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Entropy: a thermodynamic property, can be used as a measure of disorder, 

is measure of randomness.  

We define entropy, S, as an additional thermodynamic state function. 

 For a system, ∆S = Sf – Si 

If ∆S > 0 the randomness increases,  

If ∆S < 0 the order increases. 

The infinitesimal change in entropy, dS, is defined as 

revdq
dS

T
   

Where “rev” is reversible process, Integrating equation 

 

rev revdq q
dS

T T
   

Equation demonstrates that entropy has units of J/K 

The Second Law uses the entropy to identify the spontaneous changes among 

those permissible changes. This direction of heat flow is one of the ways of 

expressing the second law. One property common to spontaneous processes 

is that the final state is more disordered or random than the original. 

Spontaneity is related to an increase in randomness. 

We can break down entropy change as resulting from changes in specific 

properties of our system. There are changes in five things that will lead to a 

change in the entropy of the system. 

1. Mixing 

2. Temperature 

3. Phase 

4. Composition (chemistry) 

5. System parameters (T, P, V, n) 
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Mathematical expression of entropy  

 The value of ΔS of the system is independent of the path between the initial 

and final states, so this expression applies the change of state occurs reversibly 

      ------(1)

from first thermodynamic law expression, we get

                     ------(2)

for the reversibly change, 

The infinitesimal chang

U = C

e i

 and

n entropy is

rev
rev

rev

V

dq
dS dq TdS

T

dq dU dw

dT

  

 

  w = -

        ------(3)

sub eq.(1) in eq. (3)

         ------(4) T

             ------(5)

and then integrate:

       -----(6)

rev V

V

V

f f f

V

i i i

dV
nRT

V

dV
dq C dT nRT

V

dV
TdS C dT nRT

V

dT dV
dS C nR

T V

dT dV
dS C nR

T V

S C

 

  

 

 

 

  

2 2

1 1

2 1

1 2

2 1

1 2

ln ln         -----(7)

acorrding to boyle 's law = , we can calculate entropy in terms of pressure 

ln ln         -----(8)

V

V

T V
nR

T V

V P

V P

T P
S C nR

T P



  
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1- Change in entropy for mixing gas  

Mixing of gases (eg. by diffusion), always results in increase in entropy. 

Mixing is spontaneous. 

 

We can also calculate the entropy of mixing for an ideal gas. Both gas A and 

gas B are expand reversible at constant Temperature (isothermal T2=T1). Thus 

we have: 

2 1

1 2

ln ln         -----(8)V

T P
S C nR

T P
    T2=T1 and ln1 =0. Thus we get: 

1

2

ln           -----(9)i i

P
S n R

P
   

ln = - ln        -----(10)T A
A A A

A T

P P
S n R n R

P P
  Entropy for gas A 

ln = - ln        -----(11)T B
B B B

B T

P P
S n R n R

P P
   Entropy for gas A 

+ S = - ln ( ln )        -----(12)A B
mixing A B A B

T T

P P
S S n R n R

P P
       

( ln ln )        -----(13)A A B B
mixing

T T

n P n P
S nR

n P n P
    i i

i

n P
X

n P
   

( ln ln )        -----(14)mixing A A B BS nR X X X X     

X= is mole fraction 
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Q) A mixture of 40% N2O and 60% O2 may be used in a dentist office as an 

anesthetic. Assuming that the gases behave ideally, determine the entropy of 

mixing to produce 1 mole of the mixture.  

2

2

2

2

2

2

40
1 0.4

100

0.4
0.4

1

60
1 0.6

100

0.6
0.6

1

N O

N O

N O

T

O

O

O

T

n mol mol

n
X

n

n mol mol

n
X

n

  

  

  

  

  

2 22 2

( ln ln )

1 8.314(0.4ln 0.4 0.6ln 0.6)

5.6 /

N O N Omixing O O

mixing

mixing

S nR X X X X

S mol

S J K

   

    

 
 

H.W) determine the entropy of mixing 8g of O2 gas and 7g of N2 gas 

Assuming that the gases behave ideally. 

Q) why the entropy sign of mixing always positive? 

Mixing is a spontaneous process that is entropically driven.  

