Sir Isaac Newton, and his followers, have alsc a very odd opinion concerning
the work of God. According to their doctrine, God almighty needs to wind up his
watch from time to time; otherwise it would cease to move. He had not, it seems,
sufficient foresight to make it a perpetual motion.

Nay, the machine of God’s making, is so imperfect, according to these
gentlemen, that He is obliged to clean it now and then by an extraordinary
concourse, and even to mend it, as a clockmaker mends his work; who must
consequently be so much the more unskillful a workman, as He is often
obliged to mend his work and set it right. According to my opinion, the
same force and vigour [energy] remains always in the world, and only passes
from one part to another, agreeable to the laws of nature, and the beautiful
pre-established order—

Gottfried Wilhelm Leibniz—Letter to Caroline, Princess of Wales, 1715; The Leibniz-Clarke
Correspondence, Manchester, Manchester Univ. Press, 1956

4.1| Introduction: General Principles

We now examine the general case of the motion of a particle in three dimensions. The
vector form of the equation of motion for such a particle is

O “.1.1)
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in which p = mv is the linear momentum of the particle. This vector equation is equiva-
lent to three scalar equations in Cartesian coordinates.

E, = m
F, = mjj (4.1.2)
E, =mZ

The three force components may be explicit or implicit functions of the coordinates,
their time and spatial derivatives, and possibly time itself. There is no general method for
obtaining an analytic solution to the above equations of motion. In problems of even the
mildest complexity, we might have to resort to the use of applied numerical techniques;
however, there are many problems that can be solved using relatively simple analytical
methods. It may be true that such problems are sometimes overly simplistic in their rep-
resentation of reality. However, they ultimately serve as the basis of models of real phys-
ical systems, and so it is well worth the effort that we take here to develop the analytical
skills necessary to solve such idealistic problems. Even these may prove capable of taxing
our analytic ability.

It is rare that one knows the explicit way in which F depends on time; therefore, we
do not worry about this situation but instead focus on the more normal situation in which
F is known as an explicit function of spatial coordinates and their derivatives. The sim-
plest situation is one in which F is known to be a function of spatial coordinates only. We
devote most of our effort to solving such problems. There are many only slightly more
complex situations, in which F is a known function of coordinate derivatives as well. Such
cases include projectile motion with air resistance and the motion of a charged particle
in a static electromagnetic field. We will solve problems such as these, too. Finally, F may
be an implicit function of time, as in situations where the coordinate and coordinate
derivative dependency is nonstatic. A prime example of such a situation involves the
motion of a charged particle in a time-varying electromagnetic field. We will not solve prob-
lems such as these. For now, we begin our study of three-dimensional motion with a
development of several powerful analytical techniques that can be applied when F is a
known function of r and/or ¥.

The Work Principle

Work done on a particle causes it to gain or lose kinetic energy. The work concept was
introduced in Chapter 2 for the case of motion of a particle in one dimension. We would
like to generalize the results obtained there to the case of three-dimensional motion. To
do so, we first take the dot product of both sides of Equation 4.1.1 with the velocity v

dp d(mv)
Fov=—"- y=——-~. A
v 7 v p v (4.1.3)

Because d(v-v)/dt = 2v-v, and assuming that the mass is constant, independent of the
velocity of the particle, we may write Equation 4.1.3 as

dar

414
% (4.1.4)

F.v=_d_(1mv.v)=

de \?
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dr F

Figure 4.1.1 The work done by a force F is the
line integral J§ F - dr. A

in which T is the kinetic energy, mv”/2. Because v = dr/dt, we can rewrite Equation 4.1.4
and then integrate the result to obtain
dr _dT

F o (4.1.5a)

w[F-dr=[dT=T;-T = AT (4.1.5b)

The left-hand side of this equation is a line integral, or the integral of F, dr, the com-
ponent of F parallel to the particle’s displacement vector dr. The integral is carried out
along the trajectory of the particle from some initial point in space A to some final point B.
This situation is pictured in Figure 4.1.1. The line integral represents the work done on
the particle by the force F as the particle moves along its trajectory from A to B. The
right-hand side of the equation is the net change in the kinetic energy of the particle. F
is the net sum of all vector forces acting on the particle; hence, the equation states that
the work done on a particle by the net force acting on it, in moving from one position in
space to another, is equal to the difference in the kinetic energy of the particle at those
two positions.

Conservative Forces and Force Fields

In Chapter 2 we introduced the concept of potential energy. We stated there that if the
force acting on a particle were conservative, it could be derived as the derivative of a scalar
potential energy function, F, =—dV(x)/dx. This condition led us to the notion that the work
done by such a force in moving a particle from point A to point B along the x-axis was
[F,dx=-AV=V(A)-V(B), or equal to minus the change in the potential energy of the par-
ticle. Thus, we no longer required a detailed knowledge of the motion of the particle from
A to B to calculate the work done on it by a conservative force. We needed to know only
that it started at point A and ended up at point B. The work done depended only upon the
potential energy function evaluated at the endpoints of the motion. Moreover, because the
work done was also equal to the change in kinetic energy of the particle, AT = T(B) — T(A),
we were able to establish a general conservation of total energy principle, namely,
E,,; = V(A) + T(A) = V(B) + T(B) = constant throughout the motion of the particle.
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This principle was based on the condition that the force acting on the particle was
conservative. Indeed, the very name implies that something is being conserved as the par-
ticle moves under the action of such a force. We would like to generalize this concept for
a particle moving in three dimensions, and, more importantly, we would like to define just
what is meant by the word conservative. Clearly, we would like to have some prescription
that tells us whether or not a particular force is conservative and, thus, whether or not a
potential energy function exists for the particle. Then we could invoke the powerful con-
servation of energy principle in solving the motion of a particle.

In searching for such a prescription, we first describe an example of a nonconserva-
tive force that, in fact, is a well-defined function of position but cannot be derived from
a potential energy function. This should give us a hint of the critical characteristic that a
force must have if it is to be conservative. Consider the two-dimensional force field
depicted in Figure 4.1.2. The term force field simply means that if a small test particle’
were to be placed at any point (x;, ;) on the xy plane, it would experience a force F. Thus,
we can think of the xy plane as permeated, or “mapped out,” with the potential for gen-
erating a force.

This situation can be mathematically described by assigning a vector F to every
point in the xy plane. The field is, therefore, a vector field, represented by the function
F(x, y). Its components are F, =—by and F, = +bx, where b is some constant. The arrows

' A test particle is one whose mass is small enough that its presence does not alter its environment. Conceptually,
we might imagine it placed at some point in space to serve as a “test probe” for the suspected presence of forces.
The forces are “sensed” by observing any resultant acceleration of the test particle. We further imagine that its
presence does not disturb the sources of those forces.
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in the figure represent the vector F = —iby + jbx evaluated at each point on which the
center of the arrow is located. You can see by looking at the figure that there seems to
be a general counterclockwise “circulation” of the force vectors around the origin. The
magnitude of the vectors increases with increasing distance from the origin. If we were
to turn a small test particle loose in such a “field,” the particle would tend to circulate
counterclockwise, gaining kinetic energy all the while.

This situation, at first glance, does not appear to be so unusual. After all, when you
drop a ball in a gravitational force field, it falls and gains kinetic energy, with an accom-
panying loss of an equal amount of potential energy. The question here is, can we even
define a potential energy function for this circulating particle such that it would lose an
amount of “potential energy” equal to the kinetic energy it gained, thus preserving its over-
all energy, as it travels from one point to another? That is not the case here. If we were
to calculate the work done on this particle in tracing out some path that came back on
itself (such as the rectangular path indicated by the dashed line in Figure 4.1.2), we would
obtain a nonzero result! In traversing such a loop over and over again, the particle would
continue to gain kinetic energy equal to the nonzero value of work done per loop. But if
the particle could be assigned a potential energy dependent only upon its (x, ) position,
then its change in potential energy upon traversing the closed loop would be zero. It should
be clear that there is no way in which we could assign a unique value of potential energy
for this particle at any particular point on the xy plane. Any value assigned would depend
on the previous history of the particle. For example, how many loops has the particle
already made before arriving at its current position?

