Thermochemistry

* The study of the energy transferred as heat during the course of chemical reactions is called thermochemistry.
* Thermochemistry is a branch of thermodynamics because a reaction vessel and its contents form a system, and chemical reactions result in the exchange of energy between the system and the surroundings.

Thus we can use
Calorimetry to measure the energy supplied or discarded as heat by a reaction, and can identify \boldsymbol{q} with a change in internal energy if the reaction occurs at constant volume or with a change in enthalpy if the reaction occurs at constant pressure.

Conversely, if we know ΔU or ΔH for a reaction, we can predict the heat the reaction can produce.

* Because the release of heat signifies a decrease in the enthalpy of a system, we can now see that an exothermic process is one for which $\Delta H<0$.
* Conversely, because the absorption of heat results in an increase in enthalpy, an endothermic process has $\boldsymbol{\Delta H}>\mathbf{0}$:

Most reactions are conducted at constant pressure e.g. in open vessels in the laboratory. Energies changes at constant pressure are called the enthalpy, given the symbol H.

In an exothermic change energy is transferred from the system (chemicals) to the surroundings. The products have less energy than the reactants
\qquad

Common oxidation exothermic processes are the combustion of fuels and the oxidation of carbohydrates such as glucose in respiration.

ENDOTHERMIC REACTION

In an endothermic change, energy is transferred from the surroundings to the system (chemicals). They require an input of heat energy
e.g. thermal decomposition of calcium carbonate. The products have more energy than the reactants.

The relation between energy change at constant pressure (enthalpy) and internal energy for gas at the same amount (no. of mole is constant):
$\Delta H=\Delta U+\Delta(P V)$
$\Delta H=\Delta U+n R \Delta T$
In liquid state, the change in the volume V is too small, so
$\Delta H \approx \Delta U$
In chemical reaction no. of mole can be changed, then

$$
\Delta H=\Delta U+R T \Delta n
$$

$\Delta \mathrm{n}=\mathrm{n}$ (products) -n (reactants)

Thermochemical equations

When we write chemical equations to represent chemical reactions, we simply write the balanced chemical equations. However, within the realm of the thermodynamics, we must write the chemical equations with change in heat (enthalpy change). There are certain properties of thermochemical equations that you should know:
(1) When heat is lost, the $\Delta \mathrm{H}$ value is negative. The heat value may also be given in the equation itself as a product.
$\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \Delta \mathrm{H}^{\ominus}=\mathbf{- 8 9 0 . 4} \mathbf{k J} / \mathbf{m o l}$
(2) When heat is gained, the $\Delta \mathrm{H}$ value is positive. The heat value may also be given in the equation itself as a reactant.

$$
\mathrm{H}_{2} \mathrm{O}(\mathrm{~s}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \Delta \mathrm{H}^{\ominus}=+\mathbf{6 . 0 1} \mathbf{~ k J} / \mathbf{m o l}
$$

(3) Since heat is a state function, the $\Delta \mathrm{H}$ value for the same equation may be different if it occurs in different physical states. Be sure to specify the phase of the reactants and products using (s), (l), or (g) and be sure to look up the correct $\Delta \mathrm{H}$ from the heat. The symbol (aq) is used for species in water (aqueous) solution.

$$
\begin{aligned}
\mathrm{H}_{2} \mathrm{O}(\mathbf{s}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathbf{l}) & \Delta \mathrm{H}^{\ominus} & =+6.01 \mathrm{~kJ} / \mathrm{mol} \\
\mathrm{H}_{2} \mathrm{O}(\mathbf{l}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathbf{g}) & \Delta \mathrm{H}^{\ominus} & =+44 \mathrm{~kJ} / \mathrm{mol}
\end{aligned}
$$

The same reactant and product of water but in different physical states yields different enthalpy or $\mathbf{\Delta H}$ values!
(4) If a reaction is reversed then the enthalpy $(\Delta \mathrm{H})$ value will also be reversed. Hence $\mathrm{a}+$ becomes a - and vise versa.
$\mathrm{H}_{2} \mathrm{O}(\mathrm{s}) \rightarrow \mathrm{H}_{2} \mathrm{O}$ (l)
$\Delta \mathrm{H}^{\ominus}=\mathbf{+ 6 . 0 1} \mathbf{k J}$
$\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{s})$
$\Delta \mathrm{H}^{\ominus}=-6.01 \mathrm{~kJ}$
(5) If we change the stoichiometric coefficients in the chemical reaction, then we also change the enthalpy $(\Delta \mathrm{H})$ value proportionally! Therefore, if you double the reactants, you will double the products and also double the enthalpy $(\Delta \mathrm{H})$ and so on...

