SEQENCES OF REAL NUMBERS

According to a poplar dictionary, a sequence is " the following of one thing after another. "In mathematics we could define a sequence intuitively as a succession of numbers that never terminates. The numbers in the sequence are called the terms of the sequence .In a sequence there is one term for each positive integer

EXAMPLE 1 Consider the sequence

We see that there is one term for each positive integer. The terms in this sequence form an infinite set of real numbers, which we write as

$$
\begin{equation*}
A=\left\{\frac{1}{2} \cdot \frac{1}{4} \cdot \frac{1}{8}, \cdots \cdot \frac{1}{2^{n}} \cdot \cdots\right\} \tag{1}
\end{equation*}
$$

That is, the set A consists of all numbers of the form $\frac{1}{2^{n}}$ where n is a positive integer There is another way to describe this set We define the function f by the rule $f(n)=\frac{1}{2^{n}}$ where the domain of f is the set of positive integers. Then the set A is precisely the set of values taken by the function f.

In general, we have the following formal definition.
Definition 1 SEQUENCE A sequence of real numbers is a function whose domain is the set of positive integers. The values taken by the function are called terms of the sequence.

NOTATION. We will often denote the terms of a sequence by a_{n} Thus if the function given in Definition 1 is f, then $a_{n}=f(n)$ with this notation, we can denote the set of values taken by the sequence by $\left\{a_{n}\right\}$ Also, we use n, m, and so on as integer variables and x, y, and so on as real variables.

EXAMPLE 2: The following are sequences of real numbers:
(a) $\quad\left\{a_{n}\right\}=\left\{\frac{1}{n}\right\}$
(b) $\left\{a_{n}\right\}=\{\sqrt{n}\}$
(c) $\left\{a_{n}\right\}=\left\{\frac{1}{n!}\right\}$
(d) $\left\{a_{n}\right\}=\{\sin n\}$
(e) $\left\{a_{n}\right\}=\left\{\frac{e^{n}}{n!}\right\}$
(f) $\left\{a_{n}\right\}=\left\{\frac{n-1}{n}\right\}$

We sometimes denote a sequences by writing out the values $\left\{a_{1}, a_{2}, a_{3}, \cdots\right\}$.

EXAMPLE 3 We write out the values of the sequences in Example 2:
(a) $\left\{1 \cdot \frac{1}{2} \cdot \frac{1}{3} \cdot \frac{1}{4}, \cdots, \frac{1}{n}, \cdots\right\}$
(b) $\{1, \sqrt{2}, \sqrt{3}, \sqrt{4}, \cdots, \sqrt{n}, \cdots\}$
(c) $\left\{1 \cdot \frac{1}{2} \cdot \frac{1}{6} \cdot \frac{1}{24}, \cdots \cdot \frac{1}{n!} \cdot \cdots\right\}$
(d) $\{\sin 1 \cdot \sin 2 \cdot \sin 3 \cdot \sin 4 \cdot \cdots \cdot \sin n . \cdots\}$
(e) $\left\{e \cdot \frac{e^{2}}{2} \cdot \frac{e^{3}}{3} \cdot \frac{e^{4}}{4} \cdot \cdots \cdot \frac{e^{n}}{n!} \cdot \cdots\right\}$
(f) $\left\{0 \cdot \frac{1}{2} \cdot \frac{2}{3} \cdot \frac{3}{4} \cdot \cdots \cdot \frac{n-1}{n} \cdot \cdots\right\}$

EXAMPLE 4 : Find the general term of the sequence

$$
\{-1.1-1.1 .-1.1 .-1 . \cdots\}
$$

Solution. We see that $a_{1}=-1 \cdot a_{2}=1 \cdot a_{3}=-1 a_{4}=1 . \cdots$ Hence

$$
a_{2}= \begin{cases}-1 . & \text { if } n \text { is odd } \\ 1 . & \text { if } n \text { is even }\end{cases}
$$