We can further expose the nonuniqueness of any proposed potential energy function
by examining the work done on the particle as it travels between two points A and B but
along two different paths. First, we let the particle move from (x, y) to (x + Ax, y + Ay) by
traveling in the +x direction to (x + Ax, ) and then in the +y direction to (x + Ax, y +Ay).
Then we let the particle travel first along the +y direction from (x,y) to (x,y + Ay) and
then along the +x direction to (x + Ax, y + Ay). We see that a different amount of work
is done depending upon which path we let the particle take. If this is true, then the work
done cannot be set equal to the difference between the values of some scalar potential
energy function evaluated at the two endpoints of the motion, because such a difference
would give a unique, path-independent result. The difference in work done along these
two paths is equal to 2bAxAy (see Equation 4.1.6). This difference is just equal to the
value of the closed-loop work integral; therefore, the statement that the work done in
going from one point to another in this force field is path-dependent is equivalent to the
statement that the closed-loop work integral is nonzero. The particular force field rep-
resented in Figure 4.1.2 demands that we know the complete history of the particle to
calculate the work done and, therefore, its kinetic energy gain. The potential energy con-
cept, from which the force could presumably be derived, is rendered meaningless in this
particular context.

The only way in which we could assign a unique value to the potential energy would
be if the closed-loop work integral vanished. In such cases, the work done along a path
from A to B would be path-independent and would equal both the potential energy loss
and the kinetic energy gain. The total energy of the particle would be a constant, inde-
pendent of its location in such a force field! We, therefore, must find the constraint that
a particular force must obey if its closed-loop work integral is to vanish.
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To find the desired constraint, let us calculate the work done in taking a test particle
counterclockwise around the rectangular loop of area AxAy from the point (x,) and
back again, as indicated in Figure 4.1.2. We get the following result:

W= §F-dr

= J:HM E (y)dx+ J:+Ay F (x+Ax) dy

x Y
+L+Axp;(y+Ay)dx+jy+AyFy(x)dy

= J':+Ay(Fy(x+Ax)—Fy(x)) dy (4.1.6)

x+Ax
+[ T E@-Ey+Ay)dx
=(b(x+Ax)-bx) Ay +(b(y+ Ay) - by) Ax
= 2bAx Ay

The work done is nonzero and is proportional to the area of the loop, AA = Ax - Ay, which
was chosen in an arbitrary fashion. If we divide the work done by the area of the loop and
take limits as AA — 0, we obtain the value 2b. The result is dependent on the precise
nature of this particular nonconservative force field.

If we reverse the direction of one of the force components—say, let F, = +by (thus
“destroying” the circulation of the force field but everywhere preserving its magnitude)—
then the work done per unit area in traversing the closed loop vanishes. The resulting force
field is conservative and is shown in Figure 4.1.3. Clearly, the value of the closed-loop

force field whose components
are F, =by and F, =bx.
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Figure 4.1.3 A conservative / \\\
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integral depends upon the precise way in which the vector force F changes its direction
as well as its magnitude as we move around on the xy plane.

There is obviously some sort of constraint that F must obey if the closed-loop work
integral is to vanish. We can derive this condition of constraint by evaluating the forces
atx + Ax and y + Ay using a Taylor expansion and then inserting the resultant expansion
into the closed-loop work integral of Equation 4.1.6. The result follows:

oF,
E(y+Ay)=E(y)+ ay" Ay
oF, 4.1.7)
Fy(x+Ax) = Fy(x)+—5x—Ax
+ay( OF, +ax( oF,
§F-dr=JZ (gyAx]dy—J.: (ay y]dx
4.1.8)

oF, oF
=| —L =2 |AxAy = 2bAxA
(ax ay]xy Y

This last equation contains the term (aFy/ax — 0F,/dy), whose zero or nonzero value rep-
resents the test we are looking for. If this term were identically equal to zero instead of 2b,
then the closed-loop work integral would vanish, which would ensure the existence of a
potential energy function from which the force could be derived.

This condition is a rather simplified version of a very general mathematical theorem
called Stokes’ theorem.” It is written as

§F - dr =LcurlF-ﬁda

oF, 9F,
o222

The theorem states that the closed-loop line integral of any vector function F is equal to
curl F - n da integrated over a surface S surrounded by the closed loop. The vector n is
a unit vector normal to the surface-area integration element da. Its direction is that of the
advance of a right-hand screw turned in the same rotational sense as the direction of tra-
versal around the closed loop. In Figure 4.1.2, n would be directed out of the paper. The
surface would be the rectangular area enclosed by the dashed rectangular loop. Thus, a
vanishing curl F ensures that the line integral of F around a closed path is zero and, thus,
that F is a conservative force.

4.1.9)

See any advanced calculus textbook (e.g., S. I. Grossman and W. R. Derrick, Advanced Engineering
Mathematics, Harper Collins, New York, 1988) or any advanced electricity and magnetism textbook
{e.g., ]. R. Reitz, F. ]. Milford, and R. W. Christy, Foundations of Electromagnetic Theory, Addison-Wesley,
New York, 1992).
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4.2| The Potential Energy Function in
Three-Dimensional Motion: The Del Operator
Assume that we have a test particle subject to some force whose curl vanishes. Then all

the components of curl F in Equation 4.1.9 vanish. We can make certain that the curl van-
ishes if we derive F from a potential energy function V(x,y,%) according to

aV aV v
F =—— F =-—— F =—— 421
* ox ooy oz #21
For example, the z component of curl F becomes
2 oF, 2 2 oF,
oF, 0oV oy __0V L% .__y_an:__O 4.2.9)

This last step follows if we assume that V is everywhere continuous and differentiable.
We reach the same conclusion for the other components of curl F. One might wonder
whether there are other reasons why curl F might vanish, besides its being derivable from
a potential energy function. However, curl F =0 is a necessary and sufficient condition
for the existence of V(x,y,2) such that Equation 4.2.1 holds.?

We can now express a conservative force F vectorially as

F=—ia—V—ja—V—ka—V (4.2.3)
ox “dy oz
This equation can be written more succinctly as
F=-VV (4.2.4)
where we have introduced the vector operator del:
il ol w9

The expression VV is also called the gradient of V and is sometimes written grad V.
Mathematically, the gradient of a function is a vector that represents the maximum spa-
tial derivative of the function in direction and magnitude. Physically, the negative gradi-
ent of the potential energy function gives the direction and magnitude of the force that
acts on a particle located in a field created by other particles. The meaning of the nega-
tive sign is that the particle is urged to move in the direction of decreasing potential
energy rather than in the opposite direction. This is illustrated in Figure 4.2.1. Here the
potential energy function is plotted out in the form of contour lines representing the curves
of constant potential energy. The force at any point is always normal to the equipotential
curve or surface passing through the point in question.

3See, for example, S. I. Grossman, op cit. Also, Feng presents an interesting discussion of conservancy criteria
when the force field contains singularities in Amer. J. Phys. 37, 616 (1969).
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V = constant

F
High V LowV

We can express curl F using the del operator. Look at the components of curl F in
Equation 4.1.9. They are the components of the vector V X F. Thus, V X F = curl F.
The condition that a force be conservative can be written compactly as

oF, OoF, oF, OF oF, oF
VXF=i| —2 - YL l4pi| ———2 |4kl L -—"x21=0 426
x 1( Jﬂ( W )+ ( ay) (4.2.6)

Furthermore, if V X F =0, then F can be derived from a scalar function V by the oper-
ation F =-VV, since V X VV =0, or the curl of any gradient is identically 0.

We are now able to generalize the conservation of energy principle to three dimen-
sions. The work done by a conservative force in moving a particle from point A to point
B can be written as

Figure 4.2.1 A force field represented by
equipotential contour curves.

B _ (B _ (B dV B, oV B, OV
[[Fedr=-]V Ve)-dr=-[ Shde-[ Sy, Sode

g 4.2.7)
= jA dV(r)=-AV = V(A)-V(B)

The last step illustrates the fact that VV . dr is an exact differential equal to dV. The work
done by any net force is always equal to the change in kinetic energy, so

j:F-dr = AT = —AV
~AT+V)=0 4.2.8)
~T(A)+V(A)=T(B)+V(B) = E = constant

and we have arrived at our desired law of conservation of total energy.

If F’ is a nonconservative force, it cannot be set equal to —VV. The work increment
F’ . dr is not an exact differential and cannot be equated to —dV. In those cases where
both conservative forces F and nonconservative forces F’ are present, the total work
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increment is (F + F') . dr = —dV + F’ . dr = dT, and the generalized form of the work
energy theorem becomes

[[F"dr = AT +V)=AE (4.2.9)

The total energy E does not remain a constant throughout the motion of the particle but
increases or decreases depending upon the nature of the nonconservative force F’. In the
case of dissipative forces such as friction and air resistance, the direction of F is always
opposite the motion; hence, F’- dr is negative, and the total energy of the particle decreases
as it moves through space.

