Plato’s inscription over his academy, in Athens

1.1]| Introduction

The science of classical mechanics deals with the motion of objects through absolute
space and time in the Newtonian sense. Although central to the development of classical
mechanics, the concepts of space and time would remain arguable for more than two and
a half centuries following the publication of Sir Isaac Newton’s Philosophie naturalis prin-
cipia mathematica in 1687. As Newton put it in the first pages of the Principia, “Absolute,
true and mathematical time, of itself, and from its own nature, flows equably, without rela-
tion to anything external, and by another name is called duration. Absolute space, in its
own nature, without relation to anything external, remains always similar and immovable.”

Ernst Mach (1838-1916), who was to have immeasurable influence on Albert
Einstein, questioned the validity of these two Newtonian concepts in The Science of
Mechanics: A Critical and Historical Account of Its Development (1907). There he claimed
that Newton had acted contrary to his expressed intention of “framing no hypotheses,”
that is, accepting as fundamental premises of a scientific theory nothing that could not
be inferred directly from “observable phenomena” or induced from them by argument.
Indeed, although Newton was on the verge of overtly expressing this intent in Book III
of the Principia as the fifth and last rule of his Regulae Philosophandi (rules of reasoning
in philosophy), it is significant that he refrained from doing so.

Throughout his scientific career he exposed and rejected many hypotheses as false;
he tolerated many as merely harmless; he put to use those that were verifiable. But he
encountered a class of hypotheses that, neither “demonstrable from the phenomena nor
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following from them by argument based on induction,” proved impossible to avoid. His
concepts of space and time fell in this class. The acceptance of such hypotheses as fun-
damental was an embarrassing necessity; hence, he hesitated to adopt the frame-no-
hypotheses rule. Newton certainly could be excused this sin of omission. After all, the
adoption of these hypotheses and others of similar ilk (such as the “force” of gravita-
tion) led to an elegant and comprehensive view of the world the likes of which had never
been seen.

Not until the late 18th and early 19th centuries would experiments in electricity and
magnetism yield observable phenomena that could be understood only from the vantage
point of a new space—time paradigm arising from Albert Einstein's special relativity.
Hermann Minkowski introduced this new paradigm in a semipopular lecture in Cologne,
Germany in 1908 as follows:

Gentlemen! The views of space and time which I wish to lay before you have sprung from
the soil of experimental physics and therein lies their strength. They are radical. From now
on, space by itself and time by itself are doomed to fade away into the shadows, and only
a kind of union between the two will preserve an independent reality.

Thus, even though his own concepts of space and time were superceded, Newton most
certainly would have taken great delight in seeing the emergence of a new space—time
concept based upon observed “phenomena,” which vindicated his unwritten frame-no-

hypotheses rule.

1.2| Measure of Space and Time: Units'
and Dimensions

We shall assume that space and time are described strictly in the Newtonian sense. Three-
dimensional space is Euclidian, and positions of points in that space are specified by a set
of three numbers (x,y,z) relative to the origin (0,0,0) of a rectangular Cartesian coordinate
system. A length is the spatial separation of two points relative to some standard length.

Time is measured relative to the duration of reoccurrences of a given configuration
of a cyclical system—say, a pendulum swinging to and fro, an Earth rotating about its axis,
or electromagnetic waves from a cesium atom vibrating inside a metallic cavity. The time
of occurrence of any event is specified by a number ¢, which represents the number of reoc-
currences of a given configuration of a chosen cyclical standard. For example, if 1 vibra-
tion of a standard physical pendulum is used to define 1 s, then to say that some event
occurred at ¢ = 2.3 s means that the standard pendulum executed 2.3 vibrations after its
“start” at t = 0, when the event occurred.

All this sounds simple enough, but a substantial difficulty has been swept under the
rug: Just what are the standard units? The choice of standards has usually been made
more for political reasons than for scientific ones. For example, to say that a person is
6 feet tall is to say that the distance between the top of his head and the bottom of his
foot is six times the length of something, which is taken to be the standard unit of 1 foot.

' A delightful account of the history of the standardization of units can be found in H. A. Klein, The Science of
Measurement—A Historical Survey, Dover Publ., Mineola, 1988, ISBN 0-486-25839-4 (pbk).
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In an earlier era that standard might have been the length of an actual human foot or
something that approximated that length, as per the writing of Leonardo da Vinci on the
views of the Roman architect—engineer Vitruvius Pollio (first century B.C.E.):

... Vitruvius declares that Nature has thus arranged the measurements of a man: four fin-
gers make 1 palm and 4 palms make 1 foot; six palms make 1 cubit; 4 cubits make once
a man’s height; 4 cubits make a pace, and 24 palms make a man’s height . ..

Clearly, the adoption of such a standard does not make for an accurately reproducible
measure. An early homemaker might be excused her fit of anger upon being “short-
footed” when purchasing a bolt of cloth measured to a length normalized to the foot of
the current short-statured king.

The Unit of Length

The French Revolution, which ended with the Napoleanic coup d’etat of 1799, gave birth
to (among other things) an extremely significant plan for reform in measurement. The
product of that reform, the metric system, expanded in 1960 into the Systéme International
d’Unités (SI).

In 1791, toward the end of the first French National Assembly, Charles Maurice de
Talleyrand-Perigord (1754~1838) proposed that a task of weight and measure reform be
undertaken by a “blue ribbon” panel with members selected from the French Academy
of Sciences. This problem was not trivial. Metrologically, as well as politically, France was
still absurdly divided, confused, and complicated. A given unit of length recognized in Paris
was about 4% longer than that in Bordeaux, 2% longer than that in Marseilles, and 2%
shorter than that in Lille. The Academy of Sciences panel was to change all that. Great Britain
and the United States refused invitations to take part in the process of unit standardization.
Thus was born the antipathy of English-speaking countries toward the metric system.

The panel chose 10 as the numerical base for all measure. The fundamental unit of
length was taken to be one ten-millionth of a quadrant, or a quarter of a full meridian. A
surveying operation, extending from Dunkirk on the English Channel to a site near Barcelona
on the Mediterranean coast of Spain (a length equivalent to 10 degrees of latitude or one
ninth of a quadrant), was carried out to determine this fundamental unit of length accu-
rately. Ultimately, this monumental trek, which took from 1792 until 1799, changed the stan-
dard meter—estimated from previous, less ambitious surveys—by less than 0.3 mm, or
about 3 parts in 10,000. We now know that this result, too, was in error by a similar factor.
The length of a standard quadrant of meridian is 10,002,288.3 m, a little over 2 parts in 10,000
greater than the quadrant length established by the Dunkirk—Barcelona expedition.

Interestingly enough, in 1799, the year in which the Dunkirk—Barcelona survey was
completed, the national legislature of France ratified new standards, among them the
meter. The standard meter was now taken to be the distance between two fine scratches
made on a bar of a dense alloy of platinum and iridium shaped in an X-like cross section
to minimize sagging and distortion. The United States has two copies of this bar, numbers
21 and 27, stored at the Bureau of Standards in Gaithersburg, MD, just outside
Washington, DC. Measurements based on this standard are accurate to about 1 part in
10°. Thus, an object (a bar of platinum), rather than the concepts that led to it, was estab-
lished as the standard meter. The Earth might alter its circumference if it so chose, but
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the standard meter would remain safe forever in a vault in Sevres, just outside Paris,
France. This standard persisted until the 1960s.

The 11th General Conference of Weights and Measures, meeting in 1960, chose a
reddish-orange radiation produced by atoms of krypton-86 as the next standard of length,
with the meter defined in the following way:

The meter is the length equal to 1,650,763.73 wavelengths in vacuum of the radiation
corresponding to the transition between the levels 2 p'° and 5 d° of the krypton-86 atom.

Krypton is all around us; it makes up about 1 part per million of the Earth’s present
atmosphere. Atmospheric krypton has an atomic weight of 83.8, being a mixture of six
different isotopes that range in weight from 78 to 86. Krypton-86 composes about 60%
of these. Thus, the meter was defined in terms of the “majority kind” of krypton. Standard
lamps contained no more than 1% of the other isotopes. Measurements based on this stan-
dard were accurate to about 1 part in 10°.

Since 1983 the meter standard has been specified in terms of the velocity of light. A
meter is the distance light travels in 1/299,792,458 s in a vacuum. In other words, the veloc-
ity of light is defined to be 299,792,458 m/s. Clearly, this makes the standard of length
dependent on the standard of time.

The Unit of Time

Astronomical motions provide us with three great “natural” time units: the day, the month,
and the year. The day is based on the Earth’s spin, the month on the moon’s orbital motion
about the Earth, and the year on the Earth’s orbital motion about the Sun. Why do we have
ratios of 60: 1 and 24: 1 connecting the day, hour, minute, and second? These relationships
were born about 6000 years ago on the flat alluvial plains of Mesopotamia (now Iraq), where
civilization and city-states first appeared on Earth. The Mesopotamian number system was
based on 60, not on 10 as ours is. It seems likely that the ancient Mesopotamians were more
influenced by the 360 days in a year, the 30 days in a month, and the 12 months in a year
than by the number of fingers on their hands. It was in such an environment that sky
watching and measurement of stellar positions first became precise and continuous. The
movements of heavenly bodies across the sky were converted to clocks.

