different on either side of the transition (Fig. 4.16a). In other words,
the first derivatives of the chemical potentials with respect to pressure and tempera-
ture are discontinuous at the transition.

A transition for which the first derivative of the chemical potential with respect to
temperature is discontinuous is classified as a first-order phase transition. The con-
stant-pressure heat capacity, C,,, of a substance is the slope of a plot of the enthalpy
with respect to temperature. At a first-order phase transition, H changes by a finite
amount for an infinitesimal change of temperature. Therefore, at the transition the
heat capacityis infinite. The physical reason is that heating drives the transition rather
than raising the temperature. For example, boiling water stays at the same tempera-
ture even though heat is being supplied.

v

(4.13)

Liquid

Solid

Pressure, p

Gas

Temperature, T

Fig. 4156 Near the point where they coincide
(at the triple point), the solid—gas
boundary has a steeper slope than the
liquid—gas boundary because the enthalpy
of sublimation is greater than the enthalpy
of vaporization and the temperatures that
occur in the Clausius—Clapeyron equation
for the slope have similar values.
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Fig. 417 The A-curve for helium, where the
heat capacity rises to infinity. The shape of
this curve is the origin of the name A-
transition.
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Fig. 416 The changes in thermodynamic properties accompanying (a) first-order and
(b) second-order phase transitions.

A second-order phase transition in the Ehrenfest sense is one in which the first
derivative of u with respect to temperature is continuous but its second derivative is
discontinuous. A continuous slope of u (a graph with the same slope on either side of
the transition) implies that the volume and entropy (and hence the enthalpy) do not
change at the transition (Fig. 4.16b). The heat capacity is discontinuous at the transi-
tion but does not become infinite there. An example of a second-order transition is
the conducting—superconducting transition in metals at low temperatures.’

The term A-transition is applied to a phase transition that is not first-order yet
the heat capacity becomes infinite at the transition temperature. Typically, the heat
capacity of a system that shows such a transition begins to increase well before the
transition (Fig. 4.17), and the shape of the heat capacity curve resembles the Greek
letter lambda. This type of transition includes order—disorder transitions in alloys, the
onset of ferromagnetism, and the fluid—superfluid transition of liquid helium.

Molecular interpretation 4.1 Second-order phase transitions and A-transitions

One type of second-order transition is associated with a change in symmetry of
the crystal structure of a solid. Thus, suppose the arrangement of atoms in a solid
is like that represented in Fig. 4.18a, with one dimension (technically, of the unit
cell) longer than the other two, which are equal. Such a crystal structure is classified
as tetragonal (see Section 20.1). Moreover, suppose the two shorter dimensions
increase more than the long dimension when the temperature is raised. There may
come a stage when the three dimensions become equal. At that point the crystal has
cubic symmetry (Fig. 4.18b), and at higher temperatures it will expand equally in
all three directions (because there is no longer any distinction between them). The
tetragonal — cubic phase transition has occurred, but as it has not involved a dis-
continuity in the interaction energy between the atoms or the volume they occupy,
the transition is not first-order.

2 A metallic conductor is a substance with an electrical conductivity that decreases as the temperature in-
creases. A superconductor is a solid that conducts electricity without resistance. See Chapter 20 for more
details.
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Fig. 418 One version of a second-order phase transition in which (a) a tetragonal phase
expands more rapidly in two directions than a third, and hence becomes a cubic phase,
which (b) expands uniformly in three directions as the temperature is raised. There is no
rearrangement of atoms at the transition temperature, and hence no enthalpy of transition.

The order—disorder transition in B-brass (CuZn) is an example of a A-transition.
The low-temperature phase is an orderly array of alternating Cu and Zn atoms.
The high-temperature phase is arandom array of the atoms (Fig. 4.19). At T=0the
order is perfect, but islands of disorder appear as the temperature is raised. The
islands form because the transition is cooperative in the sense that, once two atoms
have exchanged locations, it is easier for their neighbours to exchange their loca-
tions. The islands grow in extent, and merge throughout the crystal at the transition
temperature (742 K). The heat capacity increases as the transition temperature
is approached because the cooperative nature of the transition means that it is
increasingly easy for the heat supplied to drive the phase transition rather than to
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(c)

Fig. 419 An order—disorder transition.

(a) At T=0, there is perfect order, with
different kinds of atoms occupying
alternate sites. (b) As the temperature is
increased, atoms exchange locations and
islands of each kind of atom form in
regions of the solid. Some of the original
order survives. (¢) At and above the
transition temperature, the islands occur at
random throughout the sample.

be stored as thermal motion.

Checklist of key ideas

[ 1. Aphaseisaform of matter that is uniform throughout in
chemical composition and physical state.

[] 2. Atransition temperature is the temperature at which the two
phases are in equilibrium.

[] 3. A metastable phase is a thermodynamically unstable phase
that persists because the transition is kinetically hindered.

[] 4. Aphase diagram is a diagram showing the regions of pressure
and temperature at which its various phases are
thermodynamically stable.

[] 5. Aphaseboundary is a line separating the regions in a phase
diagram showing the values of p and T at which two phases
coexist in equilibrium.

[] 6. Thevapour pressure is the pressure of a vapour in equilibrium
with the condensed phase.

. Boiling is the condition of free vaporization throughout the
liquid.

] s.
1 o.

[Jz1o0.
11

az.

The boiling temperature is the temperature at which the
vapour pressure of aliquid is equal to the external pressure.

The critical temperature is the temperature at which a liquid
surface disappears and above which a liquid does not exist
whatever the pressure. The critical pressure is the vapour
pressure at the critical temperature.

A supercritical fluid is a dense fluid phase above the critical
temperature.

The melting temperature (or freezing temperature) is the
temperature at which, under a specified pressure, the liquid
and solid phases of a substance coexist in equilibrium.

The triple point is a point on a phase diagram at which the
three phase boundaries meet and all three phases are in
mutual equilibrium.

. The chemical potential ¢t of a pure substance is the molar

Gibbs energy of the substance.
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[]14. The chemical potential is uniform throughout a system at
equilibrium.

[[]15. The chemical potential varies with temperature as
(a,u/aT)p =-8,, and with pressure as (Ju/dp)p=V ..

[]116. The vapour pressure in the presence of applied pressure is
given by p= p*eVmAP/RT.

Further reading

4 PHYSICAL TRANSFORMATIONS OF PURE SUBSTANCES

[]17. The temperature dependence of the vapour pressure is given
by the Clapeyron equation, dp/dT=A_S/A V.

[]18. The temperature dependence of the vapour pressure of a
condensed phase is given by the Clausius—Clapeyron
equation, dIn p/dT = AvapH/RTz.

The Ehrenfest classification is a classification of phase
transitions based on the behaviour of the chemical potential.

9.
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4.1 Discuss the implications for phase stability of the variation of chemical
potential with temperature and pressure.

4.2 Suggesta physical interpretation of the phenomena of superheating and
supercooling.

4.3 Discuss what would be observed as a sample of water is taken along a path
that encircles and is close to its critical point.

4.4 Use the phase diagram in Fig. 4.4 to state what would be observed when
asample of carbon dioxide, initially at 1.0 atm and 298 K, is subjected to the
following cycle: (a) isobaric (constant—pressure) heating to 320 K,

(b) isothermal compression to 100 atm, (c) isobaric cooling to 210 K,

(d) isothermal decompression to 1.0 atm, (e) isobaric heating to 298 K.

