"Salvratr But if this is tru and iarge stone moves with a speed of, say,
eight while a smaller one moves wuth a speecl of four, then when they are
united, the system will move with a speed less than eight; but the two stones
when tied together make a stone larger than that which before moved with a
speed of eight. Hence the heavier body moves with less speed than the lighter;
an effect which is contrary to your supposition. Thus you see how, from your
supposition that the heavier body moves more rapidly than the lighter one, |
infer that the heavier body moves more slowly.”

Galileo—Dialogues Concerning Two New Sciences

2.1| Newton's Laws of Motion: Historical Introduction
In his Principia of 1687, Isaac Newton laid down three fundamental laws of motion,
which would forever change mankind’s perception of the world:
I. Every body continues in its state of rest, or of uniform motion in a straight ]ine, unless
it is compelled to change that state by forces impressed upon it.

IL. The change of motion is proportional to the motive force impressed and is made in
the direction of the line in which that force is impressed.

III. To every action there is always imposed an equal reaction; or, the mutual actions of
two bodies upon each other are always equal and directed to contrary parts.

These three laws of motion are now known collectively as Newton's laws of motion or, more
simply, as Newton’s laws. It is arguable whether or not these are indeed all his laws.
However, no one before Newton stated them quite so precisely, and certainly no one before
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him had such a clear understanding of the overall implication and power of these laws.
The behavior of natural phenomena that they imply seems to fly in the face of common
experience. As any beginning student of physics soon discovers, Newton’s laws become
“reasonable” only with the expenditure of great effort in attempting to understand thor-
oughly the apparent vagaries of physical systems.

Aristotle (384-322 B.C.E.) had frozen the notion of the way the world works for almost
20 centuries by invoking powerfully logical arguments that led to a physics in which all
moving, earthbound objects ultimately acquired a state of rest unless acted upon by some
motive force. In his view, a force was required to keep earthly things moving, even at con-
stant speed—a law in distinct contradiction with Newton's first and second laws. On the
other hand, heavenly bodies dwelt in a more perfect realm where perpetual circular motion
was the norm and no forces were required to keep this celestial clockwork ticking.

Modern scientists heap scorn upon Aristotle for burdening us with such obviously
flawed doctrine. He is particularly criticized for his failure to carry out even the most
modest experiment that would have shown him the error of his ways. At that time, though,
it was a commonly held belief that experiment was not a suitable enterprise for any
self-respecting philosopher, and thus Aristotle, raised with that belief, failed to acquire a
true picture of nature. This viewpoint is a bit misleading, however. Although he did no
experiments in natural philosophy, Aristotle was a keen observer of nature, one of the first.
If he was guilty of anything, it was less a failure to observe nature than a failure to follow
through with a process of abstraction based upon observation. Indeed, bodies falling
through air accelerate initially, but ultimately they attain a nearly constant velocity of fall.
Heavy objects, in general, fall faster than lighter ones. It takes a sizable force to haul a
ship through water, and the greater the force, the greater the ship’s speed. A spear thrown
vertically upward from a moving chariot will land behind the charioteer, not on top of him.
And the motion of heavenly bodies does go on and on, apparently following a curved path
forever without any visible motive means. Of course, nowadays we can understand these
things if we pay close attention to all the variables that affect the motion of objects and
then apply Newton’s laws correctly.

That Aristotle failed to extract Newton's laws from such observations of the real world
is a consequence only of the fact that he observed the world and interpreted its workings
in a rather superficial way. He was basically unaware of the then-subtle effects of air
resistance, friction, and the like. It was only with the advent of the ability and motiva-
tion to carry out precise experiments followed by a process of abstraction that led to the
revolutionary point of view of nature represented by the Newtonian paradigm. Even
today, the workings of that paradigm are most easily visualized in the artificial realm of
our own minds, emptied of the real world’s imperfections of friction and air resistance (look
at any elementary physics book and see how often one encounters the phrase “neglect-
ing friction”). Aristotle’s physics, much more than Newtonss, reflects the workings of a
nature quite coincident with the common misconception of modern people in general
(including the typical college student who chooses a curriculum curiously devoid of
courses in physics).

There is no question that the first law, the so-called law of inertia, had already
been set forth prior to the time of Newton. This law, commonly attributed to
Galileo (1564-1642), was actually first formulated by René Descartes (1596-1650).
According to Descartes, “inertia” made bodies persist in motion forever, not in perfect
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Aristotelian circles but in a straight line. Descartes came to this conclusion not by exper-
iment but by pure thought. In contrast to belief in traditional authority (which at that time
meant belief in the teachings of Aristotle), Descartes believed that only one’s own think-
ing could be trusted. It was his intent to “explain effects by their causes, and not causes
by their effects.” For Descartes, pure reasoning served as the sole basis of certainty. Such
a paradigm would aid the transition from an Aristotelian worldview to a Newtonian one,
but it contained within itself the seeds of its own destruction.

It was not too surprising that Descartes failed to grasp the implication of his law of
inertia regarding planetary motion. Planets certainly did not move in straight lines.
Descartes, more ruthless in his methods of thought than any of his predecessors, reasoned
that some physical thing had to “drive” the planets along in their curved paths. Descartes
rebelled in horror at the notion that the required physical force was some invisible entity
reaching out across the void to grab the planets and hold them in their orbits. Moreover,
having no knowledge of the second law, Descartes never realized that the required force
was not a “driving” force but a force that had to be directed “inward” toward the Sun. He,
along with many others of that era, was certain that the planets had to be pushed along
in their paths around the Sun (or Earth). Thus, he concocted the notion of an all-pervading,
ether-like fluid made of untold numbers of unseen particles, rotating in vortices, within
which the planets were driven round and round—an erroneous conclusion that arose from
the fancies of a mind engaged only in pure thought, minimally constrained by experimental
or observational data.

Galileo, on the other hand, mainly by clear argument based on actual experimental
results, had gradually commandeered a fairly clear understanding of what would come
to be the first of Newton’s laws, as well as the second. A necessary prelude to the final
synthesis of a correct system of mechanics was his observation that a pendulum undergo-
ing small oscillations was isochronous; that is, its period of oscillation was independent
of its amplitude. This discovery led to the first clocks capable of making accurate meas-
urements of small time intervals, a capability that Aristotle did not have. Galileo would
soon exploit this capability in carrying out experiments of unprecedented precision with
objects either freely falling or sliding down inclined planes. Generalizing from the results
of his experiments, Galileo came very close to formulating Newtonss first two laws.

For example, concerning the first law, Galileo noted, as had Aristotle, that an object
sliding along a level surface indeed came to rest. But here Galileo made a wonderful mental
leap that took him far past the dialectics of Aristotle. He imagined a second surface, more
slippery than the first. An object given a push along the second surface would travel farther
before stopping than it would if given a similar push along the first surface. Carrying this
process of abstraction to its ultimate conclusion, Galileo reasoned that an object given a push
along a surface of “infinite slipperiness” (i.e., “neglecting friction”) would, in fact, go on
forever, never coming to rest. Thus, contrary to Aristotle’s physics, he reasoned that a force
is not required merely to keep an object in motion. In fact, some force must be applied
to stop it. This is very close to Newton's law of inertia but, astonishingly, Galileo did not argue
that motion, in the absence of forces, would continue forever in a straight line!

For Galileo and his contemporaries, the world was not an impersonal one ruled by
mechanical laws. Instead, it was a cosmos that marched to the tune of an infinitely intel-
ligent craftsman. Following the Aristotelian tradition, Galileo saw a world ordered accord-
ing to the perfect figure, the circle. Rectilinear motion implied disorder. Objects that
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found themselves in such a state of affairs would not continue to fly in a straight line for-
ever but would ultimately lapse into their more natural state of perfect circular motion.
The experiments necessary to discriminate between straight-line motion forever and
straight-line motion ultimately evolving to pure circular motion obviously could not be
performed in practice, but only within the confines of one’s own mind, and only if that
mind had been properly freed from the conditioning of centuries of ill-founded dogma.
Galileo, brilliant though he was, still did battle with the ghosts of the past and had not yet
reached that required state of mind.

Galileo’s experiments with falling bodies led him to the brink of Newton’s second law.
Again, as Aristotle had known, Galileo saw that heavy objects, such as stones, did fall faster
than lighter ones, such as feathers. However, by carefully timing similarly shaped objects,
albeit of different weights, Galileo discovered that such objects accelerated as they fell
and all reached the ground at more or less the same time! Indeed, very heavy objects, even
though themselves differing greatly in weight, fell at almost identical rates, with a speed
that increased about 10 m/s each second. (Incidentally, the famous experiment of
dropping cannonballs from the Leaning Tower of Pisa might not have been carried out
by Galileo but by one of his chief Aristotelian antagonists at Pisa, Giorgio Coressio, and
in hopes not of refuting but of confirming the Aristotelian view that larger bodies must
fall more quickly than small ones!)" It was again through a process of brilliant abstraction
that Galileo realized that if the effects of air resistance could be eliminated, all objects
would fall with the same acceleration, regardless of weight or shape. Thus, even more of
Aristotle’s edifice was torn apart; a heavier weight does not fall faster than a light one, and
a force causes objects to accelerate, not to move at constant speed.