The second, the basic unit of time in SI, began as an arbitrary fraction (1/86,400) of
a mean solar day (24 x 60 x 60 = 86,400). The trouble with astronomical clocks, though,
is that they do not remain constant. The mean solar day is lengthening, and the lunar
month, or time between consecutive full phases, is shortening. In 1956 a new second was
defined to be 1/31,556,926 of one particular and carefully measured mean solar year, that
of 1900. That second would not last for long! In 1967 it was redefined again, in terms of
a specified number of oscillations of a cesium atomic clock.

A cesjum atomic clock consists of a beam of cesium-133 atoms moving through an evac-
uated metal cavity and absorbing and emitting microwaves of a characteristic resonant fre-
quency, 9,192,631,770 Hertz (Hz), or about 10" cycles per second. This absorption and
emission process occurs when a given cesium atom changes its atomic configuration and,
in the process, either gains or loses a specific amount of energy in the form of microwave
radiation. The two differing energy configurations correspond to situations in which the
spins of the cesium nucleus and that of its single outer-shell electron are either opposed
(lowest energy state) or aligned (highest energy state). This kind of a “spin-flip” atomic
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transition is called a hyperfine transition. The energy difference and, hence, the resonant
frequency are precisely determined by the invariable structure of the cesium atom. It does
not differ from one atom to another. A properl¥ adjusted and maintained cesium clock can
keep time with a stability of about 1 part in 10"*. Thus, in one year, its deviation from the
right time should be no more than about 30 s (30 x 107 5). When two different cesium
clocks are compared, it is found that they maintain agreement to about 1 part in 10*,

It was inevitable then that in 1967, because of such stability and reproducibility, the
13th General Conference on Weights and Measures would substitute the cesium-133
atom for any and all of the heavenly bodies as the primary basis for the unit of time. The
conference established the new basis with the following historic words:

The second is the duration of 9,192,631,770 periods of the radiation corresponding to the
transition between two hyperfine levels of the cesium-133 atom.

So, just as the meter is no longer bound to the surface of the Earth, the second is no longer
derived from the “ticking” of the heavens.

The Unit of Mass

This chapter began with the statement that the science of mechanics deals with the
motion of objects. Mass is the final concept needed to specify completely any physical
qua.ntity.2 The kilogram is its basic unit. This primary standard, too, is stored in a vault in
Sevres, France, with secondaries owned and kept by most major governments of the
world. Note that the units of length and time are based on atomic standards. They are uni-
versally reproducible and virtually indestructible. Unfortunately, the unit of mass is not
yet quite so robust.

A concept involving mass, which we shall have occasion to use throughout this text,
is that of the particle, or point mass, an entity that possesses mass but no spatial extent.
Clearly, the particle is a nonexistent idealization. Nonetheless, the concept serves as a
useful approximation of physical objects in a certain context, namely, in a situation where
the dimension of the object is small compared to the dimensions of its environment.
Examples include a bug on a phonograph record, a baseball in flight, and the Earth in
orbit around the Sun.

The units (kilogram, meter, and second) constitute the basis of the SI system.’ Other
systems are commonly used also, for example, the cgs (centimeter, gram, second) and
the fps (foot, pound, second) systems. These systems may be regarded as secondary
because they are defined relative to the SI standard. See Appendix A.

Dimensions

Normally, we think of dimensions as the three mutually orthogonal directions in space
along which an object can move. For example, the motion of an airplane can be
described in terms of its movement along the directions: east—west, north—south, and
up—down. However, in physics, the term has an analogous but more fundamental meaning,

*The concept of mass is treated in Chapter 2.

®Other basic and derived units are listed in Appendix A.
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EXAMPLE 1.2.1

Converting Units
What is the length of a light year (LY) in meters?

Solution:
The speed of light is ¢ = 1 LY/Y. The distance light travelsin T=1 Y is

D=cT=(1LY/¥)x1¥=1LY.

If we want to express one light year in terms of meters, we start with the speed of light
expressed in those units. It is given by ¢ = 3.00 x 10° m/s. However, the time unit used
in this value is expressed in seconds, while the interval of time T is expressed in years, so

1 LY = (3.00 x 10° m/s) x (1Y) = 3.00 x 10* m x (1 Y/1 5)

The different times in the result must be expressed in the same unit to obtain a dimen-
sionless ratio, leaving an answer in units of meters only. Converting 1Y into its equiva-
lent value in seconds achieves this.

1 LY = (3.00x10° m) x (1 ¥/1 s) x (365 day/¥) x (24 hr/day) x (60 min /kr) x (60 s/min)
=(3.00 x10°m) x (3.15x 10" 8/1 8) =9.46 x 10®° m

We have multiplied 1 year by a succession of ratios whose values each are intrinsically
dimensionless and equal to one. For example, 365 days = 1 year, so (365 days/1 year) =
(1 year/1 year) = 1. The multiplications have not changed the intrinsic value of the result.
They merely convert the value (1 year) into its equivalent value in seconds to “cancel
out” the seconds unit, leaving a result expressed in meters.

No more than three fundamental quantities are needed to completely describe or char-
acterize the behavior of any physical system that we encounter in the study of classical
mechanics: the space that bodies occupy, the matter of which they consist, and the time
during which those bodies move. In other words, classical mechanics deals with the
motion of physical objects through space and time. All measurements of that motion ulti-
mately can be broken down into combinations of measurements of mass, length, and time.
The acceleration a of a falling apple is measured as a change in speed per change in time
and the change in speed is measured as a change in position (length) per change in
time. Thus, the measurement of acceleration is completely characterized by measurements
of length and time. The concepts of mass, length, and time are far more fundamental
than are the arbitrary units we choose to provide a scale for their measurement. Mass,
length, and time specify the three primary dimensions of all physical quantities. We use
the symbols [M], [L], and [T] to characterize these three primary dimensions. The
dimension of any physical quantity is defined to be the algebraic combination of [M],
[L], and [T] that is needed to fully characterize a measurement of the physical quantity.
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In other words, the dimension of any physical quantity can be written as [M]” [L1P 17",

where ¢, B, and 7y are powers of their respective dimension. For example, the dimen-
sion of acceleration a is

[a]—[ T } [LI[T]

Be aware! Do not confuse the dimension of a quantity with the units chosen to express it.
Acceleration can be expressed in units of feet per second per second, kilometers per hour
per hour, or, if you were Galileo investigating a ball rolling down an inclined plane, in units
of punti per beat per beat! All of these units are consistent with the dimension [L] [T

Dimensional Analysis

Dimensional analysis of equations that express relationships between different physical
quantities is a powerful tool that can be used to immediately determine whether the
result of a calculation has even the possibility of being correct or not. All equations must
have consistent dimensions. The dimension of a physical quantity on the left hand side
of an equation must have the same dimension as the combination of dimensions of all phys-
ical quantities on the right hand side. For example, later on in Example 6.5.3, we calcu-
late the speed of satellite in a circular orbit of radius R, about the Earth (radius R,) and

obtain the result
2 \1/2
RC

in which g is the acceleration due to gravity, which we introduce in Section 2.2. If this result
is correct, the dimensions on both sides of the equation must be identical. Let’s see.
First, we write down the combination of dimensions on the right side of the equation and
reduce them as far as possible

RPN
[([L][T] )IL] ) — (PITH™ = LT

[L]
The dimensions of the speed v, are also [L] [TT. The dimensions match; thus, the answer
could be correct. It could also be incorrect. Dimensional analysis does not tell us unequijv-
ocally that it is correct. It can only tell us unequivocally that it is incorrect in those cases
in which the dimensions fail to match.

Determining Relationships by Dimensional Analysis

Dimensional analysis can also be used as a way to obtain relationships between physi-
cal quantities without going through the labor of a more detailed analysis based on the
laws of physics. As an example, consider the simple pendulum, which we analyze in
Example 3.2.2. It consists of a small bob of mass m attached to the end of a massless,
rigid string of length I. When displaced from its equilibrium configuration, in which it
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hangs vertically with the mass at its lowest possible position, it swings to and fro because
gravity tries to restore the mass to its minimum height above the ground. In the absence
of friction, air resistance and all other dissipative forces, it continues to swing to and fro
forever! The time it takes to return to any configuration and direction of motion is called
its period, or the time 7 it takes to execute one complete cycle of its motion. The question
before us is: How does its period 7 depend on any physical parameters that characterize
the pendulum and its environment?

First, we list those parameters that could be relevant. Because we've postulated
that the pendulum consists, in part, of an idealized string of zero mass and no flexibility,
that it suffers no air resistance and no friction, we eliminate from consideration any fac-
tors that are derivable from them. That leaves only three: the mass m of the pendulum
bob, the length ! of the string, and the acceleration g due to gravity. The period of the
pendulum has dimension [T] and the combination of m, I, and g that equates to the period
must have dimensions that reduce to [T], also. In other words, the period of the pendu-
lum 7 depends on an algebraic combination of m, [, and g of the form

rocm“lﬁgy

whose dimensional relationship must be

[T] = [M]* [L)? (L]'[TT™")

Because there are no powers of [M] on the left-hand side, & = 0 and the mass of the
pendulum bob is irrelevant. To match the dimension [T] on both sides of the equation,
Y= ——%, and to match the dimension [L], B+ Y =0,0r 8 = % Thus, we conclude that

Dimensional analysis can be taken no further than this. It does not give us the constant
of proportionality, but it does tell us how 7 likely depends on ! and g and it does tell us
that the period is independent of the mass m of the bob. Moreover, a single meas-
urement of the period of a pendulum of known length I, would give us the constant of
proportionality.