Exercises

4.5 The use of supercritical fluids for the extraction of a component from a
complicated mixture is not confined to the decaffeination of coffee. Consult
library and internet resources and prepare a discussion of the principles,
advantages, disadvantages, and current uses of supercritical fluid extraction
technology.

4.6 Explain the significance of the Clapeyron equation and of the
Clausius—Clapeyron equation.

4.7 Distinguish between a first-order phase transition, a second-order phase
transition, and a A-transition at both molecular and macroscopic levels.

4.1(a) The vapour pressure of dichloromethane at 24.1°C is 53.3 kPa and its
enthalpy of vaporization is 28.7 k] mol™!. Estimate the temperature at which
its vapour pressure is 70.0 kPa.

4.1(b) The vapour pressure of a substance at 20.0°C is 58.0 kPa and its
enthalpy of vaporization is 32.7 k] mol™.. Estimate the temperature at which
its vapour pressure is 66.0 kPa.

4.2(a) The molar volume of a certain solid is 161.0 cm® mol ™! at 1.00 atm and
350.75 K, its melting temperature. The molar volume of the liquid at this
temperature and pressure is 163.3 cm® mol™L. At 100 atm the melting
temperature changes to 351.26 K. Calculate the enthalpy and entropy of
fusion of the solid.

% See Further reading in Chapter 2 for additional sources of thermochemical data.

4.2(b) The molar volume of a certain solid is 142.0 cm® mol™ at 1.00 atm and
427.15 K, its melting temperature. The molar volume of the liquid at this
temperature and pressure is 152.6 cm® mol™!. At 1.2 MPa the melting
temperature changes to 429.26 K. Calculate the enthalpy and entropy of
fusion of the solid.

4.3(a) The vapour pressure of a liquid in the temperature range 200 K to
260 K was found to fit the expression In(p/Torr) = 16.255 — 2501.8/(T/K).
Calculate the enthalpy of vaporization of the liquid.

4.3(b) The vapour pressure of a liquid in the temperature range 200 K to
260 K was found to fit the expression In(p/Torr) = 18.361 —3036.8/(T/K).
Calculate the enthalpy of vaporization of the liquid.



4.4{a) The vapour pressure of benzene between 10°C and 30°C fits the
expression log(p/Torr) =7.960 — 1780/(T/K). Calculate (a) the enthalpy of
vaporization and (b) the normal boiling point of benzene.

4.4(b) The vapour pressure of a liquid between 15°C and 35°C fits the
expression log(p/Torr) =8.750 — 1625/(T/K). Calculate (a) the enthalpy of
vaporization and (b) the normal boiling point of the liquid.

4.5(a) When benzene freezes at 5.5°C its density changes from 0.879 g cm™ to
0.891 g cm ™. Tts enthalpy of fusion is 10.59 k] mol ™. Estimate the freezing
point of benzene at 1000 atm.

4.5(b) When a certain liquid freezes at —3.65°C its density changes from
0.789 g cm ™ to 0.801 g cm>. Its enthalpy of fusion is 8.68 kJ mol L. Estimate
the freezing point of the liquid at 100 MPa.

4.6(a) InJulyin Los Angeles, the incident sunlight at ground level has a power
density of 1.2 kW m™ at noon. A swimming pool of area 50 m? s directly
exposed to the sun. What is the maximum rate of loss of water? Assume that
all the radiant energy is absorbed.

4.6(b) Suppose the incident sunlight at ground level has a power density of
0.87 kW m? at noon. What is the maximum rate of loss of water from a lake
ofarea 1.0 ha? (1 ha= 10* m?.) Assume that all the radiant energy is absorbed.

4.7(a) Anopen vessel containing (a) water, (b) benzene, (¢) mercury stands in
a laboratory measuring 5.0 m x 5.0 m x 3.0 m at 25°C. What mass of each

Problems™
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substance will be found in the air if there is no ventilation? (The vapour
pressures are (a) 3.2 kPa, (b) 13.1 kPa, (¢) 0.23 Pa.)

4.7(b) Ona cold, dry morning after a frost, the temperature was —5°C and the
partial pressure of water in the atmosphere fell to 0.30 kPa. Will the frost
sublime? What partial pressure of water would ensure that the frost remained?

4.8(a) Naphthalene, C,,Hg, melts at 80.2°C. If the vapour pressure of the
liquid is 1.3 kPa at 85.8°C and 5.3 kPa at 119.3°C, use the Clausius—Clapeyron
equation to calculate (a) the enthalpy of vaporization, (b) the normal boiling
point, and (¢) the enthalpy of vaporization at the boiling point.

4.8(b) The normal boiling point of hexane is 69.0°C. Estimate (a) its enthalpy
of vaporization and (b) its vapour pressure at 25°C and 60°C.

4.9(a) Calculate the melting point of ice under a pressure of 50 bar. Assume
that the density of ice under these conditions is approximately 0.92 g cm™ and

that of liquid water is 1.00 g cm™.

4.9(b) Calculate the melting point of ice under a pressure of 10 MPa. Assume
that the density of ice under these conditions is approximately 0.915 g cm™
and that of liquid water is 0.998 g cm™.

4.10(a) What fraction of the enthalpy of vaporization of water is spent on
expanding the water vapour?

4.10(b) What fraction of the enthalpy of vaporization of ethanol is spent on
expanding its vapour?

Numerical problems

4.1 The temperature dependence of the vapour pressure of solid sulfur
dioxide can be approximately represented by the relation log(p/Torr) =
10.5916 — 1871.2/(T/K) and that of liquid sulfur dioxide by log(p/Torr) =
8.3186 — 1425.7/(T/K). Estimate the temperature and pressure of the triple
point of sulfur dioxide.

4.2 Prior to the discovery that freon-12 (CF,Cl,) was harmful to the Earth’s
ozone layer, it was frequently used as the dispersing agent in spray cans for
hair spray, etc. Its enthalpy of vaporization at its normal boiling point of
—29.2°C is 20.25 kJ mol ™. Estimate the pressure that a can of hair spray using
freon-12 had to withstand at 40°C, the temperature of a can that has been
standing in sunlight. Assume that A, [ is a constant over the temperature
range involved and equal to its value at —29.2°C.

4.3 The enthalpy of vaporization of a certain liquid is found to be 14.4 kJ
mol™ at 180 K, its normal boiling point. The molar volumes of the liquid
and the vapour at the boiling pointare 115 cm® mol™! and 14.5 dm® mol™,
respectively. (a) Estimate dp/dT from the Clapeyron equation and (b) the
percentage error in its value if the Clausius—Clapeyron equation is used
instead.

4.4 Calculate the difference in slope of the chemical potential against
temperature on either side of (a) the normal freezing point of water and
(b) the normal boiling point of water. (¢) By how much does the chemical
potential of water supercooled to —5.0°C exceed that of ice at that
temperature?

4.5 Calculate the difference in slope of the chemical potential against pressure
on either side of (a) the normal freezing point of water and (b) the normal

boiling point of water. The densities of ice and water at 0°C are 0.917 g cm™
and 1.000 g cm™, and those of water and water vapour at 100°C are 0.958 g
cm™ and 0.598 g dm™>, respectively. By how much does the chemical potential
of water vapour exceed that of liquid water at 1.2 atm and 100°C?

4.6 The enthalpy of fusion of mercury is 2.292 kJ mol™, and its normal
freezing point is 234.3 K with a change in molar volume of +0.517 cm™ mol™!
on melting. At what temperature will the bottom of a column of mercury
(density 13.6 g cm™) of height 10.0 m be expected to freeze?