Galileo’s notions of mechanics on Earth were more closely on target with Newton's laws
than the conjectures of any of his predecessors had been. He sometimes applied them bril-
liantly in defense of the Copernican viewpoint, that is, a heliocentric model of the solar
system. In particular, even though his notion of the law of inertia was somewhat flawed,
he applied it correctly in arguing that terrestrial-based experiments could not be used to
demonstrate that the Earth could not be in motion around the Sun. He pointed out that
a stone dropped from the mast of a moving ship would not “be left behind” since the stone
would share the ship’s horizontal speed. By analogy, in contrast to Aristotelian argument,
a stone dropped from a tall tower would not be left behind by an Earth in motion. This
powerful argument implied that no such observation could be used to demonstrate whether
or not the Earth was rotating. The argument contained the seeds of relativity theory.

Unfortunately, as mentioned above, Galileo could not entirely break loose from
the Aristotelian dogma of circular motion. In strict contradiction to the law of inertia, he
postulated that a body left to itself will continue to move forever, not in a straight line but
in a circular orbit. His reasoning was as follows:

. .. straight motion being by nature infinite (because a straight line is infinite and inde-
terminate), it is impossible that anything should have by nature the principle of moving
in a straight line; or, in other words, towards a place where it is impossible to arrive, there
being no finite end. For that which cannot be done, nor endeavors to move whither it is
impossible to arrive.

! Aristotle, Galileo, and the Tower of Pisa, L. Cooper, Cornell University Press, Ithaca, 1935.
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This statement also contradicted his intimate knowledge of centrifugal forces, that is, the
tendency of an object moving in a circle to fly off on a tangent in a straight line. He
knew that earthbound objects could travel in circles only if this centrifugal force was either
balanced or overwhelmed by some other offsetting force. Indeed, one of the Aristotelian
arguments against a rotating Earth was that objects on the Earth’s surface would be flung
off it. Galileo argued that this conclusion was not valid, because the Earth’s “gravity”
overwhelmed this centrifugal tendency! Yet somehow he failed to make the mental leap
that some similar effect must keep the planets in circular orbit about the Sun!

So ultimately it was Newton who pulled together all the fragmentary knowledge that
had been accumulated about the motion of earthbound objects into the brilliant synthe-
sis of the three laws and then demonstrated that the motion of heavenly objects obeyed
those laws as well.

Newton’s laws of motion can be thought of as a prescription for calculating or pre-
dicting the subsequent motion of a particle (or system of particles), given a knowledge of
its position and velocity at some instant in time. These laws, in and of themselves, say
nothing about the reason why a given physical system behaves the way it does. Newton
was quite explicit about that shortcoming. He refused to speculate (at least in print) why
objects move the way they do. Whatever “mechanism” lay behind the workings of phys-
ical systems remained forever hidden from Newton’s eyes. He simply stated that, for
whatever reason, this is the way things work, as demonstrated by the power of his calcu-
lational prescription to predict, with astonishing accuracy, the evolution of physical
systems set in motion. Much has been learned since the time of Newton, but a basic fact
of physical law persists: the laws of motion are mathematical prescriptions that allow us
to predict accurately the future motion of physical systems, given a knowledge of their
current state. The laws describe how things work. They do not tell us why.

Newton’s First Law: Inertial Reference Systems

The first law describes a common property of matter, namely, inertia. Loosely speaking,
inertia is the resistance of all matter to having its motion changed. If a particle is at rest,
it resists being moved; that is, a force is required to move it. If the particle is in motion, it
resists being brought to rest. Again, a force is required to bring it to rest. It almost seems
as though matter has been endowed with an innate abhorrence of acceleration. Be that
as it may, for whatever reason, it takes a force to accelerate matter; in the absence of applied
forces, matter simply persists in its current velocity state—forever.

A mathematical description of the motion of a particle requires the selection of a frame
of reference, or a set of coordinates in configuration space that can be used to specify
the position, velocity, and acceleration of the particle at any instant of time. A frame of
reference in which Newton’s first law of motion is valid is called an inertial frame of ref-
erence. This law rules out accelerated frames of reference as inertial, because an object
“really” at rest or moving at constant velocity, seen from an accelerated frame of refer-
ence, would appear to be accelerated. Moreover, an object seen to be at rest in such a
frame would be seen to be accelerated with respect to the inertial frame. So strong is our
belief in the concept of inertia and the validity of Newton’s laws of motion that we would
be forced to invent “fictitious” forces to account for the apparent lack of acceleration of
an object at rest in an accelerated frame of reference.
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Figure 2.1.1 A plumb bob hangs at an angle 6 in an accelerating frame of reference.

A simple example of a noninertial frame of reference should help clarify the situation.
Consider an observer inside a railroad boxcar accelerating down the track with an accel-
eration a. Suppose a plumb bob were suspended from the ceiling of the boxcar. How would
it appear to the observer? Take a look at Figure 2.1.1. The point here is that the observer
in the boxcar is in a noninertial frame of reference and is at rest with respect to it. He sees
the plumb bob, also apparently at rest, hanging at an angle 6 with respect to the vertical.
He knows that, in the absence of any forces other than gravity and tension in the plumb
line, such a device should align itself vertically. It does not, and he concludes that some
unknown force must be pushing or pulling the plumb bob toward the back of the car.
(Indeed, he too feels such a force, as anyone who has ever been in an accelerating vehi-
cle knows from first-hand experience.)

A question that naturally arises is how is it possible to determine whether or not a
given frame of reference constitutes an inertial frame? The answer is nontrivial! (For
example, if the boxcar were sealed off from the outside world, how would the observer
know that the apparent force causing the plumb bob to hang off-vertical was not due to
the fact that the whole boxcar was “misaligned” with the direction of gravity—that is,
the force due to gravity was actually in the direction indicated by the angle 6?) Observers
would have to know that all external forces on a body had been eliminated before check-
ing to see whether or not objects in their frame of reference obeyed Newtonss first law.
It would be necessary to isolate a body completely to eliminate all forces acting upon it.
This is impossible, because there would always be some gravitational forces acting unless
the body were removed to an infinite distance from all other matter.

Is there a perfect inertial frame of reference? For most practical purposes, a coordi-
nate system attached to the Earth’s surface is approximately inertial. For example, a
billiard ball seems to move in a straight line with constant speed as long as it does not
collide with other balls or hit the cushion. If its motion were measured with very high
precision, however, we would see that its path is slightly curved. This is due to the fact



2.1 Newton’s Laws of Motion: Historical Introduction 53

that the Earth is rotating and its surface is therefore accelerating toward its axis. Hence,
a coordinate system attached to the Earth’s surface is not inertial. A better system would
be one that uses the center of the Earth as coordinate origin, with the Sun and a star as
reference points. But even this system would not be inertial because of the Earth’s orbital
motion around the Sun.

Suppose, then, we pick a coordinate system whose origin is centered on the Sun.
Strictly speaking, this is not a perfect inertial frame either, because the Sun partakes of
the general rotational motion of the Milky Way galaxy. So, we try the center of the Milky
Way, but to our chagrin, it is part of a local group, or small cluster, of some 20 galaxies
that all rotate about their common center of mass. Continuing on, we see that the local
group lies on the edge of the Virgo supercluster, which contains dozens of clusters of galax-
ies centered on the 2000-member-rich Virgo cluster, 60 million light years away, all rotat-
ing about their common center of mass! As a final step in this continuing saga of seeming
futility, we might attempt to find a frame of reference that is at rest with respect to the
observed relative motion of all the matter in the universe; however, we cannot observe
all the matter. Some of the potentially visible matter is too dim to be seen, and some matter
isn’t even potentially visible, the so-called dark matter, whose existence we can only infer
by indirect means. Furthermore, the universe appears to have a large supply of dark
energy, also invisible, which nonetheless makes its presence known by accelerating the
expansion of the universe.

