" niot hitherto been by.any.th ! Rules== »

the Rule or Law of Nature in every springing body is, th t the force or power .
thereof torestore itself to its natural position is always proportlonate to the:
distance or space-it is removed therefrom—" ‘

Robert Hooke—De Potentia Restitutiva, 1678

3.1] Introduction

The solar system was the most fascinating and intensively studied mechanical system
known to early humans. It is a marvelous example of periodic motion. It is not clear how
long people would have toiled in mechanical ignorance were it not for this periodicity
or had our planet been the singular observable member of the solar system. Everywhere
around us we see systems engaged in a periodic dance: the small oscillations of a pen-
dulum clock, a child playing on a swing, the rise and fall of the tides, the swaying of a
tree in the wind, the vibrations of the strings on a violin. Even things that we cannot
see march to the tune of a periodic beat: the vibrations of the air molecules in the
woodwind instruments of a symphony, the hum of the electrons in the wires of our
modern civilization, the vibrations of the atoms and molecules that make up our bodies.
It is fitting that we cannot even say the word vibration properly without the tip of the
tongue oscillating.

The essential feature that all these phenomena have in common is periodicity, a
pattern of movement or displacement that repeats itself over and over again. The
pattern may be simple or it may be complex. For example, Figure 3.1.1(a) shows a
record of the horizontal displacement of a supine human body resting on a nearly fric-
tionless surface, such as a thin layer of air. The body oscillates horizontally back and forth
due to the mechanical action of the heart, pumping blood through and around the aortic
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Figure 3.1.1 (a) Recoil vibrations
of a human subject resting on a
frictionless surface (in response to N

L1 1 & 1 1 1
the pumping action of the heart). T 0 12345678
(b) Horizontal displacement of a
simple pendulum about equilibrium. (b)

arch. Such a recording is called a ballistocardiogram.! Figure 3.1.1(b) shows the almost
perfect sine curve representing the horizontal displacement of a simple pendulum exe-
cuting small oscillations about its equilibrium position. In both cases, the horizontal axis
represents the steady advance of time. The period of the motion is readily identified as
the time required for one complete cycle of the motion to occur.

It is with the hope of being able to describe all the complicated forms of periodic
motion Mother Nature exhibits, such as that shown in Figure 3.1.1(a), that we undertake
an analysis of her simplest form—simple harmonic motion (exemplified in Fig. 3.1.1(b)).

Simple harmonic motion exhibits two essential characteristics. (1) It is described by
a second-order, linear differential equation with constant coefficients. Thus, the super-
position principle holds; that is, if two particular solutions are found, their sum is also a
solution. We will see evidence of this in the examples to come. (2) The period of the motion,
or the time required for a particular configuration (not only position, but velocity as well)
to repeat itself, is independent of the maximum displacement from equilibrium. We have
already remarked that Galileo was the first to exploit this essential feature of the pendulum
by using it as a clock. These features are true only if the displacements from equilibrium
are “small.” “Large” displacements result in the appearance of nonlinear terms in the
differential equations of motion, and the resulting oscillatory solutions no longer obey
the principle of superposition or exhibit amplitude-independent periods. We briefly
consider this situation toward the end of this chapter.

1George B. Benedek and Felix M. H. Villars, Physics —with Illustrative Examples from Medicine and Biology,
Addison-Wesley, New York, 1974.
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3.2| Linear Restoring Force: Harmonic Motion

One of the simplest models of a system executing simple harmonic motion is a mass on
a frictionless surface attached to a wall by means of a spring. Such a system is shown in
Figure 3.2.1. If X_is the unstretched length of the spring, the mass will sit at that posi-
tion, undisturbed, if initially placed there at rest. This position represents the equilibrium
configuration of the mass, that is, the one in which its potential energy is a minimum
or, equivalently, where the net force on it vanishes. If the mass is pushed or pulled away
from this position, the spring will be either compressed or stretched. It will then exert a
force on the mass, which will always attempt to restore it to its equilibrium configuration.

We need an expression for this restoring force if we are to calculate the motion of the
mass. We can estimate the mathematical form of this force by appealing to arguments based
on the presumed nature of the potential energy of this system. Recall from Example 2.3.3
that the Morse potential —the potential energy function of the diatomic hydrogen mol-
ecule, a bound system of two particles—has the shape of a well or a cup. Mathematically,
it was given by the following expression:

V(@) = V(1 - exp(-x/8))2 -V, (3.2.1)

We showed that this function exhibited quadratic behavior near its minimum and that the
resulting force between the two atoms was linear, always acting to restore them to their
equilibrium configuration. In general, any potential energy function can be described
approximately by a polynomial function of the displacement « for displacements not too
far from equilibrium

V) =ay+ax +agx?+ax3+ - (3.2.2a)

Furthermore, because only differences in potential energies are relevant for the behav-
ior of physical systems, the constant term in each of the above expressions may be taken
to be zero; this amounts to a simple reassignment of the value of the potential energy at
some reference point. We also argue that the linear term in the above expression must
be identically zero. This condition follows from the fact that the first derivative of any
function must vanish at its minimum, presuming that the function and its derivatives
are continuous, as they must be if the function is to describe the behavior of a real,
physical system. Thus, the approximating polynomial takes the form

V) =a,x2 +a,x% + - (3.2.2b)

For example, Figure 3.2.2(a) is a plot of the Morse potential along with an approxi-
mating eighth-order polynomial “best fit.” The width & of the potential and its depth

Equilibrium
position

Figure 3.2.1 A model of the simple harmonic
oscillator.
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Vix)
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V(x)

Figure 3.2.2 (a) The Morse
potential, its eighth-order
approximating polynomial and
the quadratic term only. (b)
Same as (a) but magnified in
scale around x = 0.
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(the V, coefficient) were both set equal to 1.0 (the bare constant V,  was set equal to 0). The
fit was made over the rather sizable range Ax = [-1,4] = 58. The result is

8
V(x) = Zaix" (3.2.2c)
i=0
ay= 1015-10* a, = 0007 a,= 0995
a; =-1.025 a,= 0611 a;=-0243
ag = 0.061 4, =—0009 ag= 5.249-107

The polynomial function fits the Morse potential quite well throughout the quoted dis-
placement range. If one examines closely the coefficients of the eighth-order fit, one
sees that the first two terms are essentially zero, as we have argued they should be.
Therefore, we also show plotted only the quadratic term V(x) = a, - x2. It seems as though
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this term does not agree very well with the Morse potential. However, if we “explode”
the plot around x = 0 (see Fig. 3.2.2(b)), we see that for small displacements—say,
—0.16 £ x < +0.16—there is virtually no difference among the purely quadratic term,
the eighth-order polynomial fit, and the actual Morse potential. For such small dis-
placements, the potential function is, indeed, purely quadratic. One might argue that
this example was contrived; however, it is fairly representative of many physical systems.

The potential energy function for the system of spring and mass must exhibit simi-
lar behavior near the equilibrium position at X, dominated by a purely quadratic term.
The spring’s restoring force is thus given by the familiar Hooke’s law,

_dv(x) _
==

where k = 2a, is the spring constant. In fact, this is how we define small displacements
from equilibrium, that is, those for which Hooke’s law is valid or the restoring force is linear.
That the derived force must be a restoring one is a consequence of the fact that the
derivative of the potential energy function must be negative for positive displacements
from equilibrium and vice versa for negative ones. Newton’s second law of motion for the
mass can now be written as

F(x) = —(2a,)x = —kx (3.2.3)

mi 4k = 0 (3.2.4a)
i+ ix =0 (3.2.4b)
m

Equation 3.2.4b can be solved in a wide variety of ways. It is a second-order, linear
differential equation with constant coefficients. As previously stated, the principle of super-
position holds for its solutions. Before solving the equation here, we point out those char-
acteristics we expect the solution to exhibit. First, the motion is both periodic and bounded.
The mass vibrates back and forth between two limiting positions. Suppose we pull the mass
out to some position ,,; and then release it from rest. The restoring force, initially equal
to —kx,,;, pulls the mass toward the left in Figure 3.2.1, where it vanishes at x = 0, the
equilibrium position. The mass now finds itself moving to the left with some velocity v,
and so it passes on through equilibrium. Then the restoring force begins to build up
strength as the spring compresses, but now directed toward the right. It slows the mass
down until it stops, just for an instant, at some position, —x, ,. The spring, now fully com-
pressed, starts to shove the mass back toward the right. But again momentum carries it
through the equilibrium position until the now-stretching spring finally manages to stop it—
we might guess—at x, ,, the initial configuration of the system. This completes one cycle
of the motion—a cycle that repeats itself, apparently forever! Clearly, the resultant func-
tional dependence of x upon t must be represented by a periodic and bounded function.
Sine and/or cosine functions come to mind, because they exhibit the sort of behavior
we are describing here. In fact, sines and cosines are the real solutions of Equation 3.2.4b.
Later on, we show that other functions, imaginary exponentials, are actually equivalent
to sines and cosines and are easier to use in describing the more complicated systems soon
to be discussed.

A solution is given by

x = A sin(@gt + @) (3.2.5)
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Figure 3.2.3 Displacement
versus @yt for the simple
harmonic oscillator.

which can be verified by substituting it into Equation 3.2.4b

0, =& (3.2.6)
m

is the angular frequency of the system. The motion represented by Equation 3.2.5 is a
sinusoidal oscillation about equilibrium. A graph of the displacement x versus ot is
shown in Figure 3.2.3. The motion exhibits the following features. (1) It is character-
ized by a single angular frequency @,. The motion repeats itself after the angular argu-
ment of the sine function (@t + ¢,) advances by 27 or after one cycle has occurred
(hence, the name angular frequency for w,). The time required for a phase advance of
2mis given by

@yt +Ty) + ¢y = Wyt + ¢y +21
_2n (3.2.7)

o T
0 o,

T, is called the period of the motion. (2) The motion is bounded; that is, it is confined
within the limits —A <x < +A. A, the maximum displacement from equilibrium, is called
the amplitude of the motion. It is independent of the angular frequency . (3) The phase
angle ¢, is the initial value of the angular argument of the sine function. It determines
the value of the displacement x at time ¢ = 0. For example, at ¢ =0 we have

%(t = 0) = A sin(@,) (3.2.8)

The maximum displacement from equilibrium occurs at a time ¢, given by the condition
that the angular argument of the sine function is equal to 7/2, or
3
wotm = E —
One commonly uses the term frequency to refer to the reciprocal of the period of the
oscillation or

%o (3.2.9)

fo=— (3.2.10)
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where f, is the number of cycles of vibration per unit time. It is related to the angular
frequency @, by

2nf, = w, (3.2.11a)
11 [k
_1_1 |k (3.2.11b)
fo T, 2z\m

The unit of frequency (cycles per second, or s7!) is called the hertz (Hz) in honor of
Heinrich Hertz, who is credited with the discovery of radio waves. Note that 1 Hz=1s71,
The word frequency is used sloppily sometimes to mean either cycles per second or radi-
ans per second (angular frequency). The meaning is usually clear from the context.

Constants of the Motion and Initial Conditions

Equation 3.2.5, the solution for simple harmonic motion, contains two arbitrary con-
stants, A and ¢,. The value of each constant can be determined from knowledge of the
initial conditions of the specific problem at hand. As an example of the simplest and most
commonly described initial condition, consider a mass initially displaced from equilibrium
to a position x,,, where it is then released from rest. The displacement at ¢ = 0 is a maxi-
mum. Therefore, A=x,_ and ¢, = 7/2.

As an example of another simple situation, suppose the oscillator is at rest at x =0,
and at time ¢ = 0 it receives a sharp blow that imparts to it an initial velocity v, in the pos-
itive x direction. In such a case the initial phase is given by ¢, = 0. This automatically
ensures that the solution yields x = 0 at ¢ = 0. The amplitude can be found by differenti-
ating x to get the velocity of the oscillator as a function of time and then demanding that
the velocity equal v, at t = 0. Thus,

o(t) = %(t) = Wy A cos(@ot + @) (3.2.12a)
0(0) = vy = WA (3.2.12b)
A=Y

A= (3.2.12¢)

For a more general scenario, consider a mass initially displaced to some position x,
and given an initial velocity v,. The constants can then be determined as follows:

2(0) = Asing, = x, (3.2.13a)
tan ¢, = 0% (3.2.13¢)
Vo
02
Al =xl+ w—g (3.2.13d)

This more general solution reduces to either of those described above, as can easily be
seen by setting v, or x,, equal to zero.
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Simple Harmonic Motion as the Projection
of a Rotating Vector

Imagine a vector A rotating at a constant angular velocity @,. Let this vector denote the
position of a point P in uniform circular motion. The projection of the vector onto a line
(which we call the x-axis) in the same plane as the circle traces out simple harmonic
motion. Suppose the vector A makes an angle 8 with the x-axis at some time ¢, as shown
in Figure 3.2.4. Because 6§ = w,, the angle 6 increases with time according to

0=ayt +6, (3.2.14)
where 6 is the value of § at ¢ = 0. The projection of P onto the x-axis is given by
x = A cos 0= A cos(a)t + 6,) (3.2.15)

This point oscillates in simple harmonic motion as P goes around the circle in uniform
angular motion.

Our picture describes x as a cosine function of . We can show the equivalence of this
expression to the sine function given by Equation 3.2.5 by measuring angles to the
vector A from the y-axis, instead of the x-axis as shown in Figure 3.2.4. If we do this, the
projection of A onto the x-axis is given by

x= A sin(ayt + 9) (3.2.16)

We can see this equivalence in another way. We set the phase difference between ¢, and
6, to 71/2 and then substitute into the above equation, obtaining

60— 6, = % (3.2.17a)

(3.2.17b)

= sin(@yt + ¢,)

Figure 3.2.4 Simple harmonic motion as a
projection of uniform circular motion.
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We now see that simple harmonic motion can be described equally well by a sine func-
tion or a cosine function. The one we choose is largely a matter of taste; it depends upon
our choice of initial phase angle to within an arbitrary constant.