EXAMPLE 4.2.1

Given the two-dimensional potential energy function

V(r) =V, - 1k8%
where r =ix + jy and V,, k, and & are constants, find the force function.

Solution:

We first write the potential energy function as a function of x and y,
RN
V(x,y)=V, -3 ké% =ty 08

and then apply the gradient operator:

.0  .d
= —‘VV = —[1 o +j ay]V(x,y)
= —k(ix + jy)e ¢

280
=—kre /6

Notice that the constant V;, does not appear in the force function; its value is arbitrary.
It simply raises or lowers the value of the potential energy function by a constant every-
where on the x, y plane and, thus, has no effect on the resulting force function.

We have plotted the potential energy function in Figure 4.2.2(a) and the resulting
force function in Figure 4.2.2(b). The constants were taken to be V=1, 6>=1/3, and
k = 6. The “hole” in the potential energy surface reaches greatest depth at the origin,
which is obviously the location of a source of attraction. The concentric circles around
the center of the hole are equipotentials—lines of constant potential energy. The radial
lines are lines of steepest descent that depict the gradient of the potential energy sur-
face. The slope of a radial line at any point on the plane is proportional to the force that
a particle would experience there. The force field in Figure 4.2.2(b) shows the force vec-
tors pointing towards the origin. They weaken both far from and near to the origin, where
the slope of the potential energy function approaches zero.
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Figure 4.2.2a The potential
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EXAMPLE 4.2.2

Suppose a particle of mass m is moving in the above force field, and at time £ = 0 the
particle passes through the origin with speed vy. What will the speed of the particle be
at some small distance away from the origin given by r = e,A, where A < 6?

Solution:

The force is conservative, because a potential energy function exists. Thus, the total
energy E =T + V = constant,

E = zmv® +V(r) = gmog +V(0)
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and solving for v, we obtain
2 2, 2
v° =vy +—[V(0)-V(r)]
m
= of + = (Vo - 1 k%)~ (v, - TRe%e~")|

s ké® —A2/82]

=0 —7[1—6

2
zog—%[l—(l—&/az)]
= og —%Az

The potential energy is a quadratic function of the displacement A from the origin for
small displacements, so this solution reduces to the conservation of energy for the simple
harmonic oscillator

EXAMPLE 4.2.3

Is the force field F = ixy + jxz + kyz conservative? The curl of F is

i j k
VXF=|dlox dldy d/oz|=i(z—x)+jo+k(z—x)
xy Xz yz

The final expression is not zero for all values of the coordinates; hence, the field is not
conservative.

EXAMPLE 4.2.4

For what values of the constants @, b, and ¢ is the force F =i(ax + byz) +jexy conserva-
tive? Taking the curl, we have

i i k
VXF=| 0/dx ddy 0/oz|=k(c—-2b)y
ax+by®> cxy O

This shows that the force is conservative, provided ¢ = 2b. The value of @ is immaterial.
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EXAMPLE 4.2.5

Show that the inverse-square law of force in three dimensions F = (—k/r2)e, is con-
servative by the use of the curl. Use spherical coordinates. The curl is given in
Appendix F as

e, egr e,rsind
S CEC IS
rZsing|or 90 9¢

F, rFy 1F,sinf

VXF=

We have F,. = —k/r® F 9= 0, Fy= 0. The curl then reduces to

- e -
vxpet () 83 ()
rsinf dg\ r r a0\ r
which, of course, vanishes because both partial derivatives are zero. Thus, the force in
question is conservative.

4.3| Forces of the Separable Type:
Projectile Motion

A Cartesian coordinate system can be frequently chosen such that the components of a
force field involve the respective coordinates alone, that is,

F=iF,(x) + jF,(y) + kF,(z) (4.3.1)
Forces of this type are separable. The curl of such a force is identically zero:
i j k

E(x) F(y) E(2)

The x component is dF,(z)/dy ~ oF ,(y)/0z and a similar expression holds for the other com-
ponents; therefore, the field is conservative because each partial derivative is of the mixed
type and vanishes identically, because the coordinates x, y, and z are independent vari-
ables. The integration of the differential equations of motion is then very simple because
each component equation is of the type mi = F,(x). In this case the equations can be
solved by the methods described under rectilinear motion in Chapter 2.

In the event that the force components involve the time and the time derivatives of
the respective coordinates, then it is no longer true that the force is necessarily conser-
vative. Nevertheless, if the force is separable, then the component equations of motion
are of the form mi = F (x,,t) and may be solved by the methods used in Chapter 2.
Some examples of separable forces, both conservative and nonconservative, are discussed
here and in the sections to follow.
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Motion of a Projectile in a Uniform
Gravitational Field

While a professor at Padua, Italy, during the years 1602-1608, Galileo spent much of
his time projecting balls horizontally into space by rolling them down an inclined plane
at the bottom of which he had attached a curved deflector. He hoped to demonstrate
that the horizontal motion of objects would persist in the absence of frictional forces. If
this were true, then the horizontal motion of heavy projectiles should not be affected
much by air resistance and should occur at a constant speed. Galileo had already demon-
strated that balls rolling down inclined planes attained a speed that was proportional to
their time of roll, and so he could vary the speed of a horizontally projected ball in a con-
trolled way. He observed that the horizontal distance traveled by a projectile increased
in direct proportion to its speed of projection from the plane, thus, experimentally
demonstrating his conviction. During these investigations, he was stunned to find that
the paths these projectiles followed were parabolas! In 1609, already knowing the answer
(affirming as gospel what every modern, problem-solving student of physics knows from
experience), Galileo was able to prove mathematically that the parabolic trajectory of pro-
jectiles was a natural consequence of horizontal motion that was unaccelerated—and an
independent vertical motion that was. Indeed, he understood the consequences of this
motion as well. Before finally publishing his work in 1638 in Discourse of Two New
Sciences, he wrote the following in a letter to one of his many scientific correspondents,
Giovanni Baliani:

... I treat also of the motion of projectiles, demonstrating various properties, among which
is the proof that the projectile thrown by the projector, as would be the ball shot by firing
artillery, makes its maximum flight and falls at the greatest distance when the piece is ele-
vated at half a right angle, that is at 45°; and moreover, that other shots made at greater
or less elevation come out equal when the piece is elevated an equal number of degrees
above and below the said 45°.*

Not unlike the funding situation that science and technology finds itself in today, fun-
damental problems in the fledgling science of Galileo’s time, which piqued the interest
of the interested few, stood a good chance of being addressed if they related in some way
to the military enterprise. Indeed, solving the motion of a projectile is one of the most
famous problems in classical mechanics, and it is no accident that Galileo made the dis-
covery partially supported by funds ultimately derived from wealthy patrons attempting
to gain some military advantage over their enemies.

In 1597, Galileo had entered into a 10-year collaboration with a toolmaker, Marc’
antonio Mazzoleni. In Galileo’s day, the use of cannons to pound away at castle walls was
more art than science. The Marquis del Monte in Florence and General del Monte in
Padua, with whom Galileo had worked earlier, wondered if it were possible to devise alight-
weight military “compass” that could be used to gauge the distance and height of a target,

*See for example, S. Drake and J. MacLachlan, Galileo’s Discovery of the Parabolic Trajectory, Scienti. Amer.
232, 102-110, (March, 1975). Also see S. Drake, Galileo at Work, Mineola, NY, Dover, 1978.
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to measure the angle of elevation of the cannon and to track the path of its projectile.
Galileo solved the problem and developed the military compass, which his toolmaker
produced in quantity in his workshop. There was a ready market for these devices, and
they sold well. However, Galileo gained most of the support that enabled him to carry
out his own investigation of motion by instructing students in the use of the compass and
charging them 120 lire for the privilege. Though, like many professors today with which
many readers of this text are likely familiar, Galileo more than resented any labor that pre-
vented him from pursuing his own interests. “I'm always at the service of this or that person.
I have to consume many hours of the day— often the best ones—in the service of others.”
Fortunately, he found enough time to carry out his experiments with rolling balls, which
led to his discovery of the parabolic trajectory and ultimately helped lead Newton to the
discovery of the classical laws of motion.