However, all is not lost. The universe began with the Big Bang about 12.7 billion years
ago and has been expanding ever since. Some of the evidence for this is the observation
of the Cosmic Microwave Background radiation (CMB), a relic of the primeval fireball
that emerged from that singular event.” Its existence provides us with a novel means of
actually measuring the Earth’s “true” velocity through space, without reference to
neighboring galaxies, clusters, or superclusters. If we were precisely at rest with respect
to the universal expansion,’ then we would see the CMB as perfectly isotropic, that is, the
distribution of the radiation would be the same in all directions in the sky. The reason
for this is that initially, the universe was extremely hot and the radiation and matter that
sprang forth from the Big Bang interacted fairly strongly and were tightly coupled together.
But 380,000 years later, the expanding universe cooled down to a temperature of about
3000 K and matter, which up to that point consisted mostly of electrically charged protons
and electrons, then combined to form neutral hydrogen atoms and the radiation decou-
pled from it. Since then, the universe has expanded even more, by a factor of about 1000,
and has cooled to a temperature of about 2.73 K. The spectral distribution of the left over
CMB has changed accordingly. Indeed, the radiation is remarkably, though not perfectly,

%For the most up-to-date information about the CMB, dark matter, and dark energy, visit the NASA Goddard
Space Flight Center at http:/map.gsfc.nasa.gov and look for articles discussing the Wilkinson Microwave
Anisotropy Project (WMAP). For a general discussion of the CMB and its implications, the reader is referred
to almost any current astronomy text, such as The Universe, 6th ed., Kaufmann and Freedman, Wiley Publishing,
Indianapolis, 2001.

®A common analog of this situation is an inflating balloon on whose surface is attached a random distribution
of buttons. Each button is fixed and, therefore, “at rest” relative to the expanding two-dimensional surface. Any
frame of reference attached to any button would be a valid inertial frame of reference.
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isotropic. Radiation arriving at Earth from the direction of the constellation Leo appears
to be coming from a slightly warmer region of the universe and, thus, has a slightly shorter
or “bluer” wavelength than radiation arriving from the opposite direction in the constel-
lation Aquarius (Figure 2.1.2). This small spectral difference occurs because the Earth
moves about 400 km/s towards Leo, which causes a small Doppler shift in the observed
spectral distribution.* Observers in a frame of reference moving from Leo toward Aquarius
at 400 km/s relative to Earth would see a perfectly isotropic distribution (except for some
variations that originated when the radiation decoupled from matter in localized regions
of space of slightly different matter densities). These observers would be at rest with
respect to the overall expansion of the universe! It is generally agreed that such a frame
of reference comes closest to a perfect inertial frame.

However, do not think that we are implying that there is such a thing as an absolute
inertial frame of reference. In part, the theory of relativity resulted from the failure of
attempts to find an absolute frame of reference in which all of the fundamental laws of
physics, not just Newton’s first law of motion, were supposed to be valid. This led Einstein
to the conclusion that the failure to find an absolute frame was because of the simple
reason that none exists. Consequently, he proposed as a cornerstone of the theory of rel-
ativity that the fundamental laws of physics are the same in all inertial frames of refer-
ence and that there is no single preferred inertial frame.

Interestingly, Galileo, who predated Einstein by 300 years, had arrived at a very
similar conclusion. Consider the words that one of his characters, Salviati, speaks to
another, Sagredo, in his infamous Dialogue Concerning the Two Chief World Systems,’
which poetically expresses the gist of Galilean relativity.

*Relative motion toward a source of light decreases the observed wavelength of the light. Relative motion away
from the source increases the observed wavelength. This change in observed wavelength is called the Doppler
Effect. A shortening is called a blueshift and a lengthening is called a redshift.

®Dialogue Concerning the Two Chief World Systems, Galileo Galilei (1632), The Second Day, 2nd printing,
p- 186, translated by Stillman Drake, University of California Press, Berkeley, 1970.
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“Shut yourself up with some friend in the main cabin below decks on some large ship,
and have with you there some flies, butterflies, and other small flying animals. Have
a large bowl of water with some fish in it; hang up a bottle that empties drop by drop
into a wide vessel beneath it. With the ship standing still, observe carefully how the
little animals fly with equal speed to all sides of the cabin. The fish swim indiffer-
ently in all directions; the drops fall into the vessel beneath; and, in throwing some-
thing to your friend, you need throw it no more strongly in one direction than
another, the distances being equal; jumping with your feet together, you pass equal
spaces in every direction. When you have observed all these things carefully (though
there is no doubt that when the ship is standing still, everything must happen in this
way), have the ship proceed with any speed you like, so long as the motion is uni-
form and not fluctuating this way and that. You will discover not the least change in
all the effects named, nor could you tell from any of them whether the ship was
moving or standing still. In jumping, you will pass on the floor the same spaces as
before, nor will you make larger jumps toward the stern than toward the prow even
though the ship is moving quite rapidly, despite the fact that during the time you are
in the air, the floor under you will be going in a direction opposite to your jump. In
throwing something to your companion, you will need no more force to get it to him
whether he is in the direction of the bow or the stern, with yourself situated oppo-
site. The droplets will fall as before into the vessel, without dropping toward the stern,
although while the drops are in the air the ship runs many spans. The fish in their
water will swim toward the front of their bowl with no more effort than toward the
back, and will go with equal ease toward bait placed anywhere around the edges of
the bowl. Finally the butterflies and flies will continue their flights indifferently
toward every side, nor will it ever happen that they are concentrated toward the stern,
as if tired out from keeping up with the course of the ship, from which they will have
been separated during long intervals by keeping themselves in the air. . ..”

EXAMPLE 2.1.1

Is the Earth a Good Inertial Reference Frame?

Calculate the centripetal acceleration (see Example 1.12.2), relative to the acceleration
due to gravity g, of

(a) a point on the surface of the Earth’s equator (the radius of the Earth is
Rz =6.4% 10° km)

(b) the Earth in its orbit about the Sun (the radius of the Earth’s orbit is
ax = 150 x 10° km)

(¢) the Sun in its rotation about the center of the galaxy (the radius of the Sun’s
orbit about the center of the galaxy is Rg = 2.8 X 10* LY. Its orbital speed is
ve = 220 km/s)

Solution:

The centripetal acceleration of a point rotating in a circle of radius R is given by

o\’ 4rn’R
ac=sz=[—”] R="Z

T T2
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where T is period of one complete rotation. Thus, relative to g we have

a, 4n°R
g gr
2 6
@) [ 4 (_SAXIO m)7 " =3.4x107°
g 98m-s(3.16x10"s)
(b) 6x107*

(¢) 1.5x107"2

Question for Discussion

Suppose that you step inside an express elevator on the 120th floor of a tall skyscraper.
The elevator starts its descent, but as in your worst nightmare, the support elevator cable
snaps and you find yourself suddenly in freefall. Realizing that your goose is cooked —
or soon will be—you decide to conduct some physics experiments during the little time
you have left on Earth— or above it! First, you take your wallet out of your pocket and
remove a dollar bill. You hold it in front of your face and let it go. Wonder of wonders—
it does nothing! It just hangs there seemingly suspended in front of your face (Figure
2.1.3)! Being an educated person with a reasonably good understanding of Newton’s first
law of motion, you conclude that there is no force acting on the dollar bill. Being a skep-
tical person, however, you decide to subject this conclusion to a second test. You take
a piece of string from your pocket, tie one end to a light fixture on the ceiling of the
falling elevator, attach your wallet to the other end, having thus fashioned a crude

/

Figure 2.1.3 Person in falling elevator.
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plumb bob. You know that a hanging plumb bob aligns itself in the direction of gravity,
which you anticipate is perpendicular to the plane of the ceiling. However, you discover
that no matter how you initially align the plumb bob relative to the ceiling, it simply hangs
in that orientation. There appears to be no gravitational force acting on the plumb bob,
either. Indeed, there appears to be no force of any kind acting on any object inside the
elevator. You now wonder why your physics instructor had such difficulty trying to find
a perfect inertial frame of reference, because you appear to have discovered one quite
easily—just get into a freely falling elevator. Unfortunately, you realize that within a few
moments, you will not be able to share the joy of your discovery with anyone else.

So—is an elevator in free fall a perfect inertial frame of reference, or not?

Hint: Consider this quotation by Albert Einstein.

At that moment there came to me the happiest moment of my life . . . for an observer
falling freely from the roof of a house no gravitational force exists during his fall —at least
not in his immediate vicinity. That is, if the observer releases any objects, they remain in
a state of rest or uniform motion relative to him, respectively, independent of their unique
chemical and physical nature. Therefore, no observer is entitled to interpret his state as
that of “rest”

For a more detailed discussion of inertial frames of reference and their relationship to
gravity, read the delightful book, Spacetime Physics, 2nd ed., by Taylor and Wheeler,
W. H. Freeman & Co., New York, 1992.

