Application of $1^{\text {st }}$ law of thermodynamic
The energy balance of a system -as a consequence of 1st law of thermodynamic is a powerful tool to analyze the exchanges of energy between the system and its environment.

Here is a summary of 1st law of thermodynamic formulation in the different types of thermal processes:

$$
\Delta \mathrm{U}=\mathrm{q}+\mathrm{W}
$$

## Thermodynamic processes and their characteristics

| Constant pressure | $w=-P_{e x} \Delta V$ | $\Delta U=q+w$ |
| :--- | :--- | :--- |
| Constant volume | $w=0$ | $\Delta U=q$ |
| Isothermal (constant temperature) | $w=-q$ | $\Delta U=0$ |
| Adiabatic (no heat flow) | $w=\Delta U$ | $q=0$ |

Here is a summary of the work formulation in the different types of thermal processes:

| The work done by different process |  |
| :--- | :--- |
| Free expansion | $w=0$ |
| Expansion against constant pressure | $w=-P_{e x} \Delta V$ |
|  | $w=-n R T \ln \frac{P_{i}}{P_{f}}$ |
| Reversible expansion | $w=-n R T \ln \frac{V_{f}}{V_{i}}$ |
| The work of gas production | $w=-n R T$ |
| Isochoric work | $w=0$ |

 at 310 K . (a) against a constant external pressure of 200 Torr (b) reversibly. Calculate w, q, and $\Delta \mathrm{U}$.
(a)

$$
p=200 \text { torr } \times \frac{133.32 p a}{1 \text { torr }}=26664.4 \mathrm{pa}\left(\mathrm{~N} . \mathrm{m}^{-2}\right)
$$

$$
\Delta V=V_{2}-V_{1}=15 \mathrm{dm}^{3}-12.7 \mathrm{dm}^{3}=3.3 \mathrm{dm} \mathrm{~m}^{3} \times \frac{1 \mathrm{~m}^{3}}{1000 \mathrm{dm}^{3}}=3.3 \times 10^{-3} \mathrm{~m}^{3}
$$

$$
w=-p \Delta V=-\left(26664.4 N . m^{-2}\right)\left(3.3 \times 10^{-3} \mathrm{~m}^{3}\right)=-87.99 \mathrm{~J} \approx 88 \mathrm{~J}
$$

$$
\Delta U=q+w
$$

$\Delta \mathrm{U}=0$ at isothermally process

$$
\therefore q=-w=88 J
$$

(b)

$$
\begin{aligned}
& n=\frac{4.5 g}{16 g / m o l}=0.28 \mathrm{~mol} \\
& w=-n R T \ln \frac{V_{f}}{V_{i}}
\end{aligned}
$$

$$
w=-(0.28 \mathrm{~mol})\left(8.314 \mathrm{~J} . \mathrm{mol}^{-1} . K^{-1}\right)(310 \mathrm{~K}) \ln \frac{15}{12.7}=-120.1 \mathrm{~J} \approx-120 \mathrm{~J}
$$

$$
\Delta \mathrm{U}=0
$$

$$
\therefore q=-w=120 \mathrm{~J}
$$

H.W) 1013.25 J of heat energy is supplied to $1 \mathrm{~mol}^{\text {of }} \mathrm{NH}_{3(\mathrm{~g})}$ which is initially volume is 4 L at constant pressure 2 atm . if the process is isothermally expansion, determine its final volume.

## Calorimetry

Calorimetry derived from the Latin calor meaning heat, and the Greek metry meaning to measure, is the science of measuring the amount of heat. All calorimetric techniques are therefore based on the measurement of heat that may be generated (exothermic process), consumed (endothermic process) or simply dissipated by a sample.

There are numerous methods to measure such heat, and since calorimetry's advent in the late 18th century, a large number of techniques have been developed. Initially techniques were based on simple thermometric (temperature measurement) methods, but more recently, advances in electronics and control have added a new dimension to calorimetry, enabling users to collect data and maintain samples under conditions that were previously not possible.

## The calorimeter constant

The change in temperature, $\Delta \mathrm{T}$, of the calorimeter is proportional to the energy that the reaction releases or absorbs as heat. The conversion of $\Delta T$ to q is best achieved by calibrating the calorimeter using a process of known energy output and determining the calorimeter constant, the constant C in the relation:

$$
q=C \Delta T
$$



The calorimeter constant may be measured electrically by passing a constant current, $I$, from a source of known potential difference, $\Delta \varphi$, through a heater for a known period of time, $t$, for then

$$
q=I t \Delta \phi
$$


Q) Calculate the calorimeter constant, If pass a current of 10.0 A from a 12 V supply for 300 s , and the observed rise in temperature is 5.5 K .

