THE TRIPLE INTEGRAL

In this section we discuss the idea behind the triple integral of a function of three variables $f(x, y, z)$ over a region S in \mathbb{R}^{3}. This is really a simple extension of the double integral. For that reason we will omit a number of technical details, We start with a parallelepiped π which \mathbb{R}^{3}, can be written as

$$
\begin{equation*}
\pi=\left\{(\mathrm{x}, \mathrm{y}, \mathrm{z}): \mathrm{a}_{1} \leq \mathrm{x} \leq \mathrm{a}_{2}, \mathrm{~b}_{1} \leq \mathrm{y} \leq \mathrm{b}_{2}, \mathrm{c}_{1} \leq \mathrm{z} \leq \mathrm{c}_{2}\right\} \tag{1}
\end{equation*}
$$

We construct regular partitions of the three intervals $\left[\mathrm{a}_{1}, \mathrm{a}_{2}\right],\left[\mathrm{b}_{1}, \mathrm{~b}_{2}\right]$ and $\left[\mathrm{c}_{1}, \mathrm{c}_{2}\right]$:
$\mathrm{a}_{1}=\mathrm{x}_{0}<\mathrm{x}_{1}<\cdots<\mathrm{x}_{\mathrm{n}}=\mathrm{a}_{2}$
$\mathrm{b}_{1}=\mathrm{y}_{0}<\mathrm{y}_{1}<\cdots<\mathrm{y}_{\mathrm{m}}=\mathrm{b}_{2}$
$\mathrm{c}_{1}=\mathrm{z}_{0}<\mathrm{z}_{1}<\cdots<\mathrm{z}_{\mathrm{p}}=\mathrm{c}_{2}$,
To obtain nmp "boxes" The volume of typical box $\mathrm{B}_{\mathrm{ijk}}$ is given by

$$
\begin{equation*}
\Delta V=\Delta x \Delta y \Delta z \tag{2}
\end{equation*}
$$

Where $\Delta x=x_{i}-x_{i-1}, \Delta y=y_{j}-y_{j-1}$, and $\Delta z=z_{k}-z_{k-1}$. We then form the sum

$$
\begin{equation*}
\sum_{\mathrm{i}=1}^{\mathrm{n}} \sum_{\mathrm{j}=1}^{\mathrm{m}} \sum_{\mathrm{k}=1}^{\mathrm{p}} \mathrm{f}\left(\mathrm{x}_{\mathrm{i}}^{*}, \mathrm{y}_{\mathrm{j}}^{*}, \mathrm{z}_{\mathrm{k}}^{*}\right) \Delta \mathrm{V} \tag{3}
\end{equation*}
$$

where $\left(\mathrm{x}_{\mathrm{i}}{ }^{*}, \mathrm{y}_{\mathrm{j}}{ }^{*}, \mathrm{z}_{\mathrm{k}}{ }^{*}\right)$ is in $\mathrm{B}_{\mathrm{ijk}}$
We now define
$\Delta \mathrm{u}=\sqrt{\Delta \mathrm{x}^{2}+\Delta \mathrm{y}^{2}+\Delta \mathrm{z}^{2}}$
Geometrically, $\Delta \mathrm{u}$ is the length of a diagonal of a rectangular solid with sides having lengths $\Delta \mathrm{x}, \Delta \mathrm{y}$ and $\Delta \mathrm{z}$ respectively. We see that as $\Delta \mathrm{u} \rightarrow 0, \Delta \mathrm{x}, \Delta \mathrm{y}$ and $\Delta \mathrm{z}$ approach 0 , and the volume of each box tends to zero. We then take the limit as $\Delta u \rightarrow 0$.

Definition 1 THE TRIPLE INTEGRAL Let $\mathrm{w}=\mathrm{f}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ and let the parallelepiped π be given by (1). Suppose that
$\lim _{\Delta u \rightarrow 0} \sum_{i=1}^{n} \sum_{j=1}^{m} \sum_{k=1}^{p} f\left(x_{i}{ }^{*}, y_{j}{ }^{*}, z_{k}{ }^{*}\right) \Delta x \Delta y \Delta z$