( ln ln )        -----(14)mixing A A B BS nR X X X X     

From the definition of mole fraction x < 1 (always),  

It follows that ln x < 0  And thus Δ Sm is always positive. 

H.W) Calculate ∆S and q at STP (25°C, 1mol) for a mixture of 15% N2,      

55% H2 and 30% NH3.  

H.W.) Calculate the entropy of mixing 10.0 L of N2 with 3.50 L of N2O at 

300.0 K and 0.550 atm. Assume that the volumes are additive; that is, Vtot. 

13.5L. 
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2-The entropy of a substance (dependent on temperature) 

From entropy expression revdq
dS

T
 , the entropy of a substance increases    

(ΔS > 0) as it transforms from a relatively ordered solid to a less-ordered 

liquid, and then to a still less-ordered gas. The entropy decreases (ΔS < 0) as 

the substance transforms from a gas to a liquid and then to a solid. 

 
 

        Now consider the vapor or gas phase, the atoms or molecules occupy a 

much greater volume than in the liquid phase; therefore each atom or molecule 

can be found in many more locations than in the liquid (or solid) phase. 

Consequently, for any substance, Sgas > Sliquid > Ssolid, and the processes of 

vaporization and sublimation likewise involve increases in entropy, ΔS > 0.  

According to kinetic-molecular theory,  

1- The temperature of a substance is proportional to the average kinetic 

energy of its particles.  

2- Raising the temperature of a substance will result in more extensive 

vibrations of the particles in solids and more rapid translations of the 

particles in liquids and gases.  

3-At higher temperatures, the distribution of kinetic energies among the 

atoms or molecules of the substance is also broader (more dispersed) than at 

lower temperatures.  
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EX) For a phase change, H2O (liq) --->  H2O(g)    ∆H = q = +40,700 J/mol,  

calculate the entropy change. 

H 40,700 J/mol
 =  =  = +109 J/K·mol

T 373.15 K
S




 

3- Entropy Changes for Phase Changes 

The entropy can change as the result of chemistry. Different molecules have 

different entropies. Thus it can be difficult to look at a reaction if the entropy 

is going up or going down. 

 However, in general if the products have a larger number of mole (molecules) 

than the reactants then the entropy is likely to increase. Additionally, if 

products are in phases of higher entropy than the reactants than the reaction is 

likely to have a higher entropy. For example 

2Fe(s)+3O2(g)→2Fe2O3(s)         ΔSr<0 

The change in entropy for this reaction will be negative. This because the 

reactants have both a solid and a gaseous species while the product is simply 

a solid compound. 

Entropy usually increases when a pure liquid or solid dissolves in a solvent. 

Substances dissolve with either gain or loss of enthalpy 
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4- Composition (chemistry) 

Larger, more complex molecules have higher standard molar entropy values 

than smaller or simpler molecules. There are more possible arrangements of 

atoms in space for larger, more complex molecules, increasing the number 

of possible microstates. 

 

5- The calculating of ∆S by depended on thermodynamic process  

Now consider gas-phase processes. What if the temperature were constant but 

the pressure or the volume changed reversibly? 

1) Non-specific process  

2 2

1 1

ln ln         -----(1)V

T V
S C nR

T V
    

2) Isothermal process (a thermodynamic process at constant Temperature) 

 

2

1

2

1

ln ...........(1)

ln ...........(2)

V
S R

V

P
S R

P

 

 

  

3) Isochoric process (a thermodynamic process at constant volume) 

2

1

,

2
,

1

ln .................(1)

....................(2)

ln ...........(3)

V

V V m

V m

T
S C

T

C nC

T
S nC

T

 



 
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4) Isobaric process (a thermodynamic process at constant pressure) 

2

1

,

2
,

1

ln .................(1)

....................(2)

ln ...........(3)

p

P p m

p m

T
S C

T

C nC

T
S nC

T

 



 

 

note/  (Cp,m = Cv,m +R) 

4- Reversible and adiabatic process (at constant heat) 

....................(1)

0 ........(2)

0 ........(3)

q
S

T

when q

So S

 



 
 

Q) Calculate ΔS (for the system) when the state of 2.00 mol diatomic perfect 

gas molecules, for which Cv,m =5/2 R, is changed from 25°C and 1.5 atm to 

135°C and 7 atm. How do you rationalize the sign of ΔS? 

