INFINITE SERIES

we defined the geometric series $\sum_{k=0}^{\infty} r^k$ and showed that if |r| < 1. series converges to 1/(1 - r) Let us again look at what we did If S_n denotes the sum of the first n + 1 terms of the geometric series then

$$S_n = 1 + r + r^2 + \dots r^n = \frac{1 - r^{n+1}}{1 - r} \cdot r \neq 1$$
(1)

For each n we obtain the number S_n , and therefore we can define a new sequence $\{S_n\}$ to be the sequence of partial sums of the geometric series If |r| < 1 then

$$\lim_{n \to \infty} S_n = \lim_{n \to \infty} \frac{1 - r^{n+1}}{1 - r} = \frac{1}{1 - r}$$

That is, the convergence of the geometric series is implied by the convergence of the sequence of partial sums $\{S_n\}$

We now give a more general definition of these concepts

Definition 1 INFNITE SERIES

Let be a sequence Then the infinite sum

$$\sum_{k=1}^{\infty} a_k = a_1 + a_2 + a_3 + \dots + a_n + \dots$$
(2)

Is called an infinite series (or, simply, series) Each a_k in (2) is called a term of the series The partial sums of the series are given by

$$S_n = \sum_{k=1}^n a_k$$

The term is called the n th partial sum of the series If the sequence of partial sums $\{S_n\}$ converges to L, then we say that the infinite series $\sum_{k=1}^{\infty} a_k$ converges to L and we write

$$\sum_{k=1}^{\infty} a_k = L \tag{3}$$

Otherwise, we say that the series $\sum_{k=1}^{\infty} a_k$ diverges

REMARK Occasionally a series will be written with the first term other than a_1 for example, $\sum_{k=0}^{\infty} (\frac{1}{2})^k$ and $\sum_{k=2}^{\infty} 1/(\ln k)$ are both examples of infinite series. In the second case we must start with k = 2 since $1/(\ln 1)$ is not defined

EXAMPLE 1 We can write the number 1/3 as

$$\frac{1}{3} = 0 \cdot 33333 \dots = \frac{3}{10} + \frac{3}{100} + \frac{3}{1000} + \dots + \frac{3}{10^n} + \dots$$
(4)

This expression is an infinite series Here $a_n = \frac{3}{10^n}$ and

$$S_n = \frac{3}{10} + \frac{3}{100} + \dots + \frac{3}{10^n} = \underbrace{0 \cdot 333 \cdots 3}^{n \ placee}$$

we can formally prove that this sum converges by noting that

$$S = \frac{3}{10} \left(1 + \frac{1}{10} + \frac{1}{100} + \dots \right) = \frac{3}{10} \sum_{k=0}^{\infty} \left(\frac{1}{10} \right)^k$$

 \checkmark By Theorem 14 \cdot 3 \cdot 2

$$=\frac{3}{10}\left[\frac{1}{1-\left(\frac{1}{10}\right)}\right]=\frac{3}{10}\left(\frac{1}{\frac{9}{10}}\right)=\frac{3}{10}\cdot\frac{10}{9}=\frac{3}{9}=\frac{1}{3}$$

As a matter of fact, any decimal number x can be thought of as a convergent infinite series, for if x = 0 $a_1a_2a_3 \cdots a_n \cdots$. Then

$$x = \frac{a_1}{10} + \frac{a_2}{100} + \frac{a_3}{1000} + \dots + \frac{a_n}{10^n} + \dots = \sum_{k=1}^{\infty} \frac{a_k}{10^k} +$$

EXAMPLE 2 Express the repeating decimal 0.123123123 as a rational number (the quotient of two integers)

Solution : $0 \cdot 123123123 \dots = 0 \cdot 123 + 0 \cdot 000123 + 0 \cdot 000000123 + \dots$

$$= \frac{123}{10^3} + \frac{123}{10^6} + \frac{123}{10^9} + \dots = \frac{123}{10^3} \left[1 + \frac{1}{10^3} + \frac{1}{(10^3)^2} + \dots \right]$$
$$= \frac{123}{1000} \sum_{k=0}^{\infty} \left(\frac{1}{1000} \right)^k = \frac{123}{1000} \left[\frac{1}{1 - \left(\frac{1}{1000} \right)} \right] = \frac{123}{1000} \cdot \frac{1}{\frac{999}{1000}}$$

†Since $0 \le a_k < 10$.