A more concise way to write this term is: $a_{2}=(-1)^{n}$
It is evident that as n gets large, the numbers $1 / n$ get small. We can write $\lim _{n \rightarrow \infty} \frac{1}{n}=0$
This is also suggested by the graph in Figure 1a Similarly, it is not hard to show that as n gets large, $\frac{(n-1)}{n}$ gets close to 1 . We write $: \lim _{n \rightarrow \infty} \frac{n-1}{n}=1$

For the remainder of this section we will be concerned with calculating the limit of a sequence as $n \rightarrow \infty$ Since a sequence is a special type of function, our formal definition of the limit of a sequence is going to be very similar to the definition of $\lim _{n \rightarrow \infty} f(x)$

Definition 2 FINITE LIMIT OF ASEQUENCE A sequence $\left\{a_{2}\right\} \dagger$ has limit L if for every $\epsilon>0$ there exists an integer $N>0$ such that if $n \geq N$ then $\left|a_{2}-L\right|<\epsilon$ We

$$
\begin{equation*}
\operatorname{Lim}_{n \rightarrow \infty} a_{2}=L \tag{2}
\end{equation*}
$$

Intuitively, this definition states that if as n increases without bound, gets arbitrarily close to L

Definition 2 FINITE LIMIT OF A SEQUENCE The sequence $\left\{a_{n}\right\}$ has the limit ∞ if for every positive number M there is an integer $N>0$ such that if $n>N$. then $a_{n}>M$ In this case we write $\lim _{n \rightarrow \infty} a_{n}=\infty$

Intuitively, $\lim _{n \rightarrow \infty} a_{n}=\infty$ means that as n increases without bound, also increases without bound.
The theorem below gives us a very useful result.
Theorem 1: Let r be a real number Then

$$
\operatorname{Lim}_{n \rightarrow \infty} r^{n}=0 \quad \text { if }|r|<1
$$

And $\lim _{n \rightarrow \infty}\left|r^{n}\right|=\infty$ if $|r|>1$
Proof
Case $1 \quad r=0$ Then $r^{n}=0$. and the sequence has the limit 0
Case $20<|r|<1$ For a given $\in>0$. choose N such that $N>\frac{\operatorname{In} \in}{\operatorname{In}|r|}$
Note that since $|r|<1$. In $|r|<0$ Now if $n>N$.
$n>\frac{\operatorname{In} \epsilon}{\operatorname{In}|r|} \quad$ and $\quad n$ In $|r|<\epsilon$
The second inequality follows from the fact that $\operatorname{In}|r|$ is negative, and multiplying both sides of an inequality by a negative number reverses the inequality. Thus

$$
\operatorname{In}\left|r^{n}-0\right|=\operatorname{In}\left|r^{n}\right|=\operatorname{In}|r|^{n}=n \operatorname{In}|r|<\operatorname{In} \in
$$

Since $\operatorname{In}\left|r^{n}-0\right|<\operatorname{In} \in$ and $\operatorname{In} \mathrm{x}$ is an increasing function, we conclude that $\left|r^{n}-0\right|<\in$ Thus according to the definition of a finite limit of a sequence, $\operatorname{Lim}_{n \rightarrow \infty}\left|r^{n}\right|=0$

Case $3|r|>1$. Let $M>0$ be given Choose $N>\frac{I n M}{I n|r|}$ Then if $n>N$.

$$
\begin{aligned}
& \swarrow n>N \\
& \text { In }\left|r^{n}\right|=n \text { In }|r|>\left(\frac{\operatorname{In} M}{\operatorname{In}|r|}\right)(\operatorname{In}|r|)=\text { In } M .
\end{aligned}
$$

So that $\left|r^{n}\right|>M \quad$ if $\mathrm{n}>\mathrm{N}$
Form the definition of an infinite limit of a sequence, we see that $\lim _{n \rightarrow \infty}\left|r^{n}\right|=\infty$

Theorem 2 Suppose that $\operatorname{Lim}_{n \rightarrow \infty} a_{n}$ and $\operatorname{Lim}_{n \rightarrow \infty} b_{n}$ both exist and are finite.