The energy supplied as heat is

$$
\begin{aligned}
q & =I t \Delta \phi \\
q & =(10 A)(300 s)(12 \mathrm{~V}) \\
q & =36 \times 10^{3} J=36 \mathrm{~kJ}
\end{aligned}
$$

then the calorimeter is

$$
\begin{aligned}
q & =C \Delta T \\
C & =\frac{q}{\Delta T} \\
C & =\frac{36 \mathrm{~kJ}}{5.5 \mathrm{~K}} \\
C & =6.5 \mathrm{~kJ} / \mathrm{K}
\end{aligned}
$$

## Specific Heat

The specific heat is the amount of heat per unit mass required to raise the temperature by one degree Celsius. The relationship between heat and temperature change is usually expressed in the form shown below where $\mu$ is the specific heat.

$$
q=m \mu \Delta T
$$

The specific heat of water is 1 calorie/gram ${ }^{\circ} \mathrm{C}=4.186$ joule/gram ${ }^{\circ} \mathrm{C}$ which is higher than any other common substance. As a result, water plays a very important role in temperature regulation. The specific heat per gram for water is much higher than that for a metal, as described in the water-metal example.


| Substance | $(\mu)$ <br> at $25^{\circ} \mathrm{C}$ in $\mathrm{J} / \mathrm{g}^{\circ} \mathrm{C}$ | Substance | $(\mu)$ <br> at $25^{\circ} \mathrm{C}$ in $\mathrm{J} / \mathrm{g}^{\circ} \mathrm{C}$ |
| :--- | :--- | :--- | :--- |
| $\mathrm{H}_{2}$ gas | 14.267 | potassium | 0.75 |
| He gas | 5.300 | sulphur | 0.73 |
| $\mathrm{H}_{2} \mathrm{O}_{(1)}$ | 4.184 | calcium | 0.650 |
| lithium | 3.56 | iron | 0.444 |
| ethyl alcohol | 2.460 | nickel | 0.440 |
| ethylene glycol | 2.200 | zinc | 0.39 |
| steam @ $100^{\circ} \mathrm{C}$ | 2.010 | copper | 0.385 |
| vegetable oil | 2.000 | brass | 0.380 |
| sodium | 1.23 | sand | 0.290 |
| air | 1.020 | silver | 0.240 |
| magnesium | 1.020 | tin | 0.21 |
| aluminum | 0.900 | lead | 0.160 |
| Concrete | 0.880 | mercury | 0.14 |
| glass | 0.840 | gold | 0.129 |

Q) Some copper, having a mass of 20 kg , cools from a temperature of $120^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. If the specific heat capacity of copper is $385 \mathrm{~J} /\left(\mathrm{kg}{ }^{\circ} \mathrm{C}\right)$, how much heat energy is lost by the copper ?

$$
\begin{aligned}
& q=m \mu \Delta T \\
& q=(20 \mathrm{~kg})\left(385 \mathrm{~J} . \mathrm{kg}^{-1} \cdot{ }^{\circ} \mathrm{C}^{-1}\right)\left(70-120^{\circ} \mathrm{C}\right) \\
& q=-385000 J \\
& q=-385 \mathrm{~kJ}
\end{aligned}
$$

## Group work

H.W) 20.8 kJ of heat energy is required to raise the temperature of 2 kg of lead from $16^{\circ} \mathrm{C}$ to $96^{\circ} \mathrm{C}$. Determine the specific heat capacity of lead.
H.W) 250 kJ of heat energy is supplied to 10 kg of iron which is initially at a temperature of $15^{\circ} \mathrm{C}$. If the specific heat capacity of iron is $500 \mathrm{~J} /\left(\mathrm{kg}{ }^{\circ} \mathrm{C}\right)$ determine its final temperature.
H.W) How much heat energy is needed to raise the temperature by $15^{\circ} \mathrm{C}$ of: (1) 25 g water $\left(\mu=4.148 \mathrm{~J} /\left(\mathrm{g}{ }^{\circ} \mathrm{C}\right)\right.$ ) (2) 25 g iron $\left(\mu=0.444 \mathrm{~J} /\left(\mathrm{g}{ }^{\circ} \mathrm{C}\right)\right)$