We did leave out one other possible factor, the angle of the pendulum’s swing. Could
its value affect the period? Maybe, but dimensional analysis alone does not tell us. The
angle of swing is a dimensionless quantity, and the period could conceivably depend on
it in a myriad of ways. Indeed, we see in Example 3.7.1, that the angle does affect the
period if the angular amplitude of the swing is large enough. Yet, what we have learned
simply by applying dimensional analysis is quite remarkable. A more detailed analysis
based on the laws of physics should yield a result that is consistent with the one obtained
from simple dimensional analysis, or we should try to understand why it does not.
Whenever we find ourselves faced with such a dilemma, we discover that there is a strong
likelihood that we’ve fouled up the detailed analysis.

Dimensional analysis applied this way is not always so simple. Experience is usually
required to zero in on the relevant variables and to make a guess of the relevant functional
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dependencies. In particular, when trigonometric functions are involved, their lack of
dimensionality thwarts dimensional analysis. Be that as it may, it remains a valuable
weapon of attack that all students should have in their arsenal.

1._3| Vectors

The motion of dynamical systems is typically described in terms of two basic quantities:
scalars and vectors. A scalar is a physical quantity that has magnitude only, such as the mass
of an object. It is completely specified by a single number, in appropriate units. Its value
is independent of any coordinates chosen to describe the motion of the system. Other famil-
iar examples of scalars include density, volume, temperature, and energy. Mathematically,
scalars are treated as real numbers. They obey all the normal algebraic rules of addition,
subtraction, multiplication, division, and so on.

A vector, however, has both magnitude and direction, such as the displacement from
one point in space to another. Unlike a scalar, a vector requires a set of numbers for its
complete specification. The values of those numbers are, in general, coordinate system
dependent. Besides displacement in space, other examples of vectors include velocity,
acceleration, and force. Mathematically, vectors combine with each other according to
the parallelogram rule of addition which we soon discuss.* The vector concept has led
to the emergence of a branch of mathematics that has proved indispensable to the
development of the subject of classical mechanics. Vectors provide a compact and ele-
gant way of describing the behavior of even the most complicated physical systems.
Furthermore, the use of vectors in the application of physical laws insures that the results
we obtain are independent of our choice of coordinate system.

In most written work, a distinguishing mark, such as an arrow, customarily designates
a vector, for example, A. In this text, however, for the sake of simplicity, we denote vector
quantities simply by boldface type, for example, A. We use ordinary italic type to repre-
sent scalars, for example, A.

A given vector A is specified by stating its magnitude and its direction relative to some
arbitrarily chosen coordinate system. It is represented diagrammatically as a directed
line segment, as shown in three-dimensional space in Figure 1.3.1.

A vector can also be specified as the set of its components, or projections onto the coor-
dinate axes. For example, the set of three scalars, (4,, A, A,), shown in Figure 1.3.1, are
the components of the vector A and are an equivalent representation. Thus, the equation

A=A A, A) 1.3.1)

implies that either the symbol A or the set of three components (4,, A, A,) referred to
a particular coordinate system can be used to specify the vector. For example, if the vector
A represents a displacement from a point P, (x;, 41, z1) to the point Py (%3, y2, 22), then its

* An example of a directed quantity that does not obey the rule for addition is a finite rotation of an object about
a given axis. The reader can readily verify that two successive rotations about different axes do not produce the
same result as a single rotation determined by the parallelogram rule. For the present, we shall not be concerned
with such nonvector-directed quantities.
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three components are A, =x; — xy, A, =y — Y1, A, =25 — %), and the equivalent repre-
sentation of A is its set of three scalar components, (x, —x;, s — 1, 2 — 21). If A represents
a force, then A, is the x-component of the force, and so on.

If a particular discussion is limited to vectors in a plane, only two components are nec-
essary for their specification. In general, one can define a mathematical space of any
number of dimensions n. Thus, the set of n-numbers (A;, Ay, A;, . .., A,) represent a vector
in an n-dimensional space. In this abstract sense, a vector is an ordered set of numbers.

We begin the study of vector algebra with some formal statements concerning vectors.

L. Equality of Vectors
The equation
A=B (1.3.2)

or

(A;, Ay, A;)= (B, B,, B,)

is equivalent to the three equations

A,=B, A,=B, A,=B,

That is, two vectors are equal if, and only if, their respective components are equal.
Geometrically, equal vectors are parallel and have the same length, but they do not
necessarily have the same position. Equal vectors are shown in Figure 1.3.2. Though
equal, they are physically separate. (Equal vectors are not necessarily equivalent in
all respects. Thus, two vectorially equal forces acting at different points on an object
may produce different mechanical effects.)
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Figure 1.3.2 Illustration of 0
equal vectors.
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Figure 1.3.3 Addition of two
vectors.
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IL. Vector Addition
The addition of two vectors is defined by the equation

A+B=(A, A, A)+(B,.B,,B)=(A,+B,A,+B,A,+B) (133

The sum of two vectors is a vector whose components are sums of the components
of the given vectors. The geometric representation of the vector sum of two non-
parallel vectors is the third side of a triangle, two sides of which are the given vec-
tors. The vector sum is illustrated in Figure 1.3.3. The sum is also given by the
parallelogram rule, as shown in the figure. The vector sum is defined, however,
according to the above equation even if the vectors do not have a common point.

IIL. Multiplication by a Scalar
If ¢ is a scalar and A is a vector,

cA=c(A,, Ay, A;)=(cA,, cAy, cA,)=Ac (1.3.4)
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-A
Figure 1.3.4 The negative of a vector.

The product cA is a vector whose components are ¢ times those of A. Geometrically,
the vector cA is parallel to A and is ¢ times the length of A. When ¢ =1, the vector
—A is one whose direction is the reverse of that of A, as shown in Figure 13.4.

V. Vector Subtraction
Subtraction is defined as follows:
A-B=A+(-1)B=(A,-B,, A,~B,, A,~B) (1.3.5)
That is, subtraction of a given vector B from the vector A is equivalent to adding
-B to A.

V. The Null Vector
The vector O =(0,0,0) is called the null vector. The direction of the null vector is unde-
fined. From (IV) it follows that A — A = O. Because there can be no confusion when
the null vector is denoted by a zero, we shall hereafter use the notation O =0.

VI. The Commutative Law of Addition
This law holds for vectors; that is,

A+B=B+A (1.3.6)
because A, + B, = B, + A,, and similarly for the y and z components.

VIL. The Associative Law
The associative law is also true, because

A+(B+C)=(A,+(B,+C), A, +(B,+C,), A, + (B, +C,)
=((A;+B)+Cy, (A, +B,) +C,, (A, +B) +C,) (1.3.7)
=(A+B)+C

VIIL. The Distributive Law
Under multiplication by a scalar, the distributive law is valid because, from (II)
and (III),

c(A+B)=c(A,+B,,A,+B,,A.+B,)
=(c(A;+By,c(A,+B,),c(A. +B.)) (1.3.8)
=(cA,+cB,,cA,+cB,, cA, +cB,)
=cA,+cB
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Figure 1.3.5 Magnitude of a vector A: /Z— A, 7/ /
A= (AJ+A]+AD"

Thus, vectors obey the rules of ordinary algebra as far as the above operations are
concerned.

IX. Magnitude of a Vector
The magnitude of a vector A, denoted by |A| or by A, is defined as the square root
of the sum of the squares of the components, namely,

72
A=|A|=(a2+A%+A2) (1.3.9)

where the positive root is understood. Geometrically, the magnitude of a vector is
its length, that is, the length of the diagonal of the rectangular parallelepiped whose
sidesare A,, A,, and A, expressed in appropriate units. See Figure 1.3.5.

X. Unit Coordinate Vectors
A unit vector is a vector whose magnitude is unity. Unit vectors are often designated
by the symbol e, from the German word Einheit. The three unit vectors

e, =(1,0,0) e,=(0,1,0) e.=(0,0,1) (1.3.10)

are called unit coordinate vectors or basis vectors. In terms of basis vectors, any
vector can be expressed as a vector sum of components as follows:

A=(A,,AA,)=(4,,0,00+(0,4,,0)+(0,0,4,)
=A,(1,0,00+4,(0,1,0)+A,(0,0,1) (1.3.11)
=eA,+eA +eA,

A widely used notation for Cartesian unit vectors uses the letters i, j, and k, namely,

i=e, ji=e, k=e, 1.3.12)
We shall usually employ this notation hereafter.
The directions of the Cartesian unit vectors are defined by the orthogonal coor-

dinate axes, as shown in Figure 1.3.6. They form a right-handed or a left-handed triad,
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Figure 1.3.6 The unit vectors ijk. x

depending on which type of coordinate system is used. It is customary to use right-
handed coordinate systems. The system shown in Figure 1.3.6 is right-handed.
(The handedness of coordinate systems is defined in Section 1.5.)

EXAMPLE 1.3.1

Find the sum and the magnitude of the sum of the two vectors A = (1,0,2) and
B=(0,1,1)

Solution:
Adding components, we have A + B =(1,0,2) +(0,1,1) = (1,1,3).
IA+B|=(1+1+9)" =11

EXAMPLE 1.3.2

For the above two vectors, express the difference in ijk form.