2 1

1 2

2 1
,

1 2

ln ln   

ln ln   

5 (135 273) 1.5
 2 8.314ln 2 8.314ln  

2 (25 273) 7

12.55

V

V m

T P
S C nR

T P

T P
S nC nR

T P

K atm
S mol mol

K atm

S J

  

  


     



  

 

If ∆S < 0 the order increases. 
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EX// Consider a Sample of ideal gas initially in volume V at temperature T 

and pressure p. does ∆Ssys increase, decrease, or stay the same in the 

following process? Explain. 

(a) The gas expands isothermally  

(b) The pressure increased at constant temperature 

(c) The gas is heated at constant pressure  

EX) which system has the higher absolute entropy? Explain. 

(a) 1g solid Au at 1064K or 1 g liquid Au At 1064K? 

The liquid will always have higher absolute entropy than the solid at 

the same temperature. 

(b) 1 mole CO at 25°C and 1 atm or 1mole of CO2 at 25°C and 1 atm. 

1 mole CO2 – at the same temperature and pressure, the trimolecular 

has more energy states available to it; therefore gaseous CO2 has higher than 

gaseous CO. 

(c) 1mole Ar at 25°C and 1 atm or 1 mole Ar at 25°C and 0.01 atm 

1 mole Ar at 25°C and 0.01 atm- both samples at the same temperature, So 

the gas with lower pressure will have the larger volume and hence the larger 

entropy.   

H.W/ Which the substance in each following pairs would have the greater 

entropy? Explain. 

(a) At 75°C and 1 bar: 1mol H2O (l) or 1 mol H2O (g)  

(b) At 5°C and 1 bar: 50g Cl2 or 0.8 mol Cl2 (g)  

(c) 1 mol Br2 (l, 1 bar, 8°C) or 1 mol Br2 (s, 1 bar, -8°C) 

(d) 0.312 mol SO2 (g, 0.110 bar, 32.5 °C) or 0.284 mol (g, 15 bar, 22.3°C). 
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( ) 2( ) 3( )

4 ( ) 3( ) ( )

2( ) 2( ) ( )

EX// predict whether the entropy change is positive or negative for each the following 

reaction at 298 K:

( )   

(b)    NH

( )    H 2

g g g

S g g

g g g

a O O O

Cl NH HCl

c Cl HCl

 

 

 

  

S0[(H-H) = 131, (Cl-Cl) = 223, (H-Cl) =223] J/K.mol 

Sol// 

( ) 2( ) 3( )( )   g g ga O O O   

The products have a lesser number of mole (molecules) than the 

reactants then the entropy is likely to decrease. 

4 ( ) 3( ) ( )(b)    NH S g gCl NH HCl   

The products have a larger number of mole (molecules) than the 

reactants then the entropy is likely to increase. Additionally, the products are 

in phase (gas) of higher entropy than the reactants (solid) than the reaction is 

likely to have a higher entropy. 

2( ) 2( ) ( )( )    H 2g g gc Cl HCl   

The products and reactants in a same phase (gas) and have a same 

number of moles. So the sign of change in entropy can be calculate form molar 

bonding entropy as the following: 

     2  18

( ) (reactans)

19.58J/K

6.79    1  131   1  223

r p m r m

r

r

S n S products

mol mol m

n

S

S

ol

S
 





 

 



    

 

 
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Entropy of system, surrounding and universe  

To generalize: 

  The total entropy of the universe increases whenever an irreversible 

process occurs. The total entropy of the universe is unchanged whenever a 

reversible process occurs. 

Since all real processes are irreversible, the entropy of the universe 

continually increases. If entropy decreases in a system due to work being 

done on it, a greater increase in entropy occurs outside the system. 

Irreversible Processes examples 

1. A battery discharges through a resistor, releasing energy. The reverse 

process will not occur.  

