BOUNDED AND MONTONIC SEQUENCES

There are certain kinds of sequences that have special properties worthy of mention.

Definition 1 BOUNDEDNESS

(i) The sequence $\left\{a_{n}\right\}$ is bounded above if there a number M_{1} such that
$\mathrm{a}_{\mathrm{n}} \leq \mathrm{M}_{1}$
For every positive integer n
(ii) It is bounded below if there is number M_{2} such that
$\mathrm{M}_{2} \leq \mathrm{a}_{2}$
For every positive integer n .
(iii) It is bounded below if there is number $\mathrm{M}>0$ such that
$\left|\mathrm{a}_{\mathrm{n}}\right| \leq \mathrm{M}$
For every positive integer n
The numbers $\mathrm{M}_{1}, \mathrm{M}_{2}$, and M are called ,respectively, an upper bounded, a lower bounded, and abound for $\left\{\mathrm{a}_{\mathrm{n}}\right\}$
(iv) If the sequence is not bounded, it is called unbounded

REMARK. If $\left\{a_{n}\right\}$ is bounded above and below, then it is bounded. Simply set $M=$ $\max \left\{\left|\mathrm{M}_{1}\right| . \mid \mathrm{M}_{2}\right\}$

EXAMPLE 1 The sequence $\{\sin n\}$ has the upper bound of 1, the lower bound of -1 and the bound of 1 since $-1 \leq \sin n \leq 1$ for every n Of course, any number greater than 1 is also a bound

EXAMPLE 2 The sequence $\left\{(-1)^{\mathrm{n}}\right\}$ has the upper bound 1, the lower bound -1 , and the bound 1 .

EXAMPLE 3 The sequence (2) ${ }^{\mathrm{n}}$ is bounded below by 2 but has no upper bound and so is un bounded .

EXAMPLE 4 The sequence $\left\{(-1)^{\mathrm{n}} 2^{\mathrm{n}}\right\}$ is bounded neither below nor above It turns out that the following statement is true: Every convergent sequence is abounded.

Theorem 1. If the sequence $\left\{a_{n}\right\}$ is convergent, then it is bounded
Proof. Before giving the technical details, we remark that the idea behind the proof is easy. For if $\lim _{n \rightarrow \infty} a_{n}=L$. thena a_{n} is close to the finite number L if n is large Thus, for example $\left|a_{n}\right| \leq$ $|L|+1$ if n is large enough. Since a_{n} is a real number for every n, the first few terms of the sequence are bounded, and these two facts give us abound for the entire sequence

Now to the details Let $\in=1$ Then there is an $N>0$ such that

$$
\begin{equation*}
\left|\mathrm{a}_{\mathrm{n}}-\mathrm{L}\right|<1 \quad \text { if } \mathrm{n} \geq \mathrm{N} \tag{3}
\end{equation*}
$$

Let

$$
\begin{equation*}
\mathrm{K}=\max \left\{\left|\mathrm{a}_{1}\right| \cdot\left|\mathrm{a}_{2}\right| \cdot \cdots \cdot\left|\mathrm{a}_{\mathrm{N}}\right|\right\} \tag{4}
\end{equation*}
$$

Since each is finite, K, being the maximum of a finite number of terms, is also finite. Now let
$M=\max \{|L|+1 . K\}$
It follows from (4) that if $n \leq N$. then $\left|a_{n}\right| \leq K$ if $n \geq N$ then from(3), $\left|a_{n}\right|<|L|+1$; so in either case $\left|a_{n}\right| \leq M$. and the theorem is proved

Sometimes it is difficult to find a bound for a convergent sequence.
EXAMPLE 5 Find an M such that $\frac{5^{n}}{n!} \leq M$
Solution. We know from Theorem 13.2.3 that $\lim _{n \rightarrow \infty} \frac{x^{n}}{n!}=0$ for every real number x In particular, $\frac{5^{n}}{n!}$ is convergent and therefore must be bounded Perhaps the easiest way to find the bound is to tabulate a few values, an in Table 1. It is clear from the table that the maximum value of a_{n} occurs atn $=4$ or $n=5$ and is equal to 26.04 . Of course, any number larger than 26.04. is also abound for the sequence.