4.7 50.0 dm® of dry air was slowly bubbled through a thermally insulated
beaker containing 250 g of water initially at 25°C. Calculate the final
temperature. (The vapour pressure of water is approximately constant at

3.17 kPa throughout, and its heat capacity is 75.5 ] K™' mol™L. Assume that the
air is not heated or cooled and that water vapour is a perfect gas.)

4.8 The vapour pressure, p, of nitric acid varies with temperature as follows:

6r°C 0 20 40 50 70 80 90 100

p/kPa 192 638 17.7 27.7 62.3 893 1249 170.9

What are (a) the normal boiling point and (b) the enthalpy of vaporization of
nitric acid?

4.9 The vapour pressure of the ketone carvone (M =150.2 gmol™), a
component of oil of spearmint, is as follows:

6/°C 574  100.4
p/Torr  1.00 10.0

133.0 1578 2035 2275
40.0 100 400 760

Whatare (a) the normal boiling point and (b) the enthalpy of vaporization of
carvone?

* Problems denoted by the symbol & were supplied by Charles Trapp, Carmen Giunta, and Marshall Cady.
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4.10 Construct the phase diagram for benzene near its triple point at 36 Torr
and 5.50°C using the following data: Ag, = 10.6 kJ mol !, A, H=30.8K
mol™, p(s) =0.891 gcm™, p(1) =0.879 g cm™.

4.11% Inaninvestigation of thermophysical properties of toluene (R.D.
Goodwin J. Phys. Chem. Ref. Data 18, 1565 (1989)) presented expressions for
two coexistence curves (phase boundaries). The solid-liquid coexistence curve
is given by

pfbar = py/bar + 1000 % (5.60 + 11.727x)x

where x=T/T;— 1 and the triple point pressure and temperature are
P3=0.4362 pbar and T; = 178.15 K. The liquid—vapour curve is given by:

In(p/bar) =—10.418/y+ 21.157 — 15.996y + 14.015y* — 5.01205°
+4.7224(1 — y)170

where y=T/T = T/(593.95 K). (a) Plot the solid-liquid and liquid-vapour
phase boundaries. (b) Estimate the standard melting point of toluene.

(¢) Estimate the standard boiling point of toluene. (d) Compute the standard
enthalpy of vaporization of toluene, given that the molar volumes of the
liquid and vapour at the normal boiling point are 0.12 dm® mol™ and

30.3 dm® mol™, respectively.

4.12% Inastudy of the vapour pressure of chloromethane, A. Bah and N.
Dupont-Pavlovsky (J. Chem. Eng. Data 40, 869 (1995)) presented data for the
vapour pressure over solid chloromethane at low temperatures. Some of that
data is shown below:

T/IK  145.94
13.07

147.96
18.49

149.93
25.99

151.94
36.76

153.97
50.86

154.94

piPa 59.56

Estimate the standard enthalpy of sublimation of chloromethane at 150 K.
(Take the molar volume of the vapour to be that of a perfect gas, and that of
the solid to be negligible.)

Theoretical problems

4.13 Show that, for a transition between two incompressible solid phases,
AG is independent of the pressure.

4.14 The change in enthalpy is given by di/ = C,dT'+ Vdp. The Clapeyron
equation relates dp and dT at equilibrium, and so in combination the two
equations can be used to find how the enthalpy changes along a phase
boundary as the temperature changes and the two phases remain in
equilibrium. Show that d(AH/T) = ACP dInT.

4.15 In the ‘gas saturation method’ for the measurement of vapour pressure,
avolume V of gas (as measured at a temperature T and a pressure p) is
bubbled slowly through the liquid that is maintained at the temperature T,
and a mass loss 7 is measured. Show that the vapour pressure, p, of the liquid
is related to its molar mass, M, by p= AmP/(1 + Am), where A=RT/MPV. The
vapour pressure of geraniol (M= 154.2 g mol™!), which is a component of oil
of roses, was measured at 110°C. It was found that, when 5.00 dm® of nitrogen
at 760 Torr was passed slowly through the heated liquid, the loss of mass was
0.32 g. Calculate the vapour pressure of geraniol.

4.16 Combine the barometric formula (stated in Impact I1.1) for the
dependence of the pressure on altitude with the Clausius—Clapeyron
equation, and predict how the boiling temperature of a liquid depends on the
altitude and the ambient temperature. Take the mean ambient temperature
as 20°C and predict the boiling temperature of water at 3000 m.

4.17 Figure 4.9 gives a schematic representation of how the chemical
potentials of the solid, liquid, and gaseous phases of a substance vary with
temperature. All have a negative slope, but it is unlikely that they are truly
straight lines as indicated in the illustration. Derive an expression for the
curvatures (specifically, the second derivatives with respect to temperature) of
these lines. Is there a restriction on the curvature of these lines? Which state of
matter shows the greatest curvature?

4 PHYSICAL TRANSFORMATIONS OF PURE SUBSTANCES

4.18 The Clapeyron equation does not apply to second-order phase
transitions, but there are two analogous equations, the Ehrenfest equations,
that do. They are:

dp
dr -~ Kr,— Kr;

o, — 0 d_p: Comz ~ Comi

dT TV (0, — o))

where aris the expansion coefficient, i the isothermal compressibility, and
the subscripts 1 and 2 refer to two different phases. Derive these two
equations. Why does the Clapeyron equation not apply to second-order
transitions?

4.19 For afirst-order phase transition, to which the Clapeyron equation does
apply, prove the relation

oVA,H
TRV
s

where Cg=(dq/dT ) is the heat capacity along the coexistence curve of two
phases.

Applications: to biology and engineering

4.20 Proteins are polypeptides, polymers of amino acids that can existin
ordered structures stabilized by a variety of molecular interactions. However,
when certain conditions are changed, the compact structure of a polypeptide
chain may collapse into a random coil. This structural change may be
regarded as a phase transition occurring at a characteristic transition
temperature, the melting temperature, T, which increases with the strength
and number of intermolecular interactions in the chain. A thermodynamic
treatment allows predictions to be made of the temperature T, for the
unfolding of a helical polypeptide held together by hydrogen bonds into a
random coil. Ifa polypeptide has n amino acids, n—4 hydrogen bonds are
formed to form an o-helix, the most common type of helix in naturally
occurring proteins (see Chapter 19). Because the first and last residues in the
chain are free to move, n— 2 residues form the compact helix and have
restricted motion. Based on these ideas, the molar Gibbs energy of unfolding
of a polypeptide with n > 5 may be written as

AG,=(n—DA H, — (n=2)TA,S,,

where Ay H and Ay S, are, respectively, the molar enthalpy and entropy of
dissociation of hydrogen bonds in the polypeptide. (a) Justify the form of the
equation for the Gibbs energy of unfolding. That is, why are the enthalpy
and entropy terms written as (n — 4)A, H and (n —2)A, S, . respectively?
(b) Show that T, may be written as

(n—DAH,
(n=2)AyS,

m

(¢) Plot T, /(A H /A S,y for 5 < n<20. At what value of # does T, change
by less than 1% when 7 increases by one?