You might guess from the above commentary that we could use a sum of sine and
cosine functions to represent the general solution for harmonic motion. For example, we
can convert the sine solution of Equation 3.2.5 directly to such a form, using the trigono-
metric identity for the sine of a sum of angles:

x(t) = A sin(@yt +@,) = A sin@, cos@,t+ A cos@, sin@,t

3.2.18
=C cosyt + D sinwgt ( )

Neither A nor ¢ appears explicitly in the solution. They are there implicitly; that s,
tmgy==  A*=CP+D? (3.2.19)

There are occasions when this form may be the preferred one.

Effect of a Constant External Force
on a Harmonic Oscillator

Suppose the same spring shown in Figure 3.2.1 is held in a vertical position, supporting
the same mass m (Fig. 3.2.5). The total force acting is now given by adding the weight mg
to the restoring force,

F=—k(X—-X)+mg (3.2.20)

where the positive direction is down. This equation could be written F = —kx + mg by
defining x to be X — X, as previously. However, it is more convenient to define the vari-
able x in a different way, namely, as the displacement from the new equilibrium position

New
equilibrium

position E
y

4

Figure 3.2.5 The vertical case for the
harmonic oscillator.
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X; obtained by setting F = 0 in Equation 3.2.20: 0 = -k (X - X,) + mg, which gives
X; =X, + mglk. We now define the displacement as

x=x—x;=x-xe-% (3.2.21)

Putting this into Equation 3.2.20 gives, after a very little algebra,
F=—kx (3.2.22)

so the differential equation of motion is again

mi+kx=0 (3.2.23)

and our solution in terms of our newly defined x is identical to that of the horizontal case.
It should now be evident that any constant external force applied to a harmonic oscilla-
tor merely shifts the equilibrium position. The equation of motion remains unchanged if
we measure the displacement x from the new equilibrium position.

EXAMPLE 3.2.1

When a light spring supports a block of mass m in a vertical position, the spring is found
to stretch by an amount D, over its unstretched length. If the block is furthermore
pulled downward a distance D, from the equilibrium position and released—say, at
time ¢ = 0—find (a) the resulting motion, (b) the velocity of the block when it passes
back upward through the equilibrium position, and (c) the acceleration of the block at
the top of its oscillatory motion.

Solution:
First, for the equilibrium position we have
F =0=-kD, +mg

where x is chosen positive downward. This gives us the value of the stiffness constant:

k="8
Dl

From this we can find the angular frequency of oscillation:

0, = \/E gy
m D,
We shall express the motion in the form x(t) = A cos @,t + B sin@,¢. Then

% =-Aw, sinw,t + Bo, cos ayt.

From the initial conditions we find

xo=Dy=A t,=0=Baw, B

Il
(=]
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The motion is, therefore, given by

(a) x(t) = D, cos ( Bg—t]

1

in terms of the given quantities. Note that the mass m does not appear in the final
expression. The velocity is then

#(t) = D, —gl sin( —gl t]
and the acceleration
. g g
t)=-D, = =t
i(t) A D, cos[ 1 ]

As the block passes upward through the equilibrium position, the argument of the sine
term is 72/2 (one-quarter period), so

(b) t=-D, Di (center)

1

At the top of the swing the argument of the cosine term is 7 (one-half period), which
gives
© i=Dy L (top)

D,
In the case D, = D,, the downward acceleration at the top of the swing is just g. This
means that the block, at that particular instant, is in free fall; that is, the spring is exert-
ing zero force on the block.

EXAMPLE 3.2.2

The Simple Pendulum

The so-called simple pendulum consists of a small plumb bob of mass m swinging at the
end of a light, inextensible string of length [, Figure 3.2.6. The motion is along a circu-
lar arc defined by the angle 6, as shown. The restoring force is the component of the
weight mg acting in the direction of increasing 6 along the path of motion: F, = —mg sin 6.
If we treat the bob as a particle, the differential equation of motion is, therefore,

m§ = —mg sinf

Now s =16, and, for small 6, sin @ = 0 to a fair approximation. So, after canceling the m’s
and rearranging terms, we can write the differential equation of motion in terms of either
@ or s as follows:

é+%9=0 §+%s=0
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rd
&~ [FA
mg sin @

mg

Figure 3.2.6 The simple
pendulum.

Although the motion is along a curved path rather than a straight line, the differential
equation is mathematically identical to that of the linear harmonic oscillator,
Equation 3.2.4b, with the quantity g/l replacing k/m. Thus, to the extent that the approx-
imation sin@ = @ is valid, we can conclude that the motion is simple harmonic with

angular frequency

= |8
Wy =47
and period
@y g

This formula gives a period of very nearly 2 s, or a half-period of 1's, when the length
is 1 m. More accurately, for a half-period of 1 s, known as the “seconds pendulum,” the
precise length is obtained by setting T =2 s and solving for . This gives ! = g/#% numer-
ically, when g is expressed in m/s. At sea level at a latitude of 45°, the value of the accel-
eration of gravity is g = 9.8062 m/s2. Accordingly, the length of a seconds pendulum at
that location is 9.8062/9.8696 = 0.9936 m.

3.3| Energy Considerations in Harmonic Motion

Consider a particle under the action of a linear restoring force F, =—kx. Let us calculate
the work done by an external force F,, in moving the particle from the equilibrium posi-
tion (x = 0) to some position x. Assume that we move the particle very slowly so that it
does not gain any kinetic energy; that is, the applied external force is barely greater in mag-
nitude than the restoring force —kx; hence, F, ,=—F, =kx, so

W= [ R de= [ hede =5 (631
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In the case of a spring obeying Hooke’s law, the work is stored in the spring as potential
energy: W = V(x), where

V(x) = %kxz (3.3.2)

Thus, F, = ~dV/dx = —kx, as required by the definition of V. The total energy, when the
particle is undergoing harmonic motion, is given by the sum of the kinetic and potential
energies, namely,

= ;ma® + 2k (3.3.3)

This equation epitomizes the harmonic oscillator in a rather fundamental way: The kinetic
energy is quadratic in the velocity variable, and the potential energy is quadratic in the
displacement variable. The total energy is constant if there are no other forces except the
restoring force acting on the particle.

The motion of the particle can be found by starting with the energy equation (3.3.3).
Solving for the velocity gives
g \L/2

2E kx

i=1% P (3.3.4)

which can be integrated to give ¢ as a function of x as follows:

f= J- dx
+[(2E/m) - (kim)x>T*

= F(mlk)"? cos™ (x/A)+C (3.3.5)

in which C is a constant of integration and A is the amplitude given by

ve
A= (%) (3.3.6)

Upon solving the integrated equation for x as a function of ¢, we find the same relation-
ship as in the preceding section, with the addition that we now have an explicit value for
the amplitude. We can also obtain the amplitude directly from the energy equation (3.3.3)
by finding the turning points of the motion where & =0: The value of x must lie between
*A in order for % to be real. This is illustrated in Figure 3.3.1.

Figure 3.3.1 Graph of the
parabolic potential energy
function of the harmonic
oscillator. The turning points
defining the amplitude are
indicated for two different
values of the total energy.




3.3 Energy Considerations in Harmonic Motion 95

We also see from the energy equation that the maximum value of the speed, which
we callv, . occurs at x = 0. Accordingly, we can write

As the particle oscillates, the kinetic and potential energies continually change. The
constant total energy is entirely in the form of kinetic energy at the center, where x =0
and % =+v, . and it is all potential energy at the extrema, where % =0 and x = $A.

EXAMPLE 3.3.1

The Energy Function of the Simple Pendulum

The potential energy of the simple pendulum (Fig. 3.2.6) is given by the expression
V=mgh

where h is the vertical distance from the reference level (which we choose to be the level
of the equilibrium position). For a displacement through an angle 8 (Fig. 3.2.6), we see
thath=1-1cos8, so

V(0) =mgl(1 — cos 6)

Now the series expansion for the cosine is cos =1 — 6%2! + 644! — ---, so for small 6
we have approximately cos @ = 1 — 6%2. This gives

V(6) = mgl °
or, equivalently, because s =16,

_1mg o

V(S) =35 T $
Thus, to a first approximation, the potential energy function is quadratic in the dis-
placement variable. In terms of s, the total energy is given by

_1_ .2 1Mg o

E= 3 ms- + 3 T s

in accordance with the general statement concerning the energy of the harmonic oscil-
lator discussed above.

EXAMPLE 3.3.2

Calculate the average kinetic, potential, and total energies of the harmonic oscillator.
(Here we use the symbol K for kinetic energy and T, for the period of the motion.)

Solution:

2

_]. To _]. To1 .o
<K>_-T;j0 K(t)dt_?o-jo Loma? dt
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but

x = A sin(,t + ¢,)
x =y A cos(wyt + @)

Setting ¢, = 0 and letting u = @)t = (27/T,) - t, we obtain
1T g,0fh 9
(K)= F[émwoA J:) cos“(wyt) dt]
0
R N IR Y
= -z—rz[imwoA Io cos“udu
We can make use of the fact that
2
—LJ. § (sin?u + cos®u)du = —1—_[2” du=1
2 70 2m 40

to obtain

1

1 ¢2= 9 _
_é_r;J‘O cos udu—2

because the areas under the cos? and sin? terms throughout one cycle are identical. Thus,
(K)=1mwgA®
The calculation of the average potential energy proceeds along similar lines.
V =:ki® =kA® sin*wyt

IRTICE N LI
(Vy=3kA FOJ:) sin“w,t dt

_1.42 1 (27 g
=3kA 275":) sin“udu
_ 1742
=;kA
Now, because k/m = 3 or k = ma)g’ we obtain
(V) =1kA® = ;mofA® = (K)
(Ey=(K)+(V) = ;magA® = (kA® =E

The average kinetic energies and potential energies are equal; therefore, the average
energy of the oscillator is equal to its total instantaneous energy.

3.4| Damped Harmonic Motion

The foregoing analysis of the harmonic oscillator is somewhat idealized in that we have
failed to take into account frictional forces. These are always present in a mechanical system
to some extent. Analogously, there is always a certain amount of resistance in an electri-
cal circuit. For a specific model, let us consider an object of mass m that is supported by
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Equilibrium
position

B e - i
|
g
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NN R
Figure 3.4.1 A model for the damped 1}:
harmonic oscillator.

alight spring of stiffness k. We assume that there is a viscous retarding force that is a linear
function of the velocity, such as is produced by air drag at low speeds.2 The forces are
indicated in Figure 3.4.1.

If x is the displacement from equilibrium, then the restoring force is —kx, and the
retarding force is —c%, where c is a constant of proportionality. The differential equation
of motion is, therefore, mi = —kx —c%, or

mi+ci+kx =0 (34.1)
As with the undamped case, we divide Equation 3.4.1 by m to obtain
s+li+Kio0 (3.4.2)
m m
If we substitute the damping factor ¥, defined as
_c (34.3)
r= 2m
and @3 (=k/m) into Equation 3.4.2, it assumes the simpler form
P+2yi+wix=0 (3.4.4)

The presence of the velocity-dependent term 2y% complicates the problem; simple sine
or cosine solutions do not work, as can be verified by trying them. We introduce a method
of solution that works rather well for second-order differential equations with constant

ZNonlinear drag is more realistic in many situations; however, the equations of motion are much more difficult
to solve and are not treated here.
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coefficients. Let D be the differential operator d/dt. We “operate” on x with a quadratic
function of D chosen in such a way that we generate Equation 3.4.4:

[D* +2yD+@}]x=0 (3.4.5a)

We interpret this equation as an “operation” by the term in brackets on x. The operation
by D? means first operate on x with D and then operate on the result of that operation with
D again. This procedure yields %, the first term in Equation 3.4.4. The operator equation
(Equation 3.4.5a) is, therefore, equivalent to the differential equation (Equation 3.4.4).
The simplification that we get by writing the equation this way arises when we factor the
operator term, using the binomial theorem, to obtain

[+ - -a}|[p+r+{r*-af]x=0 (34.5b)

The operation in Equation 3.4.5b is identical to that in Equation 3.4.5a, but we have
reduced the operation from second-order to a product of two first-order ones. Because
the order of operation is arbitrary, the general solution is a sum of solutions obtained by
setting the result of each first-order operation on x equal to zero. Thus, we obtain

x2(t) = Aje TV 4 Ay (3.4.6)

g=Ay:-0? 347

The student can verify that this is a solution by direct substitution into Equation 3.4.4.
A problem that we soon encounter, though, is that the above exponents may be real
or complex, because the factor ¢ could be imaginary. We see what this means in just a
minute.

There are three possible scenarios:

where

L greal>0 Overdamping
IL. greal=0 Critical damping
IIL gimaginary  Underdamping

I. Overdamped. Both exponents in Equation 3.4.6 are real. The constants A, and
A, are determined by the initial conditions. The motion is an exponential decay
with two different decay constants, (¥ — q) and (¥ + ¢). A mass, given some ini-
tial displacement and released from rest, returns slowly to equilibrium, pre-
vented from oscillating by the strong damping force. This situation is depicted
in Figure 3.4.2.

IL. Critical damping. Here g = 0. The two exponents in Equation 3.4.6 are each equal
to 7. The two constants A, and A, are no longer independent. Their sum forms a single
constant A. The solution degenerates to a single exponential decay function. A com-
pletely general solution requires two different functions and independent constants
to satisfy the boundary conditions specified by an initial position and velocity. To find
a solution with two independent constants, we return to Equation 3.4.5b:

D+ND+px=0 (3.4.82)



Figure 3.4.2 Displacement versus ,
time for critically damped and Critically
overdamped oscillators released from damped-.
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rest after an initial displacement. ‘

I

Switching the order of operation does not work here, because the operators are the
same. We have to carry out the entire operation on x before setting the result to zero.
To do this, we make the substitution u = (D + Y)x, which gives

D+7u =Z . (3.4.8b)
Uu=Ae"

Equating this to (D + y)x, the final solution is obtained as follows:

Ae =D+ y)x
A=e"(D + y)x = D(xe") (34.9)
. xe"=At+B o

x(t)=Ate ™" + Be™"

The solution consists of two different functions, te~” and ¢, and two constants of
integration, A and B, as required. As in case I, if a mass is released from rest after
an initial displacement, the motion is nonoscillatory, returning asymptotically to equi-
librium. This case is also shown in Figure 3.4.2. Critical damping is highly desir-
able in many systems, such as the mechanical suspension systems of motor vehicles.