Mass and Force: Newton's Second and Third Laws

The quantitative measure of inertia is called mass. We are all familiar with the notion that
the more massive an object is, the more resistive it is to acceleration. Go push a bike to
get it rolling, and then try the same thing with a car. Compare the efforts. The car is much
more massive and a much larger force is required to accelerate it than the bike. A more
quantitative definition may be constructed by considering two masses, m, and my, attached
by a spring and initially at rest in an inertial frame of reference. For example, we could
imagine the two masses to be on a frictionless surface, almost achieved in practice by two
carts on an air track, commonly seen in elementary physics class demonstrations. Now
imagine someone pushing the two masses together, compressing the spring, and then sud-
denly releasing them so that they fly apart, attaining speeds v, and v,. We define the ratio
of the two masses to be

v, @11

If we let m, be the standard of mass, then all other masses can be operationally defined
in the above way relative to the standard. This operational definition of mass is consistent
with Newton’s second and third laws of motion, as we shall soon see. Equation 2.1.1 is
equivalent to

A(mv)) = =A(mgvy) (2.1.2)
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because the initial velocities of each mass are zero and the final velocities v, and v, are
in opposite directions. If we divide by At and take limits as At — 0, we obtain

d d
%(mlvl) = "a(mzvz) (2.1.3)

The product of mass and velocity, mv, is called linear momentum. The “change of
motion” stated in the second law of motion was rigorously defined by Newton to be the
time rate of change of the linear momentum of an object, and so the second law can be
rephrased as follows: The time rate of change of an object’s linear momentum is propor-
tional to the impressed force, F. Thus, the second law can be written as

F = ; 2mv) (2.14)
dt

where k is a constant of proportionality. Considering the mass to be a constant, inde-
pendent of velocity (which is not true of objects moving at “relativistic” speeds or speeds
approaching the speed of light, 3 x 10° m/s, a situation that we do not consider in this book),
we can write

F= km@ =kma 2.15)
dt

where a is the resultant acceleration of a mass m subjected to a force F. The constant
of proportionality can be taken to be k = 1 by defining the unit of force in the SI system
to be that which causes a 1-kg mass to be accelerated 1 m/s®. This force unit is called
1 newton.

Thus, we finally express Newton’s second law in the familiar form

_d(mv) _
dt
The force F on the left side of Equation 2.1.6 is the net force acting upon the mass m;

that is, it is the vector sum of all of the individual forces acting upon m.
We note that Equation 2.1.3 is equivalent to

F,=-F, @.17)

(2.1.6)

or Newton’s third law, namely, that two interacting bodies exert equal and opposite forces
upon one another. Thus, our definition of mass is consistent with both Newton’s second

and third laws.

Linear Momentum
Linear momentum proves to be such a useful notion that it is given its own symbol:
p=mv (2.1.8)

Newton’s second law may be written as

dp 2.1.9
F=— (2.1.9)
dt
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Thus, Equation 2.1.3, which describes the behavior of two mutually interacting masses,
is equivalent to

d
2 (pr+p) =0 2.1.10)

or
P: + P2 = constant 2.1.11)

In other words, Newton’s third law implies that the total momentum of two mutually
interacting bodies is a constant. This constancy is a special case of the more general sit-
uation in which the total linear momentum of an isolated system (a system subject to no
net externally applied forces) is a conserved quantity. The law of linear momentum con-
servation is one of the most fundamental laws of physics and is valid even in situations in
which Newtonian mechanics fails.

EXAMPLE 2.1.2

A spaceship of mass M is traveling in deep space with velocity v; = 20 km/s relative to
the Sun. It ejects a rear stage of mass 0.2 M with a relative speed u = 5 km/s (Figure 2.1.4).
What then is the velocity of the spaceship?

Solution:

The system of spaceship plus rear stage is a closed system upon which no external forces
act (neglecting the gravitational force of the Sun); therefore, the total linear momen-
tum is conserved. Thus

Pf = P{

where the subscripts i and f refer to initial and final values respectively. Taking veloci-
ties in the direction of the spaceship’s travel to be positive, before ejection of the rear
stage, we have

Pi::MDi

Let U be the velocity of the ejected rear stage and vy be the velocity of the ship after
ejection. The total momentum of the system after ejection is then

7 v

Figure 2.1.4 Spaceship ejecting a V

rear stage.
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The speed u of the ejected stage relative to the spaceship is the difference in velocities
of the spaceship and stage

u=vf-—U
or
U=vf-—u

Substituting this latter expression into the equation above and using the conservation
of momentum condition, we find

0.20 M(vy—u) + 0.8 Mos= My,
which gives us

vy =0;+0.2u =20 km/s + 0.20 (5 km/s) = 21 km/s

Motion of a Particle

Equation 2.1.6 is the fundamental equation of motion for a particle subject to the influ-
ence of a net force, F. We emphasize this point by writing F as F,,,,, the vector sum of all
the forces acting on the particle.

&
dt?

The usual problem of dynamics can be expressed in the following way: Given a knowl-
edge of the forces acting on a particle (or system of particles), calculate the acceleration
of the particle. Knowing the acceleration, calculate the velocity and position as functions
of time. This process involves solving the second-order differential equation of motion rep-
resented by Equation 2.1.12. A complete solution requires a knowledge of the initial con-
ditions of the problem, such as the values of the position and velocity of the particle at
time ¢ = 0. The initial conditions plus the dynamics dictated by the differential equation
of motion of Newton’s second law completely determine the subsequent motion of the
particle. In some cases this procedure cannot be carried to completion in an analytic way.
The solution of a complex problem will, in general, have to be carried out using numer-
ical approximation techniques on a digital computer.

F,=XF,=m> > =ma (2.1.12)

2.2] Rectilinear Motion: Uniform Acceleration
Under a Constant Force

When a moving particle remains on a single straight line, the motion is said to be recti-
linear. In this case, without loss of generality we can choose the x-axis as the line of
motion. The general equation of motion is then

F.(x,%,t) =mi (2.2.1)
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(Note: In the rest of this chapter, we usually use the single variable x to repre-
sent the position of a particle. To avoid excessive and unnecessary use of sub-
scripts, we often use the symbols v and a for x and X, respectively, rather than
v and a,, and F rather than F,.)

The simplest situation is that in which the force is constant. In this case we have con-
stant acceleration

i= % = % = constant = a (2.2.2a)

and the solution is readily obtained by direct integration with respect to time:
t=v=at+v, (2.2.2b)
x= %at2 + vyt + 1, (2.2.2¢)

where vy is the velocity and x, is the position at ¢ = 0. By eliminating the time ¢ between
Equations 2.2.2b and 2.2.2¢, we obtain

2a(x —x5) =v° —vp (2.2.2d)

The student will recall the above familiar equations of uniformly accelerated motion.
There are a number of fundamental applications. For example, in the case of a body
falling freely near the surface of the Earth, neglecting air resistance, the acceleration is
very nearly constant. We denote the acceleration of a freely falling body with g. Its mag-
nitude is g = 9.8 m/s>. The downward force of gravity (the weight) is, accordingly, equal
tomg. The gravitational force is always present, regardless of the motion of the body, and
is independent of any other forces that may be acting,® We henceforth call it mg.

EXAMPLE 2.2.1

Consider a block that is free to slide down a smooth, frictionless plane that is inclined at an
angle 6 to the horizontal, as shown in Figure 2.2.1(a). If the height of the plane is & and
the block is released from rest at the top, what will be its speed when it reaches the bottom?

Solution:

We choose a coordinate system whose positive x-axis points down the plane and whose
y-axis points “upward,” perpendicular to the plane, as shown in the figure. The only
force along the x direction is the component of gravitational force, mg sin 6, as shown
in Figure 2.2.1(b). It is constant. Thus, Equations 2.2.2a—d are the equations of motion,
where

S Effects of the Earth’s rotation are studied in Chapter 5.
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(@ (b) (©)

Figure 2.2.1 (a) A block sliding down an inclined plane. (b} Force diagram (no friction).
(c) Force diagram (friction f =y, N).

and

Thus,
2 . h
v” =2g sinf)| — [=2gh
sin8
Suppose that, instead of being smooth, the plane is rough; that is, it exerts a frictional
force f on the particle. Then the net force in the x direction, (see Figure 2.2.1(c)), is equal

to mg sin 6 — f. Now, for sliding contact it is found that the magnitude of the frictional
force is proportional to the magnitude of the normal force N; that is,

fz.uxN

where the constant of proportionality u, is known as the coefficient of sliding or kinetic

T . k . .
friction.” In the example under discussion, the normal force, as shown in the figure, is
equal to mg cos 6; hence,

f=u,mgcosb
Consequently, the net force in the x direction is equal to
mg sin @— pu,mg cos 6
Again the force is constant, and Equations 2.2.2a—d apply where

5c'=£=g(sin9—uk cos 0)
m

"There is another coefficient of friction called the static coefficient g, which, when multiplied by the normal
force, gives the maximum frictional force under static contact, that is, the force required to barely start an object
to move when it is initially at rest. In general, p, > y,.
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The speed of the particle increases if the expression in parentheses is positive—that is,
if 8> tan™ . The angle, tan ™" Iy, usually denoted by e, is called the angle of kinetic
friction. If 8= €, then a = 0, and the particle slides down the plane with constant speed.
If 6 < €, a is negative, and so the particle eventually comes to rest. For motion up the
plane, the direction of the frictional force is reversed; that is, it is in the positive x direc-
tion. The acceleration (actually deceleration) is then % = g(sin 8 + y,c cos 6).