4.21% The use of supercritical fluids as mobile phases in SFC depends on their
properties as nonpolar solvents. The solubility parameter, &, is defined as
(AU gpesive! Vi) V2 where AU .. is the cohesive energy of the solvent, the
energy per mole needed to increase the volume isothermally to an infinite
value. Diethyl ether, carbon tetrachloride, and dioxane have solubility
parameter ranges of 7-8, 8-9, and 10—11, respectively. (a) Derive a practical
equation for the computation of the isotherms for the reduced internal energy
change, AU(T,,V,) defined as
A7y e Gl

pCVC
(b) Draw a graph of AU, against p, for the isotherms 7, =1,1.2, and 1.5 in the
reduced pressure range for which 0.7 < V,< 2. (¢) Draw a graph of Sagainst p,
for the carbon dioxide isotherms 7, = 1 and 1.5 in the reduced pressure range
for which 1 < V,< 3. In what pressure range at T;= 1 will carbon dioxide have



solvent properties similar to those of liquid carbon tetrachloride? Hint. Use
mathematical software or a spreadsheet.

4.22% A substance as well-known as methane still receives research attention
because it is an important component of natural gas, a commonly used fossil
fuel . Friend et al. have published a review of thermophysical properties of
methane (D.G. Friend, J.F. Ely, and H. Ingham, J. Phys. Chem. Ref. Data 18,
583 (1989)), which included the following data describing the liquid—vapour
phase boundary.

T/K 100 108 110 112 114 120 130 140 150 160 170 190

p/MPa  0.034 0.074 0.088 0.104 0.122 0.192 0.368 0.642 1.041 1.593 2.329 4.521

(a) Plot the liquid—vapour phase boundary. (b) Estimate the standard boiling
point of methane. (¢) Compute the standard enthalpy of vaporization of
methane, given that the molar volumes of the liquid and vapour at the
standard boiling point are 3.80 x 1072 and 8.89 dm?® mol™}, respectively.

PROBLEMS 135

4.23t Diamond, an allotrope of carbon, is the hardest substance and the best
conductor of heat yet characterized. For these reasons, diamond is used widely
in industrial applications that require a strong abrasive. Unfortunately, it is
difficult to synthesize diamond from the more readily available allotropes of
carbon, such as graphite. To illustrate this point, calculate the pressure
required to convert graphite into diamond at 25°C. The following data apply
to 25°C and 100 kPa. Assume the specific volume, V,, and xare constant with
respect to pressure changes.

Graphite Diamond
AG(Kmol™) 0 +2.8678
V/(em?® g™ 0.444 0.284
Kkr/kPa 3.04x10°  0.187x 107
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This chapter begins by developing the concept of chemical potential to show that it is a par-
ticular case of a class of properties called partial molar quantities. Then it explores how to
use the chemical potential of a substance to describe the physical properties of mixtures.
The underlying principle to keep in mind is that at equilibrium the chemical potential of a
species is the same in every phase. We see, by making use of the experimental observa-
tions known as Racult’s and Henry's laws, how to express the chemical potential of a
substance in terms of its mole fraction in a mixture. With this result established, we can
calculate the effect of a solute on certain thermodynamic properties of a solution. These
properties include the lowering of vapour pressure of the solvent, the elevation of its boiling
point, the depression of its freezing point, and the origin of osmotic pressure. Finally, we see
how to express the chemical potential of a substance in a real mixture in terms of a prop-
erty known as the activity. We see how the activity may be measured, and conclude with a
discussion of how the standard states of solutes and solvents are defined and how ion—ion
interactions are taken into account in electrolyte solutions.

Chemistry deals with mixtures, including mixtures of substances that can react
together. Therefore, we need to generalize the concepts introduced so far to deal with
substances that are mingled together. As a first step towards dealing with chemical
reactions (which are treated in Chapter 7), here we consider mixtures of substances
that do not react together. At this stage we deal mainly with binary mixtures, which are
mixtures of two components, A and B. We shall therefore often be able to simplify
equations by making use of the relation x, +x; = 1.

The thermodynamic description of mixtures

We have already seen that the partial pressure, which is the contribution of one com-
ponent to the total pressure, is used to discuss the properties of mixtures of gases. For
amore general description of the thermodynamics of mixtures we need to introduce
other analogous ‘partial’ properties.

5.1 Partial molar quantities
The easiest partial molar property to visualize is the “partial molar volume’, the con-
tribution that a component of a mixture makes to the total volume of a sample.

(a) Partial molar volume

Imagine a huge volume of pure water at 25°C. When a further 1 mol H,O isadded, the
volume increases by 18 cm® and we can report that 18 cm® mol™ is the molar volume
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of pure water. However, when we add 1 mol H,O to a huge volume of pure ethanol,
the volume increases by only 14 cm®. The reason for the different increase in volume
is that the volume occupied by a given number of water molecules depends on the
identity of the molecules that surround them. In the latter case there is so much
ethanol present that each H,O molecule is surrounded by ethanol molecules, and the
packing of the molecules results in the H,O molecules increasing the volume by only
14 cm?®. The quantity 14 cm?® mol™ is the partial molar volume of water in pure
ethanol. In general, the partial molar volume of a substance A in a mixture is the
change in volume per mole of A added to a large volume of the mixture.

The partial molar volumes of the components of a mixture vary with composition
because the environment of each type of molecule changes as the composition
changes from pure A to pure B. It is this changing molecular environment, and the
consequential modification of the forces acting between molecules, that results in the
variation of the thermodynamic properties of a mixture as its composition is changed.
The partial molar volumes of water and ethanol across the full composition range at
25°C are shown in Fig. 5.1.

The partial molar volume, Vi of a substance ] at some general composition is
defined formally as follows:

v, [ BV] 5.1
! on o T

where the subscript #” signifies that the amounts of all other substances present are
constant.! The partial molar volume is the slope of the plot of the total volume as the
amount of ] is changed, the pressure, temperature, and amount of the other compon-
ents being constant (Fig. 5.2). Its value depends on the composition, as we saw for
water and ethanol. The definition in eqn 5.1 implies that, when the composition of the
mixture is changed by the addition of d#n, of A and dj of B, then the total volume of
the mixture changes by

KA (V)
dv= KBT dnA—i- KBT dnB = VAdnA =+ VBdnB (52)
A/pTing B /p,Tiny

Provided the composition is held constant as the amounts of A and B are increased,
the final volume of a mixture can be calculated by integration. Because the partial
molar volumes are constant (provided the composition is held constant throughout
the integration) we can write

iy, g iy L
V= J Vydm, +J Vydng = VAJ dmy + VBJ dng

0 0 0 0
= Vahig+ Vprig (5.3)

Although we have envisaged the two integrations as being linked (in order to preserve
constant composition), because V is a state function the final result in eqn 5.3 is valid
however the solution is in fact prepared.

Partial molar volumes can be measured in several ways. One method is to measure
the dependence of the volume on the composition and to fit the observed volume to a
function of the amount of the substance. Once the function has been found, its slope
can be determined at any composition of interest by differentiation.

! The IUPAC recommendation is to denote a partial molar quantity by X, but only when there is the pos-
sibility of confusion with the quantity X. For instance, the partial molar volume of NaCl in water could be
written V(NaCl, aq) to distinguish it from the volume of the solution, V(NaCl, aq).

Partial molar volume of water, V(H,0)/{cm® mol™)

Fig. 5.1 The partial molar volumes of

18¢

16}

14t

Ethanol

L1 1 1
0 02040608 1

Mole fraction of
ethanol, x(C,H,OH)

58

56

54

water and ethanol at 25°C. Note the
different scales (water on the left, ethanol
on the right).

