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The perfect gas
1.1 The states of gases

(a) Pressure

(b) The measurement of pressure

Table 1.1 Pressure units

Name Symbol Value

pascal 1Pa INm? 1kgm' s

bar 1 bar 10° Pa

atmosphere 1 atm 101.325 kPa

torr 1 Torr (101 325/760) Pa=133.32 ... Pa
millimetres of mercury 1 mmHg 133.322...Pa

pound per square inch 1 psi 6.894 757 .. . kPa




EQUilibry ﬁuilibrium

Equilibrium

rig. 1.3 The experience summarized by the
Zeroth Law of thermodynamics is that, if
an object A is in thermal equilibrium with
B and B is in thermal equilibrium with C,
then C is in thermal equilibrium with A

C) Temperature 5l all 4a o
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1.2 The gas laws 1l ) gl
(a) The perfect gas law Alall Slad) oyl 68



Pressure, p

Volume, V

Fig. 1.4 The pressure-volume dependence
of a fixed amount of perfect gas at different
temperatures. Each curve is a hyperbola
(pV = constant) and is called an isotherm.
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Fig. 15 Straight lines are obtained when the
pressurc is plotted against 1/V at constant

temperature.

Exploration Repeat Exploration 1.4,
but plot the data as p against 1/V.
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/// pressure, p
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fg 16 The variation of the volume of a
fixed amount of gas with the temperature
at constant pressure. Note that in each case
the isobars extrapolate to zero volume at
T=0,0r §=-273°C.
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Fig. 1.7 The pressure also varies linearly

with the temperature at constant volume,

and extrapolates to zero at T= 0 (-273°C).
Exploration  Explore how the pressure
of 1.5 mol CO,(g) in a container of
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1.3 Molecular interactions
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(a) The compression factor &
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[c) Condensation 5
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g Fig. 1.13 The variation of the potential
R E£80}- :
=S o energy of two melecules on ther
2 = separation. High positive potential cnergy
§ B0 |- (@ very sl separations) indicaes gt
g the interactions between them are strongly
S repulsive at these distances. At
a0 intermediate separations, where the
potential energy is negative, the attractive
interactions dominate. At large separations
20+ (on the right) the potential energy is zero
: and there is no interaction between the
P i a molecules.
o] 0.2 0.4 0.6
V. Hdm*mol 7)
Fig. 1.1a The variation of the compression Fig. 1.15 Experimental isotherms of carbon
factor, Z, with pressure for several gases at dioxide at several temperatures. The
0°C. A perfect gas has Z = 1 at all pressures. “critical isotherm’. the isotherm at the
Notice that, although the curves approach critical temperature, is at 31.04°C. The

1 as p —» 0, they do so with different slopes. critical point is marked with a star.
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1.4 The van der Waals equation

2.1
2.2
2.3
24
2.5

12.1

2.6
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The basic concepts

Work, heat, and energy
The internal energy
Expansion work

Heat transactions
Enthalpy

Impact on biochemistry

and materials science:
Differential scanning
calorimetry

Adiabatic changes

Endothermic Exothcrmio

[hﬁ

tig. 2.z (2) When an endothermic process
occurs in an adiabatic system, the
temperature falls; (b) if the process is
exothermic, then the temperature rises.

() When an endothermic process occurs
in a diathermic container, energy enters as
heat from the surroundings, and the system
remains at the same temperature. (d) Ifthe
process is exothermic, then energy leaves as
heat, and the process is isothermal.



Thermochemistry

2.7 Standard cnthalpy changes

12.2 Impact on biology: Food and
COCTEY ICSCTVES

28 Standard enthalpies of
formation

29 ‘The temperature-dependence
of reaction enthalpies

State functions and exact
differentials

2.10 Exact and inexact differentials

2.11 Changes in internal energy
2.12 The Jonle-Thomson effect
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(b)

Fig. 25 "I'he rotational modes of molecules
and the corresponding average energies at a
temperature T, (@) A linear molecule can
rotate about two axes perpendicular to the
line of the atoms. (b) A nonlinear molecule
can rotate about three perpendicular axes.
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2.3 EXpansion work Jaid) o o Jaddl

External
pressure, p,,

Area, A Pressure, p

Fig. 26 When a piston of area A moves out
through a distance dz, it sweeps out 2
volume dV = Adz. The external pressure p_,
is equivalent to a weight pressing on the
piston, and the force opposing expansion is
F=p_A.
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Area = p_AV :

Pressure, p

VI Vowme,V 1Y,

-

-
— T —
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Fig. 2.7 The work done by a gas when it
expands against a constant external
pressure, p,, is equal to the shaded area in
this cxample of an indicator diagram.



24 Heat transactions
(a) Calorimetry

(b) Heat capacity

25 Enthalpy

(a) The definition of enthalpy
The enthalpy, H, is defined as

H=U+pV
(&) The measurement of an enthalpy change

Energy
as heat

(8} The variation of onthalpy with tempoerature s

heat may escape back into the
surroundings as work. In such a case, the
change in internal energy is smaller than
the energy supplicd as heat.

i ) all Y el

Resistance
thermorneter

Firing

Oxygen I
leads

1

& _/
7

Water
Sample

Heater

Fg. 29 A constant-volume bomb
calonmeter. The ‘homb’ is the central
vessel, which is strong enough to withstand
high pressures. The calorimeter (for which
the heat capacity must be known) is the
entire assembly shown here. To ensure
adiabaticity, the calorimeter is immersed
in @ water bath with a temperature
continuously readjusted to that of the
calorimeter at each stage of the
combustion.



The direction of spontaneous
change

3.1 The dispersal of energy
3.2 Entropy

13.1 Impact on engineering:
Refrigeration

33 Entropy changes
accompanying specific
Processes

3.4 The Third Law of

thermodynamics

Concentrating on the system

3.5 The Helmheltz and Gibbs
energies

3.6 Standard reaction Gibbs
energies
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Combining the First and
Second Laws

3.7 The fundamental equation

3.8 Properties of the internal
cnergy

3.9 Properties of the Gibbs energy
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Phase diagrams
4.1 The stabilities of phases N L
; g
4.2 Phase boundaries g
. . i o
14.1 Impact on engineering and e
technolagy: Supercritical fluids
: : £
4.3 Three typical phase diagrams ool et % 10°+
o
Fig. 4.1 The general regions of pressu ﬁ
ili temperature where selid, liquid, or g o
th Stab“lty am phase stable (that is, has minimum molar ¢ &
transitions energy) are shown on this phase diag 10°
T'or enasnple, thie solid plasc is the o
. v o stable phase at low temperatures and
4.4 Thethermodynamic criterion pressures. In the following paragrapl
1 locate the precise boundaries betwee
Of equlllbﬂuln regiong
1._
4.5 The dependence ol stability on
T 0
the conditions T
4.6 The lOCKtion Of phasc Fig. .5 The experimental phase diagram for water showing the different solid phases.
boundaries

4.7 The Ehrenfest classification of
phase transitions



Liquid
Q
g
2
E Gas
Temperature, T

Fig. 414 A typical liquid-vapour phase
boundary. The boundary can be regarded
as 2 plot of the vapour pressure against the
temperature. Note that, in some depictions
of phase diagrams in which a logarithmic
pressure scale is used, the phase boundary
has the opposite curvature (sce Fig. 4.7).
This phase boundary terminares at the
critical point (not shown).
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Liquid

Pressure, p

Gas

Temperature, T

Fig. .16 Mear the point where they coincide
(at the triple point), the solid-gas
boundary has a steeper slope than the
liquid—gas boundary because the enthalpy
of sublimation is greater than the enthalpy
of vaporization and the temperatures that
occur in the Clausius-Clapeyron equation
for the slope have similar values.
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The thermodynamic description of mixtures

The thermodynamic description
of mixtures

5.1 Partial molar quantities

5.2 The thermodynamics of mixing

5.3 The chemical potentials of
liquids

15.1 lmpact on biology: Gas
solubility and breathing

The properties of solutions
54 Liquid mixtures
5.5 Colligative properties

15.2 Impact on biology: Osmosis in
physiology and biochemistry
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Phase diagrams

Phases, components, and
degrees of freedom

6.1 Definittons
6.2 The phase rule

Two-component systems

6.3 Vapour pressure diagrams

6.4 Temperature—composition
diagrams

6.5 Liquid-liquid phase diagrams
6.6 Liquid-solid phase diagrams

16.1 Iimpact on matecials science:
Liquid crystals

16.2 Impact on matenals science:
Ultrapurity and controlled
impurity

skl Gl pes

Vapour
composition
-
E‘Ta
2
e
&
2
. Boiling :
© temperature D |
a, ofliquid g,
0 Mole fraction 1

of A, z,

Fig. 6.14 The temperature~composition
diagram corresponding to an ideal mixture
with the component A more volatile than
component B, Successive boilings and
condensations of a liquid oniginally ol
compaosition a, lead to a condensate that is
pure A. The separation technique is called
fractional distillation.
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6.4 Temperature—composition diagrams

(a) The distillation of mixtures

(b} Azeotropes XS }
(c) Immiscible liquids

Temperature, T

Ly

b~
(a) (b) = o

3
g

Fig.6.18 The distiliation of (a) two 4

immiscible liquids can be regarded as E

(b) the joint distillation of the separated i

components, and boiling occurs when the

sum of the partial pressures equals the

external pressure. A Composition B
(b)

H,-r} Liq UEd'-iiqu id ph&EE diﬂg rEmE Fig. 815 The number of theoretical plates is

the number of steps nccded to bring about
a specified degree of separation of two
components in a mixture, The two systems
shown correspond to (a) 3, (b) 5

theoretical plates.
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The perfect gas (el jidl «

We shall find it helpful to pictureagasasa °
collection of molecules (or atoms) in continuous
random motion, with average speeds that
increase as the temperature is raised.

A gas differs from a liquid in that, except during
collisions, the molecules of a gas are widely
separated from one another and move in paths
that are largely unaffected by intermolecular
forces.



1.1 The states of gases
The physical state of a sample of a substance,

its physical condition, is defined by its physical properties. Two samples of a
substance that have the same physical properties are in the same state.

The state of a pure gas, for example, is specified by giving its volume, V,
and amount of substance (number of moles), n, pressure, p,
temperature, T

However, it has been established experimentally that it is sufficient to specify
only three of these variables, for then the fourth variable is fixed. That is, it
is an experimental fact that each substance is described by an equation of
state, an equation that

interrelates these four variables. The general form of an equation of state is
e )Y ol giiall oy 5 il dloleal) Sl -l Lolaa o
solal) S ANAY i of

p =f(T,v,n) (1.1)



This equation tells us that, if we ; L_ad ¢l dlalzalld
of T V, and n for a particular know the values
substance, then the pressure has a fixed value.

Each substance is described by its own equation
of state, but we know the explicit form of the
equation in only a few special cases.

One very important example is the equation of
state of a 'perfect gas’, which has the form:

p =nRT/V

where R is a constant. °

Much of the rest of this chapter will examine the
origin of this equation of state and its
applications.