2.3| Forces that Depend on Position: The Concepts

of Kinetic and Potential Energy

It is often true that the force a particle experiences depends on the particle’s position with

respect to other bodies. This is the case, for example, with electrostatic and gravitational

forces. It also applies to forces of elastic tension or compression. If the force is independent

of velocity or time, then the differential equation for rectilinear motion is simply
Flx)=mXx (2.3.1)

It is usually possible to solve this type of differential equation by one of several methods,

such as using the chain rule to write the acceleration in the following way:

(_di_dedi_ do

T & ®52)
so the differential equation of motion may be written
do_md(v) _dr
dx 2 dx dx

The quantity T'= 1 mo’is called the kinetic energy of the particle. We can now express
Equation 2.3.3 in integral form:

w=[ Fx)de=T-T, (2.3.4)

The integral | F(x)dx is the work W done on the particle by the impressed force F (x). The
work is equal to the change in the kinetic energy of the particle. Let us define a function
V(x) such that

(2.3.3)

F(x) =mo

_dv(x)
dx

The function V(x) is called the potential energys; it is defined only to within an arbi-
trary additive constant. In terms of V(x), the work integral is

w =f0F(x)dx =—J:c0 dV =-V(x)+V(xy) =T-T, (2.3.6)

= F(x) (2.3.5)

Notice that Equation 2.3.6 remains unaltered if V(x) is changed by adding any constant
C, because

—[V(x) + C1+ [V(xy) + C] =—=V(x) + V(xy) 2.3.7)
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V(x)

Allowed
region

Turning points
Figure 2.3.1 Graph of a one-
dimensional potential energy
function V(x) showing the allowed
region of motion and the turning
points for a given value of the total
energy E.

We now transpose terms and write Equation 2.3.6 in the following form:
Ty+ V(xy) =constant=T + V(x)=E (2.3.8)

This is the energy equation. E is defined to be the total energy of the particle (tech-
nically, it’s the total mechanical energy). It is equal to the sum of the kinetic and poten-
tial energies and is constant throughout the motion of the particle. This constancy
results from the fact that the impressed force is a function only of the position x (of the
particle and consequently can be derived from a corresponding potential energy)
function V(x). Such a force is said to be conservative.® Nonconservative forces—that
is, those for which no potential energy function exists—are usually of a dissipational
nature, such as friction.

The motion of the particle can be obtained by solving the energy equation (Equation

2.3.8) for v,
dx ;2
=2+ [ ZE- 2.3.9
0= + [E-V(x)] ( )

which can be written in integral form,

x dx

J; —— =t
° 4 / 2 (E- V()] (2.3.10)
m

thus giving ¢ as a function of x.

In view of Equation 2.3.9, we see that the expression for v is real only for those values
of x such that V(x) is less than or equal to the total energy E. Physically, this means that
the particle is confined to the region or regions for which the condition V(x) < E is satis-
fied. Furthermore, v goes to zero when V(x) = E. This means that the particle must come
to rest and reverse its motion at points for which the equality holds. These points are
called the turning points of the motion. The above facts are illustrated in Figure 2.3.1.

¥ A more complete discussion of conservative forces is found in Chapter 4.
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EXAMPLE 2.3.1

Free Fall

The motion of a freely falling body (discussed above under the case of constant accel-
eration) is an example of conservative motion. If we choose the x direction to be posi-
tive upward, then the gravitational force is equal to —mg. Therefore, ~dV/dx = —mg, and
V=mgx + C. The constant of integration C is arbitrary and merely depends on the choice
of the reference level for measuring V. We can choose C = 0, which means that V=0
when x = 0. The energy equation is then

1 2 _
zmv~ +mgr=E

The energy constant E is determined from the initial conditions. For instance, let the
body be pro]ected upward with initial speed v, from the origin x = 0. These values give
E=mvg/2=mo’2 + mgx, so

v =vg— 2gx

The turning point of the mot10n which is in this case the maximum height, is given by
setting v = 0. This gives 0 = v§ ~ 28 %5z, OF

Variation of Gravity with Height

In Example 2.3.1 we assumed that g was constant. Actually, the force of gravity between
two particles is 1nversely proportional to the square of the distance between them
(Newton’s law of gravity). ® Thus, the gravitational force that the Earth exerts on a body
of mass m is given by

GMm

v
1"2

in which G is Newton’s constant of gravitation, M is the mass of the Earth, and r is the
distance from the center of the Earth to the body. By definition, this force is equa.l to
the quantity —mg when the body is at the surface of the Earth, so mg = GMm/r2. Thus,
g = GM/r? is the acceleration of gravity at the Earth’s surface. Here r, is the radius of
the Earth (assumed to be spherical). Let x be the distance above the surface, so that
r=r,+x. Then, neglecting any other forces such as air resistance, we can write

2

Fx)=-mg :ex)z = mi

®We study Newton's law of gravity in more detail in Chapter 6.
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for the differential equation of motion of a vertically falling (or rising) body with the vari-
ation of gravity taken into account. To integrate, we set X = vdv/dx. Then

0
—mg =1 modv
xo(f‘ +x)2 '[Do
of 1 1 12 1 .3
r - =_mo°—zmo
mge[r+x r+on 2 g0

This is just the energy equation in the form of Equation 2.3.6. The potential energy is
V(x) = —mg[rZ/(r, + x)] rather than mgz.

Maximum Height: Escape Speed

Suppose a body is projected upward with initial speed v, at the surface of the Earth,
%o = 0. The energy equation then yields, upon solving for v*, the following result:

-1
0% = u§—2gx(l+iJ

re

This reduces to the result for a uniform gravitational field of Example 2.2.1, if x is very
small compared to r, so that the term x/r,, can be neglected. The turning point (maxi-
mum height) is found by setting v = 0 and solving for x. The result is

2 2 \1
o == ”_o(l_“_o]
28\ 2gr,

Again we get the formula of Example 2.2.1 if the second term in the parentheses can
be ignored, that is, if vj is much smaller than 2gr,.

Using this last, exact expression, we solve for the value of v, that gives an infinite value
for h. This is called the escape speed, and it is found by setting the quantity in paren-
theses equal to zero. The result is

v, = (2gr)"
This gives, for g =9.8 m/s”* and r, = 6.4 x 10° m,
v, = 11km/s = 7 mi/s

for the numerical value of the escape speed from the surface of the Earth.

In the Earth’s atmosphere, the average speed of air molecules (O, and N,) is about
0.5 km/s, which is considerably less than the escape speed, so the Earth retains its
atmosphere. The moon, on the other hand, has no atmosphere; because the escape
speed at the moon’s surface, owing to the moon’s small mass, is considerably smaller than
that at the Earth’s surface, any oxygen or nitrogen would eventually disappear. The
Earth’s atmosphere, however, contains no significant amount of hydrogen, even though
hydrogen is the most abundant element in the universe as a whole. A hydrogen atmos-
phere would have escaped from the Earth long ago, because the molecular speed of
hydrogen is large enough (owing to the small mass of the hydrogen molecule) that at
any instant a significant number of hydrogen molecules would have speeds exceeding
the escape speed.
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EXAMPLE 2.3.3

The Morse function V(x) approximates the potential energy of a vibrating diatomic mol-
ecule as a function of x, the distance of separation of its constituent atoms, and is given by

V@) = Vo[L-e 08 -,

where Vy, %y, and & are parameters chosen to describe the observed behavior of a partic-
ular pair of atoms. The force that each atom exerts on the other is given by the derivative
of this function with respect to x. Show that x, is the separation of the two atoms when the
potential energy function is a minimum and that its value for that distance of separation is
V(xo) =—V,. (When the molecule is in this configuration, we say that it is in equilibrium.)

