## INFINITE SERIES

we defined the geometric series $\sum_{k=0}^{\infty} r^{k}$ and showed that if $|r|<1$. series converges to $1 /(1-$ $r$ ) Let us again look at what we did If $S_{n}$ denotes the sum of the firstn +1 terms of the geometric series then

$$
\begin{equation*}
S_{n}=1+r+r^{2}+\cdots r^{n}=\frac{1-r^{n+1}}{1-r} \cdot r \neq 1 \tag{1}
\end{equation*}
$$

For each n we obtain the number $S_{n}$. and therefore we can define a new sequence $\left\{S_{n}\right\}$ to be the sequence of partial sums of the geometric series If $|r|<1$ then

$$
\lim _{n \rightarrow \infty} S_{n}=\lim _{n \rightarrow \infty} \frac{1-r^{n+1}}{1-r}=\frac{1}{1-r}
$$

That is, the convergence of the geometric series is implied by the convergence of the sequence of partial sums $\left\{S_{n}\right\}$

We now give a more general definition of these concepts

## Definition 1 INFNITE SERIES

Let be a sequence Then the infinite sum

$$
\begin{equation*}
\sum_{k=1}^{\infty} a_{k}=a_{1}+a_{2}+a_{3}+\cdots+a_{n}+\cdots \tag{2}
\end{equation*}
$$

Is called an infinite series ( or , simply, series ) Each $a_{k}$ in (2) is called a term of the series The partial sums of the series are given by
$S_{n}=\sum_{k=1}^{n} a_{k}$
The term is called the n th partial sum of the series If the sequence of partial sums $\left\{S_{n}\right\}$ converges to L , then we say that the infinite series $\sum_{k=1}^{\infty} a_{k}$ converges to L and we write
$\sum_{k=1}^{\infty} a_{k}=L$
Otherwise, we say that the series $\sum_{k=1}^{\infty} a_{k}$ diverges

REMARK Occasionally a series will be written with the first term other than $a_{1}$ for example, $\sum_{k=0}^{\infty}\left(\frac{1}{2}\right)^{k}$ and $\sum_{k=2}^{\infty} 1 /(\operatorname{In} k)$ are both examples of infinite series. In the second case we must start with $k=2$ since $1 /(\operatorname{In} 1)$ is not defined

EXAMPLE 1 We can write the number $1 / 3$ as

$$
\begin{equation*}
\frac{1}{3}=0 \cdot 33333 \cdots=\frac{3}{10}+\frac{3}{100}+\frac{3}{1000}+\cdots+\frac{3}{10^{n}}+\cdots \tag{4}
\end{equation*}
$$

This expression is an infinite series Here $a_{n}=\frac{3}{10^{n}}$ and
$S_{n}=\frac{3}{10}+\frac{3}{100}+\cdots+\frac{3}{10^{n}}=\overbrace{0 \cdot 333 \cdots 3}^{n \text { placee }}$
we can formally prove that this sum converges by noting that

$$
S=\frac{3}{10}\left(1+\frac{1}{10}+\frac{1}{100}+\cdots\right)=\frac{3}{10} \sum_{k=0}^{\infty}\left(\frac{1}{10}\right)^{k}
$$

$\measuredangle$ By Theorem $14 \cdot 3 \cdot 2$
$=\frac{3}{10}\left[\frac{1}{1-\left(\frac{1}{10}\right)}\right]=\frac{3}{10}\left(\frac{1}{\frac{9}{10}}\right)=\frac{3}{10} \cdot \frac{10}{9}=\frac{3}{9}=\frac{1}{3}$
As a matter of fact, any decimal number x can be thought of as a convergent infinite series, for if $x=0 \quad a_{1} a_{2} a_{3} \cdots a_{n} \cdots$. Then
$x=\frac{a_{1}}{10}+\frac{a_{2}}{100}+\frac{a_{3}}{1000}+\cdots+\frac{a_{n}}{10^{n}}+\cdots=\sum_{k=1}^{\infty} \frac{a_{k}}{10^{k}} \dagger$

EXAMPLE 2 Express the repeating decimal $0.123123123 \ldots$ as a rational number (the quotient of two integers)

Solution : $0 \cdot 123123123 \cdots=0 \cdot 123+0 \cdot 000123+0 \cdot 000000123+\cdots$

$$
\begin{aligned}
& =\frac{123}{10^{3}}+\frac{123}{10^{6}}+\frac{123}{10^{9}}+\cdots=\frac{123}{10^{3}}\left[1+\frac{1}{10^{3}}+\frac{1}{\left(10^{3}\right)^{2}}+\cdots\right] \\
= & \frac{123}{1000} \sum_{k=0}^{\infty}\left(\frac{1}{1000}\right)^{k}=\frac{123}{1000}\left[\frac{1}{1-\left(\frac{1}{1000}\right)}\right]=\frac{123}{1000} \cdot \frac{1}{\frac{999}{1000}}
\end{aligned}
$$