2. Two gases, initially in separated adjoining chambers, will mix uniformly. 

3. A free expansion of gas (in Gay-Lussac-Joule experiment) 

4. Heat flows from a high temperature body to a low temperature reservoir in 

the absence of other effect  

Entropy of universal ∆Suniv 

.........(1)univ sys surrS S S      

At irreversible and isothermal process: 

0 ....................(2)univS   

But at reversible and isothermal process: 

0 ....................(3)univS   

...........(4)sys surrS S    

When ...........(5)sys

q
S

T
   

Therefore  

...........(6)surr

q
S

T
    

 



 Entropy             ……………… ……………………. ………………..       Haider R. Saud 

  

University of Al Muthana, college of science, chemistry department  
12 

Calculate ∆Ssys, ∆Ssurr, and ∆Suniv, when the volume of a sample of argon gas 

(39.95 g/mol) of mass 21 g at 298 K and 1.5 bar increase from 2.3 dm3 to 4.60 

dm3 in (a) an isothermal reversible expansion (b) an is isothermal irreversible 

expansion against Pex = 0, and (c) an adiabatic reversible expansion. 

2

1

(a)   ln

21 4.6
       8.314 ln 3.029 /

39.95 / 2.3

       0    (reversible process)

       3.029 /

sys

sys

univ

surr sys

V
S nR

V

g
S mol J K

g mol

S

S S J K

 

   

 

    

 

(b)   3.029 /   ( S is state function)

       0  (external pressure = 0)

       3.029 0 3.029 /    

sys

surr surr

surr

univ sys surr

S J K

q w P V
S

T T T

S S S J K

 

  
        

 

       

(c)   0  ( reverisble adiabatic process)

       0

       0

       

sys

surr

univ

S

S

S

 

 

 
 

H.W// 1.00 mol of perfect gas molecules at 27°C is expanded isothermally 

from an initial pressure of 3.00 atm to a final pressure of 1.00 atm in two ways: 

(a) reversibly, and (b) against a constant external pressure of 1.00 atm. 

Calculate ∆Ssys, ∆Ssurr, and ∆Suniv. 

H.W// 2 mol helium is expanded adiabatically and irreversibly at a constant 

external pressure of 1 atm from a volume of 5 L and temperature of 273.15 K 

to 25 L. Calculate ∆Ssys, ∆Ssurr, and ∆Suniv. 
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EX// one mole of an ideal gas at 298 K expands isothermally from 1.0 to 2.0 

L (a) reversibly and (b) against a constant external pressure of 12.2 atm. 

calculate ∆Ssys, ∆Ssurr, and ∆Suniv in both cases.  

2

1

(a)   ln

2
       1 8.314 ln 5.76 /

1

       0    (reversible process)

       5.76 /

sys

sys

univ

surr sys

V
S nR

V

S mol mol J K

S

S S J K

 

   

 

    

 

3

(b)   5.76 /   ( S is state function)

       

101325 1
12.2 (2 1)

1 1000       4.148 /
298

       5.76 4.148 1.612 /    

sys

surr surr

surr

surr

univ sys surr

S J K

q w P V
S

T T T

pa m
atm L

atm LS J K
K

S S S J K

 

  
       

 

  

  

         

 

 

EX// 1 g sample of water (g) at 100°C has a volume of 1.7L. It is isothermally 

compressed by an external pressure of 2.00 atm until it reaches a volume of 

0.85L. Calculate ∆Ssys, ∆Ssurr, and ∆Suniv. 

 

2

1

3

      ln

1 0.85
       8.314 ln 0.32 /

18 / 1.7

       

101325 1
2 (0.85 1.7)

1 1000       0.46 /
(100 273)

       

sys

sys

surr surr

surr

surr

univ s

V
S nR

V

g
S mol J K

g mol

q w P V
S

T T T

pa m
atm L

atm LS J K
C K

S S

 

    

  
       

 

  

   
 

   0.32 ( 0.46) 0.76 /    ys surrS J K       
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Consider the following reaction  

2 H2(g) + O2(g)   2 H2O(liq) 

∆So
sys =  -326.9 J/K 

∆So
surr  =  +1917 J/K 

∆So
universe  =∆So

sys + ∆So
surr  =  +1590. J/K 

The entropy of the universe is increasing, so the reaction is product-favored. 