Volume, V
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Fig. 5.2 The partial molar volume of a

Amount of A, n,

substance is the slope of the variation of the
total volume of the sample plotted against
the composition. In general, partial molar
quantities vary with the composition, as
shown by the different slopes at the
compositions a and b. Note that the partial
molar volume at b is negative: the overall
volume of the sample decreases as A is

added.
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T\

53

Partial molar volume, V/(cm® mol ')

b

0 5 10
X

Fig. 5.3 The partial molar volume of ethanol
as expressed by the polynomial in
Hlustration 5.1.

|| : Exploration Using the data from
= [llustration 5.1, determine the value
of b at which V; has a minimum value.

Gibbs energy, G

ag b
0 Amount of A, n,

Fig. 5.4 The chemical potential of a
substance is the slope of the total Gibbs
energy of a mixture with respect to the
amount of substance of interest. In general,
the chemical potential varies with
composition, as shown for the two values
at a and b. In this case, both chemical
potentials are positive.

lllustration 5.1 The determination of partial molar volume

A polynomial fit to measurements of the total volume of a water/ethanol mixture
at 25°C that contains 1.000 kg of water is

v=1002.93 + 54.6664x — 0.363 94x2 + 0.028 256x3

where v = V/em?®, x = ng/mol, and ny, is the amount of CH,CH,OH present. The
partial molar volume of ethanol, V7, is therefore

oV d(V/em?) , . v ,
Vi=|— = — cm® mol™! = | — cm® mol™
dny o T d(ng/mol) T 0x o T

Then, because

dv
—=54.6664—2(0.36394)x + 3(0.028256)x?
X
we can conclude that
Vi/(em® mol™) = 54.6664 — 0.72788x + 0.084768x

Figure 5.3 is a graph of this function.

Seif-test 5.1 At 25°C, the density of a 50 per cent by mass ethanol/water solution
is 0.914 g cm™. Given that the partial molar volume of water in the solution is
17.4 cm?® mol™, what is the partial molar volume of the ethanol?

[56.4 cm® mol™]

Molar volumes are always positive, but partial molar quantities need notbe. For ex-
ample, the limiting partial molar volume of MgSO, in water (its partial molar volume
in the limit of zero concentration) is —1.4 cm® mol™!, which means that the addition
of 1 mol MgSO, to a large volume of water results in a decrease in volume of 1.4 cm®.
The mixture contracts because the salt breaks up the open structure of water as the
ions become hydrated, and it collapses slightly.

(b) Partial molar Gibbs energies

The concept of a partial molar quantity can be extended to any extensive state func-
tion. For a substance in a mixture, the chemical potential is defined as the partial molar
Gibbs energy:

(9G)
== (5.4]
J Kan] JP)M,

That s, the chemical potential is the slope of a plot of Gibbs energy against the amount
of the component J, with the pressure and temperature (and the amounts of the other
substances) held constant (Fig. 5.4). For a pure substance we can write G=m,G;  , and
from eqn 5.4 obtain y; = G; 1 in this case, the chemical potential is simply the molar
Gibbs energy of the substance, as we used in Chapter 4.

By the same argument that led to eqn 5.3, it follows that the total Gibbs energy of a
binary mixture is

G=mn, U+t lp (5.5)

where g1, and p, are the chemical potentials at the composition of the mixture. That
is, the chemical potential of a substance in a mixture is the contribution of that
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substance to the total Gibbs energy of the mixture. Because the chemical potentials
depend on composition (and the pressure and temperature), the Gibbs energy of a
mixture may change when these variables change, and for a system of components A,
B, etc., the equation dG = Vdp — SdT becomes

dG=Vdp—SdT+ u,dn, + ppdng + - - - (5.6)

This expression is the fundamental equation of chemical thermodynamics. Itsimplica-
tions and consequences are explored and developed in this and the next two chapters.
At constant pressure and temperature, eqn 5.6 simplifies to

dG=pu,dn, + ppdng + - - - (5.7)

We saw in Section 3.5e that under the same conditions dG = dw Therefore, at

constant temperature and pressure,

add,max*

dWadd,max = :uAdnA + uqunB Shakts (58)

That is, additional (non-expansion) work can arise from the changing composition of
a system. For instance, in an electrochemical cell, the chemical reaction is arranged to
take place in two distinct sites (at the two electrodes). The electrical work the cell per-
forms can be traced to its changing composition as products are formed from reactants.

(c¢) The wider significance of the chemical potential

The chemical potential does more than show how G varies with composition. Because
G=U+pV—TS, and therefore U=—pV+ TS+ G, we can write a general infinitesimal
change in U for a system of variable composition as
dU=—pdV—-Vdp+SdT+ TdS+dG
=—pdV—Vdp+SdT+TdS+ (Vdp — SdT + pdn, + ppdng+--+)
=—pdV+ TdS+ p,dn, + ppdng+- -

This expression is the generalization of eqn 3.43 (that dU= TdS — pdV) to systems in
which the composition may change. It follows that at constant volume and entropy,

dU=p,dn, + ypdng+- - - (5.9)
and hence that
oU
= | (5.10)
0Ny Jg v

Therefore, not only does the chemical potential show how G changes when the com-
position changes, it also shows how the internal energy changes too (but under a
different set of conditions). In the same way it is easy to deduce that
oH ((0A )
(a) = (_ (b) == (511}
k Bn] J k Bn] J

Vbt
Thus we see that the g, shows how all the extensive thermodynamic properties U, H,
A, and G depend on the composition. This is why the chemical potential is so central
to chemistry.

S.prt’

(d) The Gibbs-Duhem equation

Because the total Gibbs energy of a binary mixture is given by eqn 5.5 and the
chemical potentials depend on the composition, when the compositions are changed
infinitesimally we might expect G of a binary system to change by

dG=pu,dn, + ppdng + ndy, +npd g

139
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Comment 5.1

The molar concentration (colloquially,
the ‘molarity’, [J] or CI) is the amount of
solute divided by the volume of the
solution and is usually expressed in
moles per cubic decimetre (mol dm™3).
We write ¢®= 1 mol dm™>., The term
molality, b, is the amount of solute
divided by the mass of solvent and is
usually expressed in moles per kilogram
of solvent (mol kg™'). We write 5° =

1 mol kg™,

However, we have seen that at constant pressure and temperature a change in Gibbs
energy is given by eqn 5.7. Because G is a state function, these two equations must be
equal, which implies that at constant temperature and pressure

nydp, +npdpp =0 (5.12a)
This equation is a special case of the Gibbs—Duhem equation:
Y ndp =0 (5.12b)
]

The significance of the Gibbs—Duhem equation is that the chemical potential of one
component of a mixture cannot change independently of the chemical potentials of
the other components. In a binary mixture, if one partial molar quantity increases,
then the other must decrease, with the two changes related by

n
dptp = — dty
fig

(5.13)

The same line of reasoning applies to all partial molar quantities. We can see in
Fig. 5.1, for example, that, where the partial molar volume of water increases, that
of ethanol decreases. Moreover, as eqn 5.13 shows, and as we can see from Fig. 5.1, a
small change in the partial molar volume of A corresponds to a large change in the
partial molar volume of B if n,/n, is large, but the opposite is true when this ratio is
small. In practice, the Gibbs—Duhem equation is used to determine the partial molar
volume of one component of a binary mixture from measurements of the partial
molar volume of the second component.