Solution:
Subtracting components, we have

A-B=(l,-11)=i-j+k

EXAMPLE 1.3.3

A helicopter flies 100 m vertically upward, then 500 m horizontally east, then 1000 m
horizontally north. How far is it from a second helicopter that started from the same point
and flew 200 m upward, 100 m west, and 500 m north?

Solution:

Choosing up, east, and north as basis directions, the final position of the first helicopter is
expressed vectorially as A = (100,500, 1000) and the second as B = (200,-100,500),
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in meters. Hence, the distance between the final positions is given by the expression

|A = B|=]((100 — 200), (500 + 100), (1000 — 500))| m
= (100% + 600% + 500%)* m
=7874m

1.4| The Scalar Product

Given two vectors A and B, the scalar product or “dot” product, A - B, is the scalar defined
by the equation

A-B=A,B,+A,B,+A,B, (1.4.1)

From the above definition, scalar multiplication is commutative,
A-B=B-.A (1.4.2)
because A, B, = B,A,, and so on. It is also distributive,
A.-B+C)=A-B+A.C (1.4.3)
because if we apply the definition (1.4.1) in detail,

A-B+C)=A,B,+C)+A,B,+C)+A,(B,+C)
=A,B,+A,B,+A,B,+A,C,+A,C,+A,C, (14.4)
=A.B+A.C

The dot product A - B has a simple geometrical interpretation and can be used to
calculate the angle 8 between those two vectors. For example, shown in Figure 1.4.1 are
the two vectors A and B separated by an angle 6, along with an x’, 4/’, 2’ coordinate system
arbitrarily chosen as a basis for those vectors. However, because the quantity A - Bis a
scalar, its value is independent of choice of coordinates. With no loss of generality, we can
rotate the ) i}, 2’ system into an x, y, z coordinate system, such that the x-axis is aligned
with the vector A and the z-axis is perpendicular to the plane defined by the two vectors.
This coordinate system is also shown in Figure 1.4.1. The components of the vectors, and
their dot product, are much simpler to evaluate in this system. The vector A is expressed

as (A,0,0) and the vector B as (B,, B,,0) or (Bcos 6, Bsin 6,0). Thus,

A.-B=A,B,=A(Bcos8) =|A||B|cos 8 (1.4.5)

Geometrically, B cos 8 is simply the projection of B onto A. If we had aligned the x-axis
along B, we would have obtained the same result but with the geometrical interpretation
that A . B is now the projection of A onto B times the length of B. Thus, A - B can be
interpreted as either the projection of A onto B times the length of B or that of B onto
A times the length of A. Either interpretation is correct. Perhaps more importantly, we
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—
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Figure 1.4.1 Evaluating a dot product
between two vectors. X i

can see that we have just proved that the cosine of the angle between two line segments
is given by

A:B__A'B (14.6)

cos@ =
|A]|B| AB

This last equation may be regarded as an alternative definition of the dot product.

(Note: IfA.Bisequal to zero and neither Anor B is null, then cos @is zero and
A is perpendicular to B.)

The square of the magnitude of a vector A is given by the dot product of A with itself,
A’=|AFf=A.A (1.4.7)

From the definitions of the unit coordinate vectors i, j, and k, it is clear that the fol-
lowing relations hold:

i-i=j.-j=k.k=1 (14.8)
1.j=i-k=]-k=0

Expressing Any Vector as the Product of Its Magnitude by a
Unit Vector: Projection

Consider the equation

A=iA, +jA, +kA, (1.4.9)
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A
___7
o
y
Figure 1.4.2 Direction angles o, B, yof a
vector. x
Multiply and divide on the right by the magnitude of A:
A—A‘A"'+‘Ay+kA’ 1.4.10
=Ali " J " n (1.4.10)

Now A,/A = cosa, A,/A = cosf3, and A,/A = cosy are the direction cosines of the vector
A, and @, B, and 7 are the direction angles. Thus, we can write

A=A(icosa+jcosB+kcosy) = A(cosa, cos B, cosy) (14.11a)

or
A=An (1.4.11b)

where n is a unit vector whose components are cosc, cos 8, and cosy. See Figure 1.4.2.
Consider any other vector B. Clearly, the projection of B on A is just

BcosG=%=B-n (1.4.12)
where 0 is the angle between A and B.

EXAMPLE 1.4.1

Component of a Vector: Work

As an example of the dot product, suppose that an object under the action of a constant
force® undergoes a linear displacement As, as shown in Figure 1.4.3. By definition, the
work AW done by the force is given by the product of the component of the force F in
the direction of As, multiplied by the magnitude As of the displacement; that is,

AW = (F cos 0) As

5The concept of force is discussed in Chapter 2.
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Figure 1.4.3 A force actingon a
body undergoing a displacement.

where 0 s the angle between F and As. But the expression on the right is just the dot
product of F and As, that is,

AW =F . As

me

Law of Cosines

Consider the triangle whose sides are A, B, and C, as shown in Figure 1.4.4. Then
C = A + B. Take the dot product of C with itself,

C.C=(A+B)-(A+B)
=A.-A+2A-B+B-.B

The second step follows from the application of the rules in Equations 1.4.2 and 1.4.3.
Replace A - B with AB cos € to obtain

C®*=A%+2AB cos 9+ B>

which is the familiar law of cosines.

Figure 1.4.4 The law of cosines. A
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EXAMPLE 1.4.3

Find the cosine of the angle between a long diagonal and an adjacent face diagonal of
a cube.

Solution:

We can represent the two diagonals in question by the vectors A =(1,1,1) and B =
(1, 1,0). Hence, from Equations 1.4.1 and 1.4.6,

A-B 1+1+0 2
COSYETAB T Javz  \3

EXAMPLE 1.4.4

The vector ai + j — k is perpendicular to the vector i + 2j — 3k. What is the value
of a?

Solution:

If the vectors are perpendicular to each other, their dot product must vanish (cos 90° = 0).
(@i+j-k).-(i+2j-3k)=a+2+3=a+5=0

Therefore,

1.5| The Vector Product

Given two vectors A and B, the vector product or cross product, A x B, is defined as the
vector whose components are given by the equation

AxB=(A,B,~A,B,A,B,~A.B,A,B,~A,B) (15.1)

It can be shown that the following rules hold for cross multiplication:

AxB=-BxA (1.5.2)
AXB+C)=AxB+AxC (15.3)
n(A X B) =(nA) x B=A X (nB) (1.54)

The proofs of these follow directly from the definition and are left as an exercise.

(Note: The first equation states that the cross product is anticommutative.)
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According to the definitions of the unit coordinate vectors (Section 1.3), it follows that

ixi=jxj=kxk=0

jxk=i=-kxj
ixj=k=—xi (1.5.5)
kxi=j=-ixk

These latter three relations define a right-handed triad. For example,
ixj=(0-0,0-0,1-0)=(0,0,1)=k (1.5.6)

The remaining equations are proved in a similar manner.
The cross product expressed in ijk form is

AxB=i(A,B,~A,B)+jA,B,~A,B) +KkA,B,~A,B,) (1.5.7)

Each term in parentheses is equal to a determinant,

14,4, JAA, kAxAy
AxB=1 By B, +j BB, + B, By (1.5.8)
and finally
ijk
AxXB= A A A, (1.5.9)
B,B,B,

which is verified by expansion. The determinant form is a convenient aid for remembering

the definition of the cross product. From the properties of determinants, if A is parallel

to B—that is, if A = cB—then the two lower rows of the determinant are proportional

and so the determinant is null. Thus, the cross product of two parallel vectors is null.
Let us calculate the magnitude of the cross product. We have

|AxB=(A,B,—A,B,)*+(A,B,—A,B)* +(A,B,—A,B)Y  (15.10)
y Y 1 1

This can be reduced to
|AxB® =(A2 + A%+ A})(B + B} +B)—(A,B, +A,B, +A,B,)’ (1511)

or, from the definition of the dot product, the above equation may be written in the form

JAxBP=A%B*- (A -B) (1.5.12)
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Taking the square root of both sides of Equation 1.15.12 and using Equation 1.4.6, we
can express the magnitude of the cross product as

|AxB|=AB( —cos’0)>*= AB sin 0 (1.5.13)

where 01is the angle between A and B.
To interpret the cross product geometrically, we observe that the vector C=A x B
is perpendicular to both A and to B because

A.C=A,C,+A,C,+A,C,
=A,(A,B,~A,B,)+A,(A.B,~A,B)+A,(A,B,~A,B) (1514)
=0

Similarly, B - C = 0; thus, the vector C is perpendicular to the plane containing the vec-
tors A and B.

The sense of the vector C = A X B is determined from the requirement that the
three vectors A, B, and C form a right-handed triad, as shown in Figure 1.5.1. (This is
consistent with the previously established result that in the right-handed triad ijk we have
i x j =k.) Therefore, from Equation 1.5.13 we see that we can write

AxB =(AB sin 6)n (1.5.15)

where n is a unit vector normal to the plane of the two vectors A and B. The sense of n
is given by the right-hand rule, that is, the direction of advancement of a right-handed
screw rotated from the positive direction of A to that of B through the smallest angle
between them, as illustrated in Figure 1.5.1. Equation 1.5.15 may be regarded as an
alternative definition of the cross product in a right-handed coordinate system.