Calculating ∆S for a Reaction 

For a given reaction, the overall entropy change is equal to the 

difference between the algebraic sum of molar entropies of products and the 

algebraic sum of enthalpies of formation of reactants. 

 

( ) (reactans)r p m r mS n S products n S
      

Where np and nr are stoichiometric numbers  

EX/ Consider the following reaction 

    H2 (g)    +    1/2O2 (g)        H2O (l)   

So [(H2O) = 69.9, (H2) = 130.7, and (O2) = 205.3] J/K•mol. Calculate ∆rS
o 

Sol/ 

     
1

1  69.9    1  1

( ) (reacta

3

n

0.7     205.

s)

3
2

r p m r m

r m

S n S produc

ol mol mol

ts n S

S

 



  

 
 


  


 
 

∆So = -163.45 J/K 

Note that there is a decrease in S because 1.5 mol of gas give 1 mol of liquid. 
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Standard or absolute entropies: 

The degree of dispersal of matter and energy changes when a substance 

freezes or boils as a result of changes in the order with which the molecules 

pack together and the extent to which the energy is localized or dispersed. 

Therefore, we should expect the transition to be accompanied by a change in 

entropy. 

1- At heating from 0 K to Tm (melting temperature) 

( ) 2

( )
0

1

ln
mT P solid

fus p solid

C T
S dT C

T T

      

2- at melting at Tm 
 

fus
fus

m

H
S

T

 
 

 

3-at heating from Tm to Tb  

( ) 2

( )
0

1

ln
mT P liquid

vap p liquid

C T
S dT C

T T

      

4- at vaporization at Tm 

vap

vap

m

H
S

T




 
 

 

Trouton’s rule 

At their boiling points, most organic compounds have a similar 

entropy of vaporization: ∆Svap (Tb) = 85 – 90 J/molK 

These rule in applied on the liquid which don’t have a hydrogen bond that   

caused the deviation about the 85 J K-1mol-1 (exception: strongly polar or 

H-bonding compounds such as water, ethanol, etc.). 

An example is water, where the large entropy of vaporization reflects the 

presence of structure arising from hydrogen-bonding in the liquid. Hydrogen 

bonds tend to organize the molecules in the liquid. 
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Nonassociated (ideal) liquids, ∆Hvap/Tb.p. ~ 88 J/mol 

 Carbon tetrachloride, Benzene, Cyclohexane 

Associated liquids, ∆Hvap/Tb.p. > 88 J/mol 

 Water (109), Methanol (112), Ammonia (97) 

Association in the vapor state, DHvap/Tb.p. < 88 J/mol 

 Acetic acid (62) 

 Hydrogen fluoride (26) 

 

5- Heating or cooling of matter  

2

1

. ln
T

S m C
T

 
 

Where m is the matter mass (g, Kg), and C is the specific heat (J/g.K, 

kJ/kg. K) 

EX// Calculate entropy change if 500g of water at 300 C is heated to 800C at 

1 bar pressure. The specific heat of water is 4.2kJ/kg-K. 

2

1

. ln

1 (80 273)
500 4.18 ln

1000 . (30 273)

0.076 / 76 /

T
S m C

T

kg kJ C K
S g

g kg K C K

S kJ K J K







 

 
   

 

  
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EX/ Calculate the entropy change for the following constant pressure process 

H2O (ice, 100g, -10°C, 1 bar)  H2O (liquid, 100g, 10°C, 1 bar) 

The enthalpy of fusion for ice is ∆fusH°= 6.01 kJ mol-1 at 0°C, and heat 

capacities as CP (ice) = 37.12 J mol-1 K-1 and Cp (liquid) = 75.3 J mol-1 K-1. 

Solve 

1- Heating of ice from -10°C to 0°C 

2 2
1 ( ) ,

1 1

1

1

ln ln

100 273 0
       = 37.12ln 7.69 .

18 . 273 ( 10 )

p ice p m

T T
S C nC

T T

g C
J K

g mol C





  

 
 

  

 

2- Fusion of ice at 0°C 

2

1
1

1

100 6.01 1000 .
        122.18 .

18 . 273

fus

m

H
S

T

g J mol
J K

g mol K







 


  

 

3- Heating of ice from 0°C to 10°C 

2 2
3 ( ) , ( )

1 1

1

1

ln ln

100 273 10
       = 75.3ln 15.03 .