Since every convergence is bounded, it follows that:
(a) $\{\operatorname{In} \operatorname{In} \mathrm{n}\} \quad$ (starting at $\mathrm{n}=2$)
(b) $\{n \sin n\}$
(c) $\quad\left\{(-\sqrt{2})^{\mathrm{n}}\right\}$

The convergent. Of Theorem 1 is not true. That is, it is not true that every bounded sequence is convergent. For example, the sequences $\left\{(-1)^{\mathrm{n}}\right\}$ and $\{\sin \mathrm{n}\}$ are both bounded and divergent.

Since boundedness alone does not ensure convergence, we need some other property. We investigate this idea now

Definition 2 MONOTONICITY

(i) The sequence $\left\{a_{n}\right\}$ is monotone increasing if $a_{n} \leq a_{n+1}$ for every $n \geq 1$
(ii) The sequence $\left\{a_{n}\right\}$ is monotone decreasing if $a_{n} \geq a_{n+1}$ for every $n \geq 1$
(iii) The sequence $\left\{\mathrm{a}_{\mathrm{n}}\right\}$ is monotonic if it is either monotone increasing or monotone decreasing

Definition 3 STRICT MONOTONCITY
(i) The sequence $\left\{a_{n}\right\}$ is monotone increasing if $a_{n}<a_{n+1}$ for every $n \geq 1$
(ii) The sequence $\left\{a_{n}\right\}$ strictly decreasing if $a_{n} \geq a_{n+1}$ for every $n \geq 1$
(iii) The sequence $\left\{\mathrm{a}_{\mathrm{n}}\right\}$ strictly monotonic if it is either strictly increasing or strictly decreasing

EXAMPLE 7 The sequence $\left\{1 / 2^{\mathrm{n}}\right\}$ is strictly decreasing since $1 / 2^{\mathrm{n}}>1 / 2^{\mathrm{n}+1}$ for every n

EXAMPLE 8 Determine whether the sequence $\{2 n /(3 n+2)\}$ is increasing, decreasing, or not monotonic

Solution If we write out the first few terms of the sequence, we find that $\left\{\frac{2 n}{3 n+2}\right\}=$ $\left\{\frac{2}{5} \cdot \frac{4}{8} \cdot \frac{6}{11} \cdot \frac{8}{14} \cdot \frac{10}{17} \cdot \frac{12}{20} \cdots\right\}$ Since these terms are strictly increasing, we suspect that $\{2 \mathrm{n} /(3 \mathrm{n}+2)\}$ is an increasing sequence To check this, we try to verify that $a_{n}<a_{n+1}$ We have

$$
\begin{gathered}
\mathrm{a}_{\mathrm{n}+1}=\frac{2(\mathrm{n}+1)}{3(\mathrm{n}+1)+2}=\frac{2 \mathrm{n}+2}{3 \mathrm{n}+5} \\
\text { Ther } \mathrm{a}_{\mathrm{n}}<\mathrm{a}_{\mathrm{n}+1} \text { implies that } \\
\frac{2 \mathrm{n}}{3 \mathrm{n}+2}<\frac{2 \mathrm{n}+2}{3 \mathrm{n}+5}
\end{gathered}
$$

Multiplying both sides of this inequality by $(3 n+2)(3 n+5)$. we obtain

$$
(2 n)(3 n+5)<(2 n+2)(3 n+2) . \quad \text { or } \quad 6 n^{2}+10 n<6 n^{2}+10 n+4
$$

Since this last inequality is obviously true for alln ≥ 1. we can reverse our steps to conclude that $\mathrm{a}_{\mathrm{n}}<\mathrm{a}_{\mathrm{n}+1}$ and the sequence is strictly increasing