Figure 1.5.1 The cross product of two vectors.
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EXAMPLE 1.5.1

Given the two vectors A=2i+j—k, B=i-j+ 2k, find AxB.

Solution:

In this case it is convenient to use the determinant form

i j k
AxB=[2 1 -1|=i@2-1+j(-1-4)+k(-2-1)
1 -1 2

=i-5j-3k

EXAMPLE 1.5.2

Find a unit vector normal to the plane containing the two vectors A and B above.

Solution:

L. AxB _ i-5j-3k
|AxB| [12+52 +32]/2

i 5§ 3k
V35 35 35

EXAMPLE 1.5.3

Show by direct evaluation that A x B is a vector with direction perpendicular to A and
B and magnitude AB sin6.

Solution:

Use the frame of reference discussed for Figure 1.4.1 in which the vectors A and B
are defined to be in the x, y plane; A is given by (4,0,0) and B is given by (B cos 6, B sin 6,0).
Then

i j k
AxB=| A 0 0|=kABsin @
Bcos@® Bsin® 0

1.6] An Example of the Cross Product:
Moment of a Force

Moments of force, or torques, are represented by cross products. Let a force F act at a
point P(x, y, z), as shown in Figure 1.6.1, and let the vector OP be designated by r; that is,

OP=r=ix+jy +kz (1.6.1)
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N=rxF
A

Axis
e

o
im0 pid r
¥r S1N
7 > F

Figure 1.6.1 Illustration of the moment of ~
a force about a point O.

The moment N of force, or the torque N, about a given point O is defined as the cross
product

N=rxF (1.6.2)

Thus, the moment of a force about a point is a vector quantity having a magnitude and a
direction. If a single force is applied at a point P on a body that is initially at rest and is
free to turn about a fixed point O as a pivot, then the body tends to rotate. The axis of this
rotation is perpendicular to the force F, and it is also perpendicular to the line OP; there-
fore, the direction of the torque vector N is along the axis of rotation.

The magnitude of the torque is given by

IN|=|rxF|=rFsin@ (1.6.3)

in which 8is the angle between r and F. Thus, |N| can be regarded as the product of the
magnitude of the force and the quantity r sin8, which is just the perpendicular distance
from the line of action of the force to the point O.

When several forces are applied to a single body at different points, the moments add
vectorially. This follows from the distributive law of vector multiplication. The condition
for rotational equilibrium is that the vector sum of all the moments is zero:

2 (i xF)=3 N;=0 (1.6.4)

A more complete discussion of force moments is given in Chapters 8 and 9.

1.7| Triple Products

The expression
A.(BxC)

is called the scalar triple product of A, B, and C. It is a scalar because it is the dot prod-
uct of two vectors. Referring to the determinant expressions for the cross product,
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Equations 1.5.8 and 1.5.9, we see that the scalar triple product may be written

AAA,
A-(BxC)=|B,B,B, W7D
C.C,C,

Because the exchange of the terms of two rows or of two columns of a determinant
changes its sign but not its absolute value, we can derive the following useful equation:

A-(BxC)=(AxB)-C (1.7.2)

Thus, the dot and the cross may be interchanged in the scalar triple product.
The expression

AXx(BxC)

is called the vector triple product. It is left for the student to prove that the following equa-
tion holds for the vector triple product:

Ax(BxC)=B(A.C)-C(A . B) (1.7.3)

This last result can be remembered simply as the “back minus cab” rule.

Vector triple products are particularly useful in the study of rotating coordinate sys-
tems and rotations of rigid bodies, which we take up in later chapters. A geometric appli-
cation is given in Problem 1.12 at the end of this chapter.

Given the three vectors A=i, B=i—j, and C=k, find A - (B x C).

Solution:

Using the determinant expression, Equation 1.7.1, we have

1 00
A-BxC)=]1 -1 0|=1(-1+0)=-1
0 01

EXAMPLE 1.7.2

Find A x (B x C) above.

Solution:

From Equation 1.7.3 we have
AxBxC)=BA.C)- C(A-B)=(i—j)0—k(l—0)=—k
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EXAMPLE 1.7.3

Show that the vector triple product is nonassociative.

Solution:

(axb)xe=—cx(axb)=-a(c:-b)+b(c:a)
ax(bxc)—(axb)xc=a(c-b)—c(a-b)

which is not necessarily zero.

1.8| Change of Coordinate System:
The Transformation Matrix
In this section we show how to represent a vector in different coordinate systems. Consider
the vector A expressed relative to the triad ijk:
A=iA +jA,+KA, (1.8.1)
Relative to a new triad i'j’k” having a different orientation from that of ijk, the same vector
A is expressed as

A=VA, +JA, +KA, (18.2)

Now the dot product A - i’ is just A,, that is, the projection of A on the unit vector i’. Thus,
we may write
Ay =A-i=(-1)A, +(-1)A,+(k-D)A,
Ay =A-J =G )A,+G A, + (k- IA, (18.3)
A, =AK=@(-K)A, +(- KA, +(k-k)A,
The scalar products (i - i’), (i - ), and so on are called the coefficients of transformation.
They are equal to the direction cosines of the axes of the primed coordinate system rel-
ative to the unprimed system. The unprimed components are similarly expressed as
A, =Avi=@ DA, +(§ DA, +(K DA,
A=A j={"PA +({ DA, + (K- A, (1.84)
A, =Ak=@-0A, +( WA, +K WA,

All the coefficients of transformation in Equation 1.8.4 also appear in Equation 1.8.3,
because i-i’= i’ iand so on, but those in the rows (equations) of Equation 1.8.4 appear
in the columns of terms in Equation 1.8.3, and conversely. The transformation rules
expressed in these two sets of equations are a general property of vectors. As a matter of
fact, they constitute an alternative way of defining vectors.

6See, for example, ]. B. Marion and S. T. Thornton, Classical Dynamics, 5th ed., Brooks/Cole—Thomson
Learning, Belmont, CA, 2004.
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The equations of transformation are conveniently expressed in matrix notation.”
Thus, Equation 1.8.3 is written

A (ii ji ki)(A,
Ag|=|ioy §T ki |a, (185)
Ay) K K kK A4,

The 3-by-3 matrix in Equation 1.8.5 is called the transformation matrix. One advantage
of the matrix notation is that successive transformations are readily handled by means of
matrix multiplication.

The application of a given transformation matrix to some vector A is also formally
equivalent to rotating that vector within the unprimed (fixed) coordinate system, the
components of the rotated vector being given by Equation 1.8.5. Thus, finite rotations can
be represented by matrices. (Note that the sense of rotation of the vector in this context
is opposite that of the rotation of the coordinate system in the previous context.)

From Example 1.8.2 the transformation matrix for a rotation about a different coor-
dinate axis—say, the y-axis through an angle 6—is given by the matrix

cos@ 0 —sin@
0 1 0
sn@® O cos@

Consequently, the matrix for the combination of two rotations, the first being about the
z-axis (angle ¢) and the second being about the new y"-axis (angle 8), is given by the
matrix product

cos§ 0 —sinB)( cos¢ sing O cosBcos¢ cosOsingd -—sinf
0 1 0 —-sing cos¢ O|=| -sing cos¢ 0 (1.8.6)
sin@ 0 cos@ 0 0 1 sin@cos¢ sinOsing cosd

Now matrix multiplication is, in general, noncommutative; therefore, we might expect that
the result would be different if the order of the rotations, and, therefore, the order of the
matrix multiplication, were reversed. This turns out to be the case, which the reader can
verify. This is in keeping with a remark made earlier, namely, that finite rotations do not
obey the law of vector addition and, hence, are not vectors even though a single rotation
has a direction (the axis) and a magnitude (the angle of rotation). However, we show later
that infinitesimal rotations do obey the law of vector addition and can be represented by
vectors.

" A brief review of matrices is given in Appendix H.
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EXAMPLE 1.8.1

Express the vector A = 3i + 2j + k in terms of the triad ij’k’, where the x’y’-axes are
rotated 45° around the z-axis, with the z- and z™-axes coinciding, as shown in Figure 1.8.1.
Referring to the figure, we have for the coefficients of transformation i - i’ = cos 45° and
so on; hence,

i-i' =142 jei'=142 k-i’=0

i-j=-1W2  jj=1"2 k-j=0

i-k’'=0 jk'=0 k-k'=1
These give

3 2 5 -3 2 -1
A, =242 - A, =—4a=— A, =1
so that, in the primed system, the vector A is given by
5 1
A=—i"-—=j+k’
N
z, 2
yl
45°
(9
y
45°

Figure 1.8.1 Rotated axes. x 4

EXAMPLE 1.8.2

Find the transformation matrix for a rotation of the primed coordinate system through
an angle ¢ about the z-axis. (Example 1.8.1 is a special case of this.) We have

i-i'=j.j =cos¢
jeoi'=-i.j=sing
k-K=1
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and all other dot products are zero; hence, the transformation matrix is

cos¢ sing O
—sing cos¢ O
0 0 1

EXAMPLE 1.8.3

Orthogonal Transformations

In more advanced texts, vectors are defined as quantities whose components change
according to the rules of orthogonal transformations. The development of this subject
lies outside the scope of this text; however, we give a simple example of such a trans-
formation that the student may gain some appreciation for the elegance of this more
abstract definition of vectors. The rotation of a Cartesian coordinate system is an exam-
ple of an orthogonal transformation. Here we show how the components of a vector trans-
form when the Cartesian coordinate system in which its components are expressed is
rotated through some angle 6 and then back again.

