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BOUNDED AND MONTONIC SEQUENCES 

There are certain kinds of sequences that have special properties worthy of mention.  

Definition 1 BOUNDEDNESS 

        (i)  The sequence {an}    is bounded above if there a number M1 such that 

an ≤  M1                                                                                                                                              (1) 

For every positive integer n  

             (ii)  It is bounded  below  if there is  number M2  such  that  

 M2 ≤  a2                                                                                                                                              (2) 

For every positive integer n. 

        (iii)  It is bounded  below  if there is  number M > 0  such  that 

|an| ≤ M 

For every positive integer n  

The numbers M1 ,  M2  , and M are called ,respectively , an upper  bounded , a lower bounded , 

and  abound  for  {an}     

                (iv) If the sequence is not bounded, it is called unbounded 

REMARK.  If {an}   is bounded above and below, then it is bounded. Simply set M =

max{ | M1|. |  M2} 

EXAMPLE 1     The sequence  {sin  n} has the upper bound of 1, the lower bound of -1 and the 

bound of 1 since  −1 ≤ sin n  ≤ 1 for every n Of course, any number greater than 1 is also a 

bound 

EXAMPLE  2     The  sequence{(−1)n}  has the  upper  bound  1,  the  lower bound   -1 , and  

the  bound 1. 

EXAMPLE  3   The sequence(2)n is bounded  below by  2 but  has  no  upper  bound and  so is  

un bounded . 

EXAMPLE  4  The sequence{(−1)n2n} is bounded   neither below  nor  above  

         It turns out that the following statement is true: Every convergent sequence is abounded. 

 



Lecture no.2-2                                                                                by Hussein J. AbdulHussein 

Advanced Calculus I I                                               Al Muthanna University, College of Science                  

 

2 
 

Theorem 1.  If the sequence {an}    is convergent, then it is bounded  

Proof.  Before giving the technical details, we remark that the idea behind the proof is easy. For 

if lim
n→∞

an = L .  thenan  is close to the finite number L if n is large Thus ,  for example |an| ≤

|L| + 1 if n  is large  enough . Since  an is a real number for every n, the first few terms of the 

sequence  are  bounded , and  these  two  facts  give us  abound for  the  entire sequence  

             Now to the details Let  ∈= 1 Then there is an  N > 0 such that  

|an − L| < 1           if  n ≥ N                                                                                                    (3) 

Let  

K = max{|a1|. |a2|.⋯ . |aN|}                                                                                                  (4) 

Since each is finite, K, being the maximum of a finite number of terms, is also finite. Now let   

M = max{ |L| + 1. K}                                                                                                                     (5)  

It follows from (4) that  if n ≤ N  .   then|an| ≤ K if  n ≥ N    then  from(3) , |an| < |L| + 1; so  

in either  case |an| ≤ M.  and the  theorem  is proved  

Sometimes it is difficult to find a bound for a convergent sequence.  

EXAMPLE  5  Find an M such  that  
5n

n!
≤ M 

         Solution.   We  know  from Theorem  13.2.3 that lim
n→∞

xn

n!
= 0 for every  real number x  In  

particular , 
5n

n!
 is convergent  and  therefore  must  be  bounded  Perhaps  the  easiest  way  to find  

the bound  is to  tabulate  a few values , an in  Table  1. It is clear from the table that the  

maximum value of  anoccurs atn = 4 or n = 5 and   is equal  to  26.04. Of course, any number 

larger than 26.04.  is also abound for the sequence. 

     

     

    

  Since every convergence is bounded, it follows that: 

(a)      {In In n}    (starting  at  n = 2)        (b)     {n sin n}            (c)         {(−√2)n} 

The convergent.  Of Theorem 1 is not true. That is, it is not true that every bounded sequence is 

convergent. For example, the sequences {(−1)n} and {sin n } are both bounded and divergent. 
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Since boundedness alone does not ensure convergence, we need some other property. We 

investigate this idea now 

Definition 2 MONOTONICITY 

         (i)  The sequence {an} is monotone increasing  if an ≤ an+1 for  every n ≥ 1  

        (ii)  The sequence {an} is monotone decreasing  if an ≥ an+1 for  every n ≥ 1  

       (iii)   The sequence {an} is monotonic if it is  either monotone increasing or  monotone 