Example 5.1 Using the Gibbs—Duhem equation

The experimental values of the partial molar volume of K,SO,(aq) at 298 K are
found to fit the expression

vp=232.280 + 18.216x'7

where v, = VKzso/ (cm® mol™) and x is the numerical value of the molality of
K,SO, (x = b/b%; see Comment 5.1). Use the Gibbs—Duhem equation to derive an
equation for the molar volume of water in the solution. The molar volume of pure
water at 298 K is 18.079 cm® mol™.

Method Let A denote H,O, the solvent, and B denote K,SO,, the solute. The
Gibbs-Duhem equation for the partial molar volumes of two components is
11,d V) +15dV = 0. This relation implies that dv, =—(#,/n, )dvg, and therefore that
v, can be found by integration:

* s
v =i —|[—du
s

where v} = V,/(cm® mol™) is the numerical value of the molar volume of pure A.
The first step is to change the variable v, to x= b/b® and then to integrate the right-
hand side between x= 0 (pure B) and the molality of interest.

Answer It follows from the information in the question that, with B = K,SO,,
dvp/dx=9.108x""2. Therefore, the integration required is

b/b®
B _
— x2dx

UBZUE—9.108J -
o "a
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However, the ratio of amounts of A (H,0) and B (K,SO,) is related to the molality £ 18.079
of B, b= ny/(1 kg water) and n, = (1 kg water)/M, where M, is the molar mass of
water, by
M
L G RS 38 18.078
n, (1kg)/M, 1kg =
and hence E é
nE O
b/ s %
quu;—9.108MAb9J xMdx=v} - 2{9.108 M, b*(b/b%)*7} § 36 3
0 0 3
7 4 =1
It then follows, by substituting the data (including M, = 1.802 x 107 kg mol™, the = -
molar mass of water), that
V,/(cm® mol™) = 18.079 — 0.1094( b/b%)*"* - L
The partial molar volumes are plotted in Fig. 5.5.
Self-test 5.2 Repeat the calculation for a salt B for which V;/(cm® mol™) =6.218 49 I 18.075
+5.146b— 7.147b*. [Vy/(em® mol™) = 18.079 — 0.0464b% + 0.08590°] 0 0.05 0.1
bi{mol kg™

Fig.5.56 The partial molar volumes of the

5.2 The thermodynamics of mixing components of an aqueous solution of

. ) ) L potassium sulfate.
The dependence of the Gibbs energy of a mixture on its composition is given by

eqn 5.5, and we know that at constant temperature and pressure systems tend towards
lower Gibbs energy. This is the link we need in order to apply thermodynamics to the
discussion of spontaneous changes of composition, as in the mixing of two sub-
stances. One simple example of a spontaneous mixing process is that of two gases
introduced into the same container. The mixing is spontaneous, so it must correspond
to a decrease in G. We shall now see how to express this idea quantitatively.

(a) The Gibbs energy of mixing of perfect gases n, T,p n, T, p
Let the amounts of two perfect gases in the two containers be n, and ny; both are at —
a temperature T and a pressure p (Fig. 5.6). At this stage, the chemical potentials of i 7
the two gases have their “pure’ values, which are obtained by applying the definition
U= G, toeqn 3.57: T, P P With p, + Py = p
= 9+RT1n£ (5.14a)°
H=p I .

; . . . . Fig.5.6 The arrangement for calculating the
where y® is the standard chemical potential, the chemical potential of the pure gas thermmindyrmie funetons oPmidng oftwo

at 1 bar. It will be much simpler notationally if we agree to let p denote the pressure  perfect gases.
relative to p®; that is, to replace p/p® by p, for then we can write

u=p*+RTInp {5.14b}°

Equations for which this convention is used will be labelled {1}, {2}, ...; to use the
equations, we have to remember to replace p by p/p® again. In practice, that simply
means using the numerical value of p in bars. The Gibbs energy of the total system is
then given by eqn 5.5 as

Gi=n iy +npp=n,(us+ RTIn p) + np(uy + RTIn p) {5.15¢°
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A..GInRT
)
i
}
]

-0.6 \ /

0 05 1
Mole fraction of A, x,

Fig.5.7 The Gibbs energy of mixing of two
perfect gases and (as discussed later) of two
liquids that form an ideal solution. The
Gibbs energy of mixing is negative for all
compositions and temperatures, so perfect
gases mix spontaneously in all proportions.

‘ﬁ Exploration Draw graphs ofA . G

* against x, at different temperatures
in the range 298 K to 500 K. For what value
ot x, does A, G depend on temperature
most strongly?

3.0 mol H, 1.0 mol N,

3p p

AN

A
3.0 molH, 1.0 mol N,

pH)=%p p(N,)=3p
2p

Fig.5.8 The initial and final states
considered in the calculation of the Gibbs
energy of mixing of gases at different initial
pressures.

After mixing, the partial pressures of the gases are p,, and pj, with p, + pp = p. The total
Gibbs energy changes to

Gi=n (U +RTInp,) + ny(ug+ RTIn py) {5.16¢°
The difference G;— G, the Gibbs energy of mixing, A_,, G, is therefore
AL G= nARTlnp—+ nBRTlnp—B (5.17)°

P

At this point we may replace #; by x;n, where 7 is the total amount of A and B, and
use the relation between partial pressure and mole fraction (Section 1.2b) to write
py/p= x; for each component, which gives

AL G=nRT(x, In x, + x5 In %) (5.18)°

Because mole fractions are never greater than 1, the logarithms in this equation are
negative, and A _; G <0 (Fig. 5.7). The conclusion that A_,, G is negative for all com-
positions confirms that perfect gases mix spontaneously in all proportions. However,
the equation extends common sense by allowing us to discuss the process quantitatively.

Example 5.2 Calculating a Gibbs energy of mixing

A container is divided into two equal compartments (Fig. 5.8). One contains
3.0 mol H,(g) at 25°C; the other contains 1.0 mol N,(g) at 25°C. Calculate the
Gibbs energy of mixing when the partition is removed. Assume perfect behaviour.

Method Equation 5.18 cannot be used directly because the two gases are initially at
different pressures. We proceed by calculating the initial Gibbs energy from the
chemical potentials. To do so, we need the pressure of each gas. Write the pressure
of nitrogen as p; then the pressure of hydrogen as a multiple of p can be found from
the gas laws. Next, calculate the Gibbs energy for the system when the partition is
removed. The volume occupied by each gas doubles, so its initial partial pressure is
halved.

Answer Given that the pressure of nitrogen is p, the pressure of hydrogen is 3p;
therefore, the initial Gibbs energy is

G, = (3.0 mol) {£*(H,) + RTIn 3p} + (1.0 mol){°(N,

When the partition is removed and each gas occupies twice the original volume,
the partial pressure of nitrogen falls to +p and that of hydrogen falls to 3 p. There-
fore, the Gibbs energy changes to

Gy= (3.0 mol){*(H,) + RTIn 3p} +

)+ RTInp}

(1.0 mol){u®(N,) + RT In $p}

The Gibbs energy of mixing is the difference of these two quantities:

(22)

A G= (30molRTln{ p} IOmOIRTlnka

—(3.0mol)RT In2 — (1.0 mol)RT'In2
=—(4.0mol)RTIn2 =-6.9kJ

In this example, the value of A, G is the sum of two contributions: the mixing
itself, and the changes in pressure of the two gases to their final total pressure, 2p.
When 3.0 mol H, mixes with 1.0 mol N, at the same pressure, with the volumes of
the vessels adjusted accordingly, the change of Gibbs energy is —5.6 k.
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Self-test 5.3 Suppose that 2.0 mol H, at 2.0 atm and 25°C and 4.0 mol N, at
3.0 atm and 25°C are mixed at constant volume. Calculate A . G. What would be
the value of A, G had the pressures been identical initially? [-9.7 k], —9.5 k]|

(b) Other thermodynamic mixing functions

Because (BG/BT)M =S, it follows immediately from eqn 5.18 that, for a mixture of

perfect gases initially at the same pressure, the entropy of mixing, A .S, is
(0A,:G )
A S= =—nR(x, Inx, + x5 Inxp) (5.19)°
k a7 Priptig

Because In x < 0, it follows that A_, S > 0 for all compositions (Fig. 5.9). For equal
amounts of gas, for instance, we set x, = x, =3, and obtain A_;.S=nR In 2, with n the
total amount of gas molecules. This increase in entropy is what we expect when one
gas disperses into the other and the disorder increases.