$\dagger$ Since $0 \leq a_{k}<10$.

$$
\sum_{k=1}^{\infty} \frac{a_{k}}{10^{k}}<\sum_{k=1}^{\infty} \frac{10}{10^{k}}=\sum_{k=1}^{\infty} \frac{1}{10^{k-1}}=1+\frac{1}{10}+\left(\frac{1}{10}\right)^{2}+\cdots=\frac{1}{1-\frac{1}{10}}=\frac{10}{9}
$$

Once we have this test, the inequality given above implies that $\sum_{k=1}^{\infty}\left(\frac{a_{k}}{10^{k}}\right)$ converges

$$
=\frac{123}{1000} \cdot \frac{1000}{999}=\frac{123}{999}=\frac{41}{333}
$$

In general, we can use the geometric series to write any repeating decimal in the form of a fraction by using the technique of Example 1 or 2 In fact, the rational numbers are exactly those real numbers that can be written as repeating decimals Repeating decimals include numbers like $3=3 \cdot 00000 \cdots$ and $\frac{1}{4}=0 \cdot 25=0 \cdot 25000000 \cdots$

EXAMPLE 3 Telescoping Series Consider the infinite series $\sum_{k=1}^{\infty} \frac{1}{k}(1+1)$ We write the first three partial sums:
$S_{1}=\sum_{k=1}^{1} \frac{1}{k(k+1)}=\frac{1}{1 \cdot 2}=\frac{1}{2}=1-\frac{1}{2}$.
$S_{2}=\sum_{k=1}^{2} \frac{1}{k(k+1)}=\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}=\frac{1}{2}+\frac{1}{6}=1-\frac{1}{3}$.
$S_{3}=\sum_{k=1}^{3} \frac{1}{k(k+1)}=\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4}=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}=1-\frac{1}{4}$.
We can use partial fractions to rewrite the general term as

$$
a_{k}=\frac{1}{k(k+1)}=\frac{1}{k}-\frac{1}{k+1}
$$

From which we can get a better view of the n th partial as

$$
S_{n}=\left(\frac{1}{1}-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+\cdots+\left(\frac{1}{n-1}-\frac{1}{n}\right)+\left(\frac{1}{n}-\frac{1}{n+1}\right)
$$

$=1-\frac{1}{n+1}$.

Because all other terms cancel. Since $\lim _{n \rightarrow \infty} S_{n}=\lim _{n \rightarrow \infty}\left\{1-\left[\frac{1}{n-1}\right]\right\}=1$. we see that
$\sum_{k=1}^{\infty} \frac{1}{k}(1+1)=1$

When, as here a terms cancel, we say that the series is a telescoping series
REMARK. Often, it is not possible to calculate the exact sum of an infinite series even if it can be shown that series converges

EXAMPLE 4 Consider the series

$$
\begin{equation*}
\sum_{k=1}^{\infty} \frac{1}{k}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots+\frac{1}{n}+\cdots \tag{5}
\end{equation*}
$$

This series is called the harmonic series Although $a_{n}=\frac{1}{n} \rightarrow 0$ as $n \rightarrow \infty$ it is not difficult to show that the harmonic series diverges To see this, we write

$$
\begin{gathered}
\text { 2térms } \\
\sum_{k=1}^{z} \frac{1}{k}=1+\frac{1}{2}+\underbrace{\left(\frac{1}{3}+\frac{1}{4}\right)}_{>}+\underbrace{\left(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}\right)}_{>}+\underbrace{\left(\frac{1}{9}+\cdots+\frac{1}{16}\right)}_{>}+\cdots
\end{gathered}
$$

Here we have written the terms in groups containing $2^{n}$ numbers Note that $\frac{1}{3}+\frac{1}{4}>\frac{2}{4}=\frac{1}{2} \cdot \frac{1}{5}+$ $\frac{1}{6}+\frac{1}{7}+\frac{1}{8}>\frac{1}{8}+\frac{1}{8}+\frac{1}{8}=\frac{1}{2}$. and so on Thus $\sum_{k=1}^{\infty} \frac{1}{k}=1+\frac{1}{2}+\frac{1}{2}+\cdots$. and the series diverges

WARNING. Example 4 clearly shows that even though the sequence $\left\{a_{n}\right\}$ converges to 0 , the series may, in fact, diverge. That is, if $a_{n} \rightarrow 0$. then $\sum_{k=1}^{\infty} a_{k}$ may or may not converge. Some additional test is needed to determine convergence or divergence