Solution:

The potential energy of the diatomic molecule is a minimum when its derivative with
respect to x, the distance of separation, is zero. Thus,

dV(x) _
dx

2%(1 _ e-(x_xo)/s)( e_<x-xo)/a) -0
1= e =508 _

In(1)=—(x—x,)/6=0

SX = Xo

F(x)=- 0=

The value of the potential energy at the minimum can be found by setting x = x, in the
expression for V(x). This gives V(xy) = -V,

EXAMPLE 2.3.4

Shown in Figure 2.3.2 is the potential energy function for a diatomic molecule. Show
that, for separation distances x close to x, the potential energy function is parabolic and
the resultant force on each atom of the pair is linear, always directed toward the equi-
librium position.

V(x)

Figure 2.3.2 Potential energy function for a
diatomic molecule.

_Vo e —
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Solution:

All we need do here is expand the potential energy function near the equilibrium

position.
2
V(x) =V, [1 - [1 - (3‘—‘630—))] -V,

—g(x xo) -V

dv(x) _ 2V0( B
d

(Note: The force is linear and is directed in such a way as to restore the diatomic
molecule to its equilibrium position.)

F(x)=-

%)

EXAMPLE 2.3.5

The bmdmg energy (-V,) of the diatomic hydrogen molecule Hy is ~4.52 eV (1 eV =
1.6 x 107" joules; 1 joule=1 N - m) The values of the constants x, and & are .074
and .036 nm, respectively (1 nm = 10~° m). Assume that at room temperature the total
energy of the hydrogen molecule is about AE = 1/40 eV higher than its binding
energy. Calculate the maximum separation of the two atoms in the diatomic hydro-
gen molecule.

Solution:

Because the molecule has a little more energy than its minimum possible value, the two
atoms will vibrate between two values of x, where their kinetic energy is zero. At these
turning points, all the energy is potential; hence,

V(x)=-V, +AE = %(x—xo)z -V

x=x,%0 ’%
0

Putting in numbers, we see that the hydrogen molecule vibrates at room temperature
a distance of about £4% of its equilibrium separation.

For this situation where the oscillation is small, the two atoms undergo a symmetri-
cal displacement about their equilibrium position. This arises from approximating the
potential function as a parabola near equilibrium. Note from Figure 2.3.2 that, farther
away from the equilibrium position, the potential energy function is not symmetrical,
being steeper at smaller distances of separation. Thus, as the diatomic molecule is
“heated up,” on the average it spends an increasingly greater fraction of its time sepa-
rated by a distance greater than their separation at equilibrium. This is why most sub-
stances tend to expand when heated.
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2.4| Velocity-Dependent Forces: Fluid Resistance
and Terminal Velocity

It often happens that the force that acts on a body is a function of the velocity of the
body. This is true, for example, in the case of viscous resistance exerted on a body
moving through a fluid. If the force can be expressed as a function of v only, the dif-
ferential equation of motion may be written in either of the two forms

F,+F(v)=m % @4.1)
dv

E, + F(v) =mv— 2.4.2)
dx

Here F, is any constant force that does not depend on v. Upon separating variables, inte-
gration yields either ¢ or x as a function of v. A second integration can then yield a functional
relationship between x and ¢.

For normal fluid resistance, including air resistance, F(v) is not a simple function and
generally must be found through experimental measurements. However, a fair approxi-
mation for many cases is given by the equation

F(v)=—c,0—cyo|v|=~0(c, +¢, |v]) (2.4.3)

in which ¢; and ¢, are constants whose values depend on the size and shape of the body.
(The absolute-value sign is necessary on the last term because the force of fluid resist-
ance is always opposite to the direction of v.) If the above form for F(v) is used to find
the motion by solving Equation 2.4.1 or 2.4.2, the resulting integrals are somewhat
messy. But for the limiting cases of small v and large v, respectively, the linear or the
quadratic term in F(v) dominates, and the differential equations become somewhat more
manageable.

For spheres in air, approximate values for the constants in the equation for F(v) are,
in ST units,

¢, =155%107"D
¢, =0.22D*

where D is the diameter of the sphere in meters. The ratio of the quadratic term cyv|v|
to the linear term c;v is, thus,

0.220 |v| D?

85 x 100D ~ L4%10° [l D

This means that, for instance, with objects of baseball size (D ~ 0.07 m), the quadratic
term dominates for speeds in excess of 0.01 m/s(1 cm/s), and the linear term dominates
for speeds less than this value. For speeds around this value, both terms must be taken
into account. (See Problem 2.15.)



70 CHAPTER 2 Newtonian Mechanics: Rectilinear Motion of a Particle

EXAMPLE 2.4.1

Horizontal Motion with Linear Resistance

Suppose a block is projected with initial velocity v, on a smooth horizontal surface and
that there is air resistance such that the linear term dominates. Then, in the direction
of the motion, Fy = 0 in Equations 2.4.1 and 2.4.2, and F(v) = —c,v. The differential
equation of motion is then

dv
—co=m—

dt
which gives, upon integrating,

v mdv m (UJ
t=1 - =——In| —

% €U o \1y

Solution:

We can easily solve for v as a function of ¢ by multiplying by —c,/m and taking the expo-
nential of both sides. The result is
o= er—clt/m

Thus, the velocity decreases exponentially with time. A second integration gives
_ t —c;tim
x= Jo vee "dt

mo -
=____O_(l_e clﬂm)
a

showing that the block approaches a limiting position given by x,, = mvy/c;.

EXAMPLE 2.4.2

Horizontal Motion with Quadratic Resistance

If the parameters are such that the quadratic term dominates, then for positive v we can write

—c,0% = m@
2 dt
which gives
v~mdv mfl 1
ray
% Co co\ v v,
Solution:

Solving for v, we get

U=l+kt
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where k = cyvo/m. A second integration gives us the position as a function of time:

t vydt
01+ kt

Thus, as t — oo, v decreases as 1/, but the position does not approach a limit as was
obtained in the case of a linear retarding force. Why might this be? You might guess that
a quadratic retardation should be more effective in stopping the block than is a linear
one. This is certainly true at large velocities, but as the velocity approaches zero, the quad-
ratic retarding force goes to zero much faster than the linear one—enough to allow the
block to continue on its merry way, albeit at a very slow speed.

x(t) = = %m 1 +kt)

Vertical Fall Through a Fluid: Terminal Velocity

(a) Linear case. For an object falling vertically in a resisting fluid, the force F, in
Equations 2.4.1 and 2.4.2 is the weight of the object, namely, —mg for the x-axis
positive in the upward direction. For the linear case of fluid resistance, we then
have for the differential equation of motion

—mg-op=m % 2.4.4)

Separating variables and integrating, we find

t= J‘om—du=_ﬂln_m’£+c_lu (2.4.5)

o ~Mg ~ ;0 ¢, mg+e,

in which v, is the initial velocity at ¢ = 0. Upon multiplying by —c,/m and taking the
exponential, we can solve for v:

o= ———m§+(—m§+uo]e_cl”m (2.4.6)

51 51

The exponential term drops to a negligible value after a sufficient time (¢ >> m/c,),
and the velocity approaches the limiting value —mg/c,. The limiting velocity of a
falling body is called the terminal velocity; it is that velocity at which the force of resist-
ance is just equal and opposite to the weight of the body so that the total force is zero,
and so the acceleration is zero. The magnitude of the terminal velocity is the termi-
nal speed.

Let us designate the terminal speed mg/c, by v,, and let us write 7 (which we may
call the characteristic time) for m/c;. Equation 2.4.6 may then be written in the more
significant form

v=—0,l-€") +v,e"" 2.4.7

These two terms represent two velocities: the terminal velocity v,, which exponen-
tially “fades in,” and the initial velocity vy, which exponentially “fades out” due to the
action of the viscous drag force.

In particular, for an object dropped from rest at time ¢ =0, v, = 0, we find

v=—v,(1 %) (2.4.8)
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Thus, after one characteristic time the speed is 1 - ¢ times the terminal speed, after
two characteristic times it is the factor 1 — ¢ of v,, and so on. After an interval of
57, the speed is within 1% of the terminal value, namely, (1 - e_s)vt =0.993 v,.