We can calculate the isothermal, isobaric (constant pressure) enthalpy of mixing,
A, H, the enthalpy change accompanying mixing, of two perfect gases from AG =

AH — TAS. It follows from eqns 5.18 and 5.19 that

A H=0 (5.20)°

The enthalpy of mixing is zero, as we should expect for a system in which there are no
interactions between the molecules forming the gaseous mixture. It follows that the
whole of the driving force for mixing comes from the increase in entropy of the sys-
tem, because the entropy of the surroundings is unchanged.

5.3 The chemical potentials of liquids

To discuss the equilibrium properties of liquid mixtures we need to know how the
Gibbs energy of aliquid varies with composition. To calculate its value, we use the fact
that, at equilibrium, the chemical potential of a substance present as a vapour must be
equal to its chemical potential in the liquid.

(a) ldeal solutions

We shall denote quantities relating to pure substances by a superscript *, so the chem-
ical potential of pure A is written y7¥, and as (1) when we need to emphasize that
A is a liquid. Because the vapour pressure of the pure liquid is p¥, it follows from
eqn 5.14 that the chemical potential of A in the vapour (treated as a perfect gas) is uy
+ RT'In p¥ (with p, to be interpreted as the relative pressure p,/p®). These two chem-
ical potentials are equal at equilibrium (Fig. 5.10), so we can write

Wi=u3+RTInp} 1521}

If another substance, a solute, is also present in the liquid, the chemical potential of A
in the liquid is changed to y, and its vapour pressure is changed to p,,. The vapour and
solvent are still in equilibrium, so we can write

Up=Hs+RTInp, 1522}

Next, we combine these two equations to eliminate the standard chemical potential of
the gas. To do so, we write eqn 5.21 as iy = ux — RT In p¥ and substitute this expres-
sion into eqn 5.22 to obtain

0.8 =t e PRI PR :

0.6 ............ .............

0 0.5 1
Mole fraction of A, x,

Fig. 5.9 The entropy of mixing of two
perfect gases and (as discussed later) of two
liquids that form an ideal solution. The
entropy increases for all compositions

and temperatures, so perfect gases mix
spontaneously in all proportions. Because
there is no transfer of heat to the
surroundings when perfect gases mix, the
entropy of the surroundings is unchanged.
Hence, the graph also shows the total
entropy of the system plus the
surroundings when perfect gases mix.

S

Alg) + Blg)
—— 9.0}

Equal at
equilibrium

——ull)
All) + B(l)

N

Fig. 5.10 At equilibrium, the chemical
potential of the gaseous form of a substance
A is equal to the chemical potential of its
condensed phase. The equality is preserved
if'a solute is also present. Because the
chemical potential of A in the vapour
depends on its partial vapour pressure, it
follows that the chemical potential of liquid
A can be related to its partial vapour
pressure.
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Fig. 5.13 A pictorial representation of the
molecular basis of Raoult’s law. The large
spheres represent solvent molecules at the
surface of a solution (the uppermost line of
spheres), and the small spheres are solute
molecules. The latter hinder the escape of
solvent molecules into the vapour, but do
not hinder their return.

80
oF
8 Total pressure L 60
2
o
& [ g 40
2 2
3 . o
& | Partial @
pressure 20
of A Methylbenzene
Partial
pressure o
fB 9 :
= 0 Mole fraction of 1
0 Mole fraction of A, x, 1 methylbenzene, x{C,H.CH,)
Fig. 5.11 The total vapour pressure and the Fig. 5.12 Two similar liquids, in this case
two partial vapour pressures of an ideal benzene and methylbenzene (toluene),
binary mixture are proportional to the behave almost ideally, and the variation of
mole fractions of the components. their vapour pressures with composition
resembles that for an ideal solution.
* * * Pa
Hpa=Hx—RTInpy+RTInp,=p3+RTIn— (5.23)

A

In the final step we draw on additional experimental information about the relation
between the ratio of vapour pressures and the composition of the liquid. In a series of
experiments on mixtures of closely related liquids (such as benzene and methylbenz-
ene), the French chemist Frangois Raoult found that the ratio of the partial vapour
pressure of each component to its vapour pressure as a pure liquid, p,/p¥, is approxi-
mately equal to the mole fraction of A in the liquid mixture. That is, he established
what we now call Raoult’s law:

PA=%a DX (5.24)°

This law is illustrated in Fig. 5.11. Some mixtures obey Raoult’s law very well, espe-
cially when the components are structurally similar (Fig. 5.12). Mixtures that obey the
law throughout the composition range from pure A to pure B are called ideal solu-
tions. When we write equations that are valid only for ideal solutions, we shall label
them with a superscript °, asin eqn 5.24.

For an ideal solution, it follows from eqns 5.23 and 5.24 that

U=+ RTInx, (5.25)°

This important equation can be used as the definition of an ideal solution (so that it
implies Raoult’s law rather than stemming from it). It is in fact a better definition than
eqn 5.24 because it does not assume that the vapour is a perfect gas.

Molecular interpretation 5.1 The molecular origin of Raoult’s law

The origin of Raoult’s law can be understood in molecular terms by considering
the rates at which molecules leave and return to the liquid. The law reflects the fact
that the presence of a second component reduces the rate at which A molecules
leave the surface of the liquid but does not inhibit the rate at which they return
(Fig. 5.13).
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The rate at which A molecules leave the surface is proportional to the number of
them at the surface, which in turn is proportional to the mole fraction of A:

rate of vaporization = kx,,

where k is a constant of proportionality. The rate at which molecules condense is
proportional to their concentration in the gas phase, which in turn is proportional
to their partial pressure:

rate of condensation = k'p,

At equilibrium, the rates of vaporization and condensation are equal, so k'p, = kx,.
It follows that

k

PA:P’CA

For the pure liquid, x, = 1; so in this special case pX = k/k’. Equation 5.24 then fol-
lows by substitution of this relation into the line above.

Some solutions depart significantly from Raoult’s law (Fig. 5.14). Nevertheless,
even in these cases the law is obeyed increasingly closely for the component in excess
(the solvent) as it approaches purity. The law is therefore a good approximation for
the properties of the solvent if the solution is dilute.