Underdamping. If the constant 7 is small enough that ¥> — @} <0, the factor ¢ in
Equation 3.4.7 is imaginary. A mass initially displaced and then released from rest
oscillates, not unlike the situation described earlier for no damping force at all. The
only difference is the presence of the real factor —y in the exponent of the solution
that leads to the ultimate death of the oscillatory motion. Let us now reverse the fac-
tors under the square root sign in Equation 3.4.7 and write g as i®,. Thus,

ko c?
T (3.4.10)

where @) and @, are the angular frequencies of the undamped and underdamped
harmonic oscillators, respectively. We now rewrite the general solution represented
by Equation 3.4.6 in terms of the factors described here,

x(t) = C,e” 100" . ¢_g 7O

- e—yt(c+et‘a)dt +C—e—ia)dt)

(3.4.11)
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where the constants of integration are C, and C_. The solution contains a sum of imag-
inary exponentials. But the solution must be real—it is supposed to describe the real
world! This reality demands that C, and C_ be complex conjugates of each other, a
condition that ultimately allows us to express the solution in terms of sines and/or
cosines. Thus, taking the complex conjugate of Equation 3.4.11,

' (#) = e "(Cre " + Cle™ ) = x(t) (3.4.12a)

Because x(t) is real, x*(t) = x(), and, therefore,
nC,=C_=C .
c=c, =C (3.4.12b)

nox() = e TH(C et 4 Cent0t)

It looks as though we have a solution that now has only a single constant of integra-
tion. In fact, C is a complex number. It is composed of two constants. We can express
C and C* in terms of two real constants, A and 6, in the following way.

A

C.=C==¢"
2 (3.4.13)
C,=C =4 g
* 2

We soon see that A is the maximum displacement and 6, is the initial phase angle of
the motion. Thus, Equation 3.4.12b becomes

() = e—yt(_é_eﬂ'(a)dﬂao) + é_e-«m,,ﬂao)) (3.4.14)
2 2
We now apply Euler’s identity3 to the above expressions, thus obtaining
é e+i(mdt+90) —
2

A o i@at+0) _
2

% cos(@ t +6,) + 14 i;— sin(@,;t +6,)

% cos( t +6,) - i% sin(@,t + 6,) (3.4.15)

s x(t) = e (A cos(w,t +6,))

Following our discussion in Section 3.2 concerning the rotating vector construct, we
see that we can express the solution equally well as a sine function:

£(t) = T (A sin(@, ¢ + 9,)) (3.4.16)

The constants A, 6, and ¢, have the same interpretation as those of Section 3.2. In fact,
we see that the solution for the underdamped oscillator is nearly identical to that of the
undamped oscillator. There are two differences: (1) The presence of the real exponential
factor e~"*leads to a gradual death of the oscillations, and (2) the underdamped oscil-
lator’s angular frequency is @, not @y, because of the presence of the damping force.

3Euler’s identity relates imaginary exponentials to sines and cosines. It is given by the expression e = cos u +
i siny. This equality is demonstrated in Appendix D.
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Figure 3.4.3 Graph of
displacement versus time for the
underdamped harmonic oscillator.

The underdamped oscillator vibrates a little more slowly than does the undamped
oscillator. The period of the underdamped oscillator is given by

2n 2n

Figure 3.4.3 is a plot of the motion. Equation 3.4.15a shows that the two curves
given by x = Ae”"* and x = —~Ae™" form an envelope of the curve of motion because the
cosine factor takes on values between +1 and -1, including +1 and —1, at which points the
curve of motion touches the envelope. Accordingly, the points of contact are separated
by a time interval of one-half period, T;/2. These points, however, are not quite the
maxima and minima of the displacement. It is left to the student to show that the actual
maxima and minima are also separated in time by the same amount. In one complete
period the amplitude diminishes by a factor ¢™7"; also, in a time ¥~ = 2m/c the ampli-
tude decays by a factor ¢! = 0.3679.

In summary, our analysis of the freely running harmonic oscillator has shown that the
presence of damping of the linear type causes the oscillator, given an initial motion, to
eventually return to a state of rest at the equilibrium position. The return to equilibrium
is either oscillatory or not, depending on the amount of damping. The critical condition,
given by ¥ = @,, characterizes the limiting case of the nonoscillatory mode of return.

(3.4.17)

Energy Considerations

The total energy of the damped harmonic oscillator is given by the sum of the kinetic and
potential energies:

= ymi® + 2 kx® (3.4.18)
This is constant for the undamped oscillator, as stated previously. Let us differentiate the

above expression with respect to ¢:

‘fl—f =mxk +kxk = (m% + kx)x (3.4.19)
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Now the differential equation of motion is mx + cx + kx = 0, or m% + kx = —c#. Thus, we
can write

dE__ . (3.4.20)
dt

for the time rate of change of total energy. We see that it is given by the product of the
damping force and the velocity. Because this is always either zero or negative, the total
energy continually decreases and, like the amplitude, eventually becomes negligibly
small. The energy is dissipated as frictional heat by virtue of the viscous resistance to the
motion.

Quality Factor

The rate of energy loss of a weakly damped harmonic oscillator is best characterized by
asingle parameter Q, called the quality factor of the oscillator. It is defined to be 27 times
the energy stored in the oscillator divided by the energy lost in a single period of oscil-
lation T),. If the oscillator is weakly damped, the energy lost per cycle is small and Q is,
therefore, large. We calculate Q in terms of parameters already derived and show that
this is true.

The average rate of energy dissipation for the damped oscillator is given by
Equation 3.4.20, E =—c#?, so we need to calculate %. Equation 3.4.16 gives x(f):

x = Ae™" sin(a,t + @) (3.4.21a)
Differentiating it, we obtain
i =—Ae " (¥ sin(@,t + ) — @, cos(@ £ + @) (3.4.21b)
The energy lost during a single cycle of period T, = 27/, is

AE = joT" Edt (3.4.222)

If we change the variable of integration to 6 = @,t + @, then dt = d6/w, and the integral
over the period T, transforms to an integral, from @, to ¢, + 27. The value of the integral
over a full cycle doesn’t depend on the initial phase ¢, of the motion, so, for the sake of
simplicity, we drop it from the limits of integration:
AE=—["Fde
w, %
2 (3.4.22b)
= _% 027: e‘zyt[j/2 sin®@ — 2y, sin6 cosf + w3 cosze] dé

d
Now we can extract the exponential factor ¢ from inside the integral, because in the
case of weak damping (Y <« @) its value does not change very much during a single cycle
of oscillation:

_ —cA?

@,

AE o2 J‘:" (yz sinZ6 — 2y®,; sinf cos 6 + wﬁ cosze) deé (3.4.22¢)
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The integral of both sin?6 and cos®@ over one cycle is 7, while the integral of the sin 6
cos 8 product vanishes. Thus, we have

_ 2
AE = —cz—(&-—7l:e_27"(’}'2 + wj) =-cA’e" 0] (£]
a a (3.4.22d
= —ymlA% T, 4229

where we have made use of the relations &g = @} +7” and y=c/2m. Now, if we identify
the damping factor ¥ with a time constant 7, such that ¥ = (27)"), we obtain for the mag-
nitude of the energy loss in one cycle

AE = (—;-mAza)(z)e_'”)—T:d—
T (3.4.22¢)
AE_T;
E 1
where the energy stored in the oscillator (see Example 3.3.2) at any time ¢ is
E®t)= s mwjA’e™ (3.4.23)

Clearly, the energy remaining in the oscillator during any cycle dies away exponentially
with time constant 7. We, therefore, see that the quality factor Q is just 27 times the inverse
of the ratios given in the expression above, or

2r 2nt W,

Q = = =0 dT = —

(Tr) (2nlw,) 2y

For weak damping, the period of oscillation T, is much less than the time constant 7, which
characterizes the energy loss rate of the oscillator. Q is large under such circumstances.

Table 3.4.1 gives some values of Q for several different kinds of oscillators.

TABLE 3.4.1 ‘ -

(3.4.24)

Earth (for earthquake) 250-1400
Piano string 3000
Crystal in digital watch 10
Microwave cavity 10%
Excited atom 107
Neutron star 1012
Excited Fe5” nucleus 3x 1012

EXAMPLE 3.4.1

An automobile suspension system is critically damped, and its period of free oscillation
with no damping is 1 s. If the system is initially displaced by an amount x,, and released
with zero initial velocity, find the displacement at¢=1s.

Solution:

For critical damping we have ¥ = ¢/2m = (k/m)}2 = 3, = 27/T . Hence, ¥ = 2™ in our
case, because T, = 1 s. Now the general expression for the displacement in the critically




104 CHAPTER 3 Oscillations

damped case (Equation 3.4.9) is x(t) = (At + B)e™"*, so, for ¢ = 0, x = B. Differentiating,
we have %(t) = (A — yB — yAt)e™", which gives £j=A - yB=0, s0 A= yB = yx,in our
problem. Accordingly,

x@) =xy(1 + yt)e " =x (1 + 2mt)e 2™
is the displacement as a function of time. For ¢ = 15, we obtain

xo(1 + 2)e 2% = £(7.28)e 628 = 0.0136 2,

The system has practically returned to equilibrium.

EXAMPLE 3.4.2

The frequency of a damped harmonic oscillator is one-half the frequency of the same
oscillator with no damping. Find the ratio of the maxima of successive oscillations.

Solution:

We have @, =z, = (@f —y*)", which gives 03/4 =] -7 so v = wy3/4)"~.
Consequently,

YT, = 03/4)2 [21/(w,/2)] = 10.88
Thus, the amplitude ratio is
¢ i = ¢71%%8 — 0,00002

This is a highly damped oscillator.

EXAMPLE 3.4.3

Given: The terminal speed of a baseball in free fall is 30 m/s. Assuming a linear air
drag, calculate the effect of air resistance on a simple pendulum, using a baseball as
the plumb bob.

Solution:

In Chapter 2 we found the terminal speed for the case of linear air drag to be given by
v, =mg/c,, where ¢, is the linear drag coefficient. This gives

-2

=0_1=M=_§_=2-8&_1=0.163s‘1
2m 2m 2v, 60 ms

for the exponential damping constant. Consequently, the baseball pendulum’s ampli-
tude drops off by a factor ¢! in a time y~! = 6.13 s. This is independent of the length
of the pendulum. Earlier, in Example 3.2.2, we showed that the angular frequency of
oscillation of the simple pendulum of length [ is given by @, = (g/1)*/ for small ampli-
tude. Therefore, from Equation 3.4.17, the period of our pendulum is '

-1/2
T, =2n(0}-y2) " =2n (—%— ~0.0265 s_2)
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In particular, for a baseball “seconds pendulum” for which the half-period is 1 s in the
absence of damping, we have g/l = 72, so the half-period with damping in our case is

% = (n* —0.0265) V2 s =1.00134 s
Our solution somewhat exaggerates the effect of air resistance, because the drag func-

tion for a baseball is more nearly quadratic than linear in the velocity except at very low
velocities, as discussed in Section 2.4.

EXAMPLE 3.4.4

A spherical ball of radius 0.00265 m and mass 5 x 10~* kg is attached to a spring of
force constant k = .05 N/m underwater. The mass is set to oscillate under the action
of the spring. The coefficient of viscosity 7 for water is 10~ Ns/m?. (a) Find the
number of oscillations that the ball will execute in the time it takes for the amplitude
of the oscillation to drop by a factor of 2 from its initial value. (b) Calculate the Q of
the oscillator.

Solution:

Stokes’ law for objects moving in a viscous medium can be used to find ¢, the constant
of proportionality of the % term, in the equation of motion (Equation 3.4.1) for the
damped oscillator. The relationship is

c=6ranr=>5-10" Ns/m

The energy of the oscillator dies away exponentially with time constant 7, and the ampli-
tude dies away as A = Ae™2%. Thus,

- e—t/21:

(S

A
4o
S t=27In2
Consequently, the number of oscillations during this time is
n = t/I%n
=w,t(In2)/7w
=Q(n2)/x
Because a)g =k/m=100s2, t=m/c = 105, and y=1/27=0.05 571, we obtain
0 = (0% -7*)"7 = (100-0.0025)"* 10 = 100
n=Q(n2)/rw =22

If we had asked how many oscillations would occur in the time it takes for the ampli-
tude to drop to e7/2, or about 0.606 times its initial value, the answer would have been
Q/2m. Clearly Q is a measure of the rate at which an oscillator loses energy.
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*3.5| Phase Space

A physical system in motion that does not dissipate energy remains in motion. One that
dissipates energy eventually comes to rest. An oscillating or rotating system that does not
dissipate energy repeats its configuration each cycle. One that dissipates energy never does.
The evolution of such a physical system can be graphically illustrated by examining its
motion in a special space called phase space, rather than real space. The phase space for
a single particle whose motion is restricted to lie along a single spatial coordinate con-
sists of all the possible points in a “plane” whose horizontal coordinate is its position x
and whose vertical coordinate is its velocity x. Thus, the “position” of a particle on
the phase-space plane is given by its “coordinates” (x, x).4 The future state of motion of
such a particle is completely specified if its position and velocity are known simultane-
ously—say, its initial conditions x(¢,) and i (t,). We can, thus, picture the evolution of the
motion of the particle from that point on by plotting its coordinates in phase space. Each
point in such a plot can be thought of as a precursor for the next point. The trajectory of
these points in phase space represents the complete time history of the particle.