$$
\begin{equation*}
\text { (i) } \operatorname{Lim}_{n \rightarrow \infty} a a_{n}=a \operatorname{Lim}_{n \rightarrow \infty} a_{n} \text { for any number } a \tag{3}
\end{equation*}
$$

(ii) $\operatorname{Lim}_{n \rightarrow \infty}\left(a_{n}+b_{n}\right)=\operatorname{Lim}_{n \rightarrow \infty} a_{n}+\operatorname{Lim}_{n \rightarrow \infty} b_{n}$
(iii) $\operatorname{Lim}_{n \rightarrow \infty} a_{n} b_{n}=\left(\underset{n \rightarrow \infty}{\operatorname{Lim} a_{n}}\right)\left(\operatorname{Lim}_{n \rightarrow \infty} b_{n}\right)$
(iv)If $\operatorname{Lim}_{n \rightarrow \infty} b_{n} \neq 0$. then
$\operatorname{Lim}_{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\frac{\operatorname{Lim}_{n \rightarrow \infty} a_{n}}{\operatorname{Lim}_{n \rightarrow \infty} b_{n}}$

Theorem 3 Continuity Theorem Suppose that L is finite and $\operatorname{Lim}_{n \rightarrow \infty} a_{n}=L$ if f is continuous in an open interval containing L, then

$$
\begin{equation*}
\operatorname{Lim}_{n \rightarrow \infty} f\left(a_{n}\right)=f\left(\operatorname{Lim}_{n \rightarrow \infty} a_{n}\right)=f(L) \tag{7}
\end{equation*}
$$

Theorem 4 Squeezing Theorem Suppose that $\operatorname{Lim}_{n \rightarrow \infty} a_{n}=\operatorname{Lim}_{n \rightarrow \infty} b_{n}=L$ and that $\left\{c_{n}\right\}$ is a sequence having the property that for $n>N$ (appositive integer), $a_{n} \leq c_{n} \leq b_{n}$ Then

$$
\begin{equation*}
\operatorname{Lim}_{n \rightarrow \infty} c_{n}=L \tag{8}
\end{equation*}
$$

We now give a central definition in the theory of sequences
Definition 4 CONVERGENCE AND DIVERGENCE OF A SEQUENCE If the limit in (2) exists and if L is finite, we say that the sequence converges or is convergent Otherwise, we say that the sequence diverges or is divergent

EXAMPLE: The sequence $\left\{\frac{1}{2^{n}}\right\}$ is convergent since, by Theorem 1, $\operatorname{Lim}_{n \rightarrow \infty} \frac{1}{2^{n}}=\operatorname{Lim}_{n \rightarrow \infty}\left(\frac{1}{2}\right)^{n}=0$
EXAMPLE 6 The sequence $\left\{r^{n}\right\}$ is divergent for r since $\operatorname{Lim}_{n \rightarrow \infty} r^{n}=\infty$ if $r>1$
EXAMPLE 7 The sequence $\left\{(-1)^{n}\right\}$ is divergent since the values a_{n} alternate between -1 and +1 but do not stay close to any fixed number as n becomes large

Theorem 5: Suppose that $\operatorname{Lim}_{x \rightarrow \infty} f(x)=L$. a finite number, ∞. or $-\infty$ If f is defined for every positive integer, then the limit of the sequence $\left\{a_{n}\right\}=\{f(n)\}$ is also equal to L. That is $\operatorname{Lim}_{n \rightarrow \infty} f(x)=\operatorname{Lim}_{n \rightarrow \infty} a_{n}=L$