In 1611, Galileo informed Antonio de’Medici of his work on projectiles, which no doubt
the powerful de’Medici family of Florence put to good use . . . and no doubt, went a long
way towards helping Galileo secure their undying gratitude and unending patronage.

So with undying gratitude to Galileo and his successor, Newton, here we take only a
few minutes—and not years—to solve the projectile problem.

No Air Resistance

For simplicity, we first consider the case of a projectile moving with no air resistance. Only
one force, gravity, acts on the projectile, and, consistent with Galileo’s observations as we
shall see, it affects only its vertical motion. Choosing the z-axis to be vertical, we have the
following equation of motion:

d’r
m 7l =—kmg (4.3.3)
In the case of projectiles that don't rise too high or travel too far, we can take the accel-
eration of gravity, g, to be constant. Then the force function is conservative and of the sep-
arable type, because it is a special case of Equation 4.3.1. v is the initial speed of the
projectile, and the origin of the coordinate system is its initial position. Furthermore, there
is no loss of generality if we orient the coordinate system so that the x-axis lies along the
projection of the initial velocity onto the xy horizontal plane. Because there are no hor-
izontally directed forces acting on the projectile, the motion occurs solely in the xz verti-
cal plane. Thus, the position of the projectile at any time is (see Figure 4.3.1)

r=ix+kz (4.3.4)

The speed of the projectile can be calculated as a function of its height, z, using the
energy equation (Equation 4.2.8)

Fm(E* +2%) + mge = L mog (4.3.52)
or equivalently,

v® =g ~2gz (4.3.5b)
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Figure 4.3.1 The parabolic path of a
projectile.

We can calculate the velocity of the projectile at any instant of time by integrating
Equation 4.3.3

dr
v= E =-kgt+v, (4.3.63)

The constant of integration is the initial velocity v,. In terms of unit vectors, the veloc-
ity is

v =iv, cosa +k(v, sina — gt) (4.3.6b)
Integrating once more yields the position vector
r= —k%gt2 + vt +r, 4.3.7a)

The constant of integration is the initial position of the projectile, ry, which is equal to
zero; therefore, in terms of unit vectors, Equation 4.3.7a becomes

r =1i(y, cosoz)t+k((u0 sina)t ——%gtz) (4.3.7b)
In terms of components, the position of the projectile at any instant of time is

x =%t = (v, cos o)t
y=yt=0
1

2=t — 3 gt® = (v sina)t— 5 gt

(4.3.7¢)

2

g =vpcos @, Y, =0, and %, =1, sin o are the components of the initial velocity v.
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We can now show, as Galileo did in 1609, that the path of the projectile is a parabola.
We find z(x) by using the first of Equations 4.3.7c to solve for ¢ as a function of x and then
substitute the resulting expression in the third of Equations 4.3.7c

X

t= (4.3.8)

0, COS &

- g 2
z = (tana)x [203 coszaJx 4.3.9)
Equation 4.3.9 is the equation of a parabola and is shown in Figure 4.3.1.

Like Galileo, we calculate several properties of projectile motion: (1) the maximum
height, z,,,,, of the projectile, (2) the time, t,,,, it takes to reach maximum height, (3) the
time of flight, T, of the projectile, and (4) the range, R, and maximum range, R,,,,, of the
projectile.

e First, we calculate the maximum height obtained by the projectile by using
Equation 4.3.5b and noting that at maximum height the vertical component of the
velocity of the projectile is zero so that its velocity is in the horizontal direction and
equal to the constant horizontal component, v, cos . Thus

O% COS2 o= 0(2) - 2gzm (4'3'10)
We solve this to obtain
2 . 32
2, =050 % (4.3.11)
2g

o The time it takes to reach maximum height can be obtained from Equation 4.3.6b
where we again make use of the fact that at maximum height, the vertical component
of the velocity vanishes, so

Vg sino — gtmm = O
or

0, Sina
Lnge = T (4.3.12)

¢ We can obtain the total time of flight T of the projectile by setting z = 0 in the last
of Equations 4.3.7c, which yields

_ 20, sina

g

T (4.3.13)

This is twice the time it takes the projectile to reach maximum height. This
indicates that the upward flight of the projectile to the apex of its trajectory is
symmetrical to its downward flight away from it.
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o Finally, we calculate the range of the projectile by substituting the total time of flight,
T, into the first of Equations 4.3.7c, obtaining

_ vgsin®2a

g

R=x (4.3.14)

R has its maximum value R, =v3/gat o= 45°.

Linear Air Resistance

We now consider the motion of a projectile subject to the force of air resistance. In this
case, the motion does not conserve total energy, which continually diminishes during the
flight of the projectile. To solve the problem analytically, we assume that the resisting force
varies linearly with the velocity. To simplify the resulting equation of motions, we take the
constant of proportionality to be mYy where m is the mass of the projectile. The equation
of motion is then

2

m -Zt—: =-myv-kmg (4.3.15)

Upon canceling m’s, the equation simplifies to

d2
:lt_: =—yv-kg (4.3.16)

Before integrating, we write Equation 4.3.16 in component form

i=-yx
ij=-yy 4.3.17)
Z=-yz—g

We see that the equations are separated; therefore, each can be solved individually by the
methods of Chapter 2. Using the results from Example 2.4.1, we can write down the solu-
tions immediately, noting that here y = ¢,/m, ¢, being the linear drag coefficient. The
results are

i =xpe "
§ =g 4.3.18)

izt " ~E 1=
Y

for the velocity components. As before, we orient the coordinate system such that the x-axis
lies along the projection of the initial velocity onto the xy horizontal plane. Then y =g, =0
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and the motion is confined to the xz vertical plane. Integrating once more, we obtain the
position coordinates

x=200-0m
(4.3.19)

=248 la-m)-E4
Y ¥ %

We have taken the initial position of the projectile to be zero, the origin of the coordinate
system. This solution can be written vectorially as

Yo kel oy k& (4.3.20)
Yy ¥ %

which can be verified by differentiation.

Contrary to the case of zero air resistance the path of the projectile is not a parabola,
but rather a curve that lies below the corresponding parabolic trajectory. This is illustrated
in Figure 4.3.2. Inspection of the x equation shows that, for large ¢, the value of x
approaches the limiting value

Yo (4.3.21)

This means that the complete trajectory of the projectile, if it did not hit anything, would
have a vertical asymptote as shown in Figure 4.3.2.

In the actual motion of a projectile through the atmosphere, the law of resistance is
by no means linear; it is a very complicated function of the velocity. An accurate calcula-
tion of the trajectory can be done by means of numerical integration methods. (See the
reference cited in Example 2.4.3.)

Figure 4.3.2 Comparison of the paths
of a projectile with and without air
resistance.
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Horizontal Range

The horizontal range of a projectile with linear air drag is found by setting z = 0 in the
second of Equations 4.3.19 and then eliminating ¢ among the two equations. From the first
of Equations 4.3.19, we have 1 — yx/%, =™, so0 t = -y In(1 - yx/%,). Thus, the hori-
zontal range x,,,,, is given by the implicit expression

Z 8 |¥x g Yx
20,8 | fimar o & 1pl ) fme |
(}, yzj % ¥ ( % ] (4.3.22)

This is a transcendental equation and must be solved by some approximation method to
find x;,. We can expand the logarithmic term by use of the series

In(l—u) = —u— “? —————— (4.3.23)

which is valid for |u| < 1. With u = yx,,,,/%,, it is left as a problem to show that this leads
to the following expression for the horizontal range:

iz, 8ok
Ky, = 000 TR0 4y

¢ 3 gz (4.3.24a)

max

If the projectile is fired at angle of elevation a with initial speed vy, then %; = v, cos a,
%= vp sine, and 2#yz, = 20¢ sin¢ cos & = vg sin2¢. An equivalent expression is then

2 . 3 :
_% sin 20 _ 4v, sm2;x sin o e (4.3.24b)
g 3g

max

The first term on the right is the range in the absence of air resistance. The remainder is
the decrease due to air resistance.