Simple Harmonic Oscillator: No Damping Force

The simple harmonic oscillator that we discuss in this section is an example of a particle
whose motion is restricted to a single dimension. Let’s examine the phase-space motion
of a simple harmonic oscillator that is not subject to any damping force. The solutions
for its position and velocity as functions of time were given previously by Equations 3.2.5
and 3.2.12a:

x(t) = A sin(@yt + @) (3.5.1a)
%(t) = Aw, cos(wyt +¢,) (3.5.1b)

Letting y = % we eliminate ¢ from these two parametric equations to find the equation
of the trajectory of the oscillator in phase space:

2
=*(t)+ yw—?) = A2 (sin® (@t + @) + cos®(@yt + ¢,)) = A”
s (35.2)
R A
A* A’w}

Equation 3.5.2 is the equation of an ellipse whose semimajor axis is A and whose semi-
minor axis is @,A. Shown in Figure 3.5.1 are several phase-space trajectories for the har-
monic oscillator. The trajectories differ only in the amplitude A of the oscillation.

Note that the phase-path trajectories never intersect. The existence of a point common
to two different trajectories would imply that two different future motions could evolve

* Again, as noted in Chapter 2, sections in the text marked with an asterisk may be skipped with impunity.

4Strictly speaking, phase space is defined as the ensemble of points (x, p) where x and p are the position and
momentum of the particle. Because momentum is directly proportional to velocity, the space defined here is
essentially a phase space.
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Figure 3.5.1 Phase-space . . ) .
plot for the simple harmonic 4 -3 -2 1 0 1 2 3 4
oscillator (a3, = 0.5 ™). No
damping force (y=0s71).

=

from a single set of conditions (x(z,), #(z,)) at some time ¢,. This cannot happen because,
starting with specific values of x(,) and %(t,), Newton’s laws of motion completely deter-
mine a unique future state of motion for the system.

Also note that the trajectories in this case form closed paths. In other words, the
motion repeats itself, a consequence of the conservation of the total energy of the har-
monic oscillator. In fact, the equation of the phase-space trajectory (Equation 3.5.2) is
nothing more than a statement that the total energy is conserved. We can show this by

substituting E = %kA2 and a)(z, = k/m into Equation 3.5.2, obtaining

x2 2
+ 7 (3.5.3a)
9E/k  2EIm

which is equivalent to (replacing y with %)

thx®+imi* =V+T=E (3.5.3b)

the energy equation (Equation 3.3.3) for the harmonic oscillator. Each closed phase-
space trajectory, thus, corresponds to some definite, conserved total energy.

EXAMPLE 3.5.1

Consider a particle of mass m subject to a force of strength +kx, where x is the dis-
placement of the particle from equilibrium. Calculate the phase space trajectories of the
particle.

Solution:

The equation of motion of the particle is m# = kx. Letting 0? =k/m we have ¥ — 0?x =
0. Letting y = % and y’ = dy/dx we have § = 1y’ = yy’ = ®’x or ydy = ®*xdx. The solu-
tion is y?> — @?x% =C in which C is a constant of integration. The phase space trajecto-
ries are branches of a hyperbola whose asymptotes are y =t ®x. The resulting phase
space plot is shown in Figure 3.5.2. The trajectories are open ended, radiating away from
the origin, which is an unstable equilibrium point.
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Place Space y vs. x

Figure 3.5.2 Phase space plot
for ¥ -~ @2x=0. x

The Underdamped Harmonic Oscillator

The phase-space trajectories for the harmonic oscillator subject to a weak damping
force can be calculated in the same way as before. We anticipate, though, that the tra-
jectories will not be closed. The motion does not repeat itself, because energy is con-
stantly being dissipated. For the sake of illustration, we assume that the oscillator is
started from rest at position x,. The solutions for x and % are given by Equations 3.4.21a
and b:

x = Ae ™" sin(@,t + ¢,) (3.5.4a)
i=—Ae™"(y sin(w,t + ¢y) — @, cos(@ t+ ¢,)) (3.5.4b)

Remember that because the initial phase angle ¢, is given by the condition that %,=0,
its value for the damped oscillator is not #/2 but ¢, = tan~le,/y. It is difficult to elimi-
nate t by brute force in the above parametric equations. Instead, we can illuminate the
motion in phase space by applying a sequence of substitutions and linear transformations
of the phase-space coordinates that simplifies the above expressions, leading to the form
we've already discussed for the harmonic oscillator. First, substitute p = Ae™” and

0=w,t+ ¢,
into the above equations, obtaining
x=psin0 (3.5.4¢c)
% =—p(y sinf-w, cosb) (3.5.4d)

Next, we apply the linear transformation y = % + ¥x to Equation 3.5.4d, obtaining
y=,;pcosf (3.5.5)
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We then square this equation and carry out some algebra to obtain

y? = wlp*(1—sin®6)

y* = wj(p” ~x") (3.5.6)
2

y __
o azpr !

Voila! Equation 3.5.6 is identical in form to Equation 3.5.2. But here the variable y is a
linear combination of x and # so the ensemble of points (x, y) represents a modified phase
space. The trajectory of the oscillator in this space is an ellipse whose major and minor
axes, characterized by p and @, p, decrease exponentially with time. The trajectory starts
off with a maximum value of x (= A sin ¢) and then spirals inward toward the origin. The
result is shown in Figure 3.5.3(a). The behavior of the trajectory in the x—% plane is sim-
ilar and is shown in Figure 3.5.3(b). Two trajectories are shown in the plots for the cases
of strong and weak damping. Which is which should be obvious.

As before, Equation 3.5.6 is none other than the energy equation for the damped har-
monic oscillator. We can compare it to the results we obtained in our discussion in
Section 3.4 for the rate of energy dissipation in the weakly damped oscillator. In the case
of weak damping, the damping factor ¥ is small compared to @, the undamped oscilla-
tor angular frequency (see Equation 3.4.10), and, thus, we have

x2

Wy = 0, y=% (3.5.7
Hence, Equation 3.5.6 becomes

2 2

25 =1 (3.5.8)
P P

Note that this equation is identical in form to Equation 3.5.6, and consequently the tra-
jectory seen in the x—% plane of Figure 3.5.3(b) for the case of weak damping is virtually
identical to the modified phase-space trajectory of the weakly damped oscillator shown

in Figure 3.5.3(a). Finally, upon substituting k/m for ®§ and A%e2" for p?, we obtain

Lt + Lni? = L paze o

(35.9)

_1 2,42 -2yt
= 3MWyA"e

If we compare this result with Equation 3.4.23, we see that it represents the total energy
remaining in the oscillator at any subsequent time #:

V(&) + T(t) = E(t) (3.5.10)

The energy of the weakly damped harmonic oscillator dies away exponentially with a
time constant 7 = (2y) . The spiral nature of its phase-space trajectory reflects this fact.

The Critically Damped Harmonic Oscillator
Equation 3.4.9 gave the solution for the critically damped oscillator:
= (At + B)e " (3.5.11)



110 CHAPTER 3 Oscillations

04 T T T T

Figure 3.5.3 (a) Modified phase-
space plot (see text) for the simple

harmonic oscillator. (b) Phase-space
plot (@, = 0.5 s71). Underdamped ]
case: (1) weak damping (y=0.05s71) x
and (2) strong damping (y=0.25s71). ®)

Taking the derivative of this equation, we obtain
i =—y(At+ B)e "' + Ae™" (35.12)
or
i+yx=Ae" (3.5.13)

This last equation indicates that the phase-space trajectory should approach a straight line
whose intercept is zero and whose slope is equal to —y. The phase-space plot is shown in
Figure 3.5.4 for motion starting off with the conditions (%p,%o) = (1,0).
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The Overdamped Oscillator

Overdamping occurs when the damping parameter ¥ is larger than the angular frequency
@,. Equation 3.4.6 then gives the solution for the motion:

x(t) = Ale—(Y—q)t + Aze—(7+q)t (3.5.14)
in which all the exponents are real. Taking the derivative of this equation, we find
i(t) = —yx + ge "(Ae” — Aye™) (3.5.15)

As in the case of critical damping, the phase path approaches zero along a straight line.
However, approaches along two different lines are possible. To see what they are, it is
convenient to let the motion start from rest at some displacement x,,. Given these con-
ditions, a little algebra yields the following values for A, and A,:

JNC NN ¢ du | 9 (3.5.16)
2q 2
Some more algebra yields the following for two different linear combinations of x and #:
£+ = qx= (¥~ Qxge” """ (3.5.17a)
T+ +Q)x=(y+q)mge " (3.5.17b)

The term on the right-hand side of each of the above equations dies out with time, and,
thus, the phase-space asymptotes are given by the pairs of straight lines:

t=—(y—q)x (3.5.18a)
==y +q)x (3.5.18b)

Except for special cases, phase-space paths of the motion always approach zero along the
asymptote whose slope is —(y — q). That asymptote invariably “springs into existence” much
faster than the other, because its exponential decay factor is (¥ + ) (Equations 3.5.17),
the larger of the two.

Figure 3.5.5 shows the phase-space plot for an overdamped oscillator whose motion
starts off with the values (x, %) = (1,0), along with the asymptote whose slope is —(y — q).
Note how rapidly the trajectory locks in on the asymptote, unlike the case of critical
damping, where it reaches the asymptote only toward the end of its motion. Obviously,
overdamping is the most efficient way to knock the oscillation out of oscillatory motion!
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EXAMPLE 3.5.2

A particle of unit mass is subject to a damping force —% and a force that depends on its
displacement x from the origin that varies as +x — 2. (a) Find the points of equilibrium
of the particle and specify whether or not they are stable or unstable. (b) Use Mathcad
to plot phase-space trajectories for the particle for three sets of starting conditions:
(x,y) = (i) (-1,1.40) (i) (~1,1.45) (iii) (0.01,0) and describe the resulting motion.

Solution:
(a) The equation of motion is
F+i—x+x2=0
Let y=x. Then
y=—y+x— x
At equilibrium, both y =0 and § = 0. This is satisfied if
x—x3=x(1-2%)=x(1-x)(1+x)=0

Thus, there are three equilibrium points x =0 and x =+£1.

We can determine whether or not they are stable by linearizing the equation
of motion for small excursions away from those points. Let u represent a small
excursion of the particle away from an equilibrium point, which we designated by x,,.
Thus, x =x,+u and the equation of motion becomes

y=1u and § =—y+(x, +u)— (g + 1)’
Carrying out the expansion and dropping all terms non-linear in u, we get
y=-y +(1—3x(2,)u + xo(l— x%)

The last term is zero, so

y=—y+(1—3x(2,)u
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Phase Space y vs. x
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If (1 — 3x%) < 0 the motion is a stable, damped oscillation that eventually ceases at
x=x,. If (1 - 3x2) > 0 the particle moves away from x, and the equilibrium is unstable.
Thus, x = £1 are points of stable equilibrium and x,, is an unstable point.

(b) The three graphs in Figure 3.5.6 were generated by using Mathcad's rkfixed equa-
tion solver to solve the complete nonlinear equation of motion numerically. In all
cases, no matter how the motion is started, the particle veers away from x = 0 and
ultimately terminates at x = 1. The motion for the third set of starting conditions
is particularly illuminating. The particle is started at rest near, but not precisely at,
x = 0. The particle is repelled away from that point, goes into damped oscillation
about x = 1, and eventually comes to rest there. The points x = +1 are called attrac-
tors and the point x = 0 is called a repellor.

3.6| Forced Harmonic Motion: Resonance

In this section we study the motion of a damped harmonic oscillator that is subjected to
a periodic driving force by an external agent. Suppose a force of the form F,, cos @t is
exerted upon such an oscillator. The equation of motion is

mi = —kx — ¢k + F, cos ot (3.6.1)

The most striking feature of such an oscillator is the way in which it responds as a function of
the driving frequency even when the driving force is of fixed amplitude. A remarkable phe-
nomenon occurs when the driving frequency is close in value to the natural frequency @, of
the oscillator. It is called resonance. Anyone who has ever pushed a child on a swing knows
that the amplitude of oscillation can be made quite large if even the smallest push is made
at just the right time. Small, periodic forces exerted on oscillators at frequencies well above
or below the natural frequency are much less effective; the amplitude remains small. We ini-
tiate our discussion of forced harmonic motion with a qualitative description of the behav-
ior that we might expect. Then we carry out a detailed analysis of the equation of motion
(Equation 3.6.1), with our eyes peeled for the appearance of the phenomenon of resonance.

We already know that the undamped harmonic oscillator, subjected to any sort of dis-
turbance that displaces it from its equilibrium position, oscillates at its natural frequency,
@, =+/(k/m). The dissipative forces inevitably present in any real system changes the
frequency of the oscillator slightly, from @ to @, and cause the free oscillation to die out.
This motion is represented by a solution to the homogeneous differential equation
(Equation 3.4.1, which is Equation 3.6.1 without the driving force present). A periodic
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driving force does two things to the oscillator: (1) It initiates a “free” oscillation at its nat-
ural frequency, and (2) it forces the oscillator to vibrate eventually at the driving frequency
. For a short time the actual motion is a linear superposition of oscillations at these two
frequencies, but with one dying away and the other persisting. The motion that dies away
is called the transient. The final surviving motion, an oscillation at the driving frequency,
is called the steady-state motion. It represents a solution to the inhomogeneous equation
(Equation 3.6.1). Here we focus only upon the steady-state motion, whose anticipated fea-
tures we describe below. To aid in the descriptive process, we assume for the moment
that the damping term —c% is vanishingly small. Unfortunately, this approximation leads
to the physical absurdity that the transient term never dies out—a rather paradoxical sit-
uation for a phenomenon described by the word transient! We just ignore this difficulty
and focus totally upon the steady-state description, in hopes that the simplicity gained by
this approximation gives us insight that helps when we finally solve the problem of the
driven, damped oscillator.
In the absence of damping, Equation 3.6.1 can be written as

mi+ kx = F, cos ot (3.6.2)

The most dramatic feature of the resulting motion of this driven, undamped oscillator is
a catastrophically large response at @ = @,. This we shall soon see, but what response might
we anticipate at both extremely low (@ < @,) and high (@ > @,) frequencies? At low fre-
quencies, we might expect the inertial term m ¥ to be negligible compared to the spring
force —kx. The spring should appear to be quite stiff, compressing and relaxing very
slowly, with the oscillator moving pretty much in phase with the driving force. Thus, we
might guess that

x = A cos Wt
F
A=2L
k

At high frequencies the acceleration should be large, so we might guess that m# should
dominate the spring force —kx. The response, in this case, is controlled by the mass of the
oscillator. Its displacement should be small and 180° out of phase with the driving force,
because the acceleration of a harmonic oscillator is 180° out of phase with the displacement.
The veracity of these preliminary considerations emerge during the process of obtaining
an actual solution.