EXAMPLE 8 Calculate $\operatorname{Lim}_{n \rightarrow \infty} 1 / n^{2}$
Solution Since $\operatorname{Lim}_{x \rightarrow \infty} \frac{1}{x^{2}}=0$. we have $\operatorname{Lim}_{n \rightarrow \infty} 1 / n^{2}$ (by Theorem 5)
EXAMPLE 9 Does the sequence $\left\{\frac{e^{n}}{n}\right\}$ converge or diverge ?
Solution Since $\operatorname{Lim}_{n \rightarrow \infty} \frac{e^{x}}{x}=\operatorname{Lim}_{n \rightarrow \infty} \frac{e^{x}}{1}$ (by L 'Hospital's rule) $=\infty$. we find that the sequence diverges

REMARK. It should be emphasized that Theorem 5 does not say that if does not exist, then diverges for example, let $f(x)=\sin \pi x$

Then $\operatorname{Lim}_{x \rightarrow \infty} f(x)$ does not exist, but $\operatorname{Lim}_{n \rightarrow \infty} f(n)=\operatorname{Lim}_{n \rightarrow \infty} \sin \pi n=0$ sincesin $\pi n=0$ for every integer n

EXAMPLE $10 \operatorname{Let}\left\{a_{n}\right\}=\left\{\left[1+\left(\frac{1}{n}\right)\right]^{n}\right\}$ Does this sequence converge or diverge $? y=$ $\left(1+\frac{1}{x}\right) x \ln y=x \ln \left(1+\frac{1}{x}\right)$

Solution Since $\lim _{x \rightarrow \infty}\left[1+\left(\frac{1}{x}\right)\right]^{x}=e$. we see that a_{n} converges to the limit e EXAMPLE 11 Determine the convergence or divergence of the sequence $\left\{\frac{\ln n}{n}\right\}$

Solution $\lim _{x \rightarrow \infty}\left[\frac{\operatorname{In} x}{x}\right]=\lim \left[\left(\frac{1}{x}\right) / 1\right]=0$ by L'Hospital's rule, so that the sequence converges to 0 .

EXAMPLE $12 \operatorname{Let} p(x)=c_{0}+c_{1} x+\cdots+c_{m} x^{m}$ and $q(x)=d_{0}+d_{1} x+\cdots+d_{2} x^{2}$ In
Problem 2.4.39 we showed that if the rational function $r(x)=\frac{p(x)}{q(x)}$. then . if $c_{m} d_{r} \neq 0$.
$\operatorname{Lim}_{x \rightarrow \infty} \frac{p(x)}{q(x)} \begin{cases}0 . & \text { if } m<r \\ \pm \infty . & \text { if } m>r \\ \frac{c_{m}}{d_{r}} . & \text { if } m=r\end{cases}$

Thus the sequence $\left\{\frac{p(n)}{q(n)}\right\}$ converges to 0 if $m<r$. converges to $\frac{c_{m}}{d_{r}}$ if $m=r$. and diverges if $m>r$

EXAMPLE 13 Does the sequence $\left\{\left(5 n^{3}+2 n^{2}+1\right)\left(2 n^{2}+3 n+4\right)\right.$ converge or diverge ?
Solution Here $m=r=3$. that by the result of Example 12 the sequence converges to $\frac{c_{3}}{d_{3}}=\frac{5}{2}$

EXAMPLE 14 Does the sequence $\left\{n^{\frac{1}{n}}\right\}$ converge or diverge?
Solution. Since $\operatorname{Lim}_{x \rightarrow \infty} x^{1 / x}=1$ (see Example 12.3.7), the sequence converges to 1
EXAMPLE 15 Determine the convergence or divergence of the sequence $\left\{\sin \frac{a n}{n^{B}}\right\}$ where a is a real number and $B>0$

Solution. Since $-1 \leq \sin a x \leq 1$. we see that.

$$
-\frac{1}{x^{B}} \leq \frac{\sin a x}{x^{B}} \leq \frac{1}{x^{B}} \quad \text { for any } x>0
$$

But $\pm \operatorname{Lim}_{x \rightarrow \infty} \frac{1}{x^{B}}=0$. and so by the squeezing theorem (Theorem 2.4.1), $\operatorname{Lim}_{x \rightarrow \infty}[(\sin a x) /$ $\left.x^{B}\right]=0$ Therefore the sequence $\left\{(\sin a n) / n^{B}\right\}$ converges to 0

As in Example 15, the squeezing theorem can often be used to calculate the limit of a sequence.