(b) Quadratic case. In this case, the magnitude of F(v) is proportional to v°. To ensure
that the force remains resistive, we must remember that the sign preceding the F(v)
term depends on whether or not the motion of the object is upward or downward. This
is the case for any resistive force proportional to an even power of velocity. A general
solution usually involves treating the upward and downward motions separately. Here,
we simplify things somewhat by considering only the situation in which the body is
either dropped from rest or projected downward with an initial velocity v,. We leave
it as an exercise for the student to treat the upward-going case. We take the downward
direction to be the positive y direction. The differential equation of motion is

m%:—= mg—0202 = mg(l—%vz)

(2.49)
do_ (1.2
d & v’
where
v, = c% (terminal speed) (2.4.10)
2
Integrating Equation 2.4.9 gives ¢ as a function of v,
v do v 0
t—t,=| ———=1|tanh™ ——tanh™ 2
0 LO 7 T( e, e ,,t) (2.4.11)
g o
where
r=2t= | (Characteristic time) 2.4.12)
g C28
Solving for v, we obtain
v= vttanh(t mi tanh™ U—O) (2.4.13)
T v,
If the body is released from rest at time ¢ =0,
t e2t/‘l.' _ 1
— o.tanht = -1 2.4.14)
v U tan T vt(e2t/‘l.' +1]

The terminal speed is attained after the lapse of a few characteristic times; for exam-
ple, att =57, the speed is 0.99991 v,. Graphs of speed versus time of fall for the linear
and quadratic cases are shown in Figure 2.4.1.
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1 .0 1 I

= Linear resistance

2 Quadratic resistance

- 05 -

8

2,

w)
Figure 2.4.1 Graphs of speed (units 0 L ! i
of terminal speed) versus time (units 0 1 2 3 4
of time constant 7) for a falling body. Time (#/f)

In many instances we would like to know the speed attained upon falling a given
distance. We could find this out by integrating Equation 2.4.13, obtaining y as a
function of time, and then eliminating the time parameter to find speed versus distance.
A more direct solution can be obtained by direct modification of the fundamen-
tal differential equation of motion so that the independent variable is distance instead
of time. For example, because

do_dvdy _,dv* 2.4.15)

2 2
B g1 (2.4.16)
dy vy
We solve this equation as follows:
: dy v} dy o}
o2
u=u(y=0)e 2eylot but wy=0)=1--2
Ut
2 2
u= (1 - Ug Je_zgylo‘ 1 25-
t Uy
. 02 = ‘D?(l _ e—2gy/o%)+ Uge—2gy/o? (2417)

Thus, we see that the squares of the initial velocity and terminal velocity exponen-
tially fade in and out within a characteristic length of v2/2g.
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Falling Raindrops and Basketballs

Calculate the terminal speed in air and the characteristic time for (a) a very tiny spher-
ical raindrop of diameter 0.1 mm = 10 m and (b) a basketball of diameter 0.25 m and
mass 0.6 kg.

Solution:

To decide which type of force law to use, quadratic or linear, we recall the expression
that glves the ratio of the quadratic to the linear force for air resistance, namely,
1.4x 10°|o|D. For the raindrop this is 0.14v, and for the basketball it is 3500, numeri-
cally, where v is in meters per second. Thus, for the raindrop, v must exceed 1/0.14 =
7.1 m/s for the quadratic force to dominate. In the case of the basketball, v must exceed
only 1/350 = 0.0029 m/s for the quadratic force to dominate. We conclude that the
linear case should hold for the falling raindrop, while the quadratic case should be cor-
rect for the basketball. (See also Problem 2.15.)

The volume of the ra.lndrop is £D/6 = 0.52 X 10 m®, so, multiplying by the den-
sity of water, 10 kg/m®, glves the mass m=052x 107 kg, For the drag coefficient we get
¢;=155% 107D =1.55x 10° N - s/m. This gives a terminal speed

-9
b, =8 052X10_x98 e o 033mss
o 155x10

The characteristic time is

_b 0.33 m/s = 0.034 s

g  98ms®

For the basketball the drag constant is ¢, = 0.22D%=0.22 x (0.25)* =0.0138 N - s¥m”®,
and so the terminal speed is

" 0.6x9.8)2
Dt=[‘%) =( - - ) m/s = 20.6 m/s

0.0138
and the characteristic time is

=&=20'6m/:=2.1s
g 98ms

Thus, the raindrop practically attains its terminal speed in less than 1 s when starting
from rest, whereas it takes several seconds for the basketball to come to within 1% of
the terminal value.

For more information on aerodynamic drag, the reader is referred to an article by
C. Frohlich in Am. J. Phys., 52, 325 (1984) and the extensive list of references cited
therein.
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*2.5| Vertical Fall Through a Fluid:
Numerical Solution

Many problems in classical mechanics are described by fairly complicated equations of
motion that cannot be solved analytically in closed form. When one encounters such a
problem, the only available alternative is to try to solve the problem numerically. Once one
decides that such a course of action is necessary, many alternatives open up. The wide-
spread use of personal computers (PCs) with large amounts of memory and hard-disk
storage capacity has made it possible to implement a wide variety of problem-solving
tools in high-level languages without the tedium of programming. The tools in most
widespread use among physicists include the software packages Mathcad, Mathematica
(see Appendix I), and Maple, which are designed specifically to solve mathematical
problems numerically (and symbolically).

As we proceed through the remaining chapters in this text, we use one or another
of these tools, usually at the end of the chapter, to solve a problem for which no closed-
form solution exists. Here we have used Mathcad to solve the problem of an object
falling vertically through a fluid. The problem was solved analytically in the preceding
section, and we use the solution we obtained there as a check on the numerical result
we obtain here, in hopes of illustrating the power and ease of the numerical problem-
solving technique.

Linear and quadratic cases revisited. The first-order differential equation of motion
for an object falling vertically through a fluid in which the retarding force is linear was
given by Equation 2.4.4:

—eo=m® (2.5.1a)
mg—cpp=m—

Here, though, we have chosen the downward y direction to be positive, because we con-
sider only the situation in which the object is dropped from rest. The equation can be put
into a much simpler form by expressing it in terms of the characteristic time 7= m/c; and
terminal velocity v, = mg/c;.

dolv, 12

= 2.5.1b
dilt v, ( )

Now, in the above equation, we “scale” the velocity v and the time of fall # in units of
v, and 7, respectively; that is, we let 4 = v/v, and T = t/7. The preceding equation
becomes

Linear: éz = u' =1-u (2510)
dar

where we denote the first derivative of u by u’.

*Sections in the text marked with * may be skipped with impunity.
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An analysis similar to the one above leads to the following “scaled” first-order dif-
ferential equation of motion for the case in which the retarding force is quadratic (see
Equation 2.4.9).

Quadratic: j—; =u'=1-u® (2.5.2)

The Mathcad software package comes with the rkfixed function, a general-purpose
Runge—Kutta solver that can be used on nth-order differential equations or on systems
of differential equations whose initial conditions are known. This is the situation that
faces us in both of the preceding cases. All we need do, it turns out, to solve these two
differential equations is to “supply” them to the rkfixed function in Mathcad. This function
uses the fourth-order Runge—Kutta method™ to solve the equations. When called in
Mathcad, it returns a two-column matrix in which

o the left-hand (or Oth) column contains the data points at which the solution to the
differential equation is evaluated (in the case here, the data points are the times T);

o the right-hand (or first) column contains the corresponding values of the solution
(the values u,).

The syntax of the call to the function and the arguments of the function is:
rkfixed(y, xo, %y, npoints, D)

y = avector of n initial values, where n is the order of the differential equation
or the size of the system of equations you're solving. For a single first-order
differential equation, like the one in this case, the vector degenerates to a
single initial value, y(0) = y(x;).

%, % = the endpoints of the interval within which the solutions to the differential
equation are to be evaluated. The initial values of y are the values at .

npoints = the number of points beyond the initial point at which the solution is to be
evaluated. This value sets the number of rows to (1 + npoints) in the matrix
rkfixed.

D(x,y) = an n-element vector function containing the first derivatives of the unknown
functions y. Again, for a single first-order differential equation, this vector
function degenerates to a single function equal to the first derivative of the
single function y.

We show on the next two pages an example of a Mathcad worksheet in which we obtained
a numerical solution for the above first-order differential equations (2.5.1c and 2.5.2).
The worksheet was imported to this text directly from Mathcad. What is shown there should
be self-explanatory, but exactly how to implement the solution might not be. We discuss the
details of how to do it in Appendix I. The important thing here is to note the simplicity of
the solution (as evidenced by the brevity of the worksheet) and its accuracy (as can be seen
by comparing the numerical solutions shown in Figure 2.5.1 with the analytic solutions
shown in Figure 2.4.1). The accuracy is further detailed in Figure 2.5.2, where we have

YSee, for example, R. L. Burden and J. Douglas Faires, Numerical Analysis, 6th ed, Brooks/Cole, Pacific
Grove, ITP, 1977.
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1.0 . e
uL;
g 05 =
& uoi
Figure 2.5.1 Numerical o5 ' ' ' .
solution of speed versus time for 1 2 3
a falling body. uL, linear case; 1Q, Ti
quadratic case. Time
6108 T T T
AuL; 40108 |- ]
3:;- AuQ;
Figure 2.5.2 Difference
between analytic and numerical
solutions for the speed of a falling 0 1 2 3 4
object. AuL, linear case; AuQ, T;
quadratic case. Time

plotted the percent difference between the numerical and analytic solutions. The worst error,
about 5 x 107°, occurs in the quadratic solution. Even greater accuracy could be achieved
by dividing the time interval (0—4) into even more data points than the 100 chosen here.