EXAMPLE 9 Determine whether the sequence $\{(\ln n) / n\} n>1$ is increasing, decreasing, or not monotonic

Solution. Let $\mathrm{f}(\mathrm{x})=\frac{\operatorname{Inx}}{\mathrm{x}}$. Then $\mathrm{f}^{\prime}(\mathrm{x})=\frac{\left[\mathrm{x}\left(\frac{1}{\mathrm{x}}\right)-(\operatorname{In} \mathrm{x}) 1\right]}{\mathrm{x}^{2}}=\frac{1-\operatorname{In} \mathrm{x}}{\mathrm{x}^{2}}$ If $\mathrm{x}>\mathrm{e}$. then $\operatorname{In} \mathrm{x}>1$ $\operatorname{andf}^{\prime}(x)<0$ Thus the sequence $\left\{\frac{\operatorname{In} n}{n}\right\}$ is decreasing for $n \geq 3$ However, $\frac{\operatorname{In} 1}{1}=0<\frac{(\operatorname{In} 2)}{2} \approx 0$. 35 so initially, the sequence is increasing Thus the sequence is not monotone It is decreasing if we star with $\mathrm{n}=3$

EXAMPLE 10 The sequence is increasing but not strictly increasing. Here [x] is the "greatest integer" function (see Example 2.2.11) The first twelve terms are $0,0,0,1,1,1,1,2,2,2,2,3$ For example , $\mathrm{a}_{9}=\left[\frac{9}{4}\right]=2$

EXAMPLE 11 The sequence $\left\{(-1)^{\mathrm{n}}\right\}$ is not monotonic since successive terms oscillate between +1 and -1

In all the examples we have given, a divergent sequence diverges for one of two reasons: It goes to infinity (it is unbounded) or it oscillates [like $(-1)^{\mathrm{n}}$. which oscillates between-1 and 1] But if a sequence, then it does not oscillate. Thus the following theorem should not be surprising

Theorem 2 :A bounded monotonic sequence is convergent
Proof. We will prove this theorem for the case in which the sequence $\left\{a_{n}\right\}$ is increasing. The proof of the other case is similar. Since $\left\{a_{n}\right\}$ is bounded, there is a number M such thata ${ }_{n} \leq M$ for every n Let L be the smallest such upper bound Now let $\in>0$ be given. Then there is a number $N>0$ such that $a_{n}>L-\in$ If this were not true, then we would have $a_{n} \leq L-\in$ for all $\mathrm{n} \geq 1$ Then $\mathrm{L}-\in$ would be an upper bound for $\left\{\mathrm{a}_{\mathrm{n}}\right\}$ and since $\mathrm{L}-\in<\mathrm{L}$. This would contradict the choice of L as the smallest such upper bound Since $\left\{a_{n}\right\}$ is increasing , we have for $\mathrm{n} \geq \mathrm{N}$.

$$
\begin{equation*}
\mathrm{L}-\epsilon<\mathrm{a}_{\mathrm{N}} \leq \mathrm{a}_{\mathrm{n}} \mathrm{~L}<+\epsilon \tag{6}
\end{equation*}
$$

But the inequalities in (6) imply that $\left|\mathrm{a}_{\mathrm{n}}-\mathrm{L}\right| \leq \in$ for $\mathrm{n} \geq \mathrm{N}$. which proves, according to the definition of convergence, that $\lim _{\mathrm{n} \rightarrow \infty} \mathrm{a}_{\mathrm{n}}=\mathrm{L}$

The number L is called the least upper bound for the sequence $\left\{\mathrm{a}_{\mathrm{n}}\right\}$ It is an axiom of the real number system that every set of real numbers that is bounded above has a least upper bound and that every set of real numbers that is bounded below has a greatest lower bound This axiom is called the completeness axiom and is of para mount importance in theoretical mathematical analysis We discussed the completeness axiom earlier on page 6 .