18 . 273 0

p liquid p m liquid

T T
S C nC

T T

g C
J K

g mol C





  

 
 

 

 

 

The total entropy change the sum of the individual steps: 

1

1 2 3 7.69 122.18 15.03 144.9totalS S S S JK            

H.W// suppose 2.00 moles of supercooled water turning into ice  

H2O (liquid, 10°C, 1 bar)  H2O (ice, -10°C, 1 bar) 

The enthalpy of freezing for water is ∆freH°= -6.01 kJ mol-1 at 0°C, and heat 

capacities as CP (ice) = 37.12 J mol-1 K-1 and Cp (liquid) = 75.3 J mol-1 K-1. 

(Sol. -41.2 J K-1) 
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Entropy change with variation in temperature  

The entropy values vary with variation in temperature. From the 

Kirchhoff’s Law we can calculate the entropy change at any temperature if its 

value at a specific temperature is known. We can derive the Kirchhoff’s 

equation as 

2

1

2

1

2

1

2

1

,

2

2

2 2

2 2 1
2 1

1

,

,

      

     

ln (

( )

) ( )]
2 2

( )

[

T P m

heating
T

P m

T P m

heating
T

T

heating
T

T

heating
T

heating

T T

T

nC
S dT

T

C

nC
S dT

T

S n dT
T

S n dT

S n

T

T
T

T T T
T T

T

  

  


 

  

















 

 

 

 



  

 

  

 











 

And the heating of reaction can calculate from the relation  

 

   υ is the stoichiometric coefficients of chemical reaction    

Where α, β, and γ are numerical value. 

Heating for reaction, we can use Kirchhoff’s Law 

2

2 1

1

T

p

T T

T

C
S S dT

T

 
     

 
   
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EX// the molar capacity of solid gold is given by the relation  

4 1 1
,

6 2(25.69 7.32 10 4.58 10 / )P m T T k JK molC    


      

Calculate the entropy change for heating 2.50 moles of gold from 22.0°C to 

1000°C at constant pressure. 

T1 = 22°C +273= 295 K, T2 = 1000°C + 273 = 373 K 

When   ,
2      P m T TC   



    

So α = 25.69, β = 7.32 × 10-4, and γ = 4.58 × 10-6  

2

1

2

1

2

1

2

2 2

2

,

2 1
2 1

1

2 2

             = ( )

             = ( )

        

     

ln ( ) ( )]
2 2

1273 (1273) (295)
ln (1273 295) ( )]

2

     = [

          
95 2 2

   =[

   

T P m

heating
T

T

T

T

T

nC
S dT

T

n dT
T

n dT

T T

T
T

T T
n

T
T T

T

  


 

  

  





 

 

   

   

  





4 6

978 723239.5 ]

(25.69) 978(7.32  10 723239.5(4.58 

          =2.5 [1.46

             =2.5 [1.462 ) )

             =2.5 [37.558 0.715 3.312]

100.

 10

387 /

]

heating

mol

mol

mol

S J K

  







 

   

 

 

 

H.W// the molar heat capacity of water is represented by 

,
1 1(30.54 0.01029 / )P m T k JK mC ol 



   

a) Find ∆S for heating 2 moles of water vapor at a constant pressure from 

100°C to 500°C.   b) Find q at 500°C 
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EX// Calculate ∆S for the following reaction at 1450K and 1 bar; 

   ½ H2 (g) + ½ Cl2(g)  HCl(g) 

Given that ∆H° = (HCl,g) = -92.3 kJ/mol at 298.15K and that; 

2
0 3 -7 -1 -1

, 2 2

2
0 3 -7 -1 -1

, 2 2

2
0 3 -7

, 2

( H , ) 29.064 0.8363 x 10 20.111 x 10  JK mol
 K  K

( Cl , ) 31.695 10.143 x 10 40.373 x 10  JK mol
 K  K

( HCl, ) 28.165 1.809 x 10 15.464 x 10
 K  K

p m

p m

p m

T T
C g

T T
C g

T T
C g







 
   
 

 
   
 


  


-1 -1 JK mol


 


 

Solution 

2

2 1

1

T

p

T T

T

C
S S dT

T

 
     

 
  

1

1
1 192.3 1000 .