Let us take the velocity v of a projectile of mass m traveling through space along a par-
abolic trajectory as an example of the vector.® In Figure 1.8.2, we show the position and
velocity of the projectile at some instant of time ¢. The direction of v is tangent to the tra-
jectory of the projectile and designates its instantaneous direction of travel. Because the
motion takes place in two dimensions only, we can specify the velocity in terms of its com-
ponents along the x- and y-axes of a two-dimensional Cartesian coordinate system. We
can also specify the velocity of the projectile in terms of components referred to an x'y’
coordinate system obtained by rotating the xy system through the angle 6. We choose
an angle of rotation @ that aligns the x”-axis with the direction of the velocity vector.

We express the coordinate rotation in terms of the transformation matrix, defined
in Equation 1.8.5. We write all vectors as column matrices; thus, the vector v = (v,,v,) is

(vx [u cos 9)

V= = .

v, vsin @

Given the components in one coordinate system, we can calculate them in the other using
the transformation matrix of Equation 1.8.5. We represent this matrix by the symbol R.°

R i-i" j-i") ( cos® sin6
-7 j-j’) \-sin@ cos@

®Galileo demonstrated back in 1609 that the trajectory of such a projectile is a parabola. See for example: (1)
Stillman Drake, Galileo at Work—His Scientific Biography, Dover Publications, New York 1978. (2) Galileo
Manuscripts, Folio 116v, vol. 72, Biblioteca Nationale Centrale, Florence, Italy.

®We also denote matrices in this text with boldface type symbols. Whether the symbol represents a vector or
a matrix should be clear from the context.
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Figure 1.8.2 Velocity of a
moving particle referred to two
different two-dimensional
coordinate systems.

The components of v’ in the x"y” coordinate system are
, (v cos@ sinf \(vcosh
v = =
0 —sinf cosf )\ vsinf
or symbolically, v' = Rv. Here we have denoted the vector in the primed coordinate system
by v'. Bear in mind, though, that v and v’ represent the same vector. The velocity vector
points along the direction of the x’-axis in the rotated x'y” coordinate system and, consistent
with the figure, v, = v and v, = 0. The components of a vector change values when we

express the vector in coordinate systems rotated with respect to each other.
The square of the magnitude of v is

vcosf

(v:v)=vv=(vcos vsine)( )
vsin 6

J = v% cos?0 + v%sin%0 = v*

(¥ is the transpose of the column vector v—the transpose A of any matrix A is obtained
by interchanging its columns with its rows.)
Similarly, the square of the magnitude of v’ is

v
V' -v)=9v =(v 0)(()) =p?+0% =¢?

In each case, the magnitude of the vector is a scalar v whose value is independent of our
choice of coordinate system. The same is true of the mass of the projectile. If its mass
is one kilogram in the xy coordinate system, then its mass is one kilogram in the 2" coor-
dinate system. Scalar quantities are invariant under a rotation of coordinates.

Suppose we transform back to the xy coordinate system. We should obtain the origi-
nal components of v. The transformation back is obtained by rotating the 1y’ coordinate
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system through the angle —6. The transformation matrix that accomplishes this can be
obtained by changing the sign of 6in the matrix R.

R(-6) = cos(—0) sin(-0) N cos@ —sinf) .
0= “sin® cosO

—sin(—0) cos(—0) =

We see that the rotation back is generated by the transpose of the matrix R, or R.
If we now operate on v with R, we obtain Ry’ = RRv=v or in matrix notation

cos@ —sinf\(v B cos@ —sinBO){ cos® sinO \ vcosO
sin@ cosO J\0) |sin@ cos@ J\—-sin® cosO )| vsin®
N 1 0) vcos@ B vcos 0
10 1)l vsin® ) | vsin@
In other words, RR = I, the identity operator, or R = R, the inverse of R.

Transformations that exhibit this characteristic are called orthogonal transformations.
Rotations of coordinate systems are examples of such a transformation.

1.9] Derivative of a Vector

Up to this point we have been concerned mainly with vector algebra. We now begin the
study of the calculus of vectors and its use in the description of the motion of particles.

Consider a vector A, whose components are functions of a single variable u. The vector
may represent position, velocity, and so on. The parameter u is usually the time ¢, but it
can be any quantity that determines the components of A:

A@w) =iA, () +jA,(u) + kA, () (1.9.1)

The derivative of A with respect to u is defined, quite analogously to the ordinary
derivative of a scalar function, by the limit

AA, AA,  AA,
At M

—=lim—=lim(i ~+j—L+k
Au

where AA, = A, (u + Au) — A,(u) and so on. Hence,

A A, dA, dA
A _x s k —*% (1.9.2)
P L

The derivative of a vector is a vector whose Cartesian components are ordinary derivatives.
It follows from Equation 1.9.2 that the derivative of the sum of two vectors is equal
to the sum of the derivatives, namely,

d dA dB
d_u(A+B)__J1;+E (1.9.3)
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The rules for differentiating vector products obey similar rules of vector calculus. For
example,

d(nA) _dn dA

AL (1.9.4)
d(A-B) dA dB
=22 B+A- 22
du du tA du (1.9.5)
d(AxB) _dA dB
B —d—uXB+Axd—u (1.9.6)

Notice that it is necessary to preserve the order of the terms in the derivative of the cross
product. The proofs are left as an exercise for the student.

1.10| Position Vector of a Particle: Velocity and
Acceleration in Rectangular Coordinates

In a given reference system, the position of a particle can be specified by a single vector,
namely, the displacement of the particle relative to the origin of the coordinate system.
This vector is called the position vector of the particle. In rectangular coordinates
(Figure 1.10.1), the position vector is simply

r=ix+jy +kz (1.10.1)

The components of the position vector of a moving particle are functions of the time,
namely,

x=x(t) y=y(t) z=2(t) (1.10.2)

In Equation 1.9.2 we gave the formal definition of the derivative of any vector with
respect to some parameter. In particular, if the vector is the position vector r of a moving

kz

Figure 1.10.1 The position ix

vector r and its components - >
in a Cartesian coordinate »

system. x
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Tangent line
atP

Figure 1.10.2 The velocity
vector of a moving particle as
the limit of the ratio Ar/Az.

particle and the parameter is the time ¢, the derivative of r with respect to ¢ is called the
velocity, which we shall denote by v:

v= % =i+ jij+ka (1.10.3)

where the dots indicate differentiation with respect to ¢. (This convention is standard and
is used throughout the book.) Let us examine the geometric significance of the veloc-
ity vector. Suppose a particle is at a certain position at time . At a time At later, the par-
ticle will have moved from the position r(¢) to the position r(t + At). The vector
displacement during the time interval At is

Ar =r(t + Af) - 1) (1.10.4)

so the quotient Ar/At is a vector that is parallel to the displacement. As we consider
smaller and smaller time intervals, the quotient Ar/At approaches a limit dr/dt, which we
call the velocity. The vector dr/dt expresses both the direction of motion and the rate. This
is shown graphically in Figure 1.10.2. In the time interval At, the particle moves along
the path from P to P’. As At approaches zero, the point P’ approaches P, and the direc-
tion of the vector Ar/At approaches the direction of the tangent to the path at P. The
velocity vector, therefore, is always tangent to the path of motion.

The magnitude of the velocity is called the speed. In rectangular components the
speed is just

v=|v|=@#? +4% +2%)"2 (1.10.5)
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If we denote the cumulative scalar distance along the path with s, then we can express
the speed alternatively as

ds _ . As_ . [(A0) +(Ay)” + (A7)}

p=—=
dt  A—0 AfF  A—0 At

(1.10.6)

which reduces to the expression on the right of Equation 1.10.5.
The time derivative of the velocity is called the acceleration. Denoting the acceler-
ation with a, we have

dv d*r
=2 = 1.10.
P TR (1107
In rectangular components,
a=i%+ jij+kz (1.10.8)

Thus, acceleration is a vector quantity whose components, in rectangular coordinates, are
the second derivatives of the positional coordinates of a moving particle.

EXAMPLE 1.10.1

Projectile Motion

Let us examine the motion represented by the equation
gt
r(t) = ibt+j(ct—7)+k0

This represents motion in the xy plane, because the z component is constant and equal
to zero. The velocity v is obtained by differentiating with respect to £, namely,

v=%—=ib+j(c—gt)

The acceleration, likewise, is given by

a:d—v=—'
dt J8

Thus, a is in the negative y direction and has the constant magnitude g. The path of
motion is a parabola, as shown in Figure 1.10.3. The speed v varies with ¢ according to
the equation

1/2

v=[b+(c-g’]
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Figure 1.10.3 Position,
velocity, and acceleration

vectors of a particle

(projectile) moving in a

parabolic path. 0

EXAMPLE 1.10.2

Circular Motion

Suppose the position vector of a particle is given by

r=ib sin wt + jb cos wt

where @is a constant.
Let us analyze the motion. The distance from the origin remains constant:

Irj=r=(b*sin® ot +b* cos® wt)*=b
So the path is a circle of radius b centered at the origin. Differentiating r, we find the
velocity vector

dr _. N
v=_r= ibw coswt— jbw sinwt

The particle traverses its path with constant speed:

v=|v|= B’ cos® wt +b’ef sin® wt)*=bw
The acceleration is

dv .
a=—-= -ibow®sinwt - jbw? coswt

In this case the acceleration is perpendicular to the velocity, because the dot product of
v and a vanishes:

v - a=(bwcos wt)(-ba’ sin wt) + (-bwsin wt)(-ba' cos wt) =0

Comparing the two expressions for a and r, we see that we can write

a=—(02]'
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Figure 1.10.4 A particle
moving in a circular path
with constant speed.

so a and r are oppositely directed; that is, a always points toward the center of the cir-
cular path (Fig. 1.10.4).