We have actually proved a stronger result. Namely, that if the sequence $\left\{a_{n}\right\}$ is bounded above and increasing, then it converges to its least upper bound. Similarly, if $\left\{a_{n}\right\}$ is bounded below and decreasing, then it converges to its greatest lower bound.

EXAMPLE 12 In Example 8 we saw that the sequence $2 n /(3 n+2)\}$ is strictly increasing Also, since $2 n /(3 n+2)<3 n /(3 n+2)<3 n / 3 n=1$ we see that $\left\{a_{n}\right\}$ is also bounded, so that by Theorem $2,\left\{a_{n}\right\}$ is convergent. We easily find that $\lim _{n \rightarrow \infty} 2 n /(3 n+2)=\frac{2}{3}$

PROBLEMS

In problems 1-12, determine whether the given sequence is bounded or unbounded if it is bounded, find the smallest bound for $\left|a_{n}\right|$
$1 \cdot\left\{\frac{1}{n+1}\right\}$
$2 \cdot\{\sin n \pi\}$
$3 \cdot\{\cos n \pi\}$
$4 \cdot\{\sqrt{n} \sin n\}$
$5 \cdot\left\{\frac{2^{\mathrm{n}}}{1+2^{\mathrm{n}}}\right\}$
$6 \cdot\left\{\frac{2^{\mathrm{n}}+1}{2^{\mathrm{n}}}\right\}$
$7 \cdot\left\{\frac{1}{n!}\right\}$
$8 \cdot\left\{\frac{3^{n}}{n!}\right\}$
$9 \cdot\left\{\frac{n^{2}}{n!}\right\}$
$10 \cdot\left\{\frac{2 \mathrm{n}}{2^{\mathrm{n}}}\right\}$
$11 \cdot\left\{\frac{\operatorname{In} \mathrm{n}}{\mathrm{n}}\right\}$

* $12 \cdot\left\{\mathrm{ne}^{-\mathrm{n}}\right\}$

13. Show that for $n>2^{10} \cdot \frac{n^{10}}{n!}>(n+1)^{10} /(n+1)$! and use this result to conclude that $\left\{\frac{\mathrm{n}^{10}}{\mathrm{n}!}\right\}$ is bounded

In problems 14-28, determine whether the given sequence is monotone increasing, strictly increasing, monotone decreasing, or not monotonic.
$14 \cdot\{\sin n \pi\}$
$15 \cdot\left\{\frac{3^{n}}{2+3^{n}}\right\} \quad 16 \cdot\left\{\left(\frac{\mathrm{n}}{25}\right)^{\frac{1}{3}}\right\}$
$17 \cdot\left\{\mathrm{n}+(-1)^{\mathrm{n}} \sqrt{\mathrm{n}}\right\}$
$18 \cdot\left\{\frac{\sqrt{n+1}}{n}\right\} \quad 19 \cdot\left\{\frac{n!}{n^{n}}\right\}$
$20 \cdot\left\{\frac{n^{n}}{n!}\right\}$
$21 \cdot\left\{\frac{2 n!}{1 \cdot 3 \cdot 5 \cdot 7 \cdot \cdots(2 n-1)}\right\}$

* $22 \cdot\{n+\cos n\}$
$23 \cdot\left\{\frac{2^{2 n}}{n!}\right\}$
$24 \cdot\left\{\frac{\sqrt{n}-1}{n}\right\}$
$25 \cdot\left\{\frac{n-1}{n+1}\right\}$
$26 \cdot\left\{\operatorname{In}\left(\frac{3 n}{n+1}\right)\right\}$
$27 \cdot\{\operatorname{In} n-\operatorname{In}(\mathrm{n}+2)\}$
$28 \cdot\left\{\left(1+\frac{3}{n}\right)^{\frac{1}{n}}\right\}$
*29. Show that the sequence $\left\{\left(2^{\mathrm{n}}+3^{\mathrm{n}}\right)^{1 / \mathrm{n}}\right\}$ is convergent
*30. Show that $\left\{\left(a^{n}+b^{n}\right)^{\frac{1}{n}}\right\}$ is convergent for any positive real numbers a and b [Hint :
First do Problem 29 Then treat the cases $\mathrm{a}=\mathrm{b}$ and $\mathrm{a} \neq \mathrm{b}$ separately]