Theorem 1 Let c be constant. Suppose that $\sum_{k=1}^{\infty} a_{k}$ and $\sum_{k=1}^{\infty} b_{k}$ both converge Then $\sum_{k=1}^{\infty}\left(a_{k}+b_{k}\right)$ and $\sum_{k=1}^{\infty} c a_{k} \quad$ converge, and

$$
\begin{equation*}
\text { (i) } \sum_{k=1}^{\infty}\left(a_{k}+b_{k}\right)=\sum_{k=1}^{\infty} a_{k}+\sum_{k=1}^{\infty} b_{k} \tag{6}
\end{equation*}
$$

(ii) $\sum_{k=1}^{\infty} c a_{k}=c \sum_{k=1}^{\infty} a_{k}$

This theorem should not be surprising Since the sum in a series is the limit of a sequence (the sequence of partial sum) the first part, for example, simply restates the fact that the limit of the sum is the sum of the limits.

Proof
(i) Let $S=\sum_{k=1}^{\infty} a_{k}$ and $T=\sum_{k=1}^{\infty} b_{k}$ The partial sums are given by $S_{n}=$ $\sum_{k=1}^{n} a_{k}$ and $T_{n}=\sum_{k=1}^{n} b_{k}$ Then

$$
\begin{aligned}
& \sum_{k=1}^{\infty}\left(a_{k}+b_{k}\right)=\lim _{n \rightarrow \infty} \sum_{k=1}^{\infty}\left(a_{k}+b_{k}\right)=\lim _{n \rightarrow \infty}\left(\sum_{k=1}^{\infty} a_{k}+\sum_{k=1}^{\infty} b_{k}\right)=\lim _{n \rightarrow \infty}\left(S_{n}+T_{n}\right) \\
& =\lim _{n \rightarrow \infty} S_{n}+\lim _{n \rightarrow \infty} T_{n}=S+T=\sum_{k=1}^{\infty} a_{k}+\sum_{k=1}^{n} b_{k} \\
& \text { (ii) } \sum_{k=1}^{\infty} c a_{k}=\lim _{n \rightarrow \infty} \sum_{k=1}^{\infty} c a_{k}=\lim _{n \rightarrow \infty} c \sum_{k=1}^{\infty} a_{k}=\lim _{n \rightarrow \infty} c S_{n} \\
& =c \lim _{n \rightarrow \infty} S_{n}=c S=c \sum_{k=1}^{\infty} a_{k}
\end{aligned}
$$

EXAMPLE 5 Show that $\sum_{k=1}^{\infty}\left\{\left[\frac{1}{k(k+1)}\right]+\left(\frac{5}{6}\right)^{k}\right\}$ converges
Solution This follows since $\sum_{k=1}^{\infty} \frac{1}{k}(1+1)$ converges (Example 3 ) and $\sum_{k=1}^{\infty}\left(\frac{5}{6}\right)^{k}$ converges because $\sum_{k=1}^{\infty}\left(\frac{5}{6}\right)^{k}=\sum_{k=0}^{\infty}\left(\frac{5}{6}\right)^{k}-\left(\frac{5}{6}\right)^{0} \quad$ [we added and subtracted the term $\left.\left(\frac{5}{6}\right)^{0}=1\right]=$ $1 /\left(1-\frac{5}{6}\right)-1=5$

EXAMPLE 6 Does $\sum_{k=1}^{\infty} \frac{1}{50} k$ converge or diverge?
Solution. We show that the series diverges by assuming that it converges to obtain a contradiction If Does $\sum_{k=1}^{\infty} \frac{1}{50} k$ did converge, then Does $50 \sum_{k=1}^{\infty} \frac{1}{50} k$ would also converge by Theorem 1. But then $50 \sum_{k=1}^{\infty} \frac{1}{50} k=\sum_{k=1}^{\infty} 50 \cdot \frac{1}{50} k=\sum_{k=1}^{\infty} 1 / k$ and this series is the harmonic series, which we know diverges Hence $\sum_{k=1}^{\infty} \frac{1}{50} k$ diverges

Another useful test is given by the following theorem and corollary
Theorem 2 If $\sum_{k=1}^{\infty} a_{k}$ converges then $\lim \underset{n \rightarrow \infty}{a_{n}}=0$

Proof. Let $S=\sum_{k=1}^{\infty} a_{k}$ Then the partial sums $S_{n}$ and $S_{n-1}$ are given by

$$
S_{n}=\sum_{k=1}^{n} a_{k}=a_{1}+a_{2}+\cdots+a_{n-1}+a_{n}
$$

And $S_{n-1}=\sum_{k=1}^{n-1} a_{k}=a_{1}+a_{2}+\cdots+a_{n-1}$
So that $S_{n}-S_{n-1}=a_{n}$
Then $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty}\left(S_{n}-S_{n-1}\right)=\lim _{n \rightarrow \infty} S_{n}-\lim _{n \rightarrow \infty} S_{n-1}=S-S=0$
We have already seen that the converse of this theorem is false. The convergence of $\left\{a_{n}\right\}$ to 0 does not imply that $\sum_{k=1}^{\infty} a_{k}$ converges For example, the harmonic series does not converge, but the sequence $\left\{\frac{1}{n}\right\}$ does converge to zero