First, let us solve Equation 3.6.2, representing the driven, undamped oscillator. In
keeping with our previous descriptions of harmonic motion, we try a solution of the form

x(t) = A cos(wt — @)

Thus, we assume that the steady-state motion is harmonic and that in the steady state it
ought to respond at the driving frequency . We note, though, that its response might
differ in phase from that of the driving force by an amount ¢. ¢ is not the result of some
initial condition! (It does not make any sense to talk about initial conditions for a steady-
state solution.) To see if this assumed solution works, we substitute it into Equation 3.6.2,
obtaining

—mm?A cos(wt — §) + kA cos(wt — ¢) = F, cos ot
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This works if ¢ can take on only two values, 0 and 7. Let us see what is implied by this
requirement. Solving the above equation for ¢ = 0 and 7, respectively, yields

A=@)§O—% ¢=0 D < @y
=(w§+/72)§) o= >0,

We plot the amplitude A and phase angle ¢ as functions of @ in Figure 3.6.1. Indeed, as
can be seen from the plots, as @ passes through @,, the amplitude becomes catastrophi-
cally large, and, perhaps even more surprisingly, the displacement shifts discontinuously
from being in phase with the driving force to being 180° out of phase. True, these results
are not physically possible. However, they are idealizations of real situations. As we shall
soon see, if we throw in just a little damping, at @ close to o, the amplitude becomes large
but finite. The phase shift “smooths out”; it is no longer discontinuous, although the shift
is still quite abrupt.

(Note: The behavior of the system mimics our description of the low-frequency
and high-frequency limits.)

The 0° and 180° phase differences between the displacement and driving force can
be simply and vividly demonstrated. Hold the lighter end of a pencil or a pair of scissors
(closed) or a spoon delicately between forefinger and thumb, squeezing just hard enough
that it does not drop. To demonstrate the 0° phase difference, slowly move your hand back
and forth horizontally in a direction parallel to the line formed between your forefinger
and thumb. The bottom of this makeshift pendulum swings back and forth in phase with
the hand motion and with a larger amplitude than the hand motion. To see the 180°

Figure 3.6.1 (a) The amplitude of a
driven oscillator versus @ with no damping.
(b) The phase lag of the displacement
relative to the driving force versus @. ()
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phase shift, move your hand back and forth rather rapidly (high frequency). The bottom
of the pendulum hardly moves at all, but what little motion it does undergo is 180° out
of phase with the hand motion.

The Driven, Damped Harmonic Oscillator

We now seek the steady-state solution to Equation 3.6.1, representing the driven, damped
harmonic oscillator. It is fairly straightforward to solve this equation directly, but it is alge-
braically simpler to use complex exponentials instead of sines and /or cosines. First, we
represent the driving force as

F=Fye'* (3.6.3)
so that Equation 3.6.1 becomes
mi +cx + kx = Fpe'™ (3.6.4)

The variable x is now complex, as is the applied force F. Remember, though, that by Euler’s
identity the real part of F is F,, cos wt.? If we solve Equation 3.6.4 for x, its real part will
be a solution to Equation 3.6.1. In fact, when we find a solution to the above complex equa-
tion (Equation 3.6.4), we can be sure that the real parts of both sides are equal (as are
the imaginary parts). It is the real parts that are equivalent to Equation 3.6.1 and, thus,
the real, physical situation.

For the steady-state solution, let us, therefore, try the complex exponential

x(t) = Ag"@? (3.6.5)
where the amplitude A and phase difference ¢ are constants to be determined. If this

“guess” is correct, we must have

2
md_ A @9 4 o L foi00) g g Fe'™ (3.6.62)
dt* dt

be true for all values of ¢. Upon performing the indicated operations and canceling the
common factor ¢!*t, we find

-mo®A+iwcA + kA = Fe* = Fy(cos ¢ + isin¢) (3.6.6b)
Equating the real and imaginary parts yields the two equations

A(k—ma?®) = Fycos¢

(3.6.7a)
c@A = Fsin¢

Upon dividing the second by the first and using the identity tan ¢ = sin ¢/cos ¢, we obtain
the following relation for the phase angle:

c@
t: = (3.6.7b)
ang k-mo?

5For a proof of Euler’s identity, see Appendix D.
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By squaring both sides of Equations 3.6.7a and adding and employing the identity
sin? ¢ + cos? ¢ =1, we find

A’(k—-mo®)® +*w®A® = F} (3.6.7¢)
We can then solve for A, the amplitude of the steady-state oscillation, as a function of the
driving frequency:
Ey

A = may + 70T

(3.6.7d)

In terms of our previous abbreviations ®§ = k/m and y = ¢/2m, we can write the expres-
sions in another form, as follows:
2yw

tan¢ =
w; - o*

(3.6.8)

Fy/m
2 2)2 2 o T2
[(wo—w ) +4y°w }

A plot of the above amplitude A and phase difference ¢ versus driving frequency
o (Fig. 3.6.2) reveals a fetching similarity to the plots of Figure 3.6.1 for the case of
the undamped oscillator. As can be seen from the plots, as the damping term
approaches 0, the resonant peak gets larger and narrower, and the phase shift sharp-
ens up, ultimately approaching infinity and discontinuity, respectively, at @,. What is
not so obvious from these plots is that the amplitude resonant frequency is not @, when
damping is present (although the phase shift always passes through /2 at @,)!
Amplitude resonance occurs at some other value @_, which can be calculated by dif-
ferentiating A(®) and setting the result equal to zero. Upon solving the resultant equa-
tion for @, we obtain

A(w) = (3.6.9

o = g -2y* (3.6.10)

o_approaches @, as ¥, the damping term, goes to zero. Because the angular frequency
of the freely running damped oscillator is given by @, = (@5 -7*)"*, we have

o =w]-7" (3.6.11)

When the damping is weak, and only under this condition, the resonant frequency w,,
the freely running, damped oscillator frequency @, and the natural frequency @, of the
undamped oscillator are essentially identical.

At the extreme of strong damping, no amplitude resonance occurs if ¥ > a)O/w/é,
because the amplitude then becomes a monotonically decreasing function of . To see

this, consider the limiting case v? = w3l2. Equation 3.6.9 then gives

F,/m F,/m
Alw) = . =— 7"

[(wﬁ - w2)2 + 2w§w2}1/2 (0} +o

(3.6.12)

which clearly decreases with increasing values of o, starting with @=0.
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Figure 3.6.2 (a) Amplitude
A/(F/k) and (b) phase shift ¢ vs.
driving frequency (n = w/a,) for
values of the damping constant ¥
givenby y=27 ¢, (i=0,1...5).
Larger values of A and more
abrupt phase shifts correspond to
decreasing values of ¥.

EXAMPLE 3.6.1

A seismograph may be modeled as a mass suspended by springs and a dashpot from a
platform attached to the Earth (Figure 3.6.3). Oscillations of the Earth are passed
through the platform to the suspended mass, which has a “pointer” to record its dis-
placement relative to the platform. The dashpot provides a damping force. Ideally, the
displacement A of the mass relative to the platform should closely mimic the displace-
ment of the Earth D. Find the equation of motion of the mass m and choose parame-
ters @)y and 7y to insure that A lies within 10% of D. Assume during a ground tremor that
the Earth oscillates with simple harmonic motion at f= 10 Hz.

Solution:

First we calculate the equation of motion of the mass m. Suppose the platform moves
downward a distance z relative to its initial position and that m moves downward to
a position y relative to the platform. The plunger in the dashpot is moving downward with
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Figure 3.6.3 Seismograph model.

speed % while the pot containing the damping fluid is moving downward with speed § + %;
therefore, the retarding, damping force is given by cyj. Ifl is the natural length of the spring,
then

F =mg— o —k(y — ) = m(ij + %)

We let y = x + mg/k +1, so that « is the displacement of the mass from its equilibrium
position (see Figure 3.2.5), and, in terms of z, the equation of motion becomes

mi +cx + kx = —mz

During the tremor, as the platform oscillates with simple harmonic motion of amplitude

D and angular frequency o= 2xf, we have z = De!®. Thus,
mi + ¢k + kx = mD@* ™

Comparing with Equation 3.6.4, and associating Fo/m with D2, the solution for the
amplitude of oscillation given by Equation 3.6.9 can be expressed here as

of( 2 9\, .0 o]
A=Dow (a)o—w) +4ya)]
Dividing numerator and denominator by ®? we obtain

r a)2 9 2 -1/2
A=D (5‘;-—1] +4#]

Expanding the term in the denominator gives

o 2 e
A=D|1+—2+-= (27—}
[ w* a)z( 4 0)
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We can insure that A = D for reasonable values of @ by setting 2y* — @2 =0 and &/w < 0.
For example, for a fractional difference between A and D of 10%, we require that

D-A AR
—B—=l—(1+F] ”’EF<E or ,<084w
This means that the free-running frequency of the oscillator is
fo =wy/2n <8Hz
The damping parameter should be
7 = /N2 = 36.
Typically, this requires the use of “soft” springs and a heavy mass.

Amplitude of Oscillation at the Resonance Peak

The steady-state amplitude at the resonant frequency, which we call A, is obtained from
Equations 3.6.9 and 3.6.10. The result is

Fy/m

A = —T o 3.6.13a
2yyoi -7 ¢ )

In the case of weak damping, we can neglect y* and write

Apge = —2

py—— (3.6.13b)
Thus, the amplitude of the induced oscillation at the resonant condition becomes very
large if the damping factor ¥is very small, and conversely. In mechanical systems large
resonant amplitudes may or may not be desirable. In the case of electric motors, for
example, rubber or spring mounts are used to minimize the transmission of vibration. The
stiffness of these mounts is chosen so as to ensure that the resulting resonant frequency
is far from the running frequency of the motor.

Sharpness of the Resonance: Quality Factor

The sharpness of the resonance peak is frequently of interest. Let us consider the case of
weak damping ¥ < @, Then, in the expression for steady-state amplitude (Equation 3.6.9),
we can make the following substitutions:

w; - 0° = (0, + )W, - ®)
= 20, (0, — @)
47’0® = 4y°w} (3.6.14b)

(3.6.14a)



3.6 Forced Harmonic Motion: Resonance 121

These, together with the expression for A, ,, allow us to write the amplitude equation in
the following approximate form:

A®) = L A (3.6.15)
,/(wo -0)?+y? -

The above equation shows that when |@, — @| = ¥ or, equivalently, if

w=w,ty (3.6.16)
then
2 _ 1 42 3.6.17)
A*=1a2, (

This means that ¥ is a measure of the width of the resonance curve. Thus, 2y is the fre-
quency difference between the points for which the energy is down by a factor of % from
the energy at resonance, because the energy is proportional to A2.

The quality factor Q defined in Equation 3.4.24, which characterizes the rate of
energy loss in the undriven, damped harmonic oscillator, also characterizes the sharpness
of the resonance peak for the driven oscillator. In the case of weak damping, Q can be
expressed as

=9 Dy 3.6.18
Q o "3y ( )

Thus, the total width A at the half-energy points is approximately

Aw=2y=22 (3.6.192)
Q
or, because 0= 27xf,
Ao Af 1
—— == 3.6.19b
w fo ©Q ¢ )

giving the fractional width of the resonance peak.

This last expression for Q, so innocuous-looking, represents a key feature of feedback
and control in electrical systems. Many electrical systems require the existence of a well-
defined and precisely maintained frequency. High Q (of order 10) quartz oscillators,
vibrating at their resonant frequency, are commonly employed as the control element in
feedback circuits to provide frequency stability. A high Q results in a sharp resonance. If
the frequency of the circuit under control by the quartz oscillator starts to wander or drift
by some amount f away from the resonance peak, feedback circuitry, exploiting the
sharpness of the resonance, drives the circuit vigorously back toward the resonant fre-
quency. The higher the Q of the oscillator and, thus, the narrower 8f, the more stable the
output of the frequency of the circuit.
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The Phase Difference ¢

Equation 3.6.8 gives the difference in phase ¢ between the applied driving force and the
steady-state response:

L2
¢ = tan ‘[“i] (3.6.20)

oK —mz)

The phase difference is plotted in Figure 3.6.2(b). We saw that for the driven, undamped
oscillator, ¢ was 0° for @ < @, and 180° for @ > . These values are the low- and high-
frequency limits of the real motion. Furthermore, ¢ changed discontinuously at @ = @,.
This, too, is an idealization of the real motion where the transition between the two limits
is smooth, although for very small damping it is quite abrupt, changing essentially from
one limit to the other as @ passes through a region within 1y about @,.