Table 1.1 Pressure units

Name Symbol Value

pascal 1 Pa INm? 1kgm's?

bar | bar 10° Pa

atmosphere 1 atm 101.325 kPa

torr 1 Torr (101 325/760) Pa=133.32...Pa
millimetres of mercury 1 mmHg 133.322".... Pa

pound per square inch

1 psi

6.894 757 ... kPa
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(a) Pressure

[1,2a] In terms of base units,

Pressure is defined as force divided by the areato -
which the force is applied. The greater the force acting
on a given area, the greater the pressure. The origin of
the force exerted by a gas is the incessant battering of
the molecules on the walls of its container. The
collisions are so numerous that they exert an
effectively steady force, which is experienced as a
steady pressure.

The Sl unit of pressure, the pascal (Pa), is defined as 1
newton per metre-squared: 1 Pa= 1 Nm-2
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Several other units are still widely used (Table 1.1); of these

units, the most commonly

used are atmosphere (1 atm = 1.013 25 x 105 Pa exactly) and bar
(1 bar = 105 Pal. A pressure of 1 bar is the standard pressure

for reporting data; we denote it pe.
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(b) The measurement of pressure

The pressure exerted by the atmosphere is
measured with a barometer. The original version
of a barometer (which was invented by Torricelli,
a student of Galileo) was an inverted tube of
mercury sealed at the upper end. When the
column of mercury is in mechanical equilibrium
with the atmosphere, the pressure at its base is
equal to that exerted by the atmosphere. It
follows that the height of the mercury column is
proportional to the external pressure.




Movable
wall

High Low
pressure pressure

(a) l I

9

Example 1.1 Calculating the prassure exerted by a column of fiquid

|
Motion

Equal pressures

o

Low High

Derive an equation for the pressure at the base of a column of liquid of mass
density p (rho) and height h at the surface of the Earth,

Method Pressure is defined as p = F/A where F is the force applied to the area A,
and F = mg. To calculate F we need to know the mass m of the column of liquid,
which is its mass density, p, multiplied by its volume, V2 m = pV. The first step,
therefore, is to calculate the volume of a cylindrical column of liquid.

pressure pressure

.-

{c) '

Fig. 1.1 When a region of high pressure is
separated from a region of low pressure by
a movable wall, the wall will be pushed into
one region or the other, as in (a) and (c).
However, if the two pressures are identical,
the wall will not move (b). The latter
condition is one of mechanical equilibrium
between the two regions.
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Answer Let the column have cross-sectional area A; then its volume 1s Ah and its
mass is 1= pAh. The force the column of this mass exerts at its base is

F=mg= pAhg

The pressure at the base of the column is therefore

p=—="25_ poh (1.3)

LS Cnd | ke o) Lasa o) Sile mhand) IS 135 o

Derive an expression for the pressure at the base of a column of

liquid of length I held at an angle e(theta) to the vertical (1).
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The pressure of a sample of gas inside a container is
measured by using a pressure gauge, which is a device
with electrical properties that depend on the pressure.
For instance, a Bayard-Alpert pressure gauge is based
on the ionization of the molecules present in the gas
and the resulting current of ions is interpreted in terms
of the pressure.

In a capacitance manometer, the deflection of a
diaphragm relative to a fixed electrode is monitored

through its effect on the capacitance of the
arrangement.

Certain semiconductors also respond to pressure and are
used as transducers in solid-state pressure gauges.
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(c) Temperature

The concept of temperature springs from the observation
that a change in physical state (for example, a change
of volume) can occur when two objects are in contact
with one another, as when a red-hot metal is plunged
into water. Later (Section 2.1) we shall see that the
change in state can be interpreted as arising from a
flow of energy as heat from one object to another. The
temperature, T, is the property that indicates the
direction of the flow of energy through a thermally
conducting, rigid wall. If energy flows from A to B when
they are in contact, then we say that A has a higher

temperature than B (Fig. 1.2).




Diathermic

1 3 wall
High Low

temperature temperature

It will prove useful to distinguish between two i
types of boundary that can separate the objects. “Tf

{a)

A boundary is diathermic (thermally conducting)

Energy as heat

Equal temperatures

if a change of state is observed when two objects
at different temperatures are brought into contact.

A metal container has diathermic walls. A boundary

Low High
emperature lemperature

is adiabatic (thermally insulating) if no change =

Al

occurs even though the two objects have different N

(c) |

Fig- 1.2 Energy flows as heat from 2 region

temperatures. A vacuum flask is an approximation
container. e s e

through 2 diathermic wall, s in (a) and
(c), However, if the twa regions have
identical temperatures, there is no net
transfer of energy as beat even though the
twa regions are separated by a diathermic
wall (b). The latter condition correspongds
to the two regions being at thermal
equilibrium.
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The temperature is a property that indicates whether two objects would be in

thermal equilibrium' if they were in contact through a diathermic boundary.

Thermal equilibrium
. Suppose an object A

(which we can think of as a block of iron) is in thermal equilibrium with
uppose an object A (which we can think of as a block of iron)isin
thermal equilibrium with an object B (a block of copper), and

that B is also in thermal equilibrium with another object C (a flask
of water). Then it has been found experimentally that A and C will

also be in thermal equilibrium when they are put in contact (Fig.
1.3).

This observation is summarized by the Zeroth Law of
thermodynamics:

If A is in thermal equilibrium with B, and B is in thermal equilibrium
with C, then Cis also in thermal equilibrium with A
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This observation is summarized by the:

Zeroth Law of thermodynamics:

If Ais in thermal equilibrium with B, and B is in thermal equilibrium with C,
then Cis also in thermal equilibrium with A ‘

Equilibry wumbrium

Equilibrium

Fig. 1.3 The experience summarized by the
Zeroth Law of thermodynamics is that, if
an object A is in thermal equilibrium with
B and B is in thermal equilibrium with C,
then C is in thermal equilibrium with A.



16

In the early days of thermometry (and still in laboratory practice today), ©

temperatures were related to the length of a column of liquid, and the
difference in lengths shown when the thermometer was first in contact
ice and then with boiling water was divided into 100 steps with melting
called' degrees’, the lower point being labelled 0.This procedure led to the

Celsius scale of temperature. In this text, temperatures 6.

hermodynamic and Celsius temperatures are related by the exact
expression

T/K=6/°C+273.1 .......... (1.4)

This relation, in the form 8/ ° C = T/K - 273.15, is the current definition of the
Celsius scale in terms of the more fundamental Kelvin scale. It implies that
a difference in temperature of 1°C is equivalent to a difference of 1 K.
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A note on good practice We write  ®

T =0, not T = 0 K for the zero temperature on the thermodynamic temperature
scale. This scale is absolute, and the lowest temperature is O regardless of the
size of the divisions on the scale (just as we write

p = O for zero pressure,
regardless of the size of the units we adopt, such as bar or pascal). However, we

write 0°C because the Celsius Scale is not absolute.

To express 25.00°C as a temperature in Kelvins, we use eqn. 1.4
to write

TIK = (25.00°C) / °C +273.15 = 25.00 +273.15 = 298.15

Note how the units (in this case, ° C) are cancelled like numbers. This is the

procedure called 'quantity calculus' in which a physical quantity (such as
the temperature) is the product of a numerical value (25.00) and a unit (1
90).

Multiplication of both sides by the unit K then gives T=298.15 K.
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The equation of state of a gas at low pressure was established by combining a series of
empirical laws.

1.2 The gas laws

(a) The perfect gas law
We assume that the following individual gas laws are familiar:

Boyle's law: pV = constant, at constantn, T ere(1.5)°
Charles's law: V = constant X T, at constant n, p ....................(1.6 a)°
p = constant X T, at constantn, V. ................(1.6b)°

Boyle's and Charles's laws are examples of a limiting law, a law that is strictly true
only

Avogadro's principler V =constant X n at constant p,T ..........(1.7)°

Boyle's and Charles's laws are examples of a limiting law, a law thatis
strictly true only in a certain limit, in this case p-— 0.
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Boyle's law: pV = constant, at constantn, T ¢

Pressure, p

Volume, V

Fig. 1.4 The pressure—volume dependence
of a fixed amount of perfect gas at different
temperatures, Each curve is a hyperbola
(pV = constant) and is called an isotherm.

- Exploration’ Explore how the

= pressure of 1.5 mol CO,(g) varies

with volume as it is compressed at
(a) 273 K, (b) 373 K from 30 dm? to
15dm?,
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Charles's law: V = constant X T, at constantn, p ... ...... (1.6a)
p = constant X T, at constantn, V ............ (1.6b)

Avogadro's principler' V = constant X n at constantp, T ....(1.7)

ccording to Boyle's law, the isotherms of gases are hyperbolas.
An alternative depiction, a plot of pressure against |/volume,

is shown in Fig. 1.5 |

Pressure, p

Extrapolation

ok —
0 1V

Fig. 1.5 Straight lines are obtained when the
], ressure is p) stted against 1/V at constant
TI)] atu

I - Explor UIRpt I‘;t‘
t—‘k«h t plot the da pglnl\
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An alternative depiction, a plot of pressure
against |/volume, is shown in Fig. 1.5. The
linear variation of volume with temperature

summarized by

Fig. 1.6

/ .

Q

g

p=

wr

@

e

o

2 :lllrllné{éééi'r{é

iia/ 770 temperature, T
Extrapolation |

0;1" i

0 1%

Flg. 1.5 Straight lines are obtained when the
pressure is plotted against 1/V at constant
temperature.

Exploration Repeat Exploration 1.4,
= but plot the data as p against 1/ V.

Charles's law is illustrated in

;

Volume, V

Decreasing
pressure, p

_Extrépolation
0=
0 Temperature, T

Fig. 1.6 The variation of the volume of a
fixed amount of gas with the temperature
at constant pressure. Note that in cach case
the isobars extrapolate to zero volume at
T'=0,0r 8=-273°C.
Lbf Exploration Explore how the volume
=W of 1.5 mol CO,(g) in a container
maintained at (a) 1.00 bar, (b} 0.50 bar
varies with temperature as it is cooled from
A7T3IK tn 773K
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Figure 1.7: illustrates the linear variation of

pressure with temperature.

The lines in this diagram are isochores,
showing the variation of properties at
constant volume

orllnes .

Q
A /
1= f ~
2 /
(n ’," ".
& |
: r", /‘.' /
i R A
| £y
| fif \ v
1 15/ Decreasing
|1 g volume, V
| :Extrapolation
0

Temperature, T

Fig. 1.7 The pressure also varies linearly
with the te 'mpcmmr € at constant \'ol ume,

and extrapolates to at T=0(=-273°C).
||'_¢: Epl ration Ex ;] } w the pre

I(() (g)i mmmcrof

volur mi 3, (b) 15 d vith

tm; rature as it is cooled from 37 H\m

273 K.



The empirical observations summarized by eqns 1.5-7
can be combined into a single expression:

p V =constantx nT

This expression is consistent with

Boyle's l[aw (p V = constant) when n and T are
constant, with both forms of

Charles'slaw ( pal, Va T )when n and either V or pare
held constant, and with Avogadro's principle (V a n)
when p and T are constant.