$$\sum_{k=1}^{\infty} \frac{a_k}{10^k} < \sum_{k=1}^{\infty} \frac{10}{10^k} = \sum_{k=1}^{\infty} \frac{1}{10^{k-1}} = 1 + \frac{1}{10} + \left(\frac{1}{10}\right)^2 + \dots = \frac{1}{1 - \frac{1}{10}} = \frac{10}{9}$$

Once we have this test, the inequality given above implies that $\sum_{k=1}^{\infty} \left(\frac{a_k}{10^k}\right)$ converges

$$=\frac{123}{1000}\cdot\frac{1000}{999}=\frac{123}{999}=\frac{41}{333}$$

In general, we can use the geometric series to write any repeating decimal in the form of a fraction by using the technique of Example 1 or 2 In fact, the rational numbers are exactly those real numbers that can be written as repeating decimals Repeating decimals include numbers like $3 = 3 \cdot 00000 \cdots and \frac{1}{4} = 0 \cdot 25 = 0 \cdot 25000000 \cdots$

EXAMPLE 3 Telescoping Series Consider the infinite series $\sum_{k=1}^{\infty} \frac{1}{k}(1+1)$ We write the first three partial sums:

$$S_{1} = \sum_{k=1}^{1} \frac{1}{k(k+1)} = \frac{1}{1 \cdot 2} = \frac{1}{2} = 1 - \frac{1}{2}.$$

$$S_{2} = \sum_{k=1}^{2} \frac{1}{k(k+1)} = \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} = \frac{1}{2} + \frac{1}{6} = 1 - \frac{1}{3}.$$

$$S_{3} = \sum_{k=1}^{3} \frac{1}{k(k+1)} = \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} = \frac{1}{2} + \frac{1}{6} + \frac{1}{12} = 1 - \frac{1}{4}.$$

We can use partial fractions to rewrite the general term as

$$a_k = \frac{1}{k(k+1)} = \frac{1}{k} - \frac{1}{k+1}$$

From which we can get a better view of the n th partial as

$$S_n = \left(\frac{1}{1} - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \left(\frac{1}{3} - \frac{1}{4}\right) + \dots + \left(\frac{1}{n-1} - \frac{1}{n}\right) + \left(\frac{1}{n} - \frac{1}{n+1}\right)$$
$$= 1 - \frac{1}{n+1}.$$

Because all other terms cancel. Since $\lim_{n \to \infty} S_n = \lim_{n \to \infty} \left\{ 1 - \left[\frac{1}{n-1} \right] \right\} = 1$. we see that

$$\sum_{k=1}^{\infty} \frac{1}{k} (1+1) = 1$$

When, as here a terms cancel, we say that the series is a telescoping series

REMARK. Often, it is not possible to calculate the exact sum of an infinite series even if it can be shown that series converges

EXAMPLE 4 Consider the series

$$\sum_{k=1}^{\infty} \frac{1}{k} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots + \frac{1}{n} + \dots$$
(5)

This series is called the harmonic series Although $a_n = \frac{1}{n} \rightarrow 0$ as $n \rightarrow \infty$ it is not difficult to show that the harmonic series diverges To see this, we write

2terms 4terms 8terms

$$\sum_{k=1}^{z} \frac{1}{k} = 1 + \frac{1}{2} + \underbrace{\left(\frac{1}{3} + \frac{1}{4}\right)}_{>} + \underbrace{\left(\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}\right)}_{>} + \underbrace{\left(\frac{1}{9} + \dots + \frac{1}{16}\right)}_{>} + \dots$$

Here we have written the terms in groups containing 2^n numbers Note that $\frac{1}{3} + \frac{1}{4} > \frac{2}{4} = \frac{1}{2} \cdot \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} > \frac{1}{8} + \frac{1}{8} = \frac{1}{2}$ and so on Thus $\sum_{k=1}^{\infty} \frac{1}{k} = 1 + \frac{1}{2} + \frac{1}{2} + \cdots$ and the series diverges

WARNING. Example 4 clearly shows that even though the sequence $\{a_n\}$ converges to 0, the series may, in fact, diverge. That is, if $a_n \to 0$. then $\sum_{k=1}^{\infty} a_k$ may or may not converge. Some additional test is needed to determine convergence or divergence

Theorem 1 Let c be constant. Suppose that $\sum_{k=1}^{\infty} a_k$ and $\sum_{k=1}^{\infty} b_k$ both converge Then $\sum_{k=1}^{\infty} (a_k + b_k)$ and $\sum_{k=1}^{\infty} ca_k$ converge, and

$$(i)\sum_{k=1}^{\infty} (a_k + b_k) = \sum_{k=1}^{\infty} a_k + \sum_{k=1}^{\infty} b_k$$
(6)

(*ii*)
$$\sum_{k=1}^{\infty} ca_k = c \sum_{k=1}^{\infty} a_k$$
 (7)

This theorem should not be surprising Since the sum in a series is the limit of a sequence (the sequence of partial sum) the first part, for example, simply restates the fact that the limit of the sum is the sum of the limits.