EXAMPLE 1.10.3
Rolling Wheel

Let us consider the following position vector of a particle P:
r=ry;+rp
in which
r= ibot +jb
r, =ib sin @t +jb cos wt

Now r; by itself represents a point moving along the line y = b at constant velocity,
provided @ is constant; namely,

The second part, r,, is just the position vector for circular motion, as discussed in
Example 1.10.2. Hence, the vector sum r, + r, represents a point that describes a circle
of radius b about a moving center. This is precisely what occurs for a particle on the rim
of a rolling wheel, r; being the position vector of the center of the wheel and r, being
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Figure 1.10.5 The
cycloidal path of a particle
on a rolling wheel.

Figure 1.10.6 Velocity vectors for various
points on a rolling wheel.

the position vector of the particle P relative to the moving center. The actual path is a
cycloid, as shown in Figure 1.10.5. The velocity of P is

v=v,+ Vv, =i(bw+bwcos ot) — jbwsin wt

In particular, for @t =0, 27, 47, . . ., we find that v=i2b®, which is just twice the veloc-
ity of the center C. At these points the particle is at the uppermost part of its path.
Furthermore, for @t = &, 37, 57, . . ., we obtain v = 0. At these points the particle is at
its lowest point and is instantaneously in contact with the ground. See Figure 1.10.6.

1.11] Velocity and Acceleration
in Plane Polar Coordinates

It is often convenient to employ polar coordinates r, 6 to express the position of a parti-
cle moving in a plane. Vectorially, the position of the particle can be written as the prod-
uct of the radial distance r by a unit radial vector e,

r=re, (1.11.1)
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€g

ol i x

Figure 1.11.1 Unit vectors for plane polar coordinates.

As the particle moves, both r and e, vary; thus, they are both functions of the time.
Hence, if we differentiate with respect to t, we have

dr de
2 _ . r (1.11.2)
dt re,+r dt

v

To calculate the derivative de,/dt, let us consider the vector diagram shown in
Figure 1.11.1. A study of the figure shows that when the direction of r changes by an amount
A#, the corresponding change Ae, of the unit radial vector is as follows: The magnitude
| Ae, | is approximately equal to A@ and the direction of Ae, is very nearly perpendicu-
lar to e,. Let us introduce another unit vector, ey, whose direction is perpendicular to e,.
Then we have

Ae, = eyzA0 (1.11.3)
If we divide by At and take the limit, we get

de, de

=e,— 1.11.4
5 =T ( )

for the time derivative of the unit radial vector. In a precisely similar way, we can argue
that the change in the unit vector e, is given by the approximation

Ae, =—e, A0 (1.11.5)

Here the minus sign is inserted to indicate that the direction of the change Ae, is opposite
to the direction of e,, as can be seen from Figure 1.11.1. Consequently, the time deriva-
tive is given by

deg _ _, 40 (1.11.6)

dt " dt
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By using Equation 1.11.4 for the derivative of the unit radial vector, we can finally
write the equation for the velocity as

v=re, +rfe, 1.11.7)

Thus, 7 is the radial component of the velocity vector, and r 0 is the transverse component.
To find the acceleration vector, we take the derivative of the velocity with respect to
time. This gives
a=%='r’e, +r‘d;t' +(#0+rf)e, +re‘% (111.8)
The values of de,/dt and de,/dt are given by Equations 1.11.4 and 1.11.6 and yield the
following equation for the acceleration vector in plane polar coordinates:

a=(#-r8%e, +(r6 +2/0)e, (1.11.9)
Thus, the radial component of the acceleration vector is

a, =¥ -r6? (1.11.10)

and the transverse component is
.o 1d, g
=rf+2/0 =~ (r2
G =TU+2r6 =" dt(r ) (1.11.11)

The above results show, for instance, that if a particle moves on a circle of constant
radius b, so that + =0, then the radial component of the acceleration is of magnitude b 6?
and is directed inward toward the center of the circular path. The transverse component
in this case is b6. On the other hand, if the particle moves along a fixed radial line—that
is, if @is constant—then the radial component is just # and the transverse component
is zero. If r and 6 both vary, then the general expression (1.11.9) gives the acceleration.

A honeybee hones in on its hive in a spiral path in such a way that the radial distance
decreases at a constant rate, r =b — ct, while the angular speed increases at a canstant
rate, 6 =kt. Find the speed as a function of time.

Solution:
We have # =—c and # =0. Thus, from Equation 1.11.7,
v=—ce,+ (b —ct)ktey
so
v=[+ (b - ct)’k*?
which is valid for ¢t < b/c. Note that v =c both fort=0,r=b and fort =b/c, r=0.
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EXAMPLE 1.11.2

On a horizontal turntable that is rotating at constant angular speed, a bug is crawling
outward on a radial line such that its distance from the center increases quadratically
with time: r=b#’, = wt, where b and are constants. Find the acceleration of the bug.

Solution:
We have + =2bt, # =2b, § =@, 6 =0. Substituting into Equation 1.11.9, we find
a=e,(2b - bi’e’) + e [0 + 22bt) w]
=b@ - tfad)e, + dbwte,

Note that the radial component of the acceleration becomes negative for large ¢ in this
example, although the radius is always increasing monotonically with time.

1.12] Velocity and Acceleration in Cylindrical
and Spherical Coordinates

Cylindrical Coordinates

In the case of three-dimensional motion, the position of a particle can be described in
cylindrical coordinates R, ¢, z. The position vector is then written as

r =Rep +ze, (1.12.1)

where ey is a unit radial vector in the xy plane and e, is the unit vector in the z direction.
A third unit vector e, is needed so that the three vectors ezee, constitute a right-handed
triad, as illustrated in Figure 1.12.1. We note thatk=e,.

(d

€

Ak €r

Figure 1.12.1 Unit vectors for
cylindrical coordinates. x
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The velocity and acceleration vectors are found by differentiating, as before. This
again involves derivatives of the unit vectors. An argument similar to that used for the plane
case shows that dey/dt = e, ¢ and de, /dt =—e ¢. The unit vector e, does not change in
direction, so its time derivative is zero.

In view of these facts, the velocity and acceleration vectors are easily seen to be given
by the following equations:

v=Rey+Roe, +ze, (1.12.2)
a=(R-R¢’)ey, + (2R +Re, +Ze, (1.12.3)

These give the values of v and a in terms of their components in the rotated triad ez e, e,.

An alternative way of obtaining the derivatives of the unit vectors is to differentiate
the following equations, which are the relationships between the fixed unit triad ijk and
the rotated triad:

ez=1icos ¢+jsin ¢
e,=—isin ¢+jcos ¢ (1.12.4)
e, =k

The steps are left as an exercise. The result can also be found by use of the rotation
matrix, as given in Example 1.8.2.

Spherical Coordinates

When spherical coordinates r, 6, ¢ are employed to describe the position of a particle,
the position vector is written as the product of the radial distance r and the unit radial
vector €,, as with plane polar coordinates. Thus,

r=re, (1.12.5)

The direction of e, is now specified by the two angles ¢ and 6. We introduce two more
unit vectors, e, and ey, as shown in Figure 1.12.2.
The velocity is

_ % = e, +r d;tr (1.12.6)

v

Our next problem is how to express the derivative de,/d¢ in terms of the unit vectors in
the rotated triad.

Referring to Figure 1.12.2, we can derive relationships between the ijk and e,eqe,
triads. For example, because any vector can be expressed in terms of its projections on
to the x, y, z, coordinate axes

e, =i(e, )+ e, j)+k(e,- k) (1.12.7)

e, - i is the projection of the unit vector e, directly onto the unit vector i. According to
Equation 1.4.11a, it is equal to cos &, the cosine of the angle between those two unit vec-
tors. We need to express this dot product in terms of 8 and ¢, not a. We can obtain the
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€

Figure 1.12.2 Unit vectors for spherical
coordinates.

desired relation by making two successive projections to get to the x-axis. First project e,
onto the xy plane, and then project from there onto the x-axis. The first projection gives
us a factor of sin 6, while the second yields a factor of cos ¢. The magnitude of the pro-
jection obtained in this way is the desired dot product:

e, -i=sinBfcos¢ (1.12.8a)
The remaining dot products can be evaluated in a similar way,

€, -j=sinOsin¢ and e .-k=cos0 (1.12.8b)

The relationships for eoand e, can be obtained as above, yielding the desired relations

e, =isin@cos¢+jsinOsind+k cos O
ep=icosOcos¢+jcosOsing—ksind (1.12.9)
e,=—ising+jcoso

which express the unit vectors of the rotated triad in terms of the fixed triad ijk. We note
the similarity between this transformation and that of the second part of Example 1.8.2.
The two are, in fact, identical if the correct identification of rotations is made. Let us dif-
ferentiate the first equation with respect to time. The result is

‘Z’tf = i(f cos 0 cos ¢ — Psin O sin §) + j(Ocos Osing + $sin @ cos p) —kOsin®  (1.12.10)

Next, by using the expressions for e, and egin Equation 1.12.9, we find that the above
equation reduces to
de,

— = e,fsinf+ e,0 (1.12.11a)
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The other two derivatives are found through a similar procedure. The results are

B0 _ ¢ b+eypcoshd (112.11b)
dt

d . .