The constant of proportionality, which is found
experimentally to be the same for all gases, is denoted
R and called the gas constant. The resulting expression

pV=nRT

is the perfect gas equation -




Molecular interpretation 1.1 Tge%inetic model of gases



Lecture 3

Molecular interpretation 1.1
Thekinetic model of gases
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As a result, the average force exerted on the walls
is doubled. Hence, when the volume is halved the

pressure of the gas is doubled, and p x Vis a
constant.

Boyle's law applies to all gases regardless of their
chemical identity (provided the pressure is low)
because at low pressures the average separation

of molecules is so great that they exert no

influence on one another and hence travel
independently.
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The molecular explanation of Charles's law liesin
the fact that raising the temperature of a gas

of its molecules
collide with the walls more frequently and with
greater impact. Therefore they exert a greater
pressure on the walls of the container molecules.
Ll Soadl 23 gaill da g s LS Cumdd e 5ill (ailiadlld
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These qualitative concepts are expressed
guantitatively in terms of the kinetic model of
gases, which is described more fully in Chapter

21. Briefly, the kinetic model is based on three
assumptions:
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1. The gas consists of molecules of mass m in
ceaseless random motion.

2. The size of the molecules is negligible, in the
sense that their diameters are much smaller
than the average distance travelled between
collisions.

3. The molecules interact only through brief,
infrequent, and elastic collisions.

An elastic collision is a collision in which the total
translational kinetic energy of the molecules is
conserved.



From the very economical assumptions of the kinetic
model, it can be deduced (as we shall show in detail in
Chapter 21) that the pressure and volume of the gas
are related by

pV=2%nMC? ....coveevvvevvvvecennnn. (1.9)°

where M = mN, the molar mass of the molecules, and c
is the root mean square speed of the molecules, the
square root of the

mean of the squares of the speeds, v,
c={02 )% o (1.10)

We see that, if the root mean square speed of the *
molecules depends only on the temperature, then at
constant temperature

p V =constant
which is the content of Boyle's law Jis (5l sa 13a




pV=2nNMC? ..o, (1.9)°
Moreover, for eqn 1.9 to be the equation of

state of a perfect gas, its right-hand side must be equal
to nRT. It follows that the root mean square speed of
the molecules in a gas at a temperature T must be

3RT )"
c=| — (1.11)°
M

We can conclude that the root mean square speed of
the molecules of a gas is proportional to the square
root of the temperature and inversely proportional
to the square root of the molar mass.

The root mean square speed of N2 molecules, for instance, is
found from egn 1.11 to be 515 m S at 298 K
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The surface in Fig. 1.8 is a plot of the pressure of

a fixed amount of perfect gas against its
volume and thermodynamic temperature as
given by egn 1.8.

The surface depicts the only possible states of a
perfect gas: the gas cannot exist in states that
do not correspond to points on the surface.

The graphs in Figs. 1.4 and 1.6 correspond to the
sections through the surface (Fig. 1.9)



Pressure, p —>

Fig. 1.8 A region of the p,V,T surface of a
fixed amount of perfect gas. The points
forming the surface represent the only
states of the gas that can exist.

p «< 1V
isotherm

VT
isobar

peT
|isochore

Fig. 1.9 Sections through the surface shown
in Fig. 1.8 at constant temperature give the
isotherms shown in Fig. 1.4 and the isobars
shown in Fig. 1.6.
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Example 1.2 Using the perfect gas equation

In an industrial process, nitrogen is heated to 500 K in a vessel of constant
volume. If it enters the vessel at 100 atm and 300 K, what pressure would
it exert at the working temperature if it behaved as a perfect gas?

Method We expect the pressure to be greater on account of the increase in
temperature. The perfect gas law in the form PV/ nT = R implies that, if the
conditions are changed from one set of values to another, then because
PV/nT is equal to a constant, the two sets of values are related by

The combined gas law

AL AL (1.12)°
n,Tl n?_Tz .

!n PiVT

The known and unknown data are summarized in (2) Initial| Same | 100 | Same | 300 |

Final Samei ? |Same| 500 1

2
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Answer

Cancellation of the volumes (because V,=V,) and amounts
(because n,=n,) on each side of the

combined gas law results in
IO
I, T,

—

which can be rearranged into

= Ao
et
25 T P
Substitution of the data then gives
500 K _
p; = —— X (100 atm) = 167 atm
300 K

Experiment shows that the pressure is actually 183 atm under these conditions, so the
assumption that the gas is perfect leads to a 10 per cent error

what temperature would result in the same sample exerting a pressure of300 atm? [900 K]
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MPACT ON ENVIRONMENTAL SCIENCE

11.1 The gas laws and the weather

The biggest sample of gas readily accessible to us is
the atmosphere, a mixture of gases with the
composition summarized in Table 1.3. The
composition is maintained moderately constant

by diffusion and convection (winds, particularly
the local turbulence called eddies) but the

pressure and temperature vary with altitude and
with the local conditions, particularly in the
troposphere (the 'sphere of change’), the layer

extending up to about 11 km.
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Table 1.3 The composition of dry air at sea level

Percentage

Component By volume By mass
Nitrogen, N, 78.08 75.53
Oxygen, O, 20.95 23.14
Argon, Ar 0.93 1.28
Carbon dioxide, CO, 0.031 0.047
Hydrogen, H, 5.0% 1077 2.0x107*
Neon, Ne 1.8% 1077 1.3x1073
Helium, He 52x107* 7.2x107°
Methane, CH, 20x107* 1.1x107*
Krypton, Kr 1.1x107* 32x10™*
Nitric oxide, NO 50x107° 1.7x 1078
Xenon, Xe 8.7x107° 1.2x107°
Ozone, O;: summer 7.0%x107° 1.2x10°

winter 20x10°° 3.3x107¢
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In the troposphere the average temperature is 15°C at sea level,
falling to -57°C at the bottom of the tropopause at 11km. This
variation is much less pronounced when expressed on the Kelvin
scale, ranging from 288 K to 216 K, an average of268 K. If we
suppose that the temperature has its average value all the way up
to the tropopause, then the pressure varies with altitude, h,
according to

L —h/H
the barometric formula P =Pt

where p_ is the pressure at sea level and H is a constant approximately
equal to 8 km.

More specifically,
H = RTIMg,

where M is the average molar mass of air and T is the temperature.
The barometric formula fits the observed pressure distribution quite
well even for regions well above the troposphere (see Fig. 1.10).




g H\/
A

Fig. 1.11 A typical weather map; in this case,

for the United States on 1 January 2000,

N
Wind ,
e ~_—Rotation
S

Fg.1.12 The flow of air (*wind’) around
regions of high and low pressure in the
Northern and Southern hemispheres.
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Altitude, h/km
S

0 Py
Pressure, p

Fig. 110 The variation of atmospheric
pressure with altitude, as predicted by the
barometric formula and as suggested by the
‘US Standard Atmosphere’, which takes
into account the variation of temperature
with altitude.
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(b) Mixtures of gases

When dealing with gaseous mixtures, we often need to know the
contribution that each component makes to the total pressure

of the sample. The partial pressure, P, of a gas J in a mixture (any
gas, not just a perfect gas), is defined as

P=xF [1.13]

where X, is the mole fraction of the component J, the amount of J expressed
as a fraction of the total amount of molecules, n, in the sample:

H
xXp = I n=m, +ng+--: [1.14]
n
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When no J molecules are present, x, =0, when only J molecules
are present, x, = 1. It follows from the definition of x, that, whatever

the composition of the mixture, x, + Xz +... = 1 and therefore that
the sum of the partial pressures is equal to the total pressure:
PatpPpt =(Xp+xp+--)p=p (1.13)

This relation is true for both real and perfect gases. When all
the gases are perfect, the partial pressure as defined in egn
1.13 is also the pressure that each gas would occupy if it
occupied the same container alone at the same
temperature. The latter is the original meaning of 'partial
pressure'. That identification was the basis of the original
formulation of

Dalton's law:

The pressure exerted by a mixture of gases is the sum of the
pressures that each one would exist if it occupied the
container alone
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Example 1.3 Calculating partial pressures

The mass percentage composition of dry air at sea level is approximately N2: 75.5; O::
23.2; Ar: 1.3. What is the partial pressure of each component when the total
pressure is 1.00 atm?

Method We expect species with a high mole fraction to have a proportionally high
partial pressure. Partial pressures are defined by eqn 1.13. To use the equation, we
need the mole fractions of the components. To calculate mole fractions, which are
defined by eqn 1.14, we use the fact that the amount of molecules J of molar mass
MJ in a sample of mass m, is n, = m/ M, e The mole fractions are independent of
the total mass of the sample, so we can choose the latter to be 100 g (which makes
the conversion from mass percentages very easy). Thus, the mass of N, present is
75.5 per cent of 100 g, which is 75.5 g.

Answer The amounts of each type of molecule present in 100 g of air, in which the
masses of N2, 02" and Ar are 75.5 g, 23.2 g, and 1.3 g, respectively, ar

o 75.5¢ 75.5
n(N,) = .- = mol
28.02 gmol™!  28.02
s, M 23.2 23.2
n(Q,) = —— & - = mol
32.00 gmol~'  32.00
‘ 13g 1.3
n(Ar) = p— = mol
39.95gmol™! 3995

These three amounts work out as 2.69 mol, 0.725 mol, and 0.033 mol, respectively,
for a total of 3.45 mol. The mole fractions are obtained by dividing each of the
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above amounts by 3.45 mol and the partial pressures are then obtained by multi-
plying the mole fraction by the total pressure (1.00 atm):

N, Q, Ar
Mole fraction: 0.780 0.210 0.0096
Partial pressurefatm: ~ 0.780  0.210  0.0096

We have not had to assume that the gases are perfect: partial pressures are defined
as p; = x; p for any kind of gas.

Self-test 1.4 When carbon dioxide is taken into account, the mass percentages are
75.52 (N,), 23.15 (O,), 1.28 (Ar), and 0.046 (CO,). What are the partial pressures
when the total pressure is 0.900 atm? [0.703, 0.189, 0.0084, 0.00027 atm|
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Real gases

Real gases do not obey the perfect gas law exactly. Deviations from the law are particu-
larly important at high pressures and low temperatures, especially when a gasis on the
point of condensing to liquid.
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Real gases

Real gases do not obey the perfect gas law exactly. Deviations
from the law are particularly important at high pressures and
low temperatures, especially when a gas is on the point of

condensing to liquid
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1.3 Molecular interactions

Real gases show deviations from the perfect gas
law because molecules interact with one
another. Repulsive forces between molecules
assist expansion and attractive forces assist
compression

Siladl g gy AL & lud) (e Gl S 3 g G )
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Repulsive forces are significant only when molecules are ®

almost in contact: they are short -range interactions, even on
a scale measured in molecular diameters (Fig. 1.13). Because
they are short-range interactions,

Repulsions can be expected to be important only when the
average separation of the molecules is small. This is the case
at high pressure, when many molecules occupy a small
volume. On the other hand, attractive intermolecular forces
have a relatively long range and are effective over several
molecular diameters. They are important when the molecules
are fairly close together but not necessarily touching (at the

intermediate separations in Fig. 1.13).
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Fig. 1.13 The variation of the potential
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(a) The compression factor 6
The compression factor, Z, of a gas is the ratio of its measured molar
volume, Vin=V/n

to the molar volume of a perfect gas, ',  at the same pressure and
temperature:
v

Z =;} [1.16]

o]
1]

Because the molar volume of a perfect gas is equal to RT/p, an
equivalent expression is:

Z=RT/p V',
which we can write as:

pV. =RTZ (1.17)

Because for a perfect gas Z = 1 under all conditions, deviation of Z a
measure of departure from perfect behavior.