Proof

(i) Let
$$S = \sum_{k=1}^{\infty} a_k$$
 and $T = \sum_{k=1}^{\infty} b_k$ The partial sums are given by $S_n = \sum_{k=1}^{n} a_k$ and $T_n = \sum_{k=1}^{n} b_k$ Then

$$\sum_{k=1}^{\infty} (a_k + b_k) = \lim_{n \to \infty} \sum_{k=1}^{\infty} (a_k + b_k) = \lim_{n \to \infty} (\sum_{k=1}^{\infty} a_k + \sum_{k=1}^{\infty} b_k) = \lim_{n \to \infty} (S_n + T_n)$$

$$= \lim_{n \to \infty} S_n + \lim_{n \to \infty} T_n = S + T = \sum_{k=1}^{\infty} a_k + \sum_{k=1}^{n} b_k$$

$$(ii) \sum_{k=1}^{\infty} ca_k = \lim_{n \to \infty} \sum_{k=1}^{\infty} ca_k = \lim_{n \to \infty} c\sum_{k=1}^{\infty} a_k = \lim_{n \to \infty} cS_n$$

$$= c \lim_{n \to \infty} S_n = cS = c \sum_{k=1}^{\infty} a_k$$

EXAMPLE 5 Show that $\sum_{k=1}^{\infty} \left\{ \left[\frac{1}{k(k+1)} \right] + \left(\frac{5}{6} \right)^k \right\}$ converges

Solution This follows since $\sum_{k=1}^{\infty} \frac{1}{k} (1+1)$ converges (Example 3) and $\sum_{k=1}^{\infty} (\frac{5}{6})^k$ converges because $\sum_{k=1}^{\infty} (\frac{5}{6})^k = \sum_{k=0}^{\infty} (\frac{5}{6})^k - (\frac{5}{6})^0$ [we added and subtracted the term $(\frac{5}{6})^0 = 1$] = $1/(1-\frac{5}{6})-1=5$

EXAMPLE 6 Does $\sum_{k=1}^{\infty} \frac{1}{50}k$ converge or diverge ?

Solution. We show that the series diverges by assuming that it converges to obtain a contradiction If Does $\sum_{k=1}^{\infty} \frac{1}{50}k$ did converge, then Does 50 $\sum_{k=1}^{\infty} \frac{1}{50}k$ would also converge by Theorem 1. But then 50 $\sum_{k=1}^{\infty} \frac{1}{50}k = \sum_{k=1}^{\infty} 50 \cdot \frac{1}{50}k = \sum_{k=1}^{\infty} 1/k$ and this series is the harmonic series, which we know diverges Hence $\sum_{k=1}^{\infty} \frac{1}{50}k$ diverges

Another useful test is given by the following theorem and corollary

Theorem 2 If $\sum_{k=1}^{\infty} a_k$ converges then $\lim_{n \to \infty} a_n = 0$

Proof. Let $S = \sum_{k=1}^{\infty} a_k$ Then the partial sums S_n and S_{n-1} are given by

$$S_n = \sum_{k=1}^n a_k = a_1 + a_2 + \dots + a_{n-1} + a_n$$

And $S_{n-1} = \sum_{k=1}^{n-1} a_k = a_1 + a_2 + \dots + a_{n-1}$
So that $S_n - S_{n-1} = a_n$

Then $\lim_{n \to \infty} a_n = \lim_{n \to \infty} (S_n - S_{n-1}) = \lim_{n \to \infty} S_n - \lim_{n \to \infty} S_{n-1} = S - S = 0$

We have already seen that the converse of this theorem is false. The convergence of $\{a_n\}$ to 0 does not imply that $\sum_{k=1}^{\infty} a_k$ converges For example, the harmonic series does not converge, but the sequence $\{\frac{1}{n}\}$ does converge to zero