$$
\mathrm{H}_{2} \mathrm{O}(\mathrm{~s}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \Delta \mathrm{H}^{\ominus}=+\mathbf{6 . 0 1} \mathrm{kJ} / \mathrm{mol}
$$

a.) If we double the coefficients, we must also double the ΔH. Think of it as multiplying the entire equation by 2 .

$$
\mathbf{2} \mathrm{H}_{2} \mathrm{O}(\mathrm{~s}) \rightarrow \mathbf{2} \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \Delta \mathrm{H}=\mathbf{+ 1 2 . 0 2} \mathrm{kJ} / \mathrm{mol}
$$

b.) If we triple the coefficients, we must also triple the ΔH. Think of it as multiplying the entire equation by 3 .
$3 \mathrm{H}_{2} \mathrm{O}(\mathrm{s}) \rightarrow 3 \mathrm{H}_{2} \mathrm{O}$ (1)

$$
\Delta \mathrm{H}=\boldsymbol{+ 1 8 . 0 3} \mathrm{kJ} / \mathrm{mol}
$$

c.) If we half the coefficients, we must also half the ΔH. Think of it as multiplying the entire equation by $1 / 2$.
$1 / 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{s}) \rightarrow 1 / 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \Delta \mathrm{H}=+\mathbf{3 . 0 0 5} \mathrm{kJ} / \mathrm{mol}$
d.) If we double the coefficients AND reverse, we must also double the $\Delta \mathrm{H}$ AND REVERSE the sign of $\Delta \mathrm{H}$.

$$
2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~s}) \quad \Delta \mathrm{H}=-\mathbf{1 2 . 0 2} \mathrm{kJ} / \mathrm{mol}
$$

e) Enthalpy changes are normally quoted at standard conditions.

Standard conditions are:
100 kPa (1bar) pressure 298 K (room temperature or $25^{\circ} \mathrm{C}$), Solutions at $\mathbf{1 m o l ~ d m}{ }^{\mathbf{3}}$, All substances should have their reference state at 298 K at standard condition, the superscript Plimsoll symbol ($\boldsymbol{\theta}$) was adopted to indicate the non-zero nature of the standard state.

$$
\mathrm{H}_{2} \mathrm{O}(\mathrm{~s}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

$$
\Delta \mathrm{H}^{\ominus}=+6.01 \mathrm{~kJ} / \mathrm{mol}
$$

EX) given the following thermochemical equation
$\mathrm{CH}_{4}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}$ (1)

$$
\Delta \mathrm{H}^{\ominus}=-890.4 \mathrm{~kJ} / \mathrm{mol}
$$

Calculate the heat evolved when 20 g of CH_{4} is converted to CO_{2} and $\mathrm{H}_{2} \mathrm{O}$.

Enthalpies of physical change

The standard enthalpy change that accompanies a change of physical state is called the standard enthalpy of transition and is denoted, $\Delta_{\text {tra }} \boldsymbol{H}^{\boldsymbol{o}}$

As an example of a standard enthalpy change, the standard enthalpy of vaporization, $\Delta_{\text {vap }} H^{\boldsymbol{\theta}}$, is the enthalpy change per mole when a pure liquid at 1 bar vaporizes to a gas at 1 bar, as in

$$
\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \longrightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \quad \Delta_{\text {vap }} \mathrm{H}^{o}=+44 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

Another is the standard enthalpy of fusion, $\Delta_{f u s} \mathrm{H}^{\theta}$, the standard enthalpy change accompanying the conversion of a solid to a liquid, as in

$$
\mathrm{H}_{2} \mathrm{O}_{(s)} \longrightarrow \mathrm{H}_{2} \mathrm{O}_{(l)} \quad \Delta_{f u s} \mathrm{H}^{\theta}=+6.06 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

Because enthalpy is a state function, a change in enthalpy is independent of the path between the two states. This feature is of great importance in thermochemistry, For example, we can picture the conversion of a solid to a vapour either as occurring by sublimation (the direct conversion from solid to vapour).

$$
\mathrm{H}_{2} \mathrm{O}_{(s)} \longrightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \quad \Delta_{s u b} H^{\circ}
$$