309.7 .
298

T

H J mol
S J mol K

T K


    

      

2
3 -7

2

2
0 3 -7

, 2

2
3 -7

2

28.165 1.809 x 10 15.464 x 10
 K  K

1
( ) 29.064 0.8363 x 10 20.111 x 10

2  K  K

1
31.695 10.143 x 10 40.373 x 10

2  K  K

r p m

T T

T T
C T

T T







  
   

  
  
      
  
 

      
  

 

2
0 3 -7 -1 -1

, 2
( ) 2.215 2.844 x 10 25.595 x 10  J K mol

 K  K
r p m

T T
C T 

  
      

  

2 1

1

1

2 2

2

145

2 1
2 1

1

2 2

0

298.15

ln ( ) ( )]
2 2

1450 (1450) (298)
ln (1450 298

 d

     

) (

   = [

        = [ )]
298 2 2

T T

T

T

T T T
T T

S S T T
T

T
S

S

  



  

 
 

       

 

 

 



 

   


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1

1 1

3 7

1152 1006848 ]

1152(2.844 10 ) 100684

         = [0.458

         = 309.7 [0.458( 2.215)

         = 309.7 ( 1.7

8

03) 311.4 .

(25.595 10 )]

TS

J mol K

  

 

 

 

  

   



   

H.W// for reaction 2 H2 (g) + O2 (g)  2H2O (g) ∆rH°= -484 kJ mol-1 at 298K 

Calculate ∆S for heating at 1000 K  
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Combined the first and second’s law of thermodynamics 

In thermodynamics, the combined law of thermodynamics, also called 

the Gibbs fundamental equation, is a mathematical summation of the first 

law of thermodynamics and the second law of thermodynamics subsumed into 

a single concise mathematical statement  

Four quantities called "thermodynamic potentials" are useful in the 

chemical thermodynamics of reactions and non-cyclic processes. They are 

(1) Internal energy (U), (2) the enthalpy (H), (3) the Helmholtz free 

energy (A) and (4) the Gibbs free energy (G). 

1- The internal energy  

         -----(1) 1  thermodynamics law

           -----(2) 2  thermodynamics law

by subsituting eq. (2) in eq. (1)

       -----(3)

             -----(4)

  

st

and nd

dU dq dw

TdS dq

dU TdS dw

dw PdV

dU TdS PdV

 



  

 

       -----(5)

   

2-the enthalpy  
the enthalpy was defined by

                     ------(1)

by differential:

     ------(2)

and        ------(3)

    ------(4)

            ------(5)

H U PV

dH dU PdV VdP

dU TdS PdV

dH TdS PdV PdV VdP

dH TdS VdP

 

  

 

    

  

  

3- Helmholtz Energy (A) 
The concept of Helmholtz free energy was developed by Hermann von 

Helmholtz, a in a lecture called "On the thermodynamics of chemical 

processes". It is usually denoted by the letter A (from the German "Arbeit" or 

work).  
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the Helmholtz free energy is a thermodynamic potential that measures 

the "useful" work obtainable from a closed thermodynamic system at a 

constant temperature and volume. 

While Gibbs free energy is most commonly used as a measure of 

thermodynamic potential, especially in the field of chemistry, it is 

inconvenient for some applications that do not occur at constant pressure. For 

example, in explosives research. 

the  was defined by

                     ------(1)

by differential:

     ------(2)

and        ------(3)

    ------(4)

   

Helmholtz free energy

 

 

  

A U TS

dA dU TdS SdT

dU TdS PdV

dA TdS PdV TdS SdT

dA SdT PdV

 

  

 

    

          ------(5)

 

(4) The Gibbs free energy (G). 

In thermodynamics, the Gibbs free energy (IUPAC recommended 

name: Gibbs energy or Gibbs function; also known as free enthalpy. 

To distinguish it from Helmholtz free energy is a thermodynamic 

potential that can be used to calculate the maximum of reversible work that 

may be performed by a thermodynamic system at a constant temperature and 

pressure (isothermal, isobaric). 