Exists and is in dependent of the way in which the points $\left(\mathrm{x}_{\mathrm{i}}{ }^{*}, \mathrm{y}_{\mathrm{j}}{ }^{*}, \mathrm{z}_{\mathrm{k}}{ }^{*}\right)$ are chosen .Then the triple integral of f over π, written $\iiint_{\pi} f(x, y, z) d V$, is defined by

$$
\begin{equation*}
\iiint_{\pi} \mathrm{f}(\mathrm{x}, \mathrm{y}, \mathrm{z}) \mathrm{dV}=\lim _{\Delta \mathrm{u} \rightarrow 0} \sum_{\mathrm{i}=1}^{\mathrm{n}} \sum_{\mathrm{j}=1}^{\mathrm{m}} \sum_{\mathrm{k}=1}^{\mathrm{p}} \mathrm{f}\left(\mathrm{x}_{\mathrm{i}}{ }^{*}, \mathrm{y}_{\mathrm{j}}{ }^{*}, \mathrm{z}_{\mathrm{k}}{ }^{*}\right) \Delta \tag{4}
\end{equation*}
$$

As with double integrals, we can write triple integrals as iterated (or repeated)integrals. If π is defined by (1), we have

$$
\begin{equation*}
\iiint_{\pi} f(x, y, z) d V=\int_{a_{1}}^{a_{2}} \int_{b_{1}}^{b_{2}} \int_{c_{1}}^{c_{2}} f(x, y, z) d z d y d x \tag{5}
\end{equation*}
$$

EXAMPLE 1 Evaluate $\iiint_{\pi} x y \cos y z d V$, where π is the parallelepiped
$\left\{(x, y, z): 0 \leq x \leq 1,0 \leq y \leq 1,0 \leq z \leq \frac{\pi}{2}\right\}$
Solution : $\iiint_{\pi} x y \cos y z d V=\int_{0}^{1} \int_{0}^{1} \int_{0}^{\frac{\pi}{2}} x y \cos y z d z d y d x$

$$
\begin{gathered}
=\int_{0}^{1} \int_{0}^{1}\left\{\left.x y \cdot \frac{1}{y} \sin y z \right\rvert\, \frac{\pi}{2}\right\} d y d x=\int_{0}^{1} \int_{0}^{1} x \sin \left(\frac{\pi}{2} y\right) d y d x \\
\quad=\int_{0}^{1}\left\{-\left.\frac{2}{\pi} x \cos \frac{\pi}{2} y\right|_{0} ^{1}\right\} d x \int_{0}^{1} \frac{2}{\pi} x d x=\left.\frac{x^{2}}{\pi}\right|_{0} ^{1}=\frac{1}{\pi}
\end{gathered}
$$

THE TRIPLE INTEGRAL OVER AMORE GENERAL REGION

We now define the triple integral over a more general region S. We assume that S is bounded . Then we can enclose Sin a parallelepiped π and define a new function F by
$F(x, y, z)=\left\{\begin{array}{cc}f(x, y, z) & \text { if }(x, y, z) \text { is in } S \\ 0, & (x, y, z) \text { is in } \pi \text { but not } S\end{array}\right.$
We then define : $\iiint_{s} f(x, y, z) d V=\iiint_{\pi} F(x, y, z) d V$
REMARK 1. If f is continuous over S, we will discuss Below, then $\iiint_{s} f(x, y, z) d V$ will exist. The proof of this fact is beyond the scope of this text but can be found in any advanced calculus text .

REMARK 2. Iff ≥ 0 on S, then the triple integral $\iiint_{s} f(x, y, z) d V$ represents the "volume" in for - dimensional space \mathbb{R}^{4}. of the region bounded above by f and below by S . We carries over to four (and more) dimensions, ow let S take the form

$$
\begin{equation*}
S=\left\{(x, y, z): a_{1} \leq x \leq a_{2}, g_{1}(x) \leq y \leq g_{2}(x), h_{1}(x, y) \leq z \leq h_{2}(x, y)\right\} \tag{7}
\end{equation*}
$$

What does such a solid look like? We first note that the equations $z=h_{1}(x, y)$ and $z=$ $h_{2}(x, y)$ are the equations of surfaces in \mathbb{R}^{3}. The equations $y=g_{1}(x)$ and $y=g_{2}(x)$ are equations of cylinders in \mathbb{R}^{3}, and the equations are equations of planes in \mathbb{R}^{3}.. We assume that g_{1}, g_{2}, h_{1} and h_{2} are continuous. If f is continuous, then $\iiint_{s} f(x, y, z) d V$ will exist and $\iiint_{s} f(x, y, z) d V=\int_{a_{1}}^{a_{2}} \int_{g_{1}(x)}^{g_{2}(x)} \int_{h_{1}(x, y)}^{h_{2}(x, y)} f(x, y, z) d z d y d x$