Shall bl e Sl ags e Qs 551 e 7 Al s



Compressir_)_p factor, Z

Fig. 1.14 The variation of the compression

7

Some experimental values of Z are plotted
in Fig. 1.14.

At very low pressures, all the gases shown
have Z =1 and behave nearly perfectly.

At high pressures, all the gases have Z> 1,
signifying that they have a larger molar
volume than a perfect gas.

Repulsive forces are now dominant. At
intermediate pressures, most gases
have Z < 1, indicating that the attractive
forces are reducing the molar volume
relative to that of a perfect gas.
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b) Virial coefficients Jtud <lalaa o

Figure 1.15 shows the experimental isotherms for carbon dioxide.

At large molar volumes and high temperatures the real-gas isotherms do not
differ greatly from perfect-gas isotherms.

The small differences suggest that the perfect gas law is in fact the first term
in an exoression of the form
pV_ =RT(1+Bp+C'p +:-+) (1.18)

This expression is an example of a common procedure in physical chemistry,
in which a simple law that is known to be a good first approximation (in
this case pV = nRT)
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Fig. 1.15 Experimental isotherms of carbon
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Fig. 1.15 Experimental isotherms of carbon
dioxide at several temperatures. The
‘critical isotherm’, the isotherm at the

critical temperature, is at 31.04°C. The
critical point is marked with a star.
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reated as the first term in a series in powers of a variable (in this case
p). A more convenient expansion for many applications is

I

pV =RT[1+£+£_J+-~) (1.19)

It m

These two expressions are two versions of the virial equation of state.
By comparing the expression with egn 1.17 we see that the term in
parentheses can be identified with the compression factor, Z.

The coefficients B, C, ..., which depend on the temperature, are the
second, third, ... virial coefficients

(Table IA); the first virial coefficient is 1.

The third virial coefficient, C, is usually less important than the second
coefficient, B,

in the sense that at typical molar volumes C/V? << B/V_
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We can use the virial equation to demonstrate the

important point that, although the equation of state of a real gas may
coincide with the perfect gas law as p 20, not all its properties necessarily
coincide with those of a perfect gas in that limit.

Consider, for example, the value of dZ/dp, the slope of the graph of
compression factor against pressure.

For a perfect gas dZ/dp = 0 (because Z =1 at all pressures), but for a real gas
from egn 1.18 we obtain

§=B’+Ep{:’+---ﬁﬂr as p—0 (1.20a)
However, B'is not necessarily zero, so the slope of Z with respect to p does
not necessarily approach 0 (the perfect gas value), as we can see in Fig.
1.14. Because several physical properties of gases depend on derivatives,
the properties of real gases do not always coincide with the perfect gas
values at low pressures.

dz

d/v,)

— BasV_ — s, correspondingto  p— 0 (1.20b)



 Higher = ;
temperature Z

Synoptic Table 1.4* Second virial
coefficients, B/(cm® mol™)

- Compression factor, Z

Temperature
273K 600 K
Ar -21.7 11.9 - ._,_.-—-—-//E’-;’e rf; ot
€0, -149.7 -124 N .gas
Z ower
N, -10.5 21.7 temperature
Xe ~153.7 -196 0 Pressure, p

Fig. 1.16 The compression factor, Z,

* More values are given in the Data section.
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Boyle temperature, 7s' the properties of the real gas

do coincide with those of a perfect gas as p =0.

According to egn 1.20b, Z has zero slope as p =0 if B=0,

so we can conclude that B = 0 at the Boyle temperature. It then
follows from eqn 1.19 that pV~ = RTs over a more extended
range of pressures than at other temperatures because the
first term after 1 (that is, B/Vm) in the

virial equation is zero and C/V» and higher terms are negligibly
small. For helium Ts:=22.64 K; for air Ts=346.8 K; more values

are given in Table 1.5
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Jsanll e
Synoptic Table 1.5* Critical constants of gases
p./atm V. /(cm® mol™) T./K Z. Ty/K
Ar 48.0 753 150.7 0.292 411.5
CO, 72.9 94.0 304.2 0.274 714.8
He 2.26 57.8 5.2 0.305 22.64
0, 20,14 78.0 154.8 0.308 405.9

* More values are given in the Data section.



15
(c) Condensation

Now consider what happens when we compress a sample of gas initially in
the state marked A in Fig. 1.15 at constant temperature (by pushing in a
piston). Near A, the pressure of the gas rises in approximate agreement
with Boyle's law. Serious deviations from that law begin to appear when
the volume has been reduced to B.

At C (which corresponds to about 60 atm for carbon dioxide), all similarity to
perfect behavior is lost,

for suddenly the piston slides in without any further rise in pressure: this
stage is represented by the horizontal line CDE. Examination of the
contents of the vessel shows that just to the left of C a liquid appears, and
there are two phases separated by a sharply defined surface.

As the volume is decreased from C through D to E, the amount of liquid
increases. There is no additional resistance to the piston because the gas
can respond by condensing. The pressure corresponding to the line CDE,
when both liquid and vapour are present in equilibrium, is called the
vapour pressure of the liquid at the temperature of the experiment.

At E, the sample is entirely liquid and the piston rests on its surface. Any
further reduction of volume requires the exertion of considerable
pressure, as is indicated by the sharply rising line to the left ofE. Even a
small reduction of volume from E to F requires a great increase in pressure




(d) Critical constants 1 6

The isotherm at the temperature T¢; (304.19 K, or 31.04 °C for
CO:2) plays a special role in the theory of the states of matter.

An isotherm slightly below T¢, behaves as we have already described: at a
certain pressure, a liquid condenses from the gas and is distinguishable from it
by the presence of a visible surface.

The critical point of the gas. The temperature, pressure, and molar
volume at the critical point are called the critical temperature, T, critical
pressure, Pc, and critical molar volume, Vc, of the substance.
Collectively, Pc, Vi, and Tc are the critical constants of a substance (Table
1.5).

At and above Tc the sample has a single phase that occupies the entire
volume of the container. Such a phase is, by definition, a gas.
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The critical temperature of oxygen, for instance,
signifies that it is impossible to produce liquid
oxygen by compression alone if its
temperature is greater than 155 K: to liquefy
oxygen-to obtain a fluid phase that does not
occupy the entire volume-the temperature
must first be lowered to below 155 K, and
then the gas compressed isothermally. The
single phase that fills the entire volume when
> Tc; may be much denser than we normally
consider typical of gases, and the name
supercritical fluid is preferred
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1.4 The van der Waals equation
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1.4 The van der Waals equation:

We can draw conclusions from the virial equations of state only by inserting specific
values of the coefficients. It is often useful to have a broader, if less precise, view

of all gases. Therefore, we introduce the approximate equation of state suggested
by J.D. van der Waals in 1873. This equation is an excellent example of an
expression that can be obtained by thinking scientifically about a mathematically
complicated but physically simple problem, that is, it is a good example of 'model
building'.

The van der Waals equation is:

¥

R (1.21a)
’I V —nb V e

and a derivation is given in Justification 1.1. The equation is often written in
terms of the molar volume Vm = V/ n as:

RT a

- b ) Vri

pP= (1.21b)

m



The constants a and b are calledgthe van der Waals coefficients.

They are characteristic of each gas but independent of the temperature
(Table 1.6).

D Ao Glaaingy g il AL ) juaa Lab g jlld jaild cdlaleay S ti b 9a SLuL
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Synoptic Table 1.6* van der Waals
coefficients

a/(atm dm®mol™) b/(1072 dm’ mol™)

Ar  1.337 3.20
CO, 3.610 4.29
He  0.0341 2.38
Xe  4.137 5.16

* More values are given in the Data section.
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Answer JaJ)
b=4.267x102dm?>mo€? 5 a=3.592 i (1.6 ) Jsaall s
RTfp=ﬂ.41{] dm? mol™". : o) A Banal) Cag ylal) Cuavid

0N sV Al Aalaal B Blalanlld
b+ RT/p=0.453 dm’ mol™
a/p=3.61x10"% (dm’ mol™)?
ab/p=1.55x107° (dm> mol™)’

Therefore, on writing x = V_/(dm® mol™), the equation to solve is

x?—0.453x% + (3.61 X 107%)x—(1.55% 107) =0

Sl &y V,=0.366 dm3 mo? Lise Laaa Jaay 138 5 X = 0.366 1 el Laalle
0.410 dm3mof 1 A sall anall s oy yhall oda s G
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o
Table 1.7 Selected equations of state
Critical constants
Equation Reduced form* P, V. T
Perfect gas P= rish
‘,ﬂl
1 3 8
van der Waals p= RE % a‘ p= EOL oS 2 3b &
V,-b V2 V. -1 V2 271 27bR
1”2 1"
T 8T, 3 1 (2aR 252
Berthelot p= L - p=—t— R s 3b ol L
V,-b TV2 3V. -1 TV? 12 363 3(3bR
RT —alRTV,, ’T 2TV,
Dieterici s oae ARl % 2b SLA¥
V,—-b 2V, -1 4e’b’ 4bR
RT B
Virial p= —{1 ilh)
vV, V.,

* Reduced variables are defined in Section 1.5.



LS daa i g ) Alhaladdll (he de gana slialg o
Xl e il sy (1,18) JSE 5 (1.17) JSA
Cibae | Ll WY ¢ daall 31 all dan Jiud shlid) 3
M s dagha o L lies JSGy Ale s 3 el
et s 4aa8l 3 e & Vander Waals loops
M\@OJMJJMMMLJJMQML@_\‘UAJJM
?‘“‘JJJM‘?JUAJ?&M odb‘)uj\cgdyo&um
Gilalaiadl o) cilla giY1 b 4ule 5 4088l dagiioe Ja sha
Lo shaall Cint g 5 b A glusia cilalice 2387 Ledl sy 5al
(3) Maxwell dis She S iy et dgy ylall o2a
2 5 Sl elli Jie e Haila o Slal=ad construction
A gl L_m\_\;_\.d\é\s.\\imu.qa_mhjds(]_ 7) J saall
T yad Leale Joanall ciliaiall



~

Pressure

Fig. 1.17 The surface of possible states
allowed by the van der Waals equation.
Compare this surface with that shown in
Fig. 1.8.
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1.5 (o
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Reduced pressure, p/p,
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0
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1
Reduced volume, WV

Fig. 1.18 Van der Waals isotherms at several values of T/T_. Compare these curves with those
in Fig. 1.15. The van der Waals loops are normally replaced by horizontal straight lines. The

critical isotherm is the isotherm for T/T_= 1.
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(b) The features of the equation

The principal features of the van der Waals equation can be summarized as
follows.