PROBLMS

(I)find the first five terms of the given sequence.
$1 \cdot\left\{\frac{1}{3^{n}}\right\}$
$2 \cdot\left\{\frac{n+1}{n}\right\}$
$3 \cdot\left\{1-\frac{1}{4^{n}}\right\}$
$4 \cdot\{\sqrt[3]{n}\}$
$5 \cdot\left\{e^{\frac{1}{n}}\right\}$
$6 \cdot\{n \cos n\}$
$7 \cdot\{\sin n \pi\}$
$8 \cdot\{\cos n \pi\}$
$9 \cdot\left\{\sin \frac{n \pi}{2}\right\}$

In problems 10-27, determine whether the given sequence is convergent or divergent. If it is convergent, find its limit.
$10 \cdot\left\{\frac{3}{n}\right\}$
$11 \cdot\left\{\frac{1}{\sqrt{n}}\right\}$
$12 \cdot\left\{\frac{n+1}{n^{\frac{5}{2}}}\right\}$
$13 \cdot\{\sin n\} \quad 14 \cdot\{\sin n \pi\} \quad 15 \cdot\left\{\cos \left(\mathrm{n}+\frac{\pi}{2}\right)\right\}$
$16 \cdot\left\{\frac{n^{5}+3 n^{2}+1}{n^{6}+4 n}\right\}$
$17 \cdot\left\{\frac{4 n^{5}-3}{7 n^{5}+n^{2}+2}\right\}$
$18 \cdot\left\{\left(1+\frac{4}{n}\right)^{n}\right\}$
$19 \cdot\left\{\left(1+\frac{1}{4 n}\right)^{n}\right\}$
$20 \cdot\left\{\frac{\sqrt{n}}{\operatorname{In} n}\right\}$
$21 \cdot\{\sqrt{n+3}-\sqrt{n}\}$
[Hint: Multiply and divide by $\sqrt{n+3}+\sqrt{n}$]
$22 \cdot\left\{\frac{2^{n}}{n!}\right\}$
$23 \cdot\left\{\frac{a^{n}}{n!}\right\}($ a real $)$
$24 \cdot\left\{\frac{4}{\sqrt{n^{2}+3-n}}\right\}$
$25 \cdot\left\{\frac{(-1)^{n} n^{3}}{n^{3}+1}\right\}$
$26 \cdot\left\{(-1)^{n} \cos n \pi\right\}$
$27 \cdot\left\{\frac{(-1)^{n}}{\sqrt{n}}\right\}$

In Problems 28 -33, find the general term a_{n} of the given sequence.
$28 \cdot\{1 .-2.3 .-4.5 .-6 . \cdots\} \quad 29 \cdot\left\{1.2 \cdot 5.3 \cdot 5^{2} .4 \cdot 5^{3} .5 \cdot 5^{4} . \cdots\right\}$
$30 \cdot\left\{\frac{1}{2} \cdot \frac{2}{3} \cdot \frac{3}{4} \cdot \frac{4}{5} \cdot \frac{5}{6} \cdots\right\}$
$31 \cdot\left\{\frac{1}{2} \cdot \frac{3}{4} \cdot \frac{7}{8} \cdot \frac{15}{16} \cdot \frac{31}{32} \cdot \cdots\right\}$

* $32 \cdot\left\{\frac{1}{3} \cdot \frac{2}{5} \cdot \frac{3}{7} \cdot \frac{4}{9} \cdot \frac{5}{11} \cdot \cdots\right\}$
$33 \cdot\left\{1-\frac{1}{3} \cdot \frac{1}{9} \cdot-\frac{1}{27} \cdot \cdots\right\}$

34. Show that $a_{n}=\left[1+\left(\frac{a}{n}\right)\right]^{n}$ converges to e^{a}