31. Show that the sequence $\left\{\frac{n!}{n^{n}}\right\}$ is bounded [Hint : Show that $\left\{\frac{n!}{n^{n}}\right\}>(n+1)!/(n+1)^{n}$ sufficiently large n]
32. Prove that the sequence $\left\{\frac{n!}{n^{n}}\right\}$ converges [hint: Use the result of Problem 31.]
33. Use Theorem 2 to show that $\{\operatorname{In} n-\operatorname{In}(n+4)\}$ converges.

GEOMETRIC SERIES

Consider the sum $S_{7}=1+2+4+8+16+32+64+128$
This can be written as $S_{7}=1+2+2^{2}+2^{3}+2^{4}+2^{5}+2^{6}+2^{7}=\sum_{k=0}^{7} 2^{\mathrm{k}}$

GEOMETRIC PROGRESSION

In general, the sum of a geometric progression is a sum of the form

$$
\begin{equation*}
\mathrm{S}_{\mathrm{n}}=1+\mathrm{r}+\mathrm{r}^{2}+\mathrm{r}^{3}+\cdots+\mathrm{r}^{\mathrm{n}-1}+\mathrm{r}^{\mathrm{n}}=\sum_{\mathrm{k}=0}^{7} \mathrm{r}^{\mathrm{k}} \tag{1}
\end{equation*}
$$

Where r is a real number and n is affixed positive integer
We now obtain a formula for the sum in (1)
Theorem 1 If $r \neq 1$. the sum of a geometric progression (1) is given by

$$
\begin{equation*}
S_{n}=\frac{1-r^{n+1}}{1-r} \tag{2}
\end{equation*}
$$

Proof. We write

$$
\begin{equation*}
S_{n}=1+r+r^{2}+r^{3}+\cdots+r^{n-1}+r^{n} \tag{3}
\end{equation*}
$$

And then multiply both sides of (3) by r :

$$
\begin{equation*}
r S_{n}=r+r^{2}+r^{3}+r^{4}+\cdots+r^{n}+r^{n+1} \tag{4}
\end{equation*}
$$

We now subtract (4) from (3) and note that all terms except the first and the last cancel:

$$
\mathrm{S}_{\mathrm{n}}-\mathrm{r} \mathrm{~S}_{\mathrm{n}}=1-\mathrm{r}^{\mathrm{n}+1}
$$

Or

$$
\begin{equation*}
(1-r) S_{n}=1-r^{n+1} \tag{5}
\end{equation*}
$$

Finally, we divide both sides of (5) by $1-r$ (which is nonzero) to obtain equation (2)
NOTE If $r=1$. we obtain

$$
\overbrace{S_{n}=1+1+\cdots+1=n+1}^{\mathrm{n}+1 \text { terms }}
$$

EXAMPLE 1 Calculate $\mathrm{S}_{7}=1+2+4+8+16+32+128$. using formula (2)
Solution Here $r=2$ and $n=7$. so that

$$
S_{7}=\frac{1-2^{8}}{1-2}=2^{8}-1=256-1=255
$$

EXAMPLE 2 Calculate $\sum_{\mathrm{k}=0}^{10}\left(\frac{1}{2}\right)^{\mathrm{k}}$
Solution Here $\mathrm{r}=\frac{1}{2}$ and $\mathrm{n}=10$. so that

$$
\mathrm{S}_{10}=\frac{1-\left(\frac{1}{2}\right)^{11}}{1-\frac{1}{2}}=\frac{1-\frac{1}{2048}}{\frac{1}{2}}=2\left(\frac{2047}{2048}\right)=\frac{2047}{1048}
$$