EXAMPLE 4.3.1

Horizontal Range of a Golf Ball

For objects of baseball or golf-ball size traveling at normal speeds, the air drag is more
nearly quadratic in v, rather than linear, as pointed out in Section 2.4. However, the approx-
imate expression found above can be used to find the range for flat trajectories by
“linearizing” the force function given by Equation 2.4.3, which may be written in three
dimensions as

F(v)==v(c1+cz|v])

To linearize it, we set | v| equal to the initial speed vy, and so the constant y is given

by

_C1+60

m
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(A better approximation would be to take the average speed, but that is not a given quan-
tity.) Although this method exaggerates the effect of air drag, it allows a quick ballpark
estimate to be found easily.

For a golf ball of diameter D = 0.042 m and mass m = 0.046 kg, we find that c, is
negligible and so

_cyvy _ 0.22D%v,
r= m B m

_0.22(0.042)% v,

0046

= 0.00840,

numerically, where v is in ms . For a chip shot with, say, vy = 20 ms *, we find
y=0.0084 x20=0.17 s\, The horizontal range is then, for a=30°,
. o (20)°sin60°  4(20)°sin60°sin30°x0.17
mas 9.8 3(9.8)%
=353m-82m=271m

Our estimate, thus, gives a reduction of about one-fourth due to air drag on the ball.

EXAMPLE 4.3.2

A "Tape Measure” Home Run

Here we calculate what is required of a baseball player to hit a tape measure home run,
or one that travels a distance in excess of 500 feet. In Section 2.4, we mentioned that
the force of air drag on a baseball is essentially proportional to the square of its speed
that is, Fp(v) = —¢; |v] v. The actual air drag force on a baseball is more complicated
than that. For example, the “constant” of proportionality ¢, varies somewhat with the
speed of the baseball, and the air drag depends, among other things, on its spin and the
way its cover is stitched on. We assume, however, for our purposes here that the above
equation describes the situation adequately enough with the caveat that we take c;=0.15
instead of the value 0.22 that we used previously. This value “normalizes” the air drag
factor of a baseball traveling at speeds near 100 mph to that used by Robert Adair in
The Physics of Baseball.*

Trajectories of bodies subject to an air drag force that depends upon the square of
its speed cannot not be calculated analytically, so we use Mathematica, a computer soft-
ware tool (see Appendix I), to find a numerical solution for the trajectory of a baseball
in fight. Our goal is to find the minimum velocity and optimum angle of launch that a
baseball batter must achieve to propel a baseball to maximum range. The situation we
analyze concerns the longest home run ever hit in a regular-season, major league base-
ball game according to the Guinness Book of Sports Records, namely, a ball struck by

‘R. K. Adair, The Physics of Baseball, 2nd ed., New York, Harper Collins.
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Figure 4.3.3a Trajectory
of Mickey Mantle’s home run
on April 17, 1953, in Griffith
Stadium, Washington, D.C.

Figure 4.3.3b Trajectory
of Mantle’s home run as seen
from the batter’s perspective.
(Mantle, a switch hitter, was

actually batting right-handed
against the left-handed
Stobbs. This photo, showing
him batting left-handed, is for
the sake of illustration only.)
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Mickey Mantle in 1953 that is claimed to have traveled 565 feet over the left field
bleachers in old Griffith Stadium in Washington, D.C. The following is an account of
that historic home run,’ which one of your authors (GLC) was privileged to see while
watching the baseball game as a bright-eyed young boy from those very left field bleach-

ers for which he paid an entrance fee of 25¢ (oh, how times have changed).

The Yankees were playing the Senators at Griffith Stadium in Washington, D.C. (The
Washington Senators baseball club and Griffith Stadium no longer exist.) The stadium was
alittle sandbox of a ballpark but, as Mickey Mantle said, “It wasn’t that easy to hit a home
run there. There was a 90-foot wall in centerfield and there always seemed to be a breeze
blowing in.”

Lefty Chuck Stobbs was on the mound. A light wind was blowing out from home plate
for a change. It was two years to the day since Mickey's first major league game. Mickey
stepped up to the plate. Stobbs fired a fast ball just below the letters, right where the
Mick liked them, and he connected full-on with it. The ball took off toward the 391-foot
sign in left-centerfield. It soared past the fence, over the bleachers and was headed out
of the park when it ricocheted off a beer sign on the auxiliary football scoreboard (see
Figures 4.3.3a and b). Although, slightly impeded, it continued its flight over neighboring

5This account of Mantle’s Guinness Book of Sports Records home run can be found at the website,
http://www.themick.com/10homers.html.
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Fifth Street and landed in the backyard of 434 Oakdale Street, several houses up the
block.

Billy Martin was on third when Mickey connected and, as a joke, he pretended to tag
up like it was just a long fly ball. Mickey didn’t notice Billy’s shenanigans (“I used to keep
my head down as I rounded the bases after a home run. I didn’t want to show up the pitcher.
Ifigured he felt bad enough already”) and almost ran into Billy! If not for third base coach,
Frank Crosetti, he would have. Had Mickey touched Billy he would have automatically
been declared out and would have been credited with only a dauble.

Meanwhile, up in the press box, Yankees PR director, Red Patterson, cried out, “That
one’s got to be measured!” He raced out of the park and around to the far side of the
park where he found 10-year-old Donald Dunaway with the ball. Dunaway showed Red
the ball’s impact in the yard and Red paced off the distance to the outside wall of Griffith
Stadium. Contrary to popular myth, he did not use a tape measure, although he and
Mickey were photographed together with a giant tape measure shortly after the historic
blast. Using the dimensions of the park, its walls, and the distance he paced off, Patterson
calculated the ball traveled 565 feet. However, sports writer Joe Trimble, when adding
together the distances, failed to account for the three-foot width of the wall and came
up with the 562-foot figure often cited. However, 565 feet is the correct number.

This was the first ball to ever go over Griffith Stadium’ leftfield bleachers. Most
believe the ball would have gone even further had it not hit the scoreboard (see Figure
4.3.3b). At any rate, it became one of the most famous home runs ever. It was headline
news in a number of newspapers and a major story across the country. From that date
forward, long home runs were referred to as “tape measure home runs.”

So, did Mickey Mantle really hit a 565 foot home run, and, if so, at what angle did he
strike the ball and what initial velocity did he impart to it? The equation of motion of a
baseball subject to quadratic air drag is

mi =—c, |v| v—mgk
This separates into two component equations
mE=—c, |v|x
mz =—c, |v|2—mg
Letting ¥ =c,/m, we obtain
i = -y +2°)"%
E=-y(* +3°) %3¢
Understandably, the game of baseball being the great American pastime, the weight

(5.125 0z) and diameter (2.86 in) of the baseball are given in English units. In metric units,
they are m = 0.145 kg and D = 0.0728 m respectively, so

=l 0.15D% _ 0.15(0.0728)

meters™! = 0.0055 meters ™
m m 0.145

The numerical solution to these second-order, coupled nonlinear differential equations
can be generated by using the discussion of Mathematica given in Appendix I. Here we
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Baseball trajectories
80 +
no drag

~60 +
Figure 43.4 Thecalculasted <
range of a baseball with ) w04
quadratic air drag and & quadratic drag
without air drag. The range
of the baseball is 172.2 m 20 T
(565 ft) for an initial speed of
143.2 mph and elevation } } t R— x(m)
angle of 39 degrees. 100 200 300 400

simply outline the solution process, which involves an iterative procedure.

* First, we make reasonable guesses for the initial velocity (vy) and angle (6,) of the
baseball and then solve the coupled differential equations using these values.

* Plot the trajectory and find the x-axis intercept (the range)

¢ Hold v, fixed, and repeat the above using different values of 6, until we find the
value of 6, that yields the maximum range

* Hold 6, fixed at the value found above (that yields the maximum range), and repeat:
the procedure again, but varying v, until we find the value that yields the required
range of Mickey’s tape measure home run, 565 feet (172.2 m)

The resultant trajectory is shown in Figure 4.3.4 along with the parameters that gener-
ated that trajectory. For comparison, we also show the trajectory of a similarly struck base-
ball in the absence of air resistance. We find that Mickey had to strike the ball at an
elevation angle of 6, = 39° with an initial velocity of vy = 143.2 mph. Are these values rea-
sonable? We would guess that the initial angle ought to be a bit less than the 45° one finds
for the case of no air resistance. With resistance, a smaller launch angle (rather than one
greater than 45°) corresponds to less time spent in flight during which air resistance can
effectively act. What about the initial speed? Chuck Stobbs threw a baseball not much
faster than 90 mph. Mantle could swing a bat such that its speed when striking the ball
was approximately 90 mph. The coefficient of restitution (see Chapter 7) of baseballs is
such that the resultant velocity imparted to the batted ball would be about 130 mph, so
the value we've estimated is somewhat high but not outrageously so. If the ball Mantle
hit in Griffith Stadium was assisted by a moderate tailwind, his Herculean swat seems pos-
sible. Wouldn't it have been spectacular to have seen Mantle hit one like that—in a vacuum?