Corollary
If $\left\{a_{n}\right\}$ does note converge to 0 , then $\sum_{k=1}^{\infty} a_{k}$ diverges
EXAMPLE $7 \quad \sum_{k=1}^{\infty}(-1)^{k}$ diverges since the sequence does not converge to zero
EXAMPLE $8 \sum_{k=1}^{\infty} k(k+100)$ diverges since $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \frac{n}{n+100}=1 \neq 0$

## PROBLEMS

In problems 1-15, a convergent infinite series is given Find its sum
$1 \cdot \sum_{k=0}^{\infty} \frac{1}{4^{k}}$
$2 \cdot \sum_{k=0}^{\infty}\left(-\frac{2}{3}\right)^{k}$
$3 \cdot \sum_{k=2}^{\infty} \frac{1}{2^{k}}$
4. $\sum_{k=1}^{\infty} \frac{1}{2^{k-1}}$
5. $\sum_{k=-3}^{\infty} \frac{1}{2^{k+3}}$
$6 \cdot \sum_{k=3}^{\infty}\left(\frac{2}{3}\right)^{k}$
7. $\sum_{k=0}^{\infty} \frac{100}{5^{k}}$
8. $\sum_{k=0}^{\infty} \frac{5}{100^{k}}$
$9 \cdot \sum_{k=2}^{\infty} \frac{1}{k(k+1)}$
$10 \cdot \sum_{k=3}^{\infty} \frac{1}{k(k-1)}$
11. $\sum_{k=0}^{\infty} \frac{1}{k(k+1)(k+2)}$
12. $\sum_{k=-1}^{\infty} \frac{1}{k(k+3)(k+4)}$
$13 \cdot \sum_{k=2}^{\infty} \frac{2^{k+3}}{3^{k}}$
14. $\sum_{k=2}^{\infty} \frac{2^{k+4}}{3^{k-1}}$
15. $\sum_{k=4}^{\infty} \frac{5^{k-2}}{6^{k+1}}$

In Problems 16-24, write the repeating decimals as rational numbers
$16 \cdot 0 \cdot 666 \cdots \quad 17 \cdot 0 \cdot 353535 \cdots \quad 18 \cdot 0 \cdot 282828 \cdots$
$19 \cdot 0 \cdot 717171 \cdots \quad 20 \cdot 0 \cdot 214214214 \cdot$.
$21 \cdot 0 \cdot 501501501 \cdots$
$22 \cdot 0 \cdot 124242424 \cdots \quad 23 \cdot 0 \cdot 11362362362 \cdots$
$24 \cdot 0 \cdot 513651365136 \cdots$
25. Give a new proof, using the corollary to Theorem 2 , that the geometric series diverges if $|r| \geq 1$

In problems $26-30$, use theorem 1 to calculate the sum of the convergent series
$26 \cdot \sum_{k=0}^{\infty}\left[\frac{1}{2^{k}}+\frac{1}{5^{k}}\right]$
$27 \cdot \sum_{k=1}^{\infty}\left[\frac{1}{k(k+1)}+\frac{1}{(k+1)(k+2)}\right]$
$28 \cdot \sum_{k=0}^{\infty}\left[\frac{3}{5^{k}}+\frac{7}{5^{k}}\right]$
29. $\sum_{k=1}^{\infty}\left[\frac{8}{5^{k}}+\frac{7}{(k+3)(k+4)}\right]$
$30 \cdot \sum_{k=0}^{\infty}\left[\frac{12 \cdot 2^{k+1}}{3^{k-2}}+\frac{15 \cdot 3^{k+1}}{4^{k+2}}\right]$
31. Show that for any nonzero real numbers a and $b_{1} \sum_{k=1}^{\infty} a / b k$ diverges
32. Show that if the sequences $\left\{a_{k}\right\}$ and $\left\{b_{k}\right\}$ differ only for a finite number of terms, then $\sum_{k=1}^{\infty} a_{k}$ and $\sum_{k=1}^{\infty} b_{k}$ and either both converge or both diverge
38. Show that $\frac{1}{1+x^{2}}=\sum_{k=0}^{\infty}(-1)^{k} x^{2 k}$ if $|x|<1$
39. Pick $a_{0}$ and $a_{1}$ Forn $\geq 2$. compute $a_{n}$ recursively so that $n(n-1) a_{n}=(n-2) a_{n-1}-$ $(n-3) a_{n-2}$ Evaluate $\sum_{n=0}^{\infty} a_{n}$