EXAMPLE 3 Calculate

$$
S_{6}=1-\frac{2}{3}+\left(\frac{2}{3}\right)^{2}-\left(\frac{2}{3}\right)^{3}+\left(\frac{2}{3}\right)^{4}-\left(\frac{2}{3}\right)^{5}+\left(\frac{2}{3}\right)^{6}=\sum_{\mathrm{k}=0}^{6}\left(-\frac{2}{3}\right)^{\mathrm{k}}
$$

Solution Here $\mathrm{r}=-\frac{2}{3}$ and $\mathrm{n}=6$. so that

$$
\mathrm{S}_{6}=\frac{1-\left(-\frac{2}{3}\right)^{7}}{1-\left(-\frac{2}{3}\right)}=\frac{1+\frac{128}{2187}}{\frac{5}{3}}=\frac{3}{5}\left(\frac{2315}{2187}\right)=\frac{463}{729}
$$

EXAMPLE 4 Calculate the sum $1+b^{2}+b^{4}+b^{6}+\cdots+b^{20}=\sum_{k=0}^{10} b^{2 k}$ for $b \neq \pm 1$
Solution Not that the sum can be written $1+b^{2}+\left(b^{2}\right)^{2}+\left(b^{2}\right)^{3}+\cdots+$ $\left(b^{2}\right)^{10}$ Here $r=b^{2} \neq 1$ and $n=10$. so that

$$
\mathrm{S}_{10}=\frac{1-\left(\mathrm{b}^{2}\right)^{11}}{1-\mathrm{b}^{2}}=\frac{\mathrm{b}^{22}-1}{\mathrm{~b}^{2}-1}
$$

The sum of a geometric progression is the sum of a finite number of terms We now see what happens if the number of terms is infinite Consider the sum
$\mathrm{S}=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\cdots=\sum_{\mathrm{k}=0}^{\infty}\left(\frac{1}{2}\right)^{\mathrm{k}}$

What can such a sum mean? We will give a formal definition in a moment For now let us show why it is reasonable to say that $\mathrm{S}=2$ Let $\mathrm{S}_{\mathrm{n}}=\sum_{\mathrm{k}=0}^{\mathrm{n}}\left(\frac{1}{2}\right)^{\mathrm{k}}=1+\frac{1}{2}+\frac{1}{4}+\cdots+\left(\frac{1}{2}\right)^{\mathrm{n}}$ Then

$$
\mathrm{S}_{\mathrm{n}}=\frac{1-\left(\frac{1}{2}\right)^{\mathrm{n}+1}}{1-\frac{1}{2}}=2\left[1-\left(\frac{1}{2}\right)^{\mathrm{n}+1}\right]
$$

Thus for any n (no matter how large), $1 \leq \mathrm{S}_{\mathrm{n}}<2$ Hence the numbers S_{n} are bounded Also, since $\mathrm{S}_{\mathrm{n}+1}=\mathrm{S}_{\mathrm{n}}+\left(\frac{1}{2}\right)^{\mathrm{n}+1}>\mathrm{S}_{\mathrm{n}}$ the numbers S_{n} are monotone increasing. Thus the sequence $\left\{\mathrm{S}_{\mathrm{n}}\right\}$ converges But
$S=\lim _{\mathrm{n} \rightarrow \infty} \mathrm{S}_{\mathrm{n}}$
Thus S has a finite sum To compute it, we note that

$$
S=\lim _{n \rightarrow \infty} S_{n}=\lim _{n \rightarrow \infty} 2\left[1-\left(\frac{1}{2}\right)^{n+1}\right]=2 \lim \left[1-\left(\frac{1}{2}\right)^{n+1}\right]=2
$$

Since $\lim _{\mathrm{n} \rightarrow \infty}\left(\frac{1}{2}\right)^{\mathrm{n}+1}=0$