decreasing  

Definition 3   STRICT MONOTONCITY 

         (i)  The sequence {an} is monotone increasing  if an < an+1 for  every n ≥ 1 

         (ii)  The sequence  {an}  strictly decreasing  if  an ≥ an+1 for  every n ≥ 1 

        (iii)  The sequence  {an}  strictly monotonic if  it is  either strictly increasing or  strictly  

decreasing 

EXAMPLE  7       The  sequence{1/2n}  is strictly  decreasing since1/2n > 1/2n+1  for  every  

n 

EXAMPLE 8   Determine whether the sequence {2n/(3n + 2 )} is increasing, decreasing, or not 

monotonic 

       Solution   If we write out the first few terms of the sequence, we find that{
2n

3n+2 
} =

{
2

5
.
4

8
.
6

11
.
8

14
.
10

17
.
12

20
. ⋯ }  Since these terms are strictly increasing, we suspect that {2n/(3n + 2 )} 

is an increasing sequence To check this, we try to verify that  an < an+1 We have 

an+1 =
2(n + 1)

3(n + 1) + 2
=
2n + 2

3n + 5
  

Ther an < an+1  implies that  

2n

3n + 2
<
2n + 2

3n + 5
  

Multiplying  both  sides of this inequality  by (3n + 2)(3n + 5).  we obtain  

(2n)(3n + 5) < (2n + 2)( 3n + 2).          or         6n2 + 10n < 6n2 + 10n + 4  

Since this last inequality is obviously true for alln ≥ 1. we can reverse our steps to conclude that 

  an < an+1and the sequence is strictly increasing  
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EXAMPLE   9    Determine whether the sequence{(In n)/n}  n > 1   is increasing, decreasing, 

or not monotonic  

     Solution. Let f (x) =
Inx

x
.  Then f ′(x) =

[x(
1

x
)−(In  x)1]

x2
=
1−In x

x2
 If  x > e .  then   In x > 1  

andf ′(x) < 0  Thus  the  sequence {
In n

n
} is decreasing  for n ≥ 3However,

In 1

1
= 0 <

(In 2)

2
≈ 0 ∙

35 so initially , the sequence is increasing  Thus the  sequence is not  monotone It is  decreasing 

if we  star with  n = 3   

EXAMPLE 10   The sequence is increasing but not strictly increasing. Here [x] is the  ''greatest 

integer'' function (see Example 2.2.11) The first  twelve  terms  are  0,0,0,1,1,1,1,2,2,2,2,3 For  

example , a9 = [
9

4
] = 2 

 EXAMPLE 11  The  sequence{(−1)n} is not monotonic  since  successive terms  oscillate 

between +1 and − 1 

In all the examples we have given, a divergent sequence diverges for one of two reasons: It goes 

to infinity (it is unbounded) or it oscillates [ like (−1)n .  which oscillates between−1 and 1 ]  

But if a sequence, then it does not oscillate. Thus the following theorem should not be surprising 

Theorem 2 :A bounded monotonic sequence is convergent  

Proof.  We will prove this theorem for the case in which the sequence {an} is increasing. The 

proof of the other case is similar. Since {an}  is bounded, there is a number M such thatan ≤ M 

for  every  n Let  L  be the smallest  such  upper  bound Now  let  ∈> 0  be given  . Then there  is 

a number N > 0  such  that an > L−∈ If this  were  not  true , then  we would  have an ≤ L−∈   

for all n ≥ 1   Then  L−∈  would  be  an upper  bound  for{an}  and since L−∈ < L.    This 

would   contradict the  choice  of L  as the  smallest  such  upper bound  Since {an}  is  increasing 

, we  have  for n ≥ N .  

L−∈   < aN  ≤ an L < +∈                                                                                                         (6) 

But  the  inequalities in (6) imply that |an − L| ≤∈ for  n ≥ N .  which  proves ,  according  to 

the  definition of convergence , that  lim
n→∞

an = L 

 The number L  is called  the  least  upper  bound for the  sequence{an}  It is  an axiom of the  

real number  system that  every  set of real numbers that  is  bounded  above has  a least  upper  

bound and  that   every   set  of real  numbers  that  is bounded  below has a greatest  lower 

bound This axiom  is called  the  completeness axiom and  is of  para mount importance  in 

theoretical mathematical analysis  We  discussed  the  completeness axiom earlier on page 6  .  
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We have actually proved a stronger result. Namely, that if the   sequence{an} is   bounded above 

and increasing, then it converges  to its  least upper  bound  . Similarly, if {an}is bounded below 

and decreasing, then   it converges to its greatest lower bound.  