(1) Perfect gas isotherms are obtained at high temperatures and large molar
volumes. When the temperature is high, RT may be so large that
the first term in eqn 1.21b greatly exceeds the second.

Furthermore, if the molar volume is large in the sense

Vm» b, then the denominator Vm- b = Vm. Under these conditions, the
equation reduces to p = RT/V m, the perfect gas equation.

(2) Liguids and gases coexist when cohesive and dispersing effects are in
balance. The van der Waals loops occur when both terms in egn 1.21b
have similar magnitudes.

The first term arises from the kinetic energy of the molecules and their
repulsive interactions; the second represents the effect of the attractive
interactions.
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(3) The critical constants are related to the van der Waals coefficients.

For T < T¢, the calculated isotherms oscillate, and each one passes through a
minimum followed by a maximum. These extrema converge as T 2 T¢; and
coincide at T = T¢; at the critical point the curve has a flat inflexion (4).
From the properties of curves, we know that an inflexion of this type occurs
when both the first and second derivatives are zero. Hence, we can find the
critical constants by calculating these derivatives and setting them equal

to zero:

d RT 2
p = — i 3 =10 \
v, = (V. -2 V2 A
d’p  2RT  6a N
-— — — O 4 j

dVZ v —bp VA

at the critical point. The solutions of these two equations (and using eqn 1.21b to
calculate p_from V_and T_) are
a 8a

Voi=3b ; T = (1.22)
: P 27b? ©  27Rb

I
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These relations provide an alternative route to the determination of @ and b from the
values of the critical constants. They can be tested by noting that the critical com-
pression factor, Z_, is predicted to be equal to

T

: 1.23
°" RT. 8 )

for all gases. We see from Table 1.5 that, although Z_ < 3 = 0.375, it is approximately
constant (at 0.3) and the discrepancy is reasonably small.
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1.5 The principle of corresponding states

An important general technique in science for comparing the properties of objects is
to choose a related fundamental property of the same kind and to set up a relative
scale on that basis. We have seen that the critical constants are characteristic proper-
ties of gases, so it may be that a scale can be set up by using them as yardsticks. We
therefore introduce the dimensionless reduced variables of a gas by dividing the
actual variable by the corresponding critical constant:

P 1% T

=2 V =0 T == 1.24
P, b = =T [1.24]

Trjd)u\ag\vrdw\w\ﬁpr Oy Cua
d).\:.d\ 3‘)\);}‘ Z\;JJ



19

SUl el Taaal) slayl (S Uil J Fidall kel Lidac | 136 o

If the reduced pressure of a gas is given, we can easily calculate its actual pressure by
using p = p,p_, and likewise for the volume and temperature. Van der Waals, who first
tried this procedure, hoped that gases confined to the same reduced volume, V,, at the
same reduced temperature, T,, would exert the same reduced pressure, p.. The hope
was largely fulfilled (Fig. 1.19). The illustration shows the dependence of the com-
pression factor on the reduced pressure for a variety of gases at various reduced tem-
peratures. The success of the procedure is strikingly clear: compare this graph with
Fig. 1.14, where similar data are plotted without using reduced variables. The obser-
vation that real gases at the same reduced volume and reduced temperature exert the
same reduced pressure is called the principle of corresponding states. The principle
is only an approximation. It works best for gases composed of spherical molecules;
it fails, sometimes badly, when the molecules are non-spherical or polar.

The van der Waals equation sheds some light on the principle. First, we express
eqn 1.21b in terms of the reduced variables, which gives

BIEE Qa

Prpc = Ver _b = vaf
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Fig. 1,19 The compression factors of four of the gases shown in Fig. 1.14 plotted using reduced
variables. The curves are labelled with the reduced temperature T, = T/T. The use of reduced
variables organizes the data on to single curves.
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[
Then we express the critical constants in terms of @ and b by using eqn 1.22:
apiisl) 8aT, g
276 27b(3bV_ —b) 9H*V?
which can be reorganized into
8T, 3
= - 1.25
w1 v i)

This equation has the same form as the original, but the coefficients a and b, which
differ from gas to gas, have disappeared. It follows that if the isotherms are plotted in
terms of the reduced variables (as we did in fact in Fig. 1.18 without drawing attention
to the fact), then the same curves are obtained whatever the gas. This is precisely the
content of the principle of corresponding states, so the van der Waals equation is
compatible with it.
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For the purposes of physical chemistry, the universe is divided into two parts,
the system and its surroundings.

The system is the part of the world in which we have a special interest. It may
be a reaction vessel, an engine, an electrochemical cell, a biological cell,
and so on.

The surroundings comprise the region outside the system and are where we
make our measurements.

The type of system depends on the characteristics of the boundary that
divides it from the surroundings (Fig. 2.1).

If matter can be transferred through the boundary between the system and
its surroundings the system is classified as open.

If matter cannot pass through the boundary the system is classified as closed.
Both open and closed systems can exchange energy with their
surroundings.

For example, a closed system can expand and thereby raise a weight in the
surroundings; it may also transfer energy to them if they are at a lower
temperature.



An isolated system is a closed system that has neither

mechanical nor thermal contact with its surroundings.

Skl A Fig. 2.1 (a) An open system can exchange
e == matter and energy with its surroundings.
| b (b) A closed system can exchange energy
<‘:Energy with its surroundings, but it cannot
(a) Open exchange matter. (¢) An isolated system
. e can exchange neither energy nor matter
Eratir with its surroundings.
S
(b) Closed

Matter
1

é) Energy

|
[

(c) Isolated



2.1. Work, heat, and energy:
The fundamental physical property in thermodynamics is work:
work is motion against an opposing force.

An example of doing work is the expansion of a gas that pushes out a piston and
raises a weight. A chemical reaction that drives an electric current through a
resistance also does work, because the same current could be driven through a
motor and used to raise a weight.

The energy of a system is its capacity to do work.

5 alhaill G BAll i€ Jadll e (s A Bk e it (S alailll Al () sl O pgaal
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Experiments have shown that the energy of a system may be changed by means
other than work itself. When the energy of a system changes as a result of a
temperature difference between the system and its surroundings we say that
energy has been transferred as heat. When a heater is immersed in a beaker of
water (the system), the capacity of the system to do work increases because hot
water can be used to do more work than the same amount of cold water. Not all
boundaries permit the transfer of energy even though there is a temperature
difference between the system and its surroundings
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An exothermic process is a process that releases energy as heat into
its surroundings. All combustion reactions are exothermic.

An endothermic process is a process in which energy is acquired from
its surroundings as heat.

An example of an endothermic process is the vaporization of water.
An endothermic process energy is transferred 'as heat' from

the surroundings into the system.

Molecular interpretation 2.1 Heat and work

In molecular terms, heating is the transfer of energy that makes use of
disorderly molecular motion.

In contrast, work is the transfer of energy that makes use of

organized motion (Fig. 2.4). When a weight is raised or lowered, its
atoms move in an organized way (up or down). The



Endothermic Exothermic

(a) (b)

Isothermal

|
Heat ; @
|

(c) (d)

Fig. 22 (a) When an endothermic process
occurs in an adiabatic system, the
temperature falls; (b) if the process is
exothermic, then the temperature rises.

(c) When an endothermic process occurs
in a diathermic container, energy enters as
heat from the surroundings, and the system
remains at the same temperature. (d) If the
process is exothermic, then energy leaves as
heat, and the process is isothermal.

Energy Energy Energy

System

Fig. 23 When energy is transferred to the
surroundings as heat, the transfer
stimulates random motion of the atoms in
the surroundings. Transfer of energy from
the surroundings to the system makes use
of random motion (thermal motion) in the
surroundings. )

Energy Energy Energy

System

Fig. 24 When a system does work, it
stimulates orderly motion in the
surroundings. For instance, the atoms
shown here may be part of a weight that is
being raised. The ordered motion of the
atoms in a falling weight does work on the
system.
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The distinction between work and heat is made in the
surroundings: The fact that a falling weight may stimulate
thermal motion in the system is irrelevant to the distinction
between heat and work:

work is identified as energy transfer making use of the
organized motion of atoms in the surroundings, and

heat is identified as energy transfer making use of thermal

motion in the surroundings. |
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2.2 The internal energy

In thermodynamics, the total energy of a system is called its internal
energy, U.

The internal energy is the total kinetic and potential energy of the
molecules in the system (see Comment 1.3 for the definitions of kinetic
and potential energy).’

We denote by AU the change in internal energy when a system changes

from an initial state | with internal energy Ujto a final state f of
internal energy Uf:

AU =Ur-Ui ... (2.1)

The internal energy is a state function in the sense that its value depends
only on the current state of the system and is independent of how
that state has been prepared.

In other words, it is a function of the properties that determine the
current state of the system. Changing

Y 5 alaill Al Al e dash aaiad Lgiad of e ol Als Ay s 30500 Ll
AJ\AJ\ «JL J.u.a;; 4\.13.\5 L,,Js:




Changing any one of the state variables, such as the pressure, results in a
change in internal energy.

The internal energy is an extensive property. That the internal energy is a
state function has consequences of the greatest importance, as we start to
unfold in Section 2.10
Crsbindl 8 (o i LS (oS Apanl L 5 Uyl A Ay a5 ALals pals s )l d8Ualls
daa |

heat, Internal energy, and work are all measured in the same units, the joule
(J). The joule, which is named after the nineteenth-century scientist J.P.
Joule, is defined as

1J=1kgm? S7?
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A joule is quite a small unit of energy: for instance, each beat of the human
heart consumes about 1 J.

Changes in molar internal energy, AU m are typically expressed in kilojoules
per mole (k] mol ). Certain other energy units are also used, but are more
common in fields other than thermodynamics.

Thus, 1 electronvolt (1 eV) is defined as the kinetic energy acquired
when an electron is accelerated from rest through a potential difference

of 1V; the relation between electronvolts and joules is 1 eV = 0.16 Q]

(where 1 aj = 1018 J). Many processes in chemistry have an energy of

several electronvolts. Thus, the energy to remove an electron from a
sodium atom is close to 5 eV. Calories (cal) and kilocalories (kcal) are still
encountered. The current definition of the calorie in terms of joules is

1 cal = 4.184 J exactly An energy of 1 cal is enough to
raise the temperature of 1 g of water by 1°C
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Molecular interpretation
2.2 . The internal energy of a gas
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Molecular interpretation 2.2 The inte%al enerqgy of a gas :

A molecule has a certain , such as the ability to
translate (the motion of its centre of mass through space), rotate around

its centre of mass, or vibrate (as its bond lengths and angles change).