4.4| The Harmonic Oscillator
in Two and Three Dimensions

Consider the motion of a particle subject to a linear restoring force that is always directed
toward a fixed point, the origin of our coordinate system. Such a force can be repre-
sented by the expression

F=—kr (44.1)
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1}'

——
X
Figure 4.4.1 A model of a three-dimensional {
harmonic oscillator.
Accordingly, the differential equation of motion is simply expressed as
d’r
m—s; = —kr (4.4.2)
dt*

The situation can be represented approximately by a particle attached to a set of elastic
springs as shown in Figure 4.4.1. This is the three-dimensional generalization of the linear
oscillator studied earlier. Equation 4.4.2 is the differential equation of the linear isotropic
oscillator.

The Two-Dimensional Isotropic Oscillator

In the case of motion in a single plane, Equation 4.4.2 is equivalent to the two compo-
nent equations

mi = ks (4.4.3)
mij = —ky
These are separated, and we can immediately write down the solutions in the form
x =A cos(0t + &) y =B cos(wt + ) (4.4.4)
in which
Ve
©= (—k—) (4.4.5)
m

The constants of integration A, B, o, and 8 are determined from the initial conditions in
any given case.

To find the equation of the path, we eliminate the time ¢ between the two equations.
To do this, let us write the second equation in the form

y =B cos(wt + a+A) (4.4.6)
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where
A=B-«a 4.47)
Then
y = Blcos(wt + @) cosA — sin (wt + ) sinA] (4.4.8)

Combining the above with the first of Equations 4.4.4, we then have

N
cosA— 1—% sinA (4.4.9)

o e

x
A
and upon transposing and squaring terms, we obtain

2
x 2cosA y —sin2A (4.4.10)

AL YA B
which is a quadratic equation in x and y. Now the general quadratic
ax’ +bxy +cy’ +dx+ey=f (4.4.11)
represents an ellipse, a parabola, or a hyperbola, depending on whether the discriminant
b — 4ac (4.4.12)

is negative, zero, or positive, respectively. In our case the discriminant is equal to
—(2 sin A/ABY’, which is negative, so the path is an ellipse as shown in Figure 4.4.2.

In particular, if the phase difference A is equal to 71/2, then the equation of the path
reduces to the equation

+L -1 (4.4.13)

Figure 4.4.2 The elliptical path of a
two-dimensional isotropic oscillator.
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which is the equation of an ellipse whose axes coincide with the coordinate axes. On the
other hand, if the phase difference is 0 or 7, then the equation of the path reduces to that
of a straight line, namely,

y= i%,c (4.4.14)

The positive sign is taken if A =0, and the negative sign, if A = 7. In the general case it is
possible to show that the axis of the elliptical path is inclined to the x-axis by the angle v,
where

2ABcosA (4.4.15)

tan2y = O

The derivation is left as an exercise.

The Three-Dimensional Isotropic
Harmonic Oscillator

In the case of three-dimensional motion, the differential equation of motion is equiva-
lent to the three equations

mi = —kx mij = —ky mz=—kz (4.4.16)
which are separated. Hence, the solutions may be written in the form of Equations 4.4.4,
or, alternatively, we may write
x = A, sinwt+ B, coswt
y=A, sin®t+ B, cos@t (4.4.17a)
2= A, sin@t+ B; coswt

The six constants of integration are determined from the initial position and veloc-
ity of the particle. Now Equations 4.4.16 can be expressed vectorially as

r=A sinwt + B coswt (4.4.17b)

in which the components of A are A}, A,, and A3, and similarly for B. It is clear that the
motion takes place entirely in a single plane, which is common to the two constant vec-
tors A and B, and that the path of the particle in that plane is an ellipse, as in the two-
dimensional case. Hence, the analysis concerning the shape of the elliptical path under
the two-dimensional case also applies to the three-dimensional case.

Nonisotropic Oscillator

The previous discussion considered the motion of the isotropic oscillator, wherein the
restoring force is independent of the direction of the displacement. If the magnitudes
of the components of the restoring force depend on the direction of the displacement,
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we have the case of the nonisotropic oscillator. For a suitable choice of axes, the differ-
ential equations for the nonisotropic case can be written

mi = —kx
mij = —kyy (4.4.18)
mZ = —k,z

Here we have a case of three different frequencies of oscillation, @, = /k/m, @, = \/ky/m,
and @, = 4/k;/m, and the motion is given by the solutions

x = Acos(mt + )
y = Beos(w,t + B) (4.4.19)
z=Ccos(myt +7)
Again, the six constants of integration in the above equations are determined from the
initial conditions. The resulting oscillation of the particle lies entirely within a rectangu-

lar box (whose sides are 24, 2B, and 2C) centered on the origin. In the event that @,, o,
and @; are commensurate—that is, if

W _ 0y 5.
n Ny, N

(4.4.20)

where n,, ny, and n; are integers—the path, called a Lissajous figure, is closed, because
after a time 27n,/@, = 27n, /0, = 2713/, the particle returns to its initial position and
the motion is repeated. (In Equation 4.4.20 we assume that any common integral factor
is canceled out.) On the other hand, if the @’s are not commensurate, the path is not closed.
In this case the path may be said to completely fill the rectangular box mentioned above,
at least in the sense that if we wait long enough, the particle comes arbitrarily close to
any given point.

The net restoring force exerted on a given atom in a solid crystalline substance is
approximately linear in the displacement in many cases. The resulting frequencies of oscil-
lation usually lie in the infrared region of the spectrum: 10'* to 10** vibrations per second.

Energy Considerations

In the preceding chapter we showed that the potential energy function of the one-
dimensional harmonic oscillator is quadratic in the displacement, V(x) = %kxz. For the
general three-dimensional case, it is easy to verify that

V(x,y,2) = s hx® + 3 kot + 3 ks (4.4.21)

because F, = —0V/dx = —k;x, and similarly for F, and F,. If k; = ky = k3 = k, we have the
isotropic case, and

Vi, y,2) = g k(x® +y* +2°) = S hr? (4.4.22)
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The total energy in the isotropic case is then given by the simple expression
%mv2 + % kr’=E (4.4.23)

which is similar to that of the one-dimensional case discussed in the previous chapter.

EXAMPLE 4.4.1

A particle of mass m moves in two dimensions under the following potential energy
function:

V(r) = 3 k(x* +4y%)

Find the resulting motion, given the initial condition att =0:x =4,y =0, £ =0, § =v,.

Solution:

This is a nonisotropic oscillator potential. The force function is
F=-VV =—ike = jaky = mi

The component differential equations of motion are then
mi+kx=0 mij+4ky =0

The x-motion has angular frequency o = (k/m)"?, while the y-motion has angular fre-
gu quency Yy gu

quency just twice that, namely, @, = (4k/m)"® = 2. We shall write the general solution
in the form

x = A, cos®t + B, sin wt
y=A, cos2mt + B, sin 20

To use the initial condition we must first differentiate with respect to ¢ to find the gen-
eral expression for the velocity components:

% = —A 0 sinwt + B,® coswt
y = —2A,0 sin 2wt + 2B, cos 2wt

Thus, at ¢ = 0, we see that the above equations for the components of position and
velocity reduce to

a=A 0=A4, 0=Bo v, = 2B,0

These equations give directly the values of the amplitude coefficients, A; =a, A, =B, =0,
and B, = vy/2, so the final equations for the motion are

X =a coswt

UO .
= — sin2wt
y 3 in

The path is a Lissajous figure having the shape of a figure-eight as shown in Figure 4.4.3.
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Figure 4.4.3 A Lissajous figure.

4.5] Motion of Charged Particles in Electric
and Magnetic Fields

When an electrically charged particle is in the vicinity of other electric charges, it expe-
riences a force. This force F is said to be caused by the electric field E, which arises from
these other charges. We write

F=gE 45.1)

where q is the electric charge carried by the particle in question.’ The equation of motion
of the particle is then

mfi_j; =qE (4.5.2a)
or, in component form,
mi = qE,
mij = gE, (4.5.2b)
mz =qE,

The field components are, in general, functions of the position coordinates x, y, and 2. In
the case of time-varying fields (that is, if the charges producing E are moving), the com-
ponents also involve £.