It is a thermodynamic property that was defined in 1876 by Josiah 

Willard Gibbs to predict whether a process will occur spontaneously at 

constant temperature and pressure. 

ΔG is negative for spontaneous processes, positive for nonspontaneous 

processes and zero for processes at equilibrium. 

 

https://en.wikipedia.org/wiki/Thermodynamic_potential
https://en.wikipedia.org/wiki/Work_(thermodynamics)
https://en.wikipedia.org/wiki/Closed_system
https://en.wikipedia.org/wiki/Thermodynamic_system
https://en.wikipedia.org/wiki/Temperature
https://en.wikipedia.org/wiki/Volume
https://www.thoughtco.com/thermodynamics-definition-602127
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the  was defined by

                     ------(1)

by differential:

     ------(2)

and

Gibbs Free Ene

        ------(3)

    ------(4)

         

rg

  

y

G H TS

dG dH TdS SdT

dH TdS VdP

dG TdS VdP TdS SdT

dG SdT VdP

 

  

 

    

     ------(5)

 

Natural Variable Equations and Partial Derivatives 

Now that we have defined all independent energy quantities in terms of p, V, 

T, and S, we summarize them in terms of their natural variables: 

       Internal energy U(S,V)

        Enthalpy H(S,P)

    Helmholtz Energy

 G

  A(T,V)

      G(T,ibbs free energ P)y

dU TdS PdV

dH TdS VdP

dA SdT PdV

dG SdT VdP

 

 

  

  

 

For example, consider (2) the internal energy, U. Its natural variables 

are S and V; that is, the internal energy is a function of S and V: 

( , )  ------(1)

  ------(2)

 from the natural variable equation, we know that

  -------(3)

compare two equation (2) and (3)

      ------(4)

V S

V

U U S V

dU dU
dU dS dV

dS dV

dU TdS PdV

dU
dS TdS

dS

dU

dV



   
    
   

 

 
 

 


  ------(5)

 the partial  derivatives in terms of U are equal to:

     ------(6)

  ------(7)

S

V

S

dV PdV

Then

dU
T

dS

dU
P

dV


  

 

 
 

 

 
  

    
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Finally, in many derivations, partial derivatives like these will show up. 

Equations like 6 and 7 allow us to substitute simple state variables for more 

complicated partial derivatives.  

EX) The partial derivatives of enthalpy (H)  

 

 

 

 

 

 

 

 

 

The partial derivatives of Helmholtz free energy (A)  

( , )  ------(1)

  ------(2)

 from the natural variable equation, we know that

  -------(3)

compare two equation (2) and (3)

      ------(4)

V T

V

A A T V

dA dA
dA dT dV

dT dV

dA SdT PdV

dA
dT SdT

dT

dA

d



   
    
   

  

 
  

 

  ------(5)

 the partial  derivatives in terms of U are equal to:

     ------(6)

  ------(7)

T

V

T

dV PdV
V

Then

dA
S

dT

dA
P

dV

 
  

 

 
  

 

 
  

   
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The partial derivatives of Gibbs free energy (G)  

( , )  ------(1)

  ------(2)

 from the natural variable equation, we know that

  -------(3)

compare two equation (2) and (3)

      ------(4)

P T

p

G G T P

dG dG
dG dT dP

dT dP

dG SdT VdP

dG
dT SdT

dT

dG

d



   
    
   

  

 
  

 

  ------(5)

 the partial  derivatives in terms of U are equal to:

     ------(6)

  ------(7)

T

P

T

dP VdP
P

Then

dG
S

dT

dG
V

dP

 
 

 

 
  

 

 
 

   

Summary of partial derivatives  

Internal Energy 

(U) 

Enthalpy 

(H) 

Helmholtz Free 

Energy (A) 

Gibbs Free 

Energy (G) 

    

  

V

S

dU
T

dS

dU
P

dV

 
 

 

 
  

 

 

     

  

P

S

dH
T

dT

dH
V

dP

 
 

 

 
 

 

 

    

 

V

T

dA
S

dT

dA
P

dV

 
  

 

 
  

 

 

     

  

P

T

dG
S

dT

dG
V

dP

 
  

 

 
 

 

 

 

                   

 

 

 

 

 