Many physical and chemical properties depend on the energy associated
with each of these modes of motion. For example, a chemical bond might
break if a lot of energy becomes concentrated in it.

. The equipartition theorem of classical mechanics is a useful guide to the
average energy associated with each degree of freedom when the sample
is at a temperature T. First, we need to know that a

'quadratic contribution’ to the energy means a contribution that can be
expressed as the square of a variable, such as the position or the velocity.
For example, the kinetic energy an atom of mass m as it moves through
space |
ZLL)) o pd gall 5f de_yuallS yiiiall Al ao gy dic_yins sl algasYl) iy 5 2w s algs)
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There are three quadratic contributions to its 43Ualt (P A algs)
energy.
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k=1.381 x 1023 JK?

The equipartition theorem then states that, for a collection of
particles at thermal equilibrium at a temperature T, the average
value of each quadratic contribution to the energy is the same and
eq1ual to 1kT, where k is Boltzrnann's constant (k = 1.381 x 107 J
K™).

iThe equipartition theorem : is a conclusion from classical mechanics
and is applicable only when the effects of quantization can be
ignored (see Chapters 16 and 17). In practice, it can be used for
molecular translation and rotation but not vibration.

At 25°C, +kT =2 z] (where 1 zJ = 1072' ]), or about 13 meV.
total energy of the gas (there being no potential energy contribution) is SNkT, or
2nRT (because N=nN, and R= N, k). We can therefore write

U.,=U (0)+—RT

m




where Um(0) is the molar internal energy at T = 0,
when all translational motion has ceased and
the sole contribution to the internal energy arises
from the internal structure of the atoms. This
equation shows that the internal energy of a
perfect gas increases linearly with temperature.
At 25°C, (3/2)RT = 3.7 kl mol -,

so translational motion contributes about 4 kJ mofl
1 to the molar internal energy of a gaseous
sample of atoms or molecules (the remaining
contribution arises from the internal structure of
the atoms and molecules).




When the gas consists of polyatomic S
molecules, we need to take into account ;kTW o
the effect of rotation and vibration. N
A linear molecule, such as N2 and CO2, can (_,_ﬂ_T_
. S, Ve
rotate around two axes perpendicular to
the line of the atoms (Fig. 2.5), so it has 2 We
. . 1 S A1
two rotational modes of motion, each ZkT 4 {98
L . - e ‘
contributing a term tkT to the internal b) " \ /,’
. \ \.
energy. Therefore, the mean rotational
energy is kT and the rotational Fig. 25 The rotational modes of molecules
contribution to the molar internal energy is 4 the corresponding average energies at a
i ) temperature T. (a) A linear molecule can
RT. By addlng the translational and rotate about two axes perpendicular to the
rotational contributions. we obtain line of the atoms. (b) A nonlinear molecule
/7

can rotate about three perpendicular axes.

U,=U_(0)+3RT (linear molecule, translation and rotation only)
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A nonlinear molecule, such as CH, or water, can rotate around three axes and,
again, each mode of motion contributes a term 5K to the internal energy.
Therefore, the mean rotational energy is 3kT and there is a rotational contribution
of 3RT to the molar internal energy of the molecule. That is

U,=U,(0)+3RT  (nonlinear molecule, translation and rotation only)

The internal energy now increases twice as rapidly with temperature compared
with the monatomic gas.

The internal energy of interacting molecules in condensed phases also has a
contribution from the potential energy of their interaction. However, no simple
expressions can be written down in general. Nevertheless, the crucial molecular
point is that, as the temperature of a system is raised, the internal energy increases
as the various modes of motion become more highly excited.
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It has been found experimentally that the internal energy of a system may
be changed either by doing work on the system or by heating it.

Whereas we may know how the energy transfer has occurred (because we
can see if a weight has been raised or lowered in the surroundings,
indicating transfer of energy by doing work, or if ice isolated from its
surroundings, then no change in internal energy takes place.

This summary of observations is now known as the First Law of
thermodynamics and expressed as follows:

The internal energy of an isolated system is constant.

We cannot use a system to do work, leave it isolated for a month, and
then come back expecting to find it restored to its original state and ready
to do the same work again. The evidence for this property is that no
'perpetual motion machine' (a machine that does work without
consuming fuel or some other source of energy) has ever been built.
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These remarks may be summarized as follows. If we write w for the work done on a
system, ¢ for the energy transferred as heat to a system, and AU for the resulting
change in internal energy, then it follows that

AU=q+w (2.2)

Equation 2.2 is the mathematical statement of the First Law, for it summarizes the
equivalence of heat and work and the fact that the internal energy is constant in an
isolated system (for which ¢ = 0 and w = 0). The equation states that the change in
internal energy of a closed system is equal to the energy that passes through its bound-
ary as heat or work. It employs the ‘acquisitive convention’, in which w> 0 or g > 0 if
energy is transferred to the system as work or heat and w < 0 or g <0 if energy is lost
from the system as work or heat. In other words, we view the flow of energy as work
or heat from the system’s perspective.
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llustration 2.1 The sign convention in thermodynamics

[f an electric motor produced 15 k] of energy each second as mechanical work and
lost 2 k] as heat to the surroundings, then the change in the internal energy of the
motor each second is

AU=-2k]-15k]=-17K]

Suppose that, when a spring was wound, 100 ] of work was done on it but 15 ]
escaped to the surroundings as heat. The change in internal energy of the spring is

AU=+100k] - 15 k] =+85 k]
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(a) The general expression for work

The calculation of expansion work starts from the definition used in physics, which
states that the work required to move an object a distance dz against an opposing force
of magnitude F is

dw=—-Fdz [2.4]

The negative sign tells us that, when the system moves an object against an opposing
force, the internal energy of the system doing the work will decrease. Now consider the
arrangement shown in Fig. 2.6, in which one wall of a system 1s a massless, frictionless,
rigid, perfectly fitting piston of area A. If the external pressure is p,,, the magnitude of
the force acting on the outer face of the piston is F = p, A. When the system expands
through a distance dz against an external pressure p,, it follows that the work done is
dw =-p, Adz. But Adz is the change in volume, dV; in the course of the expansion.
Therefore, the work done when the system expands by dV against a pressure p, is

dw=-p,dV (2.5)
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To obtain the total work done when the volume
changes from Vi to Vfwe integrate this expression
between the initial and final volumes:

External
pressure, p,.

The force acting on the piston, Pex A, is equivalent to a
weight that is raised as the system expands.

If the system is compressed instead, then the same
weight is lowered in the sur-

}

b
Ve
Area, A Pressure, p
w=-| p.dV 00000000000 (2.6)
7 Fig.26 When a piston of area A moves out

- through a distance dz, it sweeps out a
volume dV = Adz. The external pressure p,,
is equivalent to a weight pressing on the
piston, and the force opposing expansion is
F=p. A.



(b) Free expansion
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By free expansion we mean expansion against zero opposing force. It occurs

when

Pex=0. According to eqn 2.5, dw = 0 for each stage of the expansion. Henre

overall: Free E:.h:pﬂ Hs101:

Table 2.1 Varieties of work*

w=1()

(2.7

Unitst

Type of work dw Comments
Expansion ~PexdV Pex i's the e.\'tcrnal' pressure Pa}
dVis the change in volume m-
Surface expansion ydo v is the surface tension Nm™
dois the change in area m*
Extension fdl fis the tension N
dlis the change in length m
Electrical 0dQ @ is the electric potential V
dQ is the change in charge @

* In general, the work done on a system can be expressed in the form dw = —Fdz, where F is a ‘generalized force’

and dz is a ‘generalized displacement’.

T For work in joules (J). Notethat INm=1Jand IVC=1].
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Now suppose that the external pressure is constant throughout the expansion. For ex-
ample, the piston may be pressed on by the atmosphere, which exerts the same pres-
sure throughout the expansion. A chemical example of this condition is the expansion
of a gas formed in a chemical reaction. We can evaluate eqn 2.6 by taking the constant
D, outside the integral:

(c) Expansion against constant pressure

Vi
W=—pc.\"[ dV= _pcx(vf_ Vl)

V.

Therefore, if we write the change in volume as AV =V, V,,
Wz—Pc.\'AV (2'8)

This result is illustrated graphically in Fig, 2.7, which makes use of the fact that an
integral can be interpreted as an area. The magnitude of w, denoted w], is equal to the
area beneath the horizontal line at p = p,, lying between the initial and final volumes.
A p,V-graph used to compute expansion work is called an indicator diagram; James
Watt first used one to indicate aspects of the operation of his steam engine.

(d) Reversible expansion

Pressure, p

Area = p, AV

V! Volume, V

1 P g
.\ i
' P,
. _dle
'— —\-\r——_n

Fig. 2.7 The work done by a gas when it
expands against a constant external
pressure, p,., is equal to the shaded area in
this example of an indicator diagram.
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(d) Reversible expansion
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(d) Reversible expansion:

A reversible change in thermodynamics is a change that can be reversed by an
infinitesimal modification of a variable.
Suppose a gas is confined by a piston and that the external pressure, Pex'is set equal to

the pressure, p, of the confined gas. Such a system is in mechanical equilibrium
with its surroundings (as illustrated in Section 1.1) because an infinitesimal change
in the external pressure in either direction causes changes in volume in opposite
directions. If the external pressure is reduced infinitesimally, then the gas expands
slightly. If the external pressure is increased infinitesimally, then the gas contracts
slightly. In either case the change is reversible in the thermodynamic sense. If, on
the other hand, the external pressure differs measurably from the internal
pressure, then changing p., infinitesimally will not decrease it below the pressure of
the gas, so will not change the direction of the process. Such a system is not in
mechanical equilibrium with its surroundings and the expansion is
thermodynamically irreversible.

To achieve reversible expansion we set Pex equal to P at each stage of the expansion.
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To achieve reversible expansion we set Pex equal to P at each stage of the
expansion. In practice, this equalization could be achieved by gradually
removing weights from the piston so that the downward force due to the
weights always matched the changing upward force due to the pressure of the
gas. When we set Pex = p, eqn 2.5 becomes

AdW=-Pex dV=-pdV ................................................... (2.9)-rev

(Equations valid only for reversible processes are labelled with a subscript rev.)
Although the pressure inside the system appears in this expression for the

work, it does so only because Pex has been set equal to P to ensure reversibility.
The total work of reversible expansion is therefore

E=

v,
W= —J pdV (2.10)
V

We can evaluate the integral once we know how the pressure of the confined gas
depends on its volume. Equation 2.10 is the link with the material covered in
Chapter 1 for, if we know the equation of state of the gas, then we can express

p in terms of V and evaluate the integral.