GEOMETRIC SERIES

The infinite sum is called a geometric series In general, a geometric series is an infinite sum of the form

$$
\begin{equation*}
S=\sum_{k=0}^{\infty}(r)^{k}=1+r+r^{2}+r^{3}+\cdots \tag{7}
\end{equation*}
$$

CONVERGENCE AND DIVERGENCE OF A GEOMETRIC SERIES

Let $S_{n}=\sum_{k=0}^{n} r^{k}$ Then we say that the geometric series converges exists and is finite O otherwise, the series is said to diverge

EXAMPLE 5 Let $\mathrm{r}=1$ Then
$\mathrm{S}_{\mathrm{n}}=\sum_{\mathrm{k}=0}^{\mathrm{n}} 1^{\mathrm{k}}=\sum_{\mathrm{k}=0}^{\mathrm{n}} 1=\underbrace{1+1+\cdots+1=\mathrm{n}+1}_{1+\mathrm{n}}$
Since $\lim _{n \rightarrow \infty}(n+1)=\infty$. the series $\sum_{k=0}^{\infty} 1^{k}$ diverges
EXAMPLE 6 Let $\mathrm{r}=-2$ Then

$$
\mathrm{S}_{\mathrm{n}}=\sum_{\mathrm{k}=0}^{\mathrm{n}} \mathrm{r}^{\mathrm{k}}=\frac{1-(-2)^{\mathrm{n}+1}}{1-(-2)}=\frac{1}{3}\left[1-(-2)^{\mathrm{n}+1}\right]
$$

But $(-2)^{\mathrm{n}+1}=(-1)^{\mathrm{n}+1}\left(2^{\mathrm{n}+1}\right)= \pm 2^{\mathrm{n}+1}$ As $\mathrm{n} \rightarrow \infty .2^{\mathrm{n}+1} \rightarrow \infty$ Thus the series $\sum_{k=0}^{\infty}(-2)^{\mathrm{k}+1}$ diverges

Theorem
Let $S=\sum_{\mathrm{k}=0}^{\infty} \mathrm{r}^{\mathrm{k}}$ be a geometric series
(i) The series converges to
$\frac{1}{1-\mathrm{r}}$ if $|\mathrm{r}|<1$
(ii) The series diverges if $|\mathrm{r}| \geq 1$

Proof (i)if $|r|<1$. then $\lim _{\mathrm{n} \rightarrow \infty} \mathrm{r}^{\mathrm{n}+1}=0$ Thus

$$
S=\lim _{n \rightarrow \infty} S_{n}=\lim _{n \rightarrow \infty} \frac{1-r^{n+1}}{1-r}=\frac{1}{1-r} \lim _{n \rightarrow \infty}\left(1-r^{n+1}\right)
$$

$$
=\frac{1}{1-r}(1-0)=\frac{1}{1-r}
$$

(ii) If $|r|>1$. then $\lim _{n \rightarrow \infty}|r|^{n+1}=\infty$ Thus1 $-r^{n+1}$ does not have a finite limit and the series diverges Finally, if $r=1$. then series diverges, by Example 5, and if $r=-1$ then S_{n} alternates between the numbers 0 and 1 , so that the series diverges

EXAMPLE $71-\frac{2}{3}+\left(\frac{2}{3}\right)^{2}-\cdots=\sum_{\mathrm{k}=0}^{\infty}\left(-\frac{2}{3}\right)^{\mathrm{k}}=1 /\left[1-\left(-\frac{2}{3}\right)=1 /\left(\frac{5}{3}\right)=\frac{3}{5}\right.$
EXAMPLE $81+\frac{\pi}{4}+\left(\frac{\pi}{4}\right)^{2}+\left(\frac{\pi}{4}\right)^{3}+\cdots \sum_{\mathrm{k}=0}^{\infty}\left(\frac{\pi}{4}\right)^{\mathrm{k}}=\frac{1}{1-\left(\frac{\pi}{4}\right)}$