Mathcad Solution for Speed of Falling Object:
Linear Retarding Force.

uy:=0 « Define initial value (use [ to make the
subscript)

DT u):==1-u « Define function for first derivative v’

Y :=rkfixed(u, 0,4,100,D) < Evaluates solution at 100 points

between 0 and 4 using fourth-order
Runge—Kutta.
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i:=0.rows(Y)—-1

uL, = (Y,

« i denotes each element pair in the

matrix Y (a 101 X 2 matrix). First column
contains data points (time T') where
solution (velocity u) is evaluated. Second
column contains u values.

¢ Rename normalized velocity, linear case

Mathcad Solution for Speed of Falling Object:

Quadratic Retarding Force.

uO — 0

DT, u):=1-u?

Z := rkfixed (u,0,4,100, D)
T, := 0.04i

uQ, = (Z%),

Difference Between Analytic
and Numerical Solutions.

T,
U; :=1—€ !

(T -1

u;:
T )

_(v,—uLy)

_ (u; —uQ;)

Problems

 Define initial value (use [ to make the
subscript)

 Define function for first derivative u’

« Evaluates solution at 100 points between
0 and 4 using fourth-order Runge—Kutta.

¢« Define time in terms of array element

 Rename normalized velocity, quadratic
case

< Analytic solution for linear retarding force

« Analytic solution for quadratic retarding
force

« Difference, linear case

« Difference, quadratic case

2.1  Find the velocity % and the position x as functions of the time ¢ for a particle of mass m,
which starts from rest at x = 0 and ¢ =0, subject to the following force functions:

(a) F,=F,+ct
(b) F,=F,sinct
(c) F,=Foe”

where F; and ¢ are positive constants.

2.2  Find the velocity % as a function of the displacement x for a particle of mass m, which starts
from rest at x = 0, subject to the following force functions:

(@) F,=F,+cx
(b) F,=Fpe™
(c) F,=F,coscx

where F; and ¢ are positive constants.
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Find the potential energy function V(x) for each of the forces in Problem 2.2.

A particle of mass m is constrained to lie along a frictionless, horizontal plane subject to
a force given by the expression F(x) = —kx. It is projected from x = 0 to the right along
the positive x direction with initial kinetic energy Ty = 1/2 kA% k and A are positive con-
stants. Find (a) the potential energy function V(x) for this force; (b) the kinetic energy,
and (c) the total energy of the particle as a function of its position. (d) Find the turning
points of the motion. (e) Sketch the potentlal kinetic, and total energy functions.
(Optional: Use Mathcad or Mathematica to plot these functions. Set k and A each equal
to l.)

As in the problem above, the particle is prolected to the right with initial kinetic
energy T, but subject to a force F(x) = —kx + kx*/A®, where k and A are positive con-
stants. Find (a) the potential energy function V(x) for this force; (b) the kinetic energy,
and (c) the total energy of the particle as a function of its position. (d) Find the turning
points of the motion and the condition the total energy of the particle must satisfy if its
motion is to exhibit turning points. (e) Sketch the potential, kinetic, and total energy func-
tions. (Optional: Use Mathcad or Mathematica to plot these functions. Set k and A each
equal to 1.)

A particle of mass m moves along a frictionless, horizontal plane with a speed given by
o(x)= ot/x, where x is its distance from the origin and @is a positive constant. Find the force
F(x) to which the particle is subject.

A block of mass M has a string of mass m attached toit. A force F is applied to the string,
and it pulls the block up a frictionless plane that is inclined at an angle 8 to the horizontal.
Find the force that the string exerts on the block.

Given that the velocity of a particle in rectilinear motion varies with the displacement x
according to the equation

%=bxS

where b is a positive constant, find the force acting on the particle as a function of x.
(Hint: F = m& = mz dildx.)

A baseball (radius = .0366 m, mass = .145 kg) is dropped from rest at the top of the Empire
State Building (height = 1250 ft). Calculate (a) the initial potential energy of the baseball,
(b) its final kinetic energy, and (c) the total energy dissipated by the falling baseball by com-
puting the line integral of the force of air resistance along the baseball’s total distance of
fall. Compare this last result to the difference between the baseball’s initial potential energy
and its final kinetic energy. (Hint: In part (c) make approximations when evaluating the
hyperbolic functions obtained in carrying out the line integral.)

A block of wood is projected up an inclined plane with initial speed v,. If the inclination of
the plane is 30° and the coefficient of sliding friction u, = 0.1, find the total time for the
block to return to the point of projection.

A metal block of mass m slides on a horizontal surface that has been lubaricated with a
heavy oil so that the block suffers a viscous resistance that varies as the 3 power of the
speed:

F(v) = —cv™®

If thei Ilmual speed of the block is v at x = 0, show that the block cannot travel farther than
2moy*fc.
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A gun is fired straight up. Assuming that the air drag on the bullet varies quadratically with
speed, show that the speed varies with height according to the equations

v? = A —% (upward motion)

o= %— Be*™  (downward motion)

in which A and B are constants of integration, g is the acceleration of gravity, and k = ¢o/m
where ¢, is the drag constant and m is the mass of the bullet. (Note: x is measured positive
upward, and the gravitational force is assumed to be constant.)

Use the above result to show that, when the bullet hits the ground on its return, the speed
is equal to the expression

Do¥;
(ug + uf)m
in which v, is the initial upward speed and
v = (1)1{;/02)1/2 = terminal speed = (g/k)l/2

(This result allows one to find the fraction of the initial kinetic energy lost through air
friction.)

A particle of massm is released from rest a distance b from a fixed origin of force that attracts
the particle according to the inverse square law:

Fr)=—kx"
Show that the time required for the particle to reach the origin is
i ( b ]1/2
8k
Show that the terminal speed of a falling spherical object is given by

0= [(mgleg) + (cr/2¢2)™1"* = (c/2¢5)

when both the linear and the quadratic terms in the drag force are taken into account.

Use the above result to calculate the terminal speed of a soap bubble of mass 10 kg and
diameter 10 m. Compare your value with the value obtained by using Equation 2.4.10.

Given: The force acting on a particle is the product of a function of the distance and a func-
tion of the velocity: F(x, v) = f(x)g(v). Show that the differential equation of motion can be
solved by integration. If the force is a product of a function of distance and a function of
time, can the equation of motion be solved by simple integration? Can it be solved if the
force is a product of a function of time and a function of velocity?

The force acting on a particle of mass m is given by
F=kox

inwhich k is a positive constant. The particle passes through the origin with speed v, at time
t =0. Find x as a function of £.

A surface-going projectile is launched horizontally on the ocean from a stationary war-
ship, with initial speed vy. Assume that its propulsion system has failed and it is slowed
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by a retarding force given by F(v) = —~A¢®”. (a) Find its speed as a function of time, v(t).
Find (b) the time elapsed and (c) the distance traveled when the projectile finally comes
to rest. A and o are positive constants.

2.20  Assume that a water droplet falling though a humid atmosphere gathers up mass at a rate
that is proportional to its cross-sectional area A. Assume that the droplet starts from rest
and that its initial radius Ry is so small that it suffers no resistive force. Show that (a) its radius
and (b) its speed increase linearly with time.

Computer Problems

C 2.1 A parachutist of mass 70 kg jumps from a plane at an altitude of 32 km above the surface
of the Earth. Unfortunately, the parachute fails to open. (In the following parts, neglect hor-
izontal motion and assume that the initial velocity is zero.)

(a) Calculate the time of fall (accurate to 1 s) until ground impact, given no air resistance
and a constant value of g.

(b) Calculate the time of fall (accurate to 1 s) until ground impact, given constant g and a
force of air resistance given by

F(v) = —cov|v|

where ¢, is 0.5 in SI units for a falling man and is constant.
(c) Calculate the time of fall (accurate to 1 s) until ground impact, given ¢, scales with atmos-
pheric density as

/H
Co = 0.5e_'"

where H = 8 km is the scale height of the atmosphere and y is the height above ground.
Furthermore, assume that g is no longer constant but is given by

g 98 o

2
1{6

where R, is the radius of the Earth and is 6370 km.
(d) For case (c), plot the acceleration, velocity, and altitude of the parachutist as a function
of time. Explain why the acceleration becomes positive as the parachutist falls.