The value of the integral | f(x)dxis

n

Comment 2.2 r

equal to the area under the graph of f(x)
between x=a and x=b. For instance, the
area under the curve f(x) = x* shown in
the illustration that lies between x=1
and 3 is

3
3
J x*dx= (3% + constant)
1

=3(3’-1°)=%=8.67

20

15} /
f(x)10 \ /

(D) T e
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(e) Isothermal reversible expansion Lo Jgmal) auw gill

Consider the isothermal, reversible expansion of a perfect gas.
The expansion is made isothermal by keeping the system in
thermal contact with its surroundings (which may be a
constant-temperature bath). Because the equation of state is
pV = nRT, we know that at each stage p = nRT/V, with V the
volume at that stage of the expansion. The temperature T is
constant in an isothermal expansion, so (together with n and
R)

it may be taken outside the integral. It follows that the work of
reversible isothermal expansion of a perfect gas from Vi to
Vr at a temperature T is

Vi AV Vi
w=—=-nRT| —=-nRTIn— (L 03 i
v, V Vi



We can express the result of the cﬁculation as an indicator diagram,
for the magnitude of the work done is equal to the area under the
isotherm P = nRTIV (Fig. 2.8). Superimposed on the diagram is the
rectangular area obtained for irreversible expansion against
constant external pressure fixed at the same final value as that
reached in the reversible expansion. More work is obtained when
the expansion is reversible (the area is greater) because matching
the external pressure to the internal pressure at each stage of the
process ensures that none of the system's pushing power is wasted.
We cannot obtain more work than for the reversible process
because increasing the external pressure even infinitesimally at any
stage results in compression. We may infer from this discussion that,
because some pushing power is wasted when p > Pex' the maximum
work available from a system operating between specified initial
and final states and passing along a specified path is obtained when
the change takes place reversibly.

We have introduced the connection between reversibility and
maximum work for the special case of a perfect gas undergoing
expansion. Later (in Section 3.5) we shall see that it applies to all
substances and to all kinds of work.



Comment 2.3

An integral that occurs throughout Fig.28 The work done b)f 2 perfect gas
thermodynamics is ; _
by o when it expands reversibly and
b . .
f =at I sanstant)c ko isothermally is equal to the area under the
a

isotherm p=nRT/V. The work done
during the irreversible expansion against
the same final pressure is equal to the
rectangular area shown slightly darker.
Note that the reversible work is greater
than the irreversible work.

Exploration Calculate the work of
= isothermal reversible expansion of
E ; 1.0 mol CO,(g) at 298 K from 1.0 m’ to
V' Volume, Vv 1V, 3.0 m’ on the basis that it obeys the van
el = 5 der Waals equation of state.

3 T e e—
. =

Pressure, p
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Example 2.1 Calculating the work of gas production

Calculate the work done when 50 g of iron reacts with hydrochloric acid in
(a) a closed vessel of fixed volume, (b) an open beaker at 25°C.

Method

We need to judge the magnitude of the volume change and then to decide how
the process occurs. If there is no change in volume, there is no expansion work
however the process takes place. If the system expands against a constant
external pressure, the work can be calculated from eqn 2.8. A general feature
of processes in which a condensed phase changes into a gas is that the volume
of the former may usually be neglected relative to that of the gas it forms.

Answer
In (a) the volume cannot change, so no expansion work is done and W = O.

In (b) the gas drives back the atmosphere and therefore W= - Pex AV. We can

neglect the initial volume because the final volume (after the production of gas) is
so much larger and A V = V- Vi = Vf = nRT/Pex, where n is the amount of H, pro-

duced. RT
H
Therefore, w=—p, AV=—p X——=—nRT

ol
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Because the reaction is :
Fe(s) + 2 HCl(aqg) = FeClz(aq) +H2(g),

we know that 1mol H2 is generated when 1 mol Fe is consumed, and n can be
taken as the amount of Fe atoms that react. Because the molar mass of Fe
is 55.85 g mol 7', it follows that:

W= — — % (8.3145 ] K" mol™) x (298 K)

The system (the reaction mixture) does 2.2 kJ of work driving back the
atmosphere.

Note that (for this perfect gas system) the magnitude of the external pressure
does not affect the final result: the lower the pressure, the larger the
volume occupied by the gas, so the effects cancel.

Self-test 2.1 Calculate the expansion work done when 50 g of water is electrolysed
under constant pressure at 25°C. =10 kJ]
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2.4 Heat transactions

In general, the change in internal energy of a system is
dU=dq + dw,,, + dw, (2.12)

where dw, is work in addition (e for ‘extra’) to the expansion work, dw,,,. For
instance, dw, might be the electrical work of driving a current through a circuit. A
system kept at constant volume can do no expansion work, so dw,,, = 0. If the sys-
tem 1is also incapable of doing any other kind of work (if it is not, for instance, an
electrochemical cell connected to an electric motor), then dw, = 0 too. Under these
circumstances:

dU=dq (at constant volume, no additional work) (2.13a)

We express this relation by writing dU = dg,,, where the subscript implies a change at
constant volume. For a measurable change,

AU:CIV (2.l3b)

It follows that, by measuring the energy supplied to a constant-volume system as heat
(g > 0) or obtained from it as heat (q < 0) when it undergoes a change of state, we are
in fact measuring the change in its internal energy.
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In general, the change in internal energy of a system is:
duU = dq +dWexp + AWe i, (212)

where dwe is work in addition (e for 'extra’) to the expansion work, dwex,' For
instance, dw, might be the electrical work of driving a current through a
circuit. A system kept at constant volume can do no expansion work, so
dwexp = 0. If the system is also incapable of doing any other kind of work (if

it is not, for instance, electrochemical cell connected to an electric

motor), then dWe =0 too. Under these circumstances:

2.4 Heat transactions

dU = dq (at constant volume, no additional work) --------- (2.13a)
We express this relation by writing
dU = qu where the subscript implies a change at constant volume. For a
measurable change:
AUS Qu v sesssss s s sssessssssssssssees (2.13b)

It follows that, by measuring the energy supplied to a constant-volume system as
heat (g> 0) or obtained from it as heat (g < 0) when it undergoes a change of
state, we are in fact measuring the change in its internal energy.
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(a) calorimetry

Calorimetry is the study of heat transfer during physical and chemical
processes.

A calorimeter is a device for measuring energy transferred as heat.
The most common device for measuring AU is an adiabatic bomb
calorimeter (Fig. 2.9).

The process we wish to study-which may be a chemical reaction-is
initiated inside a constant volume container, the 'bomb'. The bomb
is immersed in a stirred water bath, and the whole device is the
calorimeter. The calorimeter is also immersed in an outer water
bath. The water in the calorimeter and of the outer bath are both
monitored and adjusted to the same temperature. This
arrangement ensures that there is no net loss of heat from the
calorimeter to the surroundings (the bath) and hence that the
calorimeter is adiabatic.



Oxygen
inlet

Resistance
thermometer

|
Firing\(

leads |

G=CAT oo (2.14a)

The calorimeter constant C may be measured electrically
by passing a constant current, |, from a source of
known potential difference, V, through a heater for a
known period of time, t, for then

G=IVt e, (2.14b)

q=I11t
Alternatively, C may be determined by burning a known
mass of substance (benzoic acid is often used) that
has a known heat output. With C known, it is simple to
interpret an observed temperature rise as a release of
heat.

Fig. 2.8 A constant-volume bomb
calorimeter. The ‘bomb’ is the central
vessel, which is strong enough to withstand
high pressures. The calorimeter (for which
the heat capacity must be known) is the
entire assembly shown here. To ensure
adiabaticity, the calorimeter is immersed
in a water bath with a temperature
continuously readjusted to that of the
calorimeter at each stage of the
combustion.
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lllustration 2.2
The calibration of a calorimeter _wall 3 ylaa

If we pass a current of 10.0 A from a 12 V supply for 300 s, then from eqn 2.14b the
energy supplied as heat is

q=(10.0A) X (12 V)X (300s)=3.6Xx10*AVs=36Kk]

because 1 AV s=1]. If the observed rise in temperature is 5.5 K, then the calorime-
ter constant is C= (36 kJ)/(5.5K) =6.5 k] K.

Comment 2.4 Because 1AVs=1(Cs ) Vs=
Electrical charge is measured in 1 CV=1], the energy is obtained in
coulombs, C. The motion of charge gives joules with the current in amperes, the
rise to an electric current, I, measured in potential difference in volts, and the

coulombs per second, or amperes, A, : 2 ; :
E 1 P time in seconds. We write the electrical
where 1 A=1Cs™'. If a constant current

I flows through a potential difference V7 POWEL, P, as
(measured in volts, V), the total energy
supplied in an interval 7 is

P = (energy supplied)/(time interval)

=IVt/t=1V
Energy supplied = 1Vt
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(b) Heat capacity

The internal energy of a substance increases when its temperature is raised.
The increase depends on the conditions under which the heating takes
place and for the present we suppose that the sample is confined to a
constant volume. For example, the sample may be a gas in a container of
fixed volume. If the internal energy is plotted against temperature, then a
curve like that in Fig. 2.10 may be obtained. The slope of the tangent to the
curve at any temperature is called the heat capacity of the system at that
temperature. The heat capacity at constant volume is denoted Cv and is
defined formally as

U
c\,:( ) [2.15]
=

T

In this case, the internal energy varies with the temperature and the
volume of the sample, but we are interested only in its variation with
the temperature, the volume being held constant (Fig. 2.11).



Internal energy, U

Temperature, T

Fig. 210 The internal energy of a system
increases as the temperature is raised; this
graph shows its variation as the system 1s
heated at constant volume. The slope of the
tangent to the curve at any temperature is
the heat capacity at constant volume at that
temperature. Note that, for the system
illustrated, the heat capacity is greater at B
than at A.
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versus T at

Lfi JJQ‘;\AJAS\ \J@Jd:\.d\j _TEJ‘)AJ\ JM
Aaall 43 jal) deidial) Sl adle adads
S IENKN|

(0U/ oT) v

constant V/

Internal energy, U

Fig. 211 The internal energy of a system
varies with volume and temperature,
perhaps as shown here by the surface. The
variation of the internal energy with
temperature at one particular constant

: volume is illustrated by the curve drawn
Volume, V e,7~ parallel to T. The slope of this curve at
Nt any point is the partial derivative

(QUIIT),.
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Comment 2.5

The partial-differential operation
(dz/dx), consists of taking the first
derivative of z(x,y) with respect to x,
treating y as a constant. For example,
if z(x,y) = x*y, then

(az) (8[x2y]) g d.acz_2
ox y— 0x ,),_ydx 3

Partial derivatives are reviewed in

Appendix 2.
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lllustration 2.3 Estimating a constant-volume heat capacity

The heat capacity of a monatomic perfect gas can be calculated by inserting the
expression for the internal energy derived in Molecular interpretation 2.2. There we
saw that U_= U, (0) + 3RT,; so from eqn 2.15

d 3 3
CV,m = 5(Um(0) 2 7RT) = 7R

The numerical value is 12.47 ] K™ mol™.
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Heat capacities are extensive properties
Al gaibad el 4yl ad) cilad)
: 100 g of water, for instance, has 100 times the heat capacity of 1 g of water (and _

therefore requires 100 times the energy as heat to bring about the same rise
in temperature).