$$
=\frac{4}{4-\pi} \approx 4 \cdot 66
$$

PROBLEMS

In Problems 1-11, calculate the sum of the given geometric progression
$1 \cdot 1+3+9+27+81+243$
$2 \cdot 1+\frac{1}{4}+\frac{1}{16}+\cdots+\frac{1}{4^{8}}$
$3 \cdot 1-5+25-125+625-3125$
$4 \cdot 0 \cdot 2-0 \cdot 2^{2}+0 \cdot 2^{3}+\cdots 0 \cdot 2^{9}$
$5 \cdot 0 \cdot 3^{2}-0 \cdot 3^{3}+0 \cdot 3^{4}-0 \cdot 3^{5}+0 \cdot 3^{6}-0 \cdot 3^{7}+0 \cdot 3^{8}$
$6 \cdot 1+b^{3}+b^{6}+b^{9}+b^{12}+b^{15}+b^{18}+b^{21}$
$7 \cdot 1-\frac{1}{\mathrm{~b}^{2}}+\frac{1}{\mathrm{~b}^{4}}-\frac{1}{\mathrm{~b}^{6}}+\frac{1}{\mathrm{~b}^{8}}+\frac{1}{\mathrm{~b}^{10}}+\frac{1}{\mathrm{~b}^{12}}-\frac{1}{\mathrm{~b}^{14}}$
$8 \cdot \pi-\pi^{3}+\pi^{5}-\pi^{7}+\pi^{9}-\pi^{11}+\pi^{13}$
$9 \cdot 1+\sqrt{2}+2+2^{\frac{3}{2}}+4+2^{\frac{5}{2}}+8+2^{\frac{7}{2}}+16$
$10 \cdot 1-\frac{1}{\sqrt{3}}+\frac{1}{3}-\frac{1}{3 \sqrt{3}}+\frac{1}{9}-\frac{1}{9 \sqrt{3}}+\frac{1}{27}-\frac{1}{27 \sqrt{3}}+\frac{1}{81}$
$11 \cdot 1-16+64-256+1024-4096$
In Problems 13 -22, calculate the sum of the given geometric series
$13 \cdot 1+\frac{1}{4}+\frac{1}{4^{2}}+\frac{1}{4^{3}}+\cdots$
$14 \cdot 1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\frac{1}{16}-\cdots$
$15 \cdot 1+\frac{1}{10}+\frac{1}{100}+\frac{1}{1000}+\cdots$ $16 \cdot 1-\frac{1}{10}+\frac{1}{100}-\frac{1}{1000}+\cdots$
$17 \cdot 1+\frac{1}{\pi}+\frac{1}{\pi^{2}}+\frac{1}{\pi^{3}}+\cdots$ $18 \cdot 1+0 \cdot 7+0 \cdot 7^{2}+0 \cdot 7^{3}+\cdots$
$19 \cdot 1-0 \cdot 62+0 \cdot 62^{2}+0 \cdot 62^{3}+0 \cdot 62^{4}-\cdots$
$20 \cdot \frac{1}{4}+\frac{1}{16}+\frac{1}{46}+\cdots\left[\right.$ Hint Factor out the term $\left.\frac{1}{4}\right]$
$21 \cdot \frac{3}{5}-\frac{3}{25}+\frac{3}{125}-\cdots$
$22 \cdot \frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\cdots$
$23 \cdot$ How large must n be in order that $\left(\frac{1}{2}\right)^{n}<0 \cdot 01$?
24 . How large must n be in order that $(0 \cdot 8)^{\mathrm{n}}<0 \cdot 01$?
$25 \cdot$ How large must n be in order that $(0 \cdot 99)^{\mathrm{n}}<0 \cdot 01$?
$26 \cdot$ If $x>1$. show that

$$
1+\frac{1}{x}+\frac{1}{x^{2}}+\frac{1}{x^{3}}+\cdots=\frac{x}{x-1}
$$