Let us consider a simple case, namely, that of a uniform constant electric field. We
can choose one of the axes—say, the z-axis—to be in the direction of the field. Then
E,=E,=0,and E = E,. The differential equations of motion of a particle of charge ¢
moving in this field are then

qE

¥=0 =0 Z = —— = constant (4.5.3)
m

®In ST units, F is in newtons, ¢ in coulombs, and E in volts per meter.
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These are of exactly the same form as those for a projectile in a uniform gravitational field.
The path is, therefore, a parabola, if % and ¥ are not both zero initially. Otherwise, the
path is a straight line, as with a body falling verucally

Textbooks dealing with electromagnetic theory” show that

VXE=0 (4.5.4)

if E is due to static charges. This means that motion in such a field is conservative, and
that there exists a potential function ® such that E =-V®. The potential energy of a par-
ucl? of charge q in such a field is then q®, and the total energy is constant and is equal
to 2mv +q®.

In the presence of a static magnetic field B (called the magnetic induction), the force
acting on a moving particle is conveniently expressed by means of the cross product,
namely,

F=g(v X B) (455)
where v is the velocity and q is the charge.® The differential equation of motion of a par-
ticle moving in a purely magnetic field is then

2,
d 2
Equation 4.5.6 states that the acceleration of the particle is always at right angles to the
direction of motion. This means that the tangential component of the acceleration (v) is

zero, and so the particle moves with constant speed. This is true even if B is a varying func-
tion of the position r, as long as it does not vary with time.

=q(vXB) (4.5.6)

EXAMPLE 4.5.1

Let us examine the motion of a charged particle in a uniform constant magnetic field.
Suppose we choose the z-axis to be in the direction of the field; that is, we write

B=kB

The differential equation of motion now reads
" i j k
mF=q(vka) gBlx y %
0 01

m(iz + jij + kz) = qB(ij - ji)

"For example, Reitz, Milford, and Christy, op cit.

$Equation 4.5.5 is valid for SI units: F is in newtons, g in coulombs, v in meters per second, and B in webers
per square meter.
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Equating components, we have

mi = qBy
Z2=0

Here, for the first time we meet a set of differential equations of motion that are not of
the separated type. The solution is relatively simple, however, for we can integrate at
once with respect to ¢, to obtain

mx = qBy+c,
my =—qBx+c,
% = constant = %,
or
t=wy+C, y=-wx+C, 2= 3, (4.5.8)

where we have used the abbreviation @ = ¢B/m. The c’s are constants of integration, and
C, = ¢;/m, C3 = co/m. Upon inserting the expression for § from the second part of
Equation 4.5.8 into the first part of Equation 4.5.7, we obtain the following separated
equation for x:

i+oix=0% (4.5.9)
where a = Cy/w. The solution is
x=a+A cos(wt + 6,) (4.5.10)

where A and 6, are constants of integration. Now, if we differentiate with respect to ¢,
we have

% =—Ao sin(wt + 6;) (4.5.11)

The above expression for # may be substituted for the left-hand side of the first of
Equations 4.5.8 and the resulting equation solved for y. The result is

y=b—Asin(wt + 6,) (4.5.12)

where b = —C,/®. To find the form of the path of motion, we eliminate ¢ between
Equation 4.5.10 and Equation 4.5.12 to get

x-a)’+(@y-b’=A (4.5.13)

Thus, the projection of the path of motion on the xy plane is a circle of radius A centered
at the point (a, b). Because, from the third of Equations 4.5.8, the speed in the z direction
is constant, we conclude that the path is a helix. The axis of the winding path is in the
direction of the magnetic field, as shown in Figure 4.5.1. From Equation 4.5.12 we have

y=—Aw cos(wt +6,) (4.5.14)
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Figure 4.5.1 The helical path of a particle
moving in a magnetic field. z

Upon eliminating ¢ between Equation 4.5.11 and Equation 4.5.14, we find

2
P4 = A% = Az(ﬁ) (4.5.15)
m

Letting v, = (x> +¢*)"?, we see that the radius A of the helix is given by

“H_,.m
A= o ="B (4.5.16)

If there is no component of the velocity in the z direction, the path is a circle of radius A.
It is evident that A is directly proportional to the speed v, and that the angular frequency
@ of motion in the circular path is independent of the speed. The angular frequency wis
known as the cyclotron frequency. The cyclotron, invented by Ernest Lawrence, depends
for its operation on the fact that @ is independent of the speed of the charged particle.

4.6 Constrained Motion of a Particle

When a moving particle is restricted geometrically in the sense that it must stay on a certain
definite surface or curve, the motion is said to be constrained. A piece of ice sliding around
a bowl and a bead sliding on a wire are examples of constrained motion. The constraint may
be complete, as with the bead, or it may be one-sided, as with the ice in the bowl. Constraints
may be fixed, or they may be moving,. In this chapter we study only fixed constraints.

The Energy Equation for Smooth Constraints

The total force acting on a particle moving under constraint can be expressed as the
vector sum of the net external force F and the force of constraint R. The latter force is
the reaction of the constraining agent upon the particle. The equation of motion may,
therefore, be written

dv

—= R 4.6.1
m % F+ ( )
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If we take the dot product with the velocity v, we have

m-‘;—:-v=F-v+R-v (4.6.2)

Now in the case of a smooth constraint—for example, a frictionless surface—the reaction
R is normal to the surface or curve while the velocity v is tangent to the surface. Hence, R
is perpendicular to v, and the dot product R . v vanishes. Equation 4.6.2 then reduces to

g—t-(%mv -v) =F-v (46.3)

Consequently, if F is conservative, we can integrate as in Section 4.2, and we find that,
even though the particle is constrained to move along the surface or curve, its total energy
remains constant, namely,

%mv2 +V(x,y,2) = constant = E (4.6.4)

We might, of course, have expected this to be the case for frictionless constraints.

EXAMPLE 4.6.1

A particle is placed on top of a smooth sphere of radius . If the particle is slightly dis-
turbed, at what point will it leave the sphere?

Solution:

The forces acting on the particle are the downward force of gravity and the reaction R
of the spherical surface. The equation of motion is

v _

dt

m mg+R

Let us choose coordinate axes as shown in Figure 4.6.1. The potential energy is then mgz,
and the energy equation reads

1.2

zmv +mgz=E

From the initial conditions (v = 0 for z = @) we have E =mga, so, as the particle slides
down, its speed is given by the equation

o¥= 28(a —2)

Now, if we take radial components of the equation of motion, we can write the force
equation as
mo?

z
—_—— 9+R__——_. —+R
mg cos mg
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Figure 4.6.1 A particle sliding on a
smooth sphere.

Hence,
z mo z
R= —_——— = ——-—9 -
mg , mg p, g(a—z)
=g (3z—2a)

Thus, R vanishes when z = —a at which point the particle leaves the sphere. This may
be argued from the fact that the sign of R changes from positive to negative there.

EXAMPLE 4.6.2

Constrained Motion on a Cycloid

Consider a particle sliding under gravity in a smooth cycloidal trough, Figure 4.6.2,
represented by the parametric equations

x = A(2¢ + sin 2¢)
z=A(l— cos2¢)

where ¢ is the parameter. Now the energy equation for the motion, assuming no
y-motion, is

E=%02 +V(2) =%(5c2 +%)+mgz

Figure 4.6.2 A particle sliding in a
smooth cycloidal trough.
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Because % = 2A¢(1 + cos2¢) and % = 2A¢ sin2¢, we find the following expression for
the energy in terms of ¢:

E = 4mA*$*(1 + cos 2¢) + mgA(l ~ cos2¢)
or, by use of the identities 1 + cos 2¢ =2 cos® pand 1 — cos 20=2 sin® ¢,
E =8mA%$* cos®¢+2mgA sin®¢

Let us introduce the variable s defined by s = 4A sin ¢. The energy equation can then
be written

E =ﬂ,§2 +l(%)82
2 2 4A
This is just the energy equation for harmonic motion in the single variable s. Thus,
the particle undergoes periodic motion whose frequency is independent of the ampli-
tude of oscillation, unlike the simple pendulum for which the frequency depends on the
amplitude. The periodic motion in the present case is said to be isochronous. (The
linear harmonic oscillator under Hooke’s law is, of course, isochronous.)