EXAMPLE 12  In  Example 8 we  saw  that  the sequence{2n/(3n + 2)}  is strictly  increasing  

Also , since 2n/(3n + 2) < 3n /(3n + 2) < 3n /3n = 1  we see  that{an}  is also  bounded , so 

that by  Theorem 2 , {an}  is convergent . We easily find that lim
n→∞

2n/(3n + 2) =
2

3
  

    PROBLEMS  

In  problems  1- 12 ,  determine  whether  the  given  sequence is  bounded  or  unbounded If  it is  

bounded  , find the  smallest bound for |an| 

1 ∙ {
1

n + 1
}                                   2 ∙ {sin nπ}                                3 ∙ {cos nπ} 

4 ∙ {√n sin n}                              5 ∙ {
2n

1 + 2n
}                                 6 ∙  {

2n + 1

2n
}    

7 ∙ {
1

n!
}                                           8 ∙ {

3n

n!
}                                         9 ∙ {

n2

n!
}  

10 ∙ {
2n

2n
}                                      11 ∙ {

In n

n
}                               ∗ 12 ∙ {ne−n} 

13. Show  that  for n > 210.
n10

n!
  > (n + 1)10 /(n + 1)!   and  use  this  result  to conclude  

that {
n10

n!
}  is  bounded   

In problems 14 -28, determine whether the given sequence is monotone increasing, strictly 

increasing, monotone decreasing, or not monotonic. 

14 ∙ {sin nπ}                                15 ∙ {
3n

2 + 3n
}                               16 ∙ {(

n

25
)
1
3 } 

17 ∙ {n + (−1)n√n }                  18 ∙ {
√n + 1

n
 }                          19 ∙ {

n!

nn
 } 

20 ∙ { 
nn

n!
}                                       21 ∙ {

2n!

1 ∙ 3 ∙ 5 ∙ 7 ∙ ⋯  (2n − 1)
} 

∗ 22 ∙ {n + cos n }                     23 ∙ {
22n

n!
 }                                  24 ∙ {

√n − 1

n
}   
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25 ∙ {
n − 1

n + 1
}                                 26 ∙ { In (

3n

n + 1
)}                     27 ∙ {In n − In (n + 2)} 

28 ∙ {(1 +
3

n
)
1
n} 

*29. Show that the sequence {(2n + 3n)1/n}  is convergent  

*30. Show that {(an + bn)
1

n}  is convergent for any  positive real  numbers  a  and b  [ Hint : 

First  do  Problem 29  Then  treat the  cases a = b and  a ≠ b   separately ] 

31. Show that the sequence{
n!

nn
 } is bounded  [ Hint : Show  that{

n!

nn
 } > (n + 1)!/(n + 1)n  

sufficiently large n ] 

32. Prove that the  sequence {
n!

nn
 }  converges [ hint: Use the  result of Problem 31.]  

33. Use  Theorem 2 to  show that{In n − In  (n + 4)}  converges. 

 GEOMETRIC SERIES 

Consider the sum S7 = 1 + 2 + 4 + 8 + 16 + 32 + 64 + 128 

This can be written as  S7 = 1 + 2 + 2
2 + 23 + 24 + 25 + 26 + 27 = ∑ 2k7

k=0  

 GEOMETRIC PROGRESSION 

In general, the sum of a geometric progression is a sum of the form  

Sn = 1 + r + r
2 + r3 +⋯+ rn−1 + rn =∑rk

7

k=0

  .                                                          (1) 

Where r is a real number and n is affixed positive integer 

We now obtain a formula for the sum in (1)  

Theorem  1  If r ≠ 1 .  the sum of a geometric progression (1) is given by  

Sn =
1 − rn+1

1 − r
                                                                                                                                   (2) 

Proof.   We write 

Sn = 1 + r + r
2 + r3 +⋯+ rn−1 + rn                                                                                      (3) 

And then multiply both sides of (3) by r: 
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rSn = r + r
2 + r3 + r4 +⋯+ rn + rn+1                                                                                 (4) 

We now subtract (4) from (3) and note that all terms except the first and the last cancel: 

Sn − rSn = 1 − r
n+1 .   