The molar heat capacity at constant volume, Cv,m = Cv /n, is the heat capacity per
mole of material, and is an intensive property S~ 4l

(all molar quantities are intensive). Typical values of Cvm for polyatomic gases
are close to 25 J k' mol! . For certain applications it is useful to know the
specific heat capacity (more informally, the 'specific heat') of a substance,
which is the heat capacity of the sample divided by the mass, usually in
grams:

Cvs= Cv/ m.

The specific heat capacity of water at room temperature is close to 4 J K g?.
In general, heat capacities depend on the temperature and decrease at low
temperatures. However, over small ranges of temperature at and above room

temperature, the variation is quite small and for approximate calculations
heat capacities can be treated as almost independent of temperature.



13

>|‘The heat capacity is used to relate a change in internal energy to a change
in temperature of a constant-volume system. It follows from eqn 2.15 that:

*

dU=C,dT (at constant volume) (2.16a)

That is, at constant volume, an infinitesimal change in temperature brings about
an infinitesimal change in internal energy, and the constant of proportionality

is Cv. If the heat capacity is independent of temperature over the range of
temperatures of interest, a measurable change of temperature, AT, brings

about a measurable increase in internal energy,

AU, where

AU=Cy AT (at constant volume) (2.16b)

Because a change in internal energy can be identified with the heat supplied at con-
stant volume (eqn 2.13b), the last equation can be written

qy=CyAT (2.17)
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This relation provides a simple way of measuring the heat capacity of a sample: a mea-
sured quantity of energy is transferred as heat to the sample (electrically, for example),
and the resulting increase in temperature is monitored. The ratio of the energy trans-
ferred as heat to the temperature rise it causes (q,,/AT) is the constant-volume heat
capacity of the sample.

A large heat capacity implies that, for a given quantity of energy transferred as heat,
there will be only a small increase in temperature (the sample has a large capacity for
heat). An infinite heat capacity implies that there will be no increase in temperature
however much energy is supplied as heat. At a phase transition, such as at the boiling
point of water, the temperature of a substance does not rise as energy is supplied as
heat: the energy is used to drive the endothermic transition, in this case to vaporize
the water, rather than to increase its temperature. Therefore, at the temperature of
a phase transition, the heat capacity of a sample is infinite. The properties of heat
capacities close to phase transitions are treated more fully in Section 4.7.

2.5 Enthalpy
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2.5 Enthalpy

The change in internal energy is not E;‘iﬁ?}k
equal to the energy transferred as 4\
heat when the system is free to U
change its volume. Under these - —
circumstances some of the energy >

supplied as heat to the system is

returned to the surroundings as Energy > AU< g
expansion work (Fig. 2.12), as neat

=

dU is less than dg.

HOWE’VE’I} we shall now show that in thi<Fis.212 When a system is subjected to
case the energy supplied as heat at constant pressure and is free to change its
constant pressure is equal to the volume, some of the energy supplied as
change in another thermodynamic heat may escape back into the

surroundings as work. In such a case, the
roper h m, the enthalpy.  °'"°""%TS :
property of the system, the enthalpy change in internal energy is smaller than

the energy supplied as heat.
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(a) The definition of enthalpy

The enthalpy, H, is defined as:

H=U+PV e, [2.18]

where p is the pressure of the system and V is its
volume. Because U, p, and V are all state
functions, the enthalpy is a state function

too.

As is true of any state function, the change in
enthalpy, AH, between any pair of initial and
final states is independent of the path
between them.
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Although the definition of enthalpy may appear arbitrary, it has
important implications for thermochemisty.

For instance, we show in the following Justification that eqn
2.18 implies that the change in enthalpy is:

equal to the energy supplied as heat at constant pressure
(provided the system does no additional work):

dH =dg (at constant pressure, no additional work) (2.19a)

dH = dq ( at constant pressure, no additional work) --------------------- ( 2.19a )

For a measurable change,

AH = q, (2.19b)
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Justification 2.1 The relation AH = q,,

For a general infinitesimal change in the state of the system, U changes to U+ dU,
p changes to p + dp, and V changes to V + dV, so from the definition in eqn 2.18,
H changes from U+ pV to

H+dH=(U+dU)+ (p+dp)(V+dV)
=U+dU+pV+pdV+ Vdp +dpdV

The last term is the product of two infinitesimally small quantities and can therefore
be neglected. As a result, after recognizing U+ pV = H on the right, we find that H
changes to

H+dH=H+dU+pdV+ Vdp
and hence that
dH=dU+pdV+ Vdp

If we now substitute dU = dg + dw into this expression, we get
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If we now substitute dU = dq + dw into this expression, we get
dH=dq+dw+pdV+ Vdp

[f the system is in mechanical equilibrium with its surroundings at a pressure p and
does only expansion work, we can write dw=-pdV and obtain

dH=dg+ Vdp

Now we impose the condition that the heating occurs at constant pressure by writ-
ing dp=0. Then

dH =dg (at constant pressure, no additional work)

as in eqn 2.19a.

-------------------------------------------------------------------------------------------------------------------------------------------------------------
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The result expressed in eqn 2.19 states that,

equal to the energy
supplied as heat.

For example, if we supply 36 kJ of energy
through an electric heater immersed in an
open beaker of water, then the enthalpy of
the water increases by 36 kJ and we write

AH = +36 kl.
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(b) The measurement of an enthalpy change

An enthalpy change can be measured calorimetrically by monitoring the
temperature change that accompanies a physical or chemical change
occurring at constant pressure. A calorimeter for studying processes at
constant pressure is called an isobaric calorimeter. A simple example is a
thermally insulated vessel open to the atmosphere:

the heat released in the reaction is monitored by measuring the change in
temperature of the contents.

For a combustion reaction an adiabatic flame calorimeter may be used to
measure AT when a given amount of substance burns in a supply of oxygen
(Fig. 2.13).

Another route to AH is to measure the internal energy change by using a bomb
calorimeter, and then to convert AU to AH.

Because solids and liquids have small molar volumes, for them pV m is so small

that the molar enthalpy and molar internal energy are almost identical

(Hn = Unt pVu = Un) S5 5 aidall o 5al
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Consequently, if a process involves only solids Gasbvaw
or liquids, the values of AH and AU are V:mducts
almost identical. J I
Physically, such processes are accompanied by \

a very small change in volume, the system
does negligible work on the surroundings

when the process occurs, so the energy
supplied as heat stays entirely within the
system.

The most sophisticated way to measure
enthalpy changes, however, is to use a
differential scanning calorimeter (DSC).

Changes in enthalpy and internal energy T

immersed in a stirred water bath.

may also be measured by noncalorimetric S oatio s od s Kaoms aiowat oF

reactant is passed through to fuel the flame,

m et h O d S (Se e C h d pte r 7 ) OO p and the rise of temperature is monitored.

AW

=
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Example 2.2 Relating AH and AU

The internal energy change when 1.0 mol CaCOj; in the form of calcite converts to
aragonite is+0.21 kJ. Calculate the difference between the enthalpy change and the
change in internal energy when the pressure is 1.0 bar given that the densities of the
solids are 2.71 g cm™ and 2.93 g cm™, respectively.

Jall 43 )k

Method The starting point for the calculation is the relation between the enthalpy
of a substance and its internal energy (eqn 2.18). The difference between the two
quantities can be expressed in terms of the pressure and the difference of their
molar volumes, and the latter can be calculated from their molar masses, M, and
their mass densities, p, by using p=M/V_.
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Answer The change in enthalpy when the transition occurs is

AH = H(aragonite) — H(calcite)
={U(a) +pV(a)} — {U(c) + pVi(c)}
=AU+ p{V(a) — V(c)} =AU+ pAV

The volume of 1.0 mol CaCOj; (100 g) as aragonite is 34 cm?, and that of 1.0 mol
CaCO; as calcite is 37 cm”. Therefore,

pAV=(1.0x10°Pa) X (34—37) X 107°m’=-0.3]
(because 1 Pam’=1]). Hence,
AH-AU=-0.3]

which is only 0.1 per cent of the value of AU. We see that it is usually justifiable to
ignore the difference between the enthalpy and internal energy of condensed
phases, except at very high pressures, when pV is no longer negligible.



Al
The enthalpy of a perfect gas is related to its internal energy by using pV =#RT in
the definition of H:

H=U+pV=U+nRT (2.20)°

This relation implies that the change of enthalpy in a reaction that produces or con-
sumes gas 1s

AH =AU+ An,RT (2.21)°

where An, is the change in the amount of gas molecules in the reaction.

Lﬁm Jelaill 4 uEsy) L“é il Gl le‘; Cakalt o3le | Azl ) 38l
e dlgiun o e )
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lllustration 2.4 The relation between AH and AU for gas-phase reactions

In the reaction 2 H,(g) + O,(g) = 2 H,0(l), 3 mol of gas-phase molecules is
replaced by 2 mol of liquid-phase molecules, so An, =3 mol. Therefore, at 298 K,
when RT = 2.5 k] mol™, the enthalpy and 1nternal energy changes taking place in
the system are related by

AH-AU=(-3mol) X RT =-7.4k]

Note that the difference is expressed in kilojoules, not joules as in Example 2.2. The
enthalpy change is smaller (in this case, less negative) than the change in internal
energy because, although heat escapes from the system when the reaction occurs,
the system contracts when the liquid is formed, so energy is restored to it from the

surroundings.
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Example 2.3 Calculating a change in enthalpy

Water is heated to boiling under a pressure of 1.0 atm. When an electric current of
0.50 A from a 12 V supply is passed for 300 s through a resistance in thermal con-
tact with it, it is found that 0.798 g of water is vaporized. Calculate the molar inter-
nal energy and enthalpy changes at the boiling point (373.15 K).

Method Because the vaporization occurs at constant pressure, the enthalpy change
is equal to the heat supplied by the heater. Therefore, the strategy is to calculate the
energy supplied as heat (from g = I9/t), express that as an enthalpy change, and
then convert the result to a molar enthalpy change by division by the amount of
H,O molecules vaporized. To convert from enthalpy change to internal energy
change, we assume that the vapour is a perfect gas and use eqn 2.21.

Answer The enthalpy change is
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Answer The enthalpy change is
AH=q,=(0.50 A) X (12 V) X (300 ) =+(0.50 x 12 X 300) ]

Here we have used 1 A Vs =1 ] (see Comment 2.4). Because 0.798 g of water is
(0.798 g)/(18.02 g mol™") = (0.798/18.02) mol H,O, the enthalpy of vaporization
per mole of H,O is

0.50x 12 x300] :
AH =+ =+41 k] mol™
(0.798/18.02) mol

In the process H,O(1) = H,0(g) the change in the amount of gas molecules is

Ang =+1 mol, so

AU, =AH,_ - RT=+38 k] mol™

The plus sign is added to positive quantities to emphasize that they represent an
increase in internal energy or enthalpy. Notice that the internal energy change is
smaller than the enthalpy change because energy has been used to drive back the
surrounding atmosphere to make room for the vapour.
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