At low driving frequencies @ < @,, we see that ¢ — 0 and the response is nearly in
phase with the driving force. That this is reasonable can be seen upon examination of the
amplitude of the oscillation (Equation 3.6.9). In the low-frequency limit, it becomes

A@—0)= p k/m % (3.6.21)
In other words, just as we claimed during our preliminary discussion of the driven oscil-
lator, the spring, and not the mass or the friction, controls the response; the mass is slowly
pushed back and forth by a force acting against the retarding force of the spring.

At resonance the response can be enormous. Physically, how can this be? Perhaps
some insight can be gained by thinking about pushing a child on a swing. How is it done?
Clearly, anyone who has experience pushing a swing does not stand behind the child
and push when the swing is on the backswing. One pushes in the same direction the
swing is moving, essentially in phase with its velocity, regardless of its position. To push
a small child, we usually stand somewhat to the side and give a very small shove for-
ward as the swing passes through the equilibrium position, when its speed is a maxi-
mum and the displacement is zero! In fact, this is the optimum way to achieve a
resonance condition; a rather gentle force, judiciously applied, can lead to a large ampli-
tude of oscillation. The maximum amplitude at resonance is given by Equation 3.6.13a
and, in the case of weak damping, by Equation 3.6.13b,A_ = F /2yma,. But from the
expression above for the amplitude as @ — 0, we have A((D N 0) Fy/me}. Hence, the
ratio is

A _ E/Qymay) _ @y

A@—0)  Ffmai) 2 =37=0Q (3.6.22)

The result is simply the Q of the oscillator. Imagine what would happen to the child on
the swing if there were no frictional losses! We would continue to pump little bits of
energy into the swing on a cycle-by-cycle basis, and with no energy loss per cycle, the ampli-
tude would soon grow to a catastrophic dimension.

Now let us look at the phase difference. At @ = @, ¢ = 7/2. Hence, the displacement
“lags,” oris behind, the driving force by 90°. In view of the foregoing discussion, this should

make sense. The optimum time to dump energy into the oscillator is when it swings
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through zero at maximum velocity, that is, when the power input F - v is a maximum. For
example, the real part of Equation 3.6.5 gives the displacement of the oscillator:

x(t) = A(@)Re(e" ) = A(w) cos(wt - ¢) (3.6.23)
and at resonance, for small damping, this becomes

x(t) = A(w,) cos(w,t — 7/2)

= A(@,) sinw,t (3.6.24)
The velocity, in general, is
1(t) = ~WA(®) sin(®t - @) (3.6.25)
which at resonance becomes
() = Wy A(®,) cos Wyt (3.6.26)
Because the driving force at resonance is given by
F = F, Re(e*™") = F, cos w,t (3.6.27)

we can see that the driving force is indeed in phase with the velocity of the oscillator, or
90° ahead of the displacement.

Finally, for large values of @, >> @,, $ — , and the displacement is 180° out of phase
with the driving force. The amplitude of the displacement becomes

A0 > @) = —2; (3.6.28)
1)

In this case, the amplitude falls off as 1/w? The mass responds essentially like a free object,
being rapidly shaken back and forth by the applied force. The main effect of the spring

is to cause the displacement to lag behind the driving force by 180°.

Electrical-Mechanical Analogs

When an electric current flows in a circuit comprising inductive, capacitative, and resis-
tive elements, there is a precise analogy with a moving mechanical system of masses and
springs with frictional forces of the type studied previously. Thus, if a current i = dg/dt
(g being the charge) flows through an 1nductance L, the potential difference across the
inductance is L§, and the stored energy is Lq2 Hence, inductance and charge are
analogous to mass and displacement, respectlvely, and potential difference is analogous
to force. Similarly, if a capamtance C carries a charge g, the potential difference is C™g,
and the stored energy is C'¢2. Consequently, we see that the reciprocal of C is anal-
ogous to the stiffness constant of a spring. Finally, for an electric current i flowing
through a resistance R, the potential difference is iR = ¢R, and the rate of energy dis-
sipation is R = ¢ 2R in analogy with the quantity c%? for a mechanical system. Table 3.6.1
summarizes the situation.
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TABLE 3.6.1 = .. . i NI IR Gl
Mechanical Electrical
x  Displacement q Charge
% Velocity g=i  Current
m  Mass L Inductance
k  Stiffness cl Reciprocal of capacitance
¢ Damping resistance R Resistance
F  Force A% Potential difference

EXAMPLE 3.6.2

The exponential damping factor ¥ of a spring suspension system is one-tenth the criti-
cal value. If the undamped frequency is @, find (a) the resonant frequency, (b) the qual-
ity factor, (c) the phase angle ¢ when the system is driven at a frequency @= @,/2, and
(d) the steady-state amplitude at this frequency.

Solution:

(a) We have y=7,,/10 = @,/10, from Equation 3.4.7, so from Equation 3.6.10,
o, =[0} - 20,/10)°] " = ©,(0.98) = 0.9,
(b) The system can be regarded as weakly damped, so, from Equation 3.6.18,

@By Oy

0= 5y = Awy0) -

(¢) From Equation 3.6.8 we have

¢=tan'l[ ) J=tan_l[2(w0/10)(w0/2)}

.- @ 0 —(0,/2)*
=tan" 0.133 = 7.6°

(d) From Equation 3.6.9 we first calculate the value of the resonance denominator:
v
D(@ = 0,/2) = [(wﬁ - a)§/4)2 + 4((00/10)2((00/2)2}
= [(916) + (1100)[* 0% = 0.7566 2
From this, the amplitude is

F,/ F,
0_m2 =1.329—-0 >
0.7566@, ma,

AW = @yl2) =

Notice that the factor (Fy/m®;) = Fy/k is the steady-state amplitude for zero driv-
ing frequency.
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*3.7| The Nonlinear Oscillator: Method
of Successive Approximations

When a system is displaced from its equilibrium position, the restoring force may vary in
a manner other than in direct proportion to the displacement. For example, a spring may
not obey Hooke’s law exactly; also, in many physical cases the restoring force function is
inherently nonlinear, as is the case with the simple pendulum discussed in the example
to follow.

In the nonlinear case the restoring force can be expressed as

F(x) = —kx + €(x) 3.7.1)

in which the function €(x) represents the departure from linearity. It is necessarily
quadratic, or higher order, in the displacement variable x. The differential equation of
motion under such a force, assuming no external forces are acting, can be written in the
form

mi +kx = €(x) = €, + €55 + - 3.7.2)

Here we have expanded e(x) as a power series.

Solving the above type of equation usually requires some method of approximation.
To illustrate one method, we take a particular case in which only the cubic term in e(x)
is of importance. Then we have

mi + kx = €;x° (3.7.3)

Upon division by m and introduction of the abbreviations @y = k/m and €,/m = A, we can
write

i+ogx = Ax° (3.74)

We find the solution by the method of successive approximations.
Now we know that for 2 =0 a solution is x = A cos @) t. Suppose we try a first approx-
imation of the same form,

x=A cosat (8.7.5)

where, as we see, @ is not quite equal to @,. Inserting our trial solution into the differ-
ential equation gives

-A@? coswt+ Aw? coswt = AA® cos’wt = AA3(% cosmt +; cos3a)t) (3.7.6a)

In the last step we have used the trigonometric identity cos>u = > cosu + % cos 3u, which
is easily derived by use of the relation cos®u = [(¢™ + ¢)/2]3. Upon transposing and col-
lecting terms, we get

(—a)2 +0i - %Z,AZ)A cos Ot — %X,A:3 cos3wt =0 (3.7.6b)

Excluding the trivial case A = 0, we see that our trial solution does not exactly satisfy the
differential equation. However, an approximation to the value of @, which is valid for small
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A, is obtained by setting the quantity in parentheses equal to zero. This yields

o’ =wp -314° (3.7.7a)
3142 )"
o= wo(l - WJ (3.7.7b)
for the frequency of our freely running nonlinear oscillator. As we can see, it is a func-

tion of the amplitude A.

To obtain a better solution, we must take into account the dangling term in
Equation 3.7.6b involving the third harmonic, cos 3w¢. Accordingly, we take a second trial
solution of the form

x=A cos ot + B cos 3ot 3.7.8)
Putting this into the differential equation, we find, after collecting terms,

2 9 3 39 2 2 1 3
(-0 + 05 - §18%)A cosor +(-9Bo” +@}B -~ 14° | cos 30t (3.7.92)

+(terms involving BA and higher multiples of wt) = 0
Setting the first quantity in parentheses equal to zero gives the same value for @ found
in Equations 3.7.7. Equating the second to zero gives a value for the coefficient B, namely,

7A4° AA° AA°
=—t—s= 2 7 =~ ) (3.7.9b)
90" +0, -—-320;+271A 320,
where we have assumed that the term in the denominator involving 1A is small enough
to neglect. Our second approximation can be expressed as
3
x=A cos®t— A4 3 cos3mt (3.7.10)
32w,

We stop at this point, but the process could be repeated to find yet a third approxima-
tion, and so on.

The above analysis, although it is admittedly very crude, brings out two essential fea-
tures of free oscillation under a nonlinear restoring force; that is, the period of oscillation
is a function of the amplitude of vibration, and the oscillation is not strictly sinusoidal but
can be considered as the superposition of a mixture of harmonics. The vibration of a non-
linear system driven by a purely sinusoidal driving force is also distorted; that is, it contains
harmonics. The loudspeaker of a stereo system, for example, may introduce distortion (har-
monics) over and above that introduced by the electronic amplifying system.

EXAMPLE 3.7.1

The Simple Pendulum as a Nonlinear Oscillator

In Example 3.2.2 we treated the simple pendulum as a linear harmonic oscillator by using
the approximation sin @ = 6. Actually, the sine can be expanded as a power series,
3 g5
sing=9-2+2 ..
3 3
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so the differential equation for the simple pendulum, 6 +(g/l)sin6 = 0, may be writ-
ten in the form of Equation 3.7.2, and, by retaining only the linear and the cubic terms
in the expansion for the sine, the differential equation becomes

2
§+ol0=20g
3!

in which @§ = g/l. This is mathematically identical to Equation 3.7.4 with the constant
A= 0}/3!= 0}/6. The improved expression for the angular frequency, Equation 3.7.7b,

then gives
9n A2 TV2 N
a)=w0[1——3(w°/62)A ] =w0[1_A_J
407 8

and

o 1 A" A"
T=L-op |- |1-2-] =7|1-2
o g 8 8

for the period of the simple pendulum. Here A is the amplitude of oscillation expressed
in radians. Our method of approximation shows that the period for nonzero amplitude
is longer by the factor (1 — A%/8) /2 than that calculated earlier, assuming sin 8= 6. For
instance, if the pendulum is swinging with an amplitude of 90° = 7/2 radians (a fairly
large amplitude), the factor is (1 — #%/32)71/2 = 1.2025, so the period is about 20% longer
than the period for small amplitude. This is considerably greater than the increase due
to damping of the baseball pendulum, treated in Example 3.4.3.

*The Self-Limiting Oscillator: Numerical Solution

Certain nonlinear oscillators exhibit an effect that cannot be generated by any linear
oscillator—the limit cycle, that s, its oscillations are self-limiting. Examples of nonlinear
oscillators that exhibit self-limiting behavior are the van der Pol oscillator, intensively
studied by van der Pol® in his investigation of vacuum tube circuits, and the simple
mechanical oscillator subject to dry friction (see Computer Problem 3.5), studied by
Lord Rayleigh in his investigation of the vibrations of violin strings driven by bow strings.”
Here we discuss a variant of the van der Pol equation of motion that describes a nonlin-
ear oscillator, exhibiting self-limiting behavior whose limit cycle we can calculate explic-
itly rather than numerically. Consider an oscillator subject to a nonlinear damping force,
whose overall equation of motion is

.2
5&—1/[A2—x2—%}'c+0)§x=0 3.7.11)

8B. van der Pol, Phil. Mag. 2,978 (1926). Also see T. L. Chow, Classical Mechanics, New York, NY Wiley, 1995.
7P. Smith and R. Smith, Mechanics, Chichester, England Wiley, 1990.
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Van der Pol’s equation is identical to Equation 3.7.11 without the third term in parentheses,
the velocity-dependent damping factor, %2 (see Computer Problem 3.3). The limit cycle
becomes apparent with a slight rearrangement of the above terms and a substitution of
the phase-space variable y for #:

2 2
g—yAﬂ}—[%E+;§ﬁgﬂy+aﬁx=0 (3.7.12)

The nonlinear damping term is negative for all points (x, y) inside the ellipse given by

2 2
%?+;§B§=1 (3.7.13)
It is zero for points on the ellipse and positive for points outside the ellipse. Therefore,
no matter the state of the oscillator (described by its current position in phase space), it
is driven toward states whose phase-space points lie along the ellipse. In other words, no
matter how the motion is started, the oscillator ultimately vibrates with simple harmonic
motion of amplitude A; its behavior is said to be “self-limiting,” and this ellipse in phase
space is called its limit cycle. The van der Pol oscillator behaves this way, but its limit cycle
cannot be seen quite so transparently.

A complete solution can only be carried out numerically. We have used Mathcad
to do this. For ease of calculation, we have set the factors A, f, and @, equal to one.
This amounts to transforming the elliptical limit cycle into a circular one of unit radius
and scaling angular frequencies of vibration to @,. Thus, Equation 3.7.12 takes on the
simple form

g-yl-2*—yP)y+x=0 (3.7.14)

A classic way to solve a single second-order differential equation is to turn it into an
equivalent system of first-order ones and then use Runge—Kutta or some equivalent
technique to solve them (see Appendix I). With the substitution of y for %, we obtain the
following two first-order differential equations:

1=y (3.7.15)
g=—x+y1-%* -4y

In fact, these equations do not have to be solved numerically. One can easily verify that
they have analytic solutions x = cost and y =—sin¢, which represent the final limiting motion
on the unit circle x* + y% = 1. It is captivating, however, to let the motion start from arbi-
trary values that lie both within and without the limit cycle, and watch the system evolve
toward its limit cycle. This behavior can be observed only by solving the equations
numerically—for example, using Mathcad.