Or  

(1 − r)Sn = 1 − r
n+1                                                                                                                        (5) 

Finally, we  divide  both sides  of (5) by 1 − r   (which  is nonzero) to  obtain equation  (2) 

NOTE       If r = 1 .  we  obtain  

   Sn = 1 + 1 +⋯+ 1 = n + 1⏞                  
n+1 terms

 

EXAMPLE  1   Calculate S7 = 1 + 2 + 4 + 8 + 16 + 32 + 128 .    using  formula (2) 

               Solution  Here  r = 2  and  n = 7 . so that 

 

 S7 =
1 − 28

1 − 2
= 28 − 1 = 256 − 1 = 255 

 

EXAMPLE  2   Calculate ∑ (
1

2
)
k

10
k=0   

           Solution  Here  r =
1

2
 and  n = 10 . so that 

S10 =
1 − (

1
2)
11

1 −
1
2

 =
1 −

1
2048
1
2

= 2 (
2047

2048
 ) =

2047

1048
 

EXAMPLE  3   Calculate 

S6 = 1 −
2

3
+ (

2

3
)
2

 − (
2

3
)
3

 + (
2

3
)
4

 − (
2

3
)
5

 + (
2

3
)
6

 = ∑(−
2

3
)
k6

k=0

  

              Solution  Here r =  −
2

3
 and  n = 6 .  so that  
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S6 =
1 − (−

2
3)

7

1 − (−
2
3)

=
1 +

128
2187
5
3

=
3

5
 (
2315

2187
) =

463

729
   

EXAMPLE  4  Calculate the sum  1 + b2 + b4 + b6 +⋯+ b20 = ∑ b2k for  b ≠ ±110
k=0  

                 Solution Not that the sum can be written1 + b2 + (b2)2 + (b2)3 +⋯+

(b2)10 Here   r = b2 ≠ 1 and n = 10 . so that 

S10 =
1 − (b2)11

1 − b2
=
b22 − 1

b2 − 1
 

The sum of a geometric progression is the sum of a finite number of terms We now see what 

happens if the number of terms is infinite Consider the sum 

S = 1 +
1

2
+
1

4
+
1

8
+

1

16
+⋯ = ∑   (

1

2
)
k

                                                                                    (6)∞
k=0   

 

What can such a sum mean? We will give a formal definition in a moment For now  let  us show 

why  it is  reasonable  to  say  thatS = 2  Let Sn = ∑ (
1

2
)
k

n
k=0 = 1 +

1

2
+
1

4
+⋯+ (

1

2
)
n

    Then  

Sn =
 1 − (

1
2)

n+1

1 −
1
2

= 2 [1 − (
1

2
)
n+1

] 

Thus for any n (no matter how large),1 ≤  Sn < 2 Hence the numbersSn are bounded Also, since 

Sn+1 = Sn + (
1

2
)
n+1

> Sn  the numbersSn are monotone increasing.   Thus the sequence{Sn} 

converges But  

S = lim
n→∞

Sn  

  Thus S has a finite sum To compute it, we note that 

S = lim
n→∞

Sn = lim
n→∞

2 [1 − (
1

2
)
n+1

] = 2lim [1 − (
1

2
)
n+1

] = 2  

Since lim
n→∞

   (
1

2
)
n+1

= 0 
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GEOMETRIC   SERIES  

The infinite sum is called a geometric series In general, a geometric series is an infinite sum of 

the form  

S =  ∑   (r)k  = 1 + r + r2 + r3 +⋯                                                                                  (7)

∞

k=0

 

 

CONVERGENCE   AND DIVERGENCE OF A GEOMETRIC SERIES 

Let Sn = ∑   rk n
k=0   Then we say that the geometric series converges exists and is finite O 

otherwise, the series is said to diverge  

EXAMPLE   5   Let r = 1 Then 

Sn = ∑   1k = ∑   1 =  1 + 1 +⋯+ 1 = n + 1⏟              
1+n  

n
k=0

n
k=0    

Since  lim
n→∞

(n + 1) = ∞.  the  series ∑   1k  diverges   ∞
k=0  

  EXAMPLE 6  Let r = −2 Then 

Sn =∑  rk 

n

k=0

=
1 − (−2)n+1

1 − (−2)
=
1

3
 [1 − (−2)n+1] 