Corollary

If $\{a_n\}$ does note converge to 0, then $\sum_{k=1}^{\infty} a_k$ diverges

EXAMPLE 7 $\sum_{k=1}^{\infty} (-1)^k$ diverges since the sequence does not converge to zero EXAMPLE 8 $\sum_{k=1}^{\infty} k(k+100)$ diverges since $\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{n}{n+100} = 1 \neq 0$

PROBLEMS

In problems 1-15, a convergent infinite series is given Find its sum

$$1 \cdot \sum_{k=0}^{\infty} \frac{1}{4^{k}} \qquad 2 \cdot \sum_{k=0}^{\infty} \left(-\frac{2}{3}\right)^{k} \qquad 3 \cdot \sum_{k=2}^{\infty} \frac{1}{2^{k}} \\ 4 \cdot \sum_{k=1}^{\infty} \frac{1}{2^{k-1}} \qquad 5 \cdot \sum_{k=-3}^{\infty} \frac{1}{2^{k+3}} \qquad 6 \cdot \sum_{k=3}^{\infty} \left(\frac{2}{3}\right)^{k} \\ 7 \cdot \sum_{k=0}^{\infty} \frac{100}{5^{k}} \qquad 8 \cdot \sum_{k=0}^{\infty} \frac{5}{100^{k}} \qquad 9 \cdot \sum_{k=2}^{\infty} \frac{1}{k(k+1)} \\ 10 \cdot \sum_{k=3}^{\infty} \frac{1}{k(k-1)} \qquad 11 \cdot \sum_{k=0}^{\infty} \frac{1}{k(k+1)(k+2)} \qquad 12 \cdot \sum_{k=-1}^{\infty} \frac{1}{k(k+3)(k+4)} \\ 13 \cdot \sum_{k=2}^{\infty} \frac{2^{k+3}}{3^{k}} \qquad 14 \cdot \sum_{k=2}^{\infty} \frac{2^{k+4}}{3^{k-1}} \qquad 15 \cdot \sum_{k=4}^{\infty} \frac{5^{k-2}}{6^{k+1}} \end{cases}$$

In Problems 16-24, write the repeating decimals as rational numbers

 $16 \cdot 0 \cdot 666 \cdots$ $17 \cdot 0 \cdot 353535 \cdots$ $18 \cdot 0 \cdot 282828 \cdots$ $19 \cdot 0 \cdot 717171 \cdots$ $20 \cdot 0 \cdot 214214214 \cdots$ $21 \cdot 0 \cdot 501501501 \cdots$ $22 \cdot 0 \cdot 12424242424 \cdots$ $23 \cdot 0 \cdot 11362362362 \cdots$ $24 \cdot 0 \cdot 5136513651365 \cdots$

25. Give a new proof , using the corollary to Theorem 2 , that the geometric series diverges if $|r|\geq 1$

In problems 26 - 30, use theorem 1 to calculate the sum of the convergent series

$$26 \cdot \sum_{k=0}^{\infty} \left[\frac{1}{2^{k}} + \frac{1}{5^{k}}\right] \qquad \qquad 27 \cdot \sum_{k=1}^{\infty} \left[\frac{1}{k(k+1)} + \frac{1}{(k+1)(k+2)}\right]$$
$$28 \cdot \sum_{k=0}^{\infty} \left[\frac{3}{5^{k}} + \frac{7}{5^{k}}\right] \qquad \qquad 29 \cdot \sum_{k=1}^{\infty} \left[\frac{8}{5^{k}} + \frac{7}{(k+3)(k+4)}\right]$$

$$30 \cdot \sum_{k=0}^{\infty} \left[\frac{12 \cdot 2^{k+1}}{3^{k-2}} + \frac{15 \cdot 3^{k+1}}{4^{k+2}}\right]$$

31. Show that for any nonzero real numbers a and $b_1 \sum_{k=1}^{\infty} a/bk$ diverges

32. Show that if the sequences $\{a_k\}$ and $\{b_k\}$ differ only for a finite number of terms, then $\sum_{k=1}^{\infty} a_k$ and $\sum_{k=1}^{\infty} b_k$ and either both converge or both diverge

38. Show that $\frac{1}{1+x^2} = \sum_{k=0}^{\infty} (-1)^k x^{2k}$ if |x| < 1

39. Pick a_0 and a_1 For $n \ge 2$. compute a_n recursively so that $n(n-1) a_n = (n-2) a_{n-1} - (n-3) a_{n-2}$ Evaluate $\sum_{n=0}^{\infty} a_n$