The Dutch physicist and mathematician Christiaan Huygens discovered the above
fact in connection with attempts to improve the accuracy of pendulum clocks. He also
discovered the theory of evolutes and found that the evolute of a cycloid is also a cycloid.
Hence, by providing cycloidal “cheeks” for a pendulum, the motion of the bob must
follow a cycloidal path, and the period is, thus, independent of the amplitude. Though

ingenious, the invention never found extensive practical use.

Problems
4.1  Find the force for each of the following potential energy functions:
(a) V=cxyz+C

(b) V=02"+ By’ +7yz*+C
(¢) V= ce @By 1)

(d) V=cr" in spherical coordinates

4.2 By finding the curl, determine which of the following forces are conservative:
(@) F=ix+jy +kz
(b) F =iy —jx+kz’
() F =iy +jx + kz*
(d) F =—kr"e, in spherical coordinates

4.3  Find the value of the constant ¢ such that each of the following forces is conservative:
(a) F=ixy +jox’ + kz°
(b) F=i(@z/y) +cjxziy®) + kx/y)
4.4 A particle of mass m moving in three dimensions under the potential energy function
V(x, 4, 2) = ox + Py* + 7<° has speed vy when it passes through the origin.
(a) What will its speed be if and when it passes through the point (1,1,1)?
(b) If the point (1, 1, 1) is a turning point in the motion (v =0), what is y?
(c) What are the component differential equations of motion of the particle?
(Note: It is not necessary to solve the differential equations of motion in this problem.)
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4.5

4.6

4.7

4.8

4.9

4.10
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Consider the two force functions

(@) F=ix+jy

(b) F =iy — jx

Verify that (a) is conservative and that (b) is nonconservative by showing that the integral
JF . dris independent of the path of integration for (a), but not for (b), by taking two paths
in which the starting point is the origin (0, 0), and the endpoint is (1, 1). For one path take
the line x =y. For the other path take the x-axis out to the point (1, 0) and then the linex =1
up to the point (1, 1).

Show that the variation of gravity with height can be accounted for approximately by the
following potential energy function:

z
V=mg|1-2
el
in which r is the radius of the Earth. Find the force given by the above potential function.
From this find the component differential equations of motion of a projectile under such
a force. If the vertical component of the initial velocity is vg,, how high does the projectile
go? (Compare with Example 2.3.2.)

Particles of mud are thrown from the rim of a rolling wheel. If the forward speed of the
wheelis vy, and the radius of the wheel is b, show that the greatest height above the ground
that the mud can go is

b+ _lﬁ + £
2g 205
At what point on the rolling wheel does this mud leave?
(Note: It is necessary to assume that vj 2 bg.)

A gun is located at the bottom of a hill of constant slope ¢. Show that the range of the gun
measured up the slope of the hill is

207 coso: sin(a — @)
g cos’¢
where @ is the angle of elevation of the gun, and that the maximum value of the slope range is

0
g(1+sing)

A cannon that is capable of firing a shell at speed V; is mounted on a vertical tower of height

h that overlooks a level plain below.

(a) Show that the elevation angle a at which the cannon must be set to achieve maximum
range is given by the expression

csc’or = 2(1 + i’;)
A%
0
(b) What is the maximum range R of the cannon?
A movable cannon is positioned somewhere on the level plain below the cannon mounted
on the tower of Problem 4.9. How close must it be positioned from the tower to fire a

shell that can hit the cannon in that tower? Assume the two cannons have identical muzzle
velocities V;,
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While playing in Yankee, Stadium, Mickey Mantle hits a baseball that attains a maximum
height of 69 ft and strikes the ground 328 ft away from home plate unless it is caught by an
outfielder. Assume that the outfielder can catch the ball sometime before it strikes the
ground—only if it is less than 9.8 ft above the ground. Assume that Mantle hit the ball when
it was 3.28 ft above the ground, and assume no air resistance. Within what horizontal dis-
tance can the fielder catch the ball?

A baseball pitcher can throw a ball more easily horizontally than vertically. Assume that the
pitcher’s throwing speed varies with elevation angle approximately as vg cos 36, m/s, where
6, is the initial elevation angle and v, is the initial velocity when the ball is thrown horizontally.
Find the angle 6, at which the ball must be thrown to achieve maximum (a) height and
(b) range.

Find the values of the maximum (c) height and (d) range. Assume no air resistance and let
vy =25 m/s.

A gun can fire an artillery shell with a speed V; in any direction. Show that a shell can strike
any target within the surface given by

g'rl=Vy - 2gVsz

where z is the height of the target and r is its horizontal distance from the gun. Assume no
air resistance.

Write down the component form of the differential equations of motion of a projectile if
the air resistance is proportional to the square of the speed. Are the equations separated?
Show that the x component of the velocity is given by

i= xoe—ys
where s is the distance the projectile has traveled along the path of motion, and y=cy/m.

Fill in the steps leading to Equations 4.3.24a and b, giving the horizontal range of a pro-
jectile that is subject to linear air drag.

The initial conditions for a two-dimensional isotropic oscillator are as follows: ¢ = 0,
x=A y=4A, =0, y=3wA where o is the angular frequency. Find x and y as func-
tions of ¢. Show that the motion takes place entirely within a rectangle of dimensions 24
and 10A. Find the inclination y of the elliptical path relative to the x-axis. Make a sketch
of the path.

A small lead ball of mass m is suspended by means of six light springs as shown in
Figure 4.4.1. The stiffness constants are in the ratio 1:4:9, so that the potential energy func-
tion can be expressed as

V=12‘-(x2+4y2+9z2)

At time £ = 0 the ball receives a push in the (1, 1, 1) direction that imparts to it a speed v,
at the origin. If k = 7°m, numerically find x, y, and z as functions of the time ¢. Does the
ball ever retrace its path? If so, for what value of ¢ does it first return to the origin with the
same velocity that it had at¢ = 0?

Complete the derivation of Equation 4.4.15.
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An atom s situated in a simple cubic crystal lattice. If the potential energy of interaction
between any two atoms is of the form cr”%, where ¢ and « are constants and r is the dis-
tance between the two atoms, show that the total energy of interaction of a given atom with
its six nearest neighbors is approximately that of the three-dimensional harmonic oscillator
potential

V=A+B@a" +y’ +2°)

where A and B are constants.

[Note: Assume that the six neighboring atoms are fixed and are located at the points

(xd,0,0),(0,d,0),(0,0,%d), and that the displacement (x, y, z) of the given atom from the

equilibrium position (0,0,0) is small compared to d. Then V=X cr; * where
rn=0d-x)"+y*+z1"

with similar expressions for 7y, 13, . . ., 7. See the approximation formulas in Appendix D.]

An electron moves in a force field due to a uniform electric field E and a uniform magnetic
field B that is at right angles to E. Let E = jE and B = kB. Take the initial position of the
electron at the origin with initial velocity vy =1iv, in the x direction. Find the resulting motion
of the particle. Show that the path of motion is a cycloid:

x =a sinwt + bt
y =a(l— coswt)
z=0

Cycloidal motion of electrons is used in an electronic tube called a magnetron to produce
the microwaves in a microwave oven.

A particle is placed on a smooth sphere of radius b at a distance b/2 above the central
plane. As the particle slides down the side of the sphere, at what point will it leave?

A bead slides on a smooth rigid wire bent into the form of a circular loop of radius b. If the
plane of the loop is vertical, and if the bead starts from rest at a point that is level with the
center of the loop, find the speed of the bead at the bottom and the reaction of the wire on
the bead at that point.

Show that the period of the particle sliding in the cycloidal trough of Example 4.6.2 is
an(A/g)'.

Computer Problems

C 4.1 A bomber plane, about to drop a bomb, suffers a malfunction of its targeting computer.

The pilot notes that there is a strong horizontal wind, so she decides to release the bomb
anyway, directly over the visually sighted target, as the plane flies over it directly into the
wind. She calculates the required ground speed of the aircraft for her flying altitude of
50,000 feet and realizes that there is no problem flying her craft at that speed. She is per-
fectly confident that the wind speed will offset the plane’s speed and blow the bomb “back-
wards” onto the intended target. She adjusts the ground speed of the aircraft accordingly
and informs the bombardier to release the bomb at the precise instant that the target