But  (−2)n+1 = (−1)n+1(2n+1) = ±2n+1  As n → ∞. 2n+1 → ∞ Thus  the  

series∑   (−2)k+1 ∞
k=0    diverges  

Theorem  

Let S = ∑   rk ∞
k=0  be  a geometric  series 

           (i)  The series converges to 

  
1

1−r 
   if  |r|    < 1 

              (ii)  The  series  diverges if  |r|    ≥ 1 

Proof (i)if  |r|    < 1.    then lim
n→∞

rn+1 = 0   Thus 

    S = lim Sn
n→∞

  = lim
n→∞

1−rn+1

1−r
=

1

1−r
  lim
n→∞

(1 − rn+1) 
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=
1

1 − r
 (1 − 0) =

1

1 − r
  

 

   (ii)  If |r|    > 1 . then  lim
n→∞

| r|n+1 = ∞  Thus1 − rn+1   does  not  have  a finite limit and  the  

series diverges Finally , if r = 1 .    then  series diverges , by  Example 5,  and  if r = −1 then Sn 

alternates between the  numbers  0 and  1, so  that  the  series diverges 

    

  EXAMPLE  7  1 −
2

3
+ (

2

3
)
2

−⋯ = ∑   (−
2

3
)k = 1/[1 − (−

2

3
) = 1/(

5

3
) =

3

5
 ∞

k=0  

EXAMPLE   8  1 +
π

4
+ (

π

4
)
2

+ (
π

4
)
3

+⋯∑   (
π

4
)
k

  ∞
k=0 =

1

1−(
π

4
)
  

=
4

4 − π
 ≈ 4 ∙ 66 

PROBLEMS    

In Problems 1-11, calculate the sum of the given geometric progression  

1 ∙ 1 + 3 + 9 + 27 + 81 + 243 

2 ∙ 1 +
1

4
+
1

16
+⋯+

1

48
   

3 ∙ 1 − 5 + 25 − 125 + 625 − 3125 

4 ∙ 0 ∙ 2 − 0 ∙ 22 + 0 ∙ 23 +⋯0 ∙ 29  

5 ∙ 0 ∙ 32 − 0 ∙ 33 + 0 ∙ 34 − 0 ∙ 35 + 0 ∙ 36 − 0 ∙ 37 + 0 ∙ 38  

6 ∙ 1 + b3 + b6 + b9 + b12 + b15 + b18 + b21 

7 ∙ 1 −
1

b2
+
1

b4
−
1

b6
+
1

b8
+
1

b10
+
1

b12
−
1

b14
  

8 ∙ π − π3 + π5 − π7 + π9 − π11 + π13 

9 ∙ 1 + √2 + 2 + 2
3
2 + 4 + 2

5
2 + 8 + 2

7
2 + 16 

10 ∙ 1 −
1

√3
+
1

3
−

1

3√3
+
1

9
−

1

9√3
+
1

27
−

1

27√3
+
1

81
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11 ∙ 1 − 16 + 64 − 256 + 1024 − 4096 

In Problems 13 – 22, calculate the sum of the given geometric series 

13 ∙ 1 +
1

4
+
1

42
+
1

43
  + ⋯                                        14 ∙ 1 −

1

2
+
1

4
−
1

8
+
1

16
−⋯ 

15 ∙ 1 +
1

10
+

1

100
+

1

1000
+⋯                              16 ∙   1 −

1

10
+

1

100
−

1

1000
+⋯ 

17 ∙ 1 +
1

π
+
1

π2
+
1

π3
+⋯                                       18 ∙ 1 + 0 ∙ 7 + 0 ∙ 72 + 0 ∙ 73 +⋯ 

19 ∙ 1 − 0 ∙ 62 + 0 ∙ 622  + 0 ∙ 623 + 0 ∙ 624 −⋯    

20 ∙
1

4
+
1

16
+
1

46
+⋯ [Hint Factor out the  term

1

4
] 

21 ∙
3

5
−
3

25
+

3

125
−⋯                                            22 ∙

1

9
+
1

27
+
1

81
+⋯ 

23 ∙ How large must  n be in order that  (
1

2
)
n

 < 0 ∙ 01 ? 

24   ∙ How large must  n be in order that  (0 ∙ 8)n  < 0 ∙ 01 ?  

25 ∙ How large must  n be in order that  (0 ∙ 99)n  < 0 ∙ 01 ?  

26 ∙ If  x > 1 .  show  that  

1 +
1

x
+
1

x2
+
1

x3
+⋯ =

x

x − 1
 