(b) Ideal-dilute solutions

In ideal solutions the solute, as well as the solvent, obeys Raoult’s law. However, the
English chemist William Henry found experimentally that, for real solutions at low
concentrations, although the vapour pressure of the solute is proportional to its mole
fraction, the constant of proportionality is not the vapour pressure of the pure sub-
stance (Fig. 5.15). Henry’s law is:

500 .................................................... Ideal dIIUte ’<B
solution
Total /\\ @ (Henry)
400 2
£ Carbon ) £ p¥
L2 disulfide Real
3,300
> Ideal solution
7 200/ -
4 N it (Raoult)
e \% tone
e Mole fraction of B, x;
100 e 5
Fig. 5.16 When a component (the solvent) is
nearly pure, it has a vapour pressure that is

0 Mole fraction of 1 proportional to mole fraction with a slope
carbon disulfide, x{(CS,) P (Raoult’s law). When it is the minor
component (the solute) its vapour pressure
Fig. 5.14 Strong deviations from ideality are is still proportional to the mole fraction,
shown by dissimilar liquids (in this case but the constant of proportionality is now

carbon disulfide and acetone, propanone). K; (Henry's law).
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Fig.5.16 In a dilute solution, the solvent
molecules (the purple spheres) are in an
environment that differs only slightly from
that of the pure solvent. The solute
particles, however, are in an environment
totally unlike that of the pure solute.

p*(acetone)

300

Pressure/Torr

KICHCOCH) X
100 3

law

p*(chloroform)

200 law

',"_:-.;4_<((':’F|C|3)

Henry's/ 2

0 02 04 06 08 10

Mole fraction of
chloroform, x{(CHCI,)

Fig.5.17 The experimental partial vapour
pressures of a mixture of chloroform

(trichloromethane) and acetone

(propanone) based on the data in Example
5.3. The values of K are obtained by
extrapolating the dilute solution vapour
pressures as explained in the Example.

Pa=%:Kp (5.26)°

In this expression xp is the mole fraction of the solute and K, is an empirical constant
(with the dimensions of pressure) chosen so that the plot of the vapour pressure of B
against its mole fraction is tangent to the experimental curve at x = 0.

Mixtures for which the solute obeys Henry’s law and the solvent obeys Raoult’s law
are called ideal-dilute solutions. We shall also label equations with a superscript °
when they have been derived from Henry’s law. The difference in behaviour of the
solute and solvent at low concentrations (as expressed by Henry’s and Raoult’s laws,
respectively) arises from the fact that in a dilute solution the solvent molecules are in
an environment very much like the one they have in the pure liquid (Fig. 5.16). In
contrast, the solute molecules are surrounded by solvent molecules, which is entirely
different from their environment when pure. Thus, the solvent behaves like a slightly
modified pure liquid, but the solute behaves entirely differently from its pure state
unless the solvent and solute molecules happen to be very similar. In the latter case,
the solute also obeys Raoult’s law.

Example 5.3 /nvestigating the validity of Raoult’s and Henry’s laws

The vapour pressures of each component in a mixture of propanone (acetone, A)
and trichloromethane (chloroform, C) were measured at 35°C with the following
results:

Xq 0 0.20 0.40 0.60 0.80 1
po/kPa 0 4.7 11 18.9 26.7 36.4
pa/kPa 46.3 33.3 23.3 12.3 4.9 0

Confirm that the mixture conforms to Raoult’s law for the component in large ex-
cess and to Henry’s law for the minor component. Find the Henry’s law constants.

Method Both Raoult’s and Henry’s laws are statements about the form of the
graph of partial vapour pressure against mole fraction. Therefore, plot the partial
vapour pressures against mole fraction. Raoult’s law is tested by comparing the
data with the straight line p; = x;p} for each component in the region in which it is
in excess (and acting as the solvent). Henry’s law is tested by finding a straight line
P;=xK; thatis tangent to each partial vapour pressure at low x, where the compon-
ent can be treated as the solute.

Answer The data are plotted in Fig. 5.17 together with the Raoult’s law lines.
Henry’s law requires K = 23.3 kPa for propanone and K = 22.0 kPa for tri-
chloromethane. Notice how the system deviates from both Raoult’s and Henry’s
laws even for quite small departures from x= 1 and x= 0, respectively. We deal with
these deviations in Section 5.5.

Self-test 5.4 The vapour pressure of chloromethane at various mole fractions in a
mixture at 25°C was found to be as follows:

X 0.005 0.009 0.019 0.024
p/kPa 275 48.4 101 126
Estimate Henry’s law constant. [5 MPa]

For practical applications, Henry’s law is expressed in terms of the molality, b, of
the solute,
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Pp=bgKy
Some Henry’s law data for this convention are listed in Table 5.1. As well as providing
alink between the mole fraction of solute and its partial pressure, the data in the table
may also be used to calculate gas solubilities. A knowledge of Henry’s law constants
for gases in blood and fats is important for the discussion of respiration, especially
when the partial pressure of oxygen is abnormal, as in diving and mountaineering,
and for the discussion of the action of gaseous anaesthetics.

lllustration 5.2 Using Henry’s law

To estimate the molar solubility of oxygen in water at 25°C and a partial pressure
of 21 kPa, its partial pressure in the atmosphere at sea level, we write
. Po, 21 kPa
- Ko  7.9%10*kPa kg mol™!
2
The molality of the saturated solution is therefore 0.29 mmol kg™*. To convert this
quantity to a molar concentration, we assume that the mass density of this dilute
solution is essentially that of pure water at 25°C, or pyy , =0.99709 kg dm™. It fol-
lows that the molar concentration of oxygen is

[0,] = b, X Py 0= 0.29 mmol kg™ x 0.99709 kg dm™ = 0.29 mmol dm™

=2.9% 107 mol kg™

A note on good practice The number of significant figures in the result of a calcu-
lation should not exceed the number in the data (only two in this case).

Self-test 5.5 Calculate the molar solubility of nitrogen in water exposed to air at
25°C; partial pressures were calculated in Example 1.3. [0.51 mmol dm™]

M /MPACT ON BIOLOGY

A

15.1 Gas solubility and breathing

We inhale about 500 cm® of air with each breath we take. The influx of air is a result of
changes in volume of the lungs as the diaphragm is depressed and the chest expands,
which results in a decrease in pressure of about 100 Pa relative to atmospheric pres-
sure. Expiration occurs as the diaphragm rises and the chest contracts, and gives rise
to a differential pressure of about 100 Pa above atmospheric pressure. The total
volume of air in the lungs is about 6 dm?, and the additional volume of air that can be
exhaled forcefully after normal expiration is about 1.5 dm?®. Some air remains in the
lungs at all times to prevent the collapse of the alveoli.

A knowledge of Henry’s law constants for gases in fats and lipids is important for
the discussion of respiration. The effect of gas exchange between blood and air inside
the alveoli of the lungs means that the composition of the air in the lungs changes
throughout the breathing cycle. Alveolar gas is in fact a mixture of newly inhaled air
and air about to be exhaled. The concentration of oxygen present in arterial blood is
equivalent to a partial pressure of about 40 Torr (5.3 kPa), whereas the partial pres-
sure of freshly inhaled air is about 104 Torr (13.9 kPa). Arterial blood remains in
the capillary passing through the wall of an alveolus for about 0.75 s, but such is the
steepness of the pressure gradient that it becomes fully saturated with oxygen in about
0.25 s. If the lungs collect fluids (as in pneumonia), then the respiratory membrane
thickens, diffusion is greatly slowed, and body tissues begin to suffer from oxygen
starvation. Carbon dioxide moves in the opposite direction across the respiratory

Synoptic Table 5.1* Henry’s law
constants for gases in water at 298 K

K /(kPakgmol™)

co, 3.01x 10
H, 1.28 x 10°
N, 1.56 X 10°
O, 7.92x10%

* More values are given in the Data section.

Comment 5.2
The web site contains links to online
databases of Henry’s law constants.



