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Combined the first and second’s law of thermodynamics
In thermodynamics, the combined law of thermodynamics, also called the Gibbs fundamental equations, is a mathematical summation of the first law of thermodynamics and the second law of thermodynamics subsumed into a single concise mathematical statement 
Four quantities called "thermodynamic potentials" are useful in the chemical thermodynamics of reactions and non-cyclic processes. They are
(1) Internal energy (U), (2) the enthalpy (H), (3) the Helmholtz free energy (A) and (4) the Gibbs free energy (G).
1- The internal energy 

  
2-the enthalpy 

 
3- Helmholtz Energy (A)
The concept of Helmholtz free energy was developed by Hermann von Helmholtz, a in a lecture called "On the thermodynamics of chemical processes". It is usually denoted by the letter A (from the German "Arbeit" or work). 
the Helmholtz free energy is a thermodynamic potential that measures the "useful" work obtainable from a closed thermodynamic system at a constant temperature and volume.
While Gibbs free energy is most commonly used as a measure of thermodynamic potential, especially in the field of chemistry, it is inconvenient for some applications that do not occur at constant pressure. For example, in explosives research.


(4) The Gibbs free energy (G).
In thermodynamics, the Gibbs free energy (IUPAC recommended name: Gibbs energy or Gibbs function; also known as free enthalpy.
To distinguish it from Helmholtz free energy is a thermodynamic potential that can be used to calculate the maximum of reversible work that may be performed by a thermodynamic system at a constant temperature and pressure (isothermal, isobaric).
It is a thermodynamic property that was defined in 1876 by Josiah Willard Gibbs to predict whether a process will occur spontaneously at constant temperature and pressure.
ΔG is negative for spontaneous processes, positive for nonspontaneous processes and zero for processes at equilibrium.



Natural Variable Equations and Partial Derivatives
Now that we have defined all independent energy quantities in terms of p, V, T, and S, we summarize them in terms of their natural variables:


For example, consider (2) the internal energy, U. Its natural variables are S and V; that is, the internal energy is a function of S and V:

 
Finally, in many derivations, partial derivatives like these will show up. Equations like 6 and 7 allow us to substitute simple state variables for more complicated partial derivatives. 
EX) The partial derivatives of enthalpy (H) 










The partial derivatives of Helmholtz free energy (A) 



The partial derivatives of Gibbs free energy (G) 


Summary of partial derivatives 
	Internal Energy
(U)
	Enthalpy
(H)
	Helmholtz Free Energy (A)
	Gibbs Free Energy (G)
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by subsituting eq. (2) in eq. (1)
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