As in the preceding chapter, we use the Mathcad equation solver, rkfixed, which
employs the fourth-order Runge—Kutta technique to numerically solve first-order dif-
ferential equations. We represent the variables x and y in Mathcad as x, and x,, the
components of a two-dimensional vector x = (x,, x,).
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Mathcad Procedure

e Define a two-dimensional vector x = (x;, x,) containing initial values (x,, y,);

that is,
_(-05
*lo

(This starts motion off at (x,, y,) = (0.5, 0).)
e Define a vector-valued function D(t,x) containing the first derivatives of the
unknown functions x(¢) and y(¢) (Equations 3.7.15):

Xy
Dt x) = [—xl + 'y(l—xf - xé)x!]

e Decide on time interval [0, T] and the number of points, npts, within that interval
where solutions are to be evaluated.

e Pass this information to the function rkfixed (or Rkadapt if the motion changes too
rapidly within small time intervals somewhere within the time interval [0, T] that
you have selected); that is,

Z = rkfixed(x, 0, T, npts, D)
or
Z = Rkadapt(x, 0, T, npts, D)

The function rkfixed (or Rkadapt) returns a matrix Z (in this case, two rows and three
columns) whose first column contains the times ¢, where the solution was evaluated and
whose remaining two columns contain the values of x(¢,) and y(¢,). Mathcad’s graphing
feature can then be used to generate the resulting phase-space plot, a two-dimensional
scatter plot of y(t,) versus x(z,).

Figure 3.7.1 shows the result of a numerical solution to the above equation of motion.
Indeed, as advertised, the system either spirals in or spirals out, finally settling on the limit
cycle in which the damping force disappears. Once the oscillator “locks in” on its limit
cycle, its motion is simply that of the simple harmonic oscillator, repetitive and completely
predictable.

*3.8 | The Nonlinear Oscillator: Chaotic Motion

When do nonlinear oscillations occur in nature? We answer that question with a tautol-
ogy: They occur when the equations of motion are nonlinear. This means that if there are
two (or more) solutions, x, (t) and x,(t), to a nonlinear equation of motion, any arbitrary
linear combination of them, ¢x, () + Bx,(t) is, in general, not linear. We can illustrate this
with a simple example. The first nonlinear oscillator discussed in Section 3.7 was described
by Equation 3.7.4:

i+oix = A3 (3.8.1)
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Assume that x, and x, individually satisfy the above equation. First, substitute their linear
combination into the left side,

ok, + B, + 03 (ax, + Pry) = a(éc‘l + wﬁxl) + ﬁ(a’c’z + wﬁxz)
= oAa7) + B(Ax3)

where the last step follows from the fact that x, and x, are assumed to be solutions to
Equation 3.8.1. Now substitute the linear combination into the right side of Equation 3.8.1
and equate it to the result of Equation 3.8.2:

(3.8.2)

(0 + Pxy)° = (o2} + i3 (38.32)
With a little algebra, Equation 3.8.3a can be rewritten as
a(a? - 1)x +3a’Bxix, + 3o fixxs + BB —-1)xi = 0 (3.8.3b)

x, and ,, are solutions to the equation of motion that vary with time ¢. Thus, the only way
Equation 3.8.3b can be satisfied at all times is if & and B are identically zero, which vio-
lates the postulate that they are arbitrary factors. Clearly, if x, and x,, are solutions to the
nonlinear equation of motion, any linear combination of them is not. It is this nonlinear-
ity that gives rise to the fascinating behavior of chaotic motion.

The essence of the chaotic motion of a nonlinear system is erratic and unpredictable
behavior. It occurs in simple mechanical oscillators, such as pendula or vibrating objects,
that are “overdriven” beyond their linear regime where their potential energy function is
a quadratic function of distance from equilibrium (see Section 3.2). It occurs in the
weather, in the convective motion of heated fluids, in the motion of objects bound to our
solar system, in laser cavities, in electronic circuits, and even in some chemical reactions.
Chaotic oscillation in such systems manifests itself as nonrepetitive behavior. The oscil-
lation is bounded, but each “cycle” of oscillation is like none in the past or future. The
oscillation seems to exhibit all the vagaries of purely random motion. Do not be confused
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Fcos ot
Figure 3.8.1 A simple pendulum driven in a resistive
medium by a sinusoidally varying force, F cos &)¢. The --Ll---
force is applied tangential to the arc path of the 0

pendulum. mg

by this statement. “Chaotic” behavior of classical systems does not mean that they do not
obey deterministic laws of nature. They do. Given initial conditions and the forces to which
they are subject, classical systems do evolve in time in a way that is completely determined.
We just may not be able to calculate that evolution with any degree of certainty.

We do not treat chaotic motion in great detail. Such treatment is beyond the mis-
sion of this text. The reader who wishes to remedy this deficiency is referred to many
fine treatments of chaotic motion elsewhere.® Here we are content to introduce the
phenomenon of chaos with an analysis of the damped simple pendulum that also can be
driven into a chaotic state. We show that slight changes in the driving parameter can lead
to wide divergences in the resulting motion, thus rendering prediction of its long-term
evolution virtually impossible.

The Driven, Damped Harmonic Oscillator

We developed the equation of motion for the simple pendulum in Example 3.2.2. With
the addition of a damping term and a forcing term, it becomes

m§ = —cs—mg sinf + F cos @t (3.8.4)

where we have assumed that the driving force, F cos )+, is applied tangent to the path
of the pendulum whose arc distance from equilibrium is s (see Fig. 3.8.1).°
Lets =16, y=c/m, w; =g/l, and &= F/ml, and apply a little algebra to obtain

0+ y0 + a)(z, sinf = & cos ot (3.8.5)

8]. B. Marion and S. T. Thornton, Classical Dynamics, 5th ed., Brooks/Cole— Thomson Learning, Belmont,
CA, 2004.

9The equation of motion of the simple pendulum in terms of the angular variable 6 can be derived most
directly using the notion of applied torques and resulting rates of change of angular momentum. These con-
cepts are not fully developed until Chapter 7.
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Figure 3.8.2 Three-dimensional phase-space
plot of a driven, damped simple pendulum. The
driving parameter is &= 0.9. The driving angular
frequency @ and damping parameter ¥ are % and %
respectively. Coordinates plotted are

x =027y = 0,2 = ot/2T.

In our earlier discussion of the simple pendulum, we restricted the analysis of its
motion to the regime of small oscillations where the approximation sin 8 = 8 could be used.
We do not do that here. It is precisely when the pendulum is driven out of the small-angle
regime that the nonlinear effect of the sin 8 term manifests itself, sometimes in the form
of chaotic motion.

We simplify our analysis by scaling angular frequencies in units of @, (in essence, let
@, = 1), and we simplify notation by lettingx = §and ® = @,. The above equation becomes

£+ Y%+ sin x = & cos Wt (3.8.6)

Exactly as before, we transform this second-order differential equation into three first-
order ones by letting y = % and z = wt:

x=y
y=—sinx—yy+a cosz (3:8.7)
=0

Remember, these equations are dimensionless, and the driving angular frequency wis a
multiple of @,

We use Mathcad as in the preceding example to solve these equations under a vari-
ety of conditions. For the descriptions that follow, we vary the driving “force” eand hold
fixed both the driving frequency  and the damping parameter ¥ at % and %, respectively.
The starting coordinates (x,, ¥,, z,) of the motion are (0,0,0) unless otherwise noted.

e Driving parameter: ¢ = 0.9
These conditions lead to periodic motion. The future behavior of the pendulum is
predictable. We have allowed the motion to evolve for a duration T equivalent to 10
driving cycles.® We show in Figure 3.8.2 a three-dimensional phase-space trajec-
tory of the motion. The vertical axis represents the z-coordinate, or the flow of
time, while the horizontal axes represent the two phase-space coordinates x and y.
The trajectory starts at coordinates (0,0,0) and spirals outward and upward in
corkscrew-like fashion with the flow of time. There are 10 spirals corresponding to

10The duration of one driving cycle is 7= 2n/a.
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Phase Space y vs. x X vs.t Poincaré Section
0=0.9
T
1
0
0=1.07
T T
1 |
o=1.15 0
\I/\’)
Figure 3.8.3 Damped, driven W "L\ -
pendulum for different driving force L i
parameters ¢. (i) Phase-space plots on ¥
the left (ii) angle vs. time in the center i T
(iiii) Poincaré sections on the right. Only
phase-space plots of first two and last two
cycles shown for & = 1.15. Each plot
represents two sets of starting conditions
in which the initial angular velocities

differ by only 1 part in 105.

the evolution of the motion over 10 driving cycle periods. The transient behavior dies
out after the first few cycles as the pendulum attains a state of stable, steady-state
oscillation. This is evident upon examination of the first of the top row of graphs in
Figure 3.8.3. It is a two-dimensional projection of the three-dimensional, phase-
space plot during the last 5 of the 10 total driving cycles. The resulting closed curve
actually consists of five superimposed projected curves. The perfect superposition
and closure demonstrates the stability and exact repeatability of the oscillation.
The second graph in the first row of Figure 3.8.3 is a plot of the angular posi-
tion of the pendulum x as a function of the number of elapsed driving cycles n
(=wt/2m). The repeatability of the oscillation, cycle after cycle, is evident here as well.
The third graph in the top row is a Poincaré section plot of the motion. Think
of it as a stroboscopic snapshot of the three-dimensional, phase-space trajectory
taken every drive cycle period. The times at which the snapshots are taken can be
envisioned as a series of two-dimensional planes parallel to the x—y plane sepa-
rated by a single drive cycle period. The intersection of the trajectory with any of
these horizontal planes, or “slices,” is a single point whose (x, y) phase-space
coordinates represent the current state of the motion. The single point shown in
the plot for this driving cycle parameter is actually five different superimposed
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Poincaré sections taken during the last five cycles of the motion. This means that
after the initial transient effects die out, the (x,y) phase-space coordinates repeat
exactly every subsequent drive cycle period. In other words, the pendulum is oscil-
lating at a single frequency, the drive cycle frequency, as one might expect.
Driving parameter: o0 =1.07
This value leads to an interesting effect shown in the second row of graphs in
Figure 3.8.3, known as period doubling, in which the motion repeats itself exactly
every other drive cycle. Close examination of the phase-space plot reveals two
closed loops, one for each drive cycle. You might need glasses to see the effect in
the second plot (angle vs. time), but close scrutiny reveals that there is a slight ver-
tical displacement between adjacent cycles and that every other cycle is identical.
The Poincaré section shows the effect best: two discrete points can be seen indi-
cating that the motion consists of two different but repetitive oscillations.
Driving parameter: a = 1.15
starting coordinates: (—0.9,0.54660,0) and (-0.9, 0.54661,0)
This particular value of driving parameter leads to chaotic motion and allows us to
graphically illustrate one of its defining characteristics: unpredictable behavior. Take
a look at the two phase-space plots defined by & = 1.15 in the third and fourth row
of Figure 3.8.3. The first one is a phase-space plot of the first two cycles of the
motion, for two different trials, each one started with the two slightly different set of
starting coordinates given above. In each trial, the pendulum was started from the
position, x =—0.9 at time ¢ =0, but with slightly different angular velocities y that dif-
fered by only 1 part in 10°. The trajectory shown in the first plot is thus two trajec-
tories, one for each trial. The two trajectories are identical indicating that the motion
for the two trials during the first two cycles are virtually indistinguishable. Note that
in each case, the pendulum has moved one cycle to the left in the phase-space coor-
dinate x when it reaches its maximum speed y in the negative direction. This tells us
that the pendulum swung through one complete revolution in the clockwise direction.
However, the second graph, where we have plotted the two phase-space tra-
jectories for the 99th and 100th cycles, shows that the motion of the pendulum has
diverged dramatically between the two trials. The trajectory for the first trial is cen-
tered on x = —2 on the left-hand side of the graph, indjcating that after 98 drive
cycle periods have elapsed, the pendulum has made two more complete 27 clock-
wise revolutions than it did counterclockwise. The trajectory for the second trial
is centered about x = 6 on the right-hand side of the graph, indicating that its
slightly different starting angular velocity resulted in the pendulum making six
more counterclockwise revolutions than it did clockwise. Furthermore, the phase-
space trajectories for the two trials now have dramatically different shapes, indi-
cating that the oscillation of the pendulum is quite different at this point in the two
trials. An effect such as this invariably occurs if the parameters @, ¥, and @ are set
for chaotic motion. In the case here, if we were trying to predict the future motion
of the pendulum by integrating the equations of motion numerically with a preci-
sion no better than 1075, we would fail miserably. Because any numerical solution
has some precisional limit, even a completely deterministic system, such as we
have in Newtonian dynamics, ultimately behaves in an unpredictable fashion—in
other words, in a chaotic way.
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e Driving parameter: o0 = 1.5

This value for the driving parameter also leads to chaotic motion. The three graphs
in the last row of Figure 3.8.3 illustrate a second defining characteristic of chaotic
motion, namely, nonrepeatability. Two hundred drive cycles have been plotted and
during no single cycle is the motion identical to that of any other. If we had plotted
y vs. x modulo 2, as is done in many treatments of chaotic motion (thus, dis-
counting all full revolutions by restricting the angular variable to the interval
[-=, 7)), the entire allowed area on the phase-space plot would be filled up, a clear
signature of chaotic motion. The signature is still obvious in the Poincaré section
plot, which actually consists of 200 distinct points, indicating that the motion never
repeats itself during any drive cycle.

Finally, the richness of the motion of the driven, damped pendulum discussed here was
elicited by simply varying the driving parameter within the interval [0.9, 1.5]. We saw that
one value led to periodic behavior, one led to period doubling and two led to chaotic
motion. Apparently, when one deals with driven, nonlinear oscillators, chaotic motion lurks
just around the corner from the rather mundane periodic behavior that we and our pred-
ecessors have beat into the ground in textbooks throughout the past several hundred
years. We urge each student to investigate these motions for him- or herself using a com-
puter. It is remarkable how the slightest change in the parameters governing the equa-
tions of motion either leads to or terminates chaotic behavior, but, of course, that’s what
chaos is all about.