—L—;ti= —e, ¢sinf—e, Pcosb (112.11¢)

The steps are left as an exercise. Returning now to the problem of finding v, we insert the
expression for de, /dt given by Equation 1.12.11a into Equation 1.12.6. The final result is

v= er1'*+e¢r¢sin0+e9r9 (1.12.12)

giving the velocity vector in terms of its components in the rotated triad.
To find the acceleration, we differentiate the above expression with respect to time.
This gives

act®
dt
. ‘ d A ' (1.12.13)
= eri‘+f%+e¢L—i%ts—lg—e—)+r¢sin0—§tl+ee%+r0%

Upon using the previous formulas for the derivatives of the unit vectors, the above expres-
sion for the acceleration reduces to

a=(#-r¢?sin®0—rb%)e, +(rd+2/0 —ré®sinBcosH)e,

. . .. (1.12.14)
+(r¢sin 0+ 27¢sin 6 + 2rBp cos O)e,

giving the acceleration vector in terms of its components in the triad e, ege,.

A bead slides on a wire bent into the form of a helix, the motion of the bead being given

in cylindrical coordinates by R =b, ¢= wt, z=ct. Find the velocity and acceleration vec-
tors as functions of time.

Solution:

Differentiating, we find R=R =0, ¢ =w, §=0, 2=c¢, £=0. So, from Equations
1.12.2 and 1.12.3, we have

v=bwe,+ce,
a= —bwzeﬂ
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Thus, in this case both velocity and acceleration are constant in magnitude, but they vary
in direction because both e, and e, change with time as the bead moves.

A wheel of radius b is placed in a gimbal mount and is made to rotate as follows. The
wheel spins with constant angular speed @, about its own axis, which in turn rotates with
constant angular speed @, about a vertical axis in such a way that the axis of the wheel
stays in a horizontal plane and the center of the wheel is motionless. Use spherical coor-
dinates to find the acceleration of any point on the rim of the wheel. In particular, find
the acceleration of the highest point on the wheel.

Solution:

We can use the fact that spherical coordinates can be chosen such that r = b, 6=t
and ¢ = @,t (Fig. 1.12.3). Then we have 7+ = =0,0 =@, 6 =0, ¢=0,, $=0.
Equation 1.12.14 gives directly

a=(-bwj; sin® 6-bo})e, — b} sinBcosb e, +2bw, o, cosbe,
The point at the top has coordinate 8 = 0, so at that point

a=-bole, +2bwwe,

The first term on the right is the centripetal acceleration, and the last term is a trans-
verse acceleration normal to the plane of the wheel.

Figure 1.12.3 A rotating wheel on a rotating mount.
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Problems

1.1

1.2

1.3

14

L5

1.6

1.7

1.8

1.9
1.10

1.11
L12

L.13

Given the two vectors A =i + j and B =j + k, find the following;

(a) A+Band |A+B|

(b) 3A- 2B

(©)A-B

(d) AxB and |A xB|

Given the three vectors A =2i + j, B=i+ k, and C = 4j, find the following:

(@ A-B+C)and(A+B)-C

(b) A-(BxC)and AxB)-C

(©) Ax(BxC)and (AxB)xC

Find the angle between the vectors A = ai + 2aj and B = ¢i + 2aj + 3ak. (Note: These two

vectors define a face diagonal and a body diagonal of a rectangular block of sides a, 24,
and 3a.)

Consider a cube whose edges are each of unit length. One corner coincides with the origin
of an xyz Cartesian coordinate system. Three of the cube’s edges extend from the
origin along the positive direction of each coordinate axis. Find the vector that begins at the
origin and extends

() along a major diagonal of the cube;

(b) along the diagonal of the lower face of the cube.

(¢) Calling these vectors A and B, find C=A xB.

(d) Find the angle between A and B.

Assume that two vectors A and B are known. Let C be an unknown vector such that
A . C=uis a known quantity and A x C = B. Find C in terms of A, B, u, and the
magnitude of A.

Given the time-varying vector

A=iat+jBf +kyt*
where @, B, and ¥ are constants, find the first and second time derivatives dA/dt and
d’A/ds®.
For what value (or values) of ¢ is the vector A =ig + 3j + k perpendicular to the vector B =
ig —qj+2k?

Give an algebraic proof and a geometric proof of the following relations:

[A+B|<[A]+]|B]
|A-B|<[A]|B]

Prove the vector identity A x (B x C) =B(A - C) — C(A - B).

Two vectors A and B represent concurrent sides of a parallelogram. Show that the area of
the parallelogram is equal to |A x B|.

Show that A - (B x C) is not equal to B . (A x C).

Three vectors A, B, and C represent three concurrent edges of a parallelepiped. Show that
the volume of the parallelepiped is equal to |A - (B x C)|.

Verify the transformation matrix for a rotation about the z-axis through an angle ¢ followed
by a rotation about the y’-axis through an angle 6, as given in Example 1.8.2.
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1.16

1.17

1.18

1.19

1.20
1.21

1.22

Problems 45

Express the vector 2i + 3j — k in the primed triad i'j’k’ in which the x"y’-axes are rotated
about the z-axis (which coincides with the z’-axis) through an angle of 30°.

Consider two Cartesian coordinate systems xyz and " 4’ z’ that initially coincide. The
x" y" 2’ undergoes three successive counterclockwise 45° rotations about the following
axes: first, about the fixed z-axis; second, about its own x’-axis (which has now been
rotated); finally, about its own z"-axis (which has also been rotated). Find the components
of a unit vector X in the xyz coordinate system that points along the direction of the x’-axis
in the rotated x” y’ 2’ system. (Hint: It would be useful to find three transformation matri-
ces that depict each of the above rotations. The resulting transformation matrix is simply
their product.)

A racing car moves on a circle of constant radius b. If the speed of the car varies with time
t according to the equation v = c¢f, where ¢ is a positive constant, show that the angle
between the velocity vector and the acceleration vector is 45° at time £ = Jblc. (Hint: At
this time the tangential and normal components of the acceleration are equal in magnitude.)

A small ball is fastened to a long rubber band and twirled around in such a way that the ball
moves in an elliptical path given by the equation

r(t) =1ib cos @t + j2b sin 0t

where b and ware constants. Find the speed of the ball as a function of ¢. In particular, find
v att=0and at t = 7/2@, at which times the ball is, respectively, at its minimum and max-
imum distances from the origin.

A buzzing fly moves in a helical path given by the equation
x(t)=ib sinwt +jb cos wt + ket®

Show that the magnitude of the acceleration of the fly is constant, provided b, @, and ¢ are
constant.

A bee goes out from its hive in a spiral path given in plane polar coordinates by

r=be" 0=ct
where b, k, and ¢ are positive constants. Show that the angle between the velocity vector
and the acceleration vector remains constant as the bee moves outward. (Hint: Find v - a/va.)
‘Work Problem 1.18 using cylindrical coordinates where R=b, ¢ = wt, and z = ctl.

The position of a particle as a function of time is given by

() =i(l —e ™) + je*
where k is a positive constant. Find the velocity and acceleration of the particle. Sketch its
trajectory.

An ant crawls on the surface of a ball of radius b in such a manner that the ant’s motion is
given in spherical coordinates by the equations

Il
S~

r o=t 0= £[1 + %cos(4wt)]

2

Find the speed of the ant as a function of the time ¢. What sort of path is represented by
the above equations?



46

1.23

1.24

1.25

1.26

1.27
1.28

1.29

1.30
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Prove that v-a = vi and, hence, that for a moving particle v and a are perpendicular to each
other if the speed v is constant. (Hint: Differentiate both sides of the equation v - v =" with
respect to t. Note, © is not the same as | a|. It is the magnitude of the acceleration of the par-
ticle along its instantaneous direction of motion.)

Prove that
étd—[r-(vxa)]=r-(vxé)

Show that the tangential component of the acceleration of a moving particle is given by the
expression

a, =—
v

and the normal component is therefore

1/2
2 o2 _[ o (v-a)?
a,,=(a —a,) ={a" ——

v

Use the above result to find the tangential and normal components of the acceleration as
functions of time in Problems 1.18 and 1.19.

Prove that |v x a| =v"/p,where p is the radius of curvature of the path of a moving particle.

A wheel of radius b rolls along the ground with constant forward acceleration a,. Show that, at
any given instant, the magnitude of the acceleration of any point on the wheel is (a2 + v*/b® 2
relative to the center of the wheel and is also 4[2 + 2 cos8 + v*/a2b? — (2v*/ayb) sin ]2
relative to the ground. Here v is the instantaneous forward speed, and & defines the loca-
tion of the point on the wheel, measured forward from the highest point. Which point has
the greatest acceleration relative to the ground?

What is the value of x that makes of following transformation R orthogonal?

x x 0
R=[-x = 0
0 01

What transformation is represented by R?

Use vector algebra to derive the following trigonometric identities
(a) cos(0— @) = cosOcosg+ sinO sing

(b) sin(0— ¢) = sinO cosp — cosOsing