Or as occurring in two steps, first fusion (melting) and then vaporization of the resulting liquid:

$$
\begin{aligned}
& \mathrm{H}_{2} \mathrm{O}_{(s)} \longrightarrow \mathrm{H}_{2} \mathrm{O}_{(l)} \quad \Delta_{f u s} H^{\theta} \\
& \mathrm{H}_{2} \mathrm{O}_{(l)} \longrightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \quad \Delta_{\text {vap }} H^{\ominus}
\end{aligned}
$$

Overall: $\mathrm{H}_{2} \mathrm{O}_{(s)} \longrightarrow H_{2} \mathrm{O}_{(g)} \quad \Delta_{\text {fus }} H^{\theta}+\Delta_{\text {vap }} H^{\theta}$
So,

$$
\Delta_{s u b} H^{\theta}=\Delta_{\text {fus }} H^{\theta}+\Delta_{\text {vap }} H^{\theta}
$$

H.W) Calculate the enthalpy used to convert 5 moles from ice at 273 K to

Vapor at 373 K according to following equation:

$$
\begin{aligned}
& H_{2} \mathrm{O}_{(\mathrm{g})} \longrightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \quad \Delta_{\text {con }} H^{\theta}=-44 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
& \mathrm{H}_{2} \mathrm{O}_{(\mathrm{s})} \longrightarrow H_{2} \mathrm{O}_{(\mathrm{l})} \quad \Delta_{\text {vap }} H^{\theta}=6.06 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{aligned}
$$

b) Enthalpies of chemical change

Since most of the chemical reactions in laboratory are nothing but the constant-pressure processes, we can write the change in enthalpy (also known as enthalpy of reaction) for a reaction. Consider the following general type of reaction.

Reactants \rightarrow products

The $\Delta \mathrm{H}$ is defined as the difference between the enthalpies of products and the reactants. Thus
$\Delta \mathrm{H}=\mathrm{H}$ products -H reactants
Alternatively, we write the chemical equation and then report the standard reaction enthalpy, $\Delta_{\mathrm{r}} H$ (or 'standard enthalpy of reaction'). Thus, for the combustion of methane, we write

$$
\mathrm{CH}_{4}+2 \mathrm{O}_{2} \longrightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \quad \Delta_{\mathrm{r}} \mathrm{H}^{\ominus}=-890 \mathrm{~kJ} / \mathrm{mol}
$$

For a reaction of the form
$2 A+B \longrightarrow 3 C+B$
$\Delta_{r} H^{\Theta}=\left\{3 H_{m}^{\Theta}(C)+H_{m}^{\Theta}(D)\right\}-\left\{2 H_{m}^{\Theta}(A)+H_{m}^{\Theta}(B)\right\}$

Standard enthalpy change of formation

The standard enthalpy of formation, $\Delta_{\mathrm{f}} \mathrm{H}^{\ominus}$, of a substance is the standard reaction enthalpy for the formation of one mole of the compound from its elements in their reference states.

The reference state of an element is its most stable state at the specified temperature and 1 bar. For example, at 298 K the reference state of nitrogen is a gas of N_{2} molecules that of mercury is liquid mercury, that of carbon is graphite not diamond, and that of tin is the white (metallic) form. For example, the standard enthalpy of formation of liquid benzene at 298 K refers to the reaction
$6 C_{(s, \text { graphite })}+3 H_{2(g)} \longrightarrow C_{6} H_{6_{(l)} \Delta_{f} H^{\theta}=+49 \mathrm{~kJ} \mathrm{~mol}^{-1}}$
The standard enthalpies of formation of elements in their reference states are zero at all temperatures because they are the enthalpies of such "null" reaction.

The standard enthalpy of combustion

The standard enthalpy of combustion of a substance is defined as the enthalpy change that occurs when one mole of a substance is combusted completely in oxygen under standard conditions. (298 K and 100 kPa), all reactants and products being in their standard states. $\Delta_{c} H^{\theta}$

An example is the combustion of glucose:
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{~s})+6 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 6 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \quad \Delta_{c} \mathrm{H}^{\theta}=-2808 \mathrm{~kJ} \mathrm{~mol}^{-1}$
H.W) write Thermochemical equation of combustion for the following substance:

1) $\mathrm{H}_{2}(\mathrm{~g})$ 2) $\mathrm{C}(\mathrm{s})$
2) $\mathrm{C}_{5} \mathrm{H}_{12}$ (l)
3) $\mathrm{C}_{7} \mathrm{H}_{14}$ (l)
4) $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}(\mathrm{l})$
5) $\mathrm{CH}_{3} \mathrm{COOH}$ (l)