*3.9| Nonsinusoidal Driving Force: Fourier Series

To determine the motion of a harmonic oscillator that is driven by an external periodic
force that is other than “pure” sinusoidal, it is necessary to employ a somewhat more
involved method than that of the previous sections. In this more general case it is con-
venient to use the principle of superposition. The principle is applicable to any system
governed by a linear differential equation. In our application, the principle states that if
the external driving force acting on a damped harmonic oscillator is given by a superpo-
sition of force functions

F,, =Y F,() (3.9.1)
such that the differential equation
mi, +ct, +kx, = F, () (3.9.2)

is individually satisfied by the functions x,(t), then the solution of the differential equa-
tion of motion

mi+cx+kx=F,, (3.9.3)

is given by the superposition

()= Y x,(t) (3.9.4)
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The validity of the principle is easily verified by substitution:

mi+ci+kx=Y (m#, +ct, +kx,) =Y F,()=F,, (3.9.5)

n

In particular, when the driving force is periodic—that is, if for any value of the
time ¢

F(¢)=F,¢t+T) (3.9.6)

where T is the period—then the force function can be expressed as a superposition of
harmonic terms according to Fourier’s theorem. This theorem states that any periodic func-
tion f(¢) can be expanded as a sum as follows:

f@ = %ao + i [a, cos(n@t)+b, sin(nwt)] 3.9.7)

n=1

The coefficients are given by the following formulas (derived in Appendix G):

Q T2
a, = ?j_m f(#) cos(not)ds n=0,12,... (3.9.82)
ba = %ITJZ f@) sin(notydt  n=12,... (3.9.8b)

Here T is the period and @ = 2#/T is the fundamental frequency. If the function f{¢) is
an even function—that is, if f{t) = f(—¢t)—then the coefficients b, = 0 for all n. The
series expansion is then known as a Fourier cosine series. Similarly, if we have an odd
function so that f{t) = —f(~t), then the a_ vanish, and the series is called a Fourier sine
series. By use of the relation e = cos u + i sin u, it is straightforward to verify that
Equations 3.9.7 and 3.9.8a and b may also be expressed in complex exponential form as
follows:

ft)=Y c,e™ n=01112,... (3.9.9)

1 e ino
=7 j ft)e ™ dt (3.9.10)

~T/2

Thus, to find the steady-state motion of our harmonic oscillator subject to a given peri-
odic driving force, we express the force as a Fourier series of the form of Equation 3.9.7
or 3.9.9, using Equations 3.9.8a and b or 3.9.10 to determine the Fourier coefficients a,
and b , or c,. For each value of n, corresponding to a given harmonic n® of the funda-
mental driving frequency @, there is a response function x, (¢). This function is the steady-
state solution of the driven oscillator treated in Section 3.6. The superposition of all
the x_(t) gives the actual motion. In the event that one of the harmonics of the driving
frequency coincides, or nearly coincides, with the resonance frequency @,, then the
response at that harmonic dominates the motion. As a result, if the damping constant y
is very small, the resulting oscillation may be very nearly sinusoidal even if a highly non-
sinusoidal driving force is applied.
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EXAMPLE 3.9.1

Periodic Pulse

To illustrate the above theory, we analyze the motion of a harmonic oscillator that is
driven by an external force consisting of a succession of rectangular pulses:

F.(t)=F, NT - AT St SNT+,AT
E_(t)=0 Otherwise

where N=0,+1,%2, ..., T is the time from one pulse to the next, and AT is the width
of each pulse as shown in Figure 3.9.1. In this case, F, (t) is an even function of ¢,
so it can be expressed as a Fourier cosine series. Equation 3.9.8a gives the coeffi-
cients a_,

9 (+AT2
a, = ?J‘_Am F, cos(not)dt

+AT/2

2y [Mﬁ] (3.9.11a)
T no ~AT/2

9sin(nwATIT)
0 nmw

where in the last step we use the fact that @ = 27/T. We see also that

gy = -i- [ Fdt=F, % (3.9.11b)

-atre 0
Thus, for our periodic pulse force we can write
F,.t)=F [ATT + —?t- sin (n ATT) cos(wt) + % sin (271: ATT) cos(2mt)

+£sin(3n ﬂ) cos(3at)+:-+ (3.9.12)
3r T

Figure 3.9.1 Rectangular-pulse

driving force.
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The first term in the above series expansion is just the average value of the external force:
F = F(AT/T). The second term is the Fourier component at the fundamental fre-
quency o. The remaining terms are harmonics of the fundamental: 2@, 3@, and so on.
Referring to Equations 3.6.5 and 3.9.4, we can now write the final expression for
the motion of our pulse-driven oscillator. It is given by the superposition principle,

x(t) - Z xn (t) = Z An COS (nwt - ¢n) (3913)

in which the respective amplitudes are (Equation 3.6.9)

_a,/m _ (Fy/m)2/nrm)sin(nmAT/T)

D,(w) _[(wg_nzw P apta? 2]1’2 (3.9.14)

and the phase angles (Equation 3.6.8)
0, = tm—l(ﬂ.) (3.9.15)

wp —n*w’

Here m is the mass, 7y is the decay constant, and @, is the frequency of the freely run-
ning oscillator with no damping.

As a specific numerical example, let us consider the spring suspension system of
Example 3.6.1 under the action of a periodic pulse for which the pulse width is one tenth
the pulse period: AT/T = 0.1. As before, we shall take the damping constant to be one-
tenth critical, ¥=0.1 @,, and the pulse frequency to be one-half the undamped frequency
of the system: @ = @,/2. The Fourier series for the driving force (Equation 3.9.12) is then

F.,t)=F [0.1 + 2 sin(0.17) cos(wt) + 21 sin (0.27) cos (2wt)
T T

+£ sin (0.37) cos(3wt)+-- :|
3r
= F,[0.1+0.197 cos(wt)+0.187 cos(2mt)+0.172 cos (3wt) + -]

The resonance denominators in Equation 3.9.14 are given by

o2 V2 o2 12
D, = |:(a>0-n2 “;"J +4(0.1)%w2n® “;"] [(I_TJ +0.01n2] P

Thus,
D, = w; D, =0.757w; D, = 0.20; D, =1.2850;
The phase angles (Equation 3.9.15) are

¢n = tan_l 0. 2”(00/22 tan_l( 0.4”2 )
w; —n*wi/4 4-n

6, =0 ¢, = tan"1(0.133) = 0.132
¢, = tan™ oo = /2 ¢, = tan™'(—0.24) = -0.236

which gives
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The steady-state motion of the system is, therefore, given by the following series

(Equation 3.9.13):

x(t) = lz))z [0.1+0.26 cos (@t — 0.132) + 0.935 sin (2wt) + 0.134 cos (3wt + 0.236) +- -]
ma

The dominant term is the one involving the second harmonic 2@ = @, because @ is close
to the resonant frequency. Note also the phase of this term:

cos (2wt — m/2) = sin(2wt).

Problems

3.1 A guitar string vibrates harmonically with a frequency of 512 Hz (one octave above middle
C on the musical scale). If the amplitude of oscillation of the centerpoint of the string
is 0.002 m (2 mm), what are the maximum speed and the maximum acceleration at that
point?

3.2  Apiston executes simple harmonic motion with an amplitude of 0.1 m. If it passes through
the center of its motion with a speed of 0.5 m/s, what is the period of oscillation?

3.3 A particle undergoes simple harmonic motion with a frequency of 10 Hz. Find the dis-
placement x at any time ¢ for the following initial condition:

t=0 x=0.25m £=0.1m/s

3.4 Verify the relations among the four quantities C, D, ¢, and A given by Equation 3.2.19.

3.5  Aparticle undergoing simple harmonic motion has a velocity %, when the displacement is
x; and a velocity %, when the displacement is «,. Find the angular frequency and the ampli-
tude of the motion in terms of the given quantities.

3.6 Onthe surface of the moon, the acceleration of gravity is about one-sixth that on the Earth.
What is the half-period of a simple pendulum of length 1 m on the moon?

3.7  Two springs having stiffness k; and k,, respectively, are used in a vertical position to
support a single object of mass m. Show that the angular frequency of oscillation is
[(k, + k,)'m]"2 if the springs are tied in parallel, and [k,k,/(k, + k,)m]2 if the springs

are tied in series.

3.8 A spring of stiffness k supports a box of mass M in which is placed a block of mass m. If
the system is pulled downward a distance d from the equilibrium position and then
released, find the force of reaction between the block and the bottom of the box as a func-
tion of time. For what value of d does the block just begin to leave the bottom of the box
at the top of the vertical oscillations? Neglect any air resistance.

3.9  Show that the ratio of two successive maxima in the displacement of a damped harmonic
oscillator is constant. (Note: The maxima do not occur at the points of contact of the dis-
placement curve with the curve Ae™"".)

3.10 A damped harmonic oscillator with m = 10 kg, k = 250 N/m, and ¢ = 60 kg/s is subject to a
driving force given by F, cos ¢, where F,= 48 N.
(a) What value of @ results in steady-state oscillations with maximum amplitude? Under this
condition:
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3.12

3.13

3.14

3.15

3.16

3.17
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(b) What is the maximum amplitude?
(c) What is the phase shift?

A mass m moves along the x-axis subject to an attractive force given by 178%max/2 and a

retarding force given by 3fm %, where x is its distance from the origin and B s a constant.

A driving force given by mA cos wt, where A is a constant, is applied to the particle along

the x-axis.

(a) What value of @ results in steady-state oscillations about the origin with maximum
amplitude?

(b) What is the maximum amplitude?

The frequencyf, of a damped harmonic oscillator is 100 Hz, and the ratio of the amplitude

of two successive maxima is one half.

(a) What is the undamped frequency f; of this oscillator?
(b) What is the resonant frequency f,?

Given: The amplitude of a damped harmonic oscillator drops to 1/e of its initial value after
n complete cycles. Show that the ratio of period of the oscillation to the period of the same
oscillator with no damping is given by

T, 1 )“2 1
o | =14——
T, ( 4n’n? 8r*n?

where the approximation in the last expression is valid if n is large. (See the approximation
formulas in Appendix D.)

Work all parts of Example 3.6.2 for the case in which the exponential damping factor ¥ is
one-half the critical value and the driving frequency is equal to 2a,.

For a lightly damped harmonic oscillator ¥ <« @, show that the driving frequency for which
the steady-state amplitude is one-half the steady-state amplitude at the resonant frequency
is given by @ = @, +y4/3.

If a series LCR circuit is connected across the terminals of an electric generator that pro-
duces a voltage V=V ¢!®, the flow of electrical charge q through the circuit is given by the
following second-order differential equation:

dzq dg 1 ot
L—L+R--2L+—g=V,
ar tg eIt

(a) Verify the correspondence shown in Table 3.6.1 between the parameters of a driven
mechanical oscillator and the above driven electrical oscillator.

(b) Calculate the Q of the electrical circuit in terms of the coefficients of the above differ-
ential equation.

(¢) Show that, in the case of small damping, Q can be written as Q = Ry/R, where R, = m
is the characteristic impedance of the circuit.

A damped harmonic oscillator is driven by an external force of the form
F,,=F,sinot
Show that the steady-state solution is given by
x(t) = A(®) sin(wt — ¢)
where A(w) and ¢ are identical to the expressions given by Equations 3.6.9 and 3.6.8.
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Solve the differential equation of motion of the damped harmonic oscillator driven by a
damped harmonic force:

F,, (t)=Fye ™ cos wt

(Hint: e cos ot = Re(e~%*'%) = Re(eP?), where B=—a+iw. Assume a solution of the form
AePt-i9)

A simple pendulum of length [ oscillates with an amplitude of 45°.

(a) What is the period?

{b) If this pendulum is used as a laboratory experiment to determine the value of g, find
the error included in the use of the elementary formula T = 27(l/g)!/2.

(c) Find the approximate amount of third-harmonic content in the oscillation of the pen-
dulum.

Verify Equations 3.9.9 and 3.9.10 in the text.

Show that the Fourier series for a periodic square wave is
_A4r. 1. 1.,
f@®)= —[sm((ot) + 3 sin(3@?) + 5 sin(5¢) + - ]
T

where

fey=+1 for 0 < wt < 7, 2w < @t < 37, and so on
fey=-1 for #< wt < 27, 3w < wt < 47, and so on

Use the above result to find the steady-state motion of a damped harmonic oscillator that
is driven by a periodic square-wave force of amplitude F,. In particular, find the relative
amplitudes of the first three terms, A}, A,, and A; of the response function x(¢) in the case
that the third harmonic 3@ of the driving frequency coincides with the frequency @, of the
undamped oscillator. Let the quality factor Q = 100.

(a) Derive the first-order differential equation, dy/dx, describing the phase-space trajec-
tory of the simple harmonic oscillator.
{b) Solve the equation, proving that the trajectory is an ellipse.

Let a particle of unit mass be subject to a force x — x® where x is its displacement from the
coordinate origin.

{a) Find the equilibrium points, and tell whether they are stable or unstable.

(b) Calculate the total energy of the particle, and show that it is a conserved quantity.

(¢) Calculate the trajectories of the particle in phase space.

A simple pendulum whose length [ = 9.8 m satisfies the equation
6+sin@=0
(a) If ©, is the amplitude of oscillation, show that its period T is given by

/2 de¢ .

T= 4J.0 W where o = sm2 %@0

(b) Expand the integrand in powers of o, integrate term by term, and find the period T as
a power series in ¢ Keep terms up to and including O(c?).

(¢) Expand arin a power series of O, insert the result into the power series found in (b),
and find the period T as a power series in ©,. Keep terms up to and including O(63).