EXAMPLE 2 Evaluate $\iiint_{\mathrm{s}} 2 \mathrm{x}^{3} \mathrm{y}^{2} \mathrm{zdV}$, where S is the region

$$
\left\{(x, y, z): 0 \leq x \leq 1, x^{2} \leq y \leq x, x-y \leq z \leq x+y\right\}
$$

Solution: $\quad \iiint_{s} 2 x^{3} y^{2} z d V=\int_{0}^{1} \int_{x^{2}}^{x} \int_{x-y}^{x+y} 2 x^{3} y^{2} z d z d y d x$

$$
\begin{gathered}
=\left.\int_{0}^{1} \int_{x^{2}}^{x} 2 x^{3} y^{2}\right|_{x-y} ^{x}+y d y d x \\
=\int_{0}^{1} \int_{x^{2}}^{x} x^{3} y^{2}\left[(x+y)^{2}-(x-y)^{2}\right] d y d x \\
=\int_{0}^{1} \int_{x^{2}}^{x} 4 x^{4} y^{3} d y d x=\int_{0}^{1}\left\{x^{4} y^{4} \left\lvert\, \begin{array}{c}
x \\
x^{2}
\end{array}\right.\right\} d x \\
= \\
\int_{0}^{1}\left(x^{8}-x^{12}\right) d x=\frac{1}{9}-\frac{1}{13}=\frac{4}{117}
\end{gathered}
$$

Many of the applications we saw for the double integral can be extended to the triple integral . We present three of them below

I .VOLUME

Let the region S be defined by (7) Then, since $\Delta V=\Delta x \Delta y \Delta z$ represents the volume of a "box" in S, when we add up the volumes of these boxes and take a limit, we obtain the total volume of S. That is, volume of $S=\iiint_{S} d V$

EXAMPLE 3 Calculate the volume of the region of Example 2.

$$
\begin{aligned}
& V=\int_{0}^{1} \int_{x^{2}}^{x} \int_{x-y}^{x+y} d z d y d x=\int_{0}^{-1} \int_{x^{2}}^{x}\left\{z \left\lvert\, \begin{array}{l}
x+y \\
x+y
\end{array}\right.\right\} d y d x \\
& =\int_{0}^{1} \int_{x^{2}}^{x} 2 y d y d x=\int_{0}^{1}\left\{\left.y^{2}\right|_{x^{2}} ^{x}\right\} d x=\int_{0}^{1}\left(x^{2}-x^{4}\right) d x \\
& =\frac{1}{3}-\frac{1}{5}=\frac{2}{15}
\end{aligned}
$$

EXAMPLE 4 Find the volume of the tetrahedron formed by the planes $x=0, y=0, z=$ 0 , and $x+\left(\frac{y}{2}\right)+\left(\frac{z}{4}\right)=1$

Solution : We see that z ranges from 0 to the plane This last plane intersects the plane in a line whose equation (obtained by setting $z=0$) is given by so that y ranges from 0 to 1 Finally, this line intersects the x - axis at the point $(1,0,0)$ so that x ranges from 0 to 1 , and we have

$$
\begin{aligned}
& V=\int_{0}^{1} \int_{0}^{2(1-x)} \int_{0}^{4\left(1-x-\frac{y}{2}\right)} d z d y d x=\int_{0}^{1} \int_{0}^{2(1-x)} 4\left(1-x-\frac{y}{2}\right) d y d x \\
& \left.=\left.4 \int_{0}^{1}\left\{y(1-x)-\frac{y^{2}}{4}\right)\right|_{0} ^{2(1-x)}\right\} d x=4 \int_{0}^{1}\left[2(1-x)^{2}-(1-x)^{2}\right] d x \\
& =-\left.\frac{4}{3}(1-x)^{3}\right|_{0} ^{1}=\frac{4}{3}
\end{aligned}
$$

REMARK . It was not necessary to integrate in the order z, then y, then x, We could have written, for example,
$0 \leq x \leq 1-\frac{y}{2}-\frac{z}{4}$
The intersection of this plane with the $y z_{-}$plane is the line $0=1-\left(\frac{y}{2}\right)-\left(\frac{z}{4}\right)$, or $z=4[1-$ $\left(\frac{y}{4}\right)$] The intersection of this line with the occurs at the point $(0,2,0)$ Thus

$$
\begin{gathered}
V=\int_{0}^{2} \int_{0}^{4\left(1-\frac{y}{4}\right)} \int_{0}^{1-\frac{y}{2}-\frac{z}{4}} d x d z d y \\
=\int_{0}^{2} \int_{0}^{4\left(1-\frac{y}{2}\right)}\left(1-\frac{y}{2}-\frac{z}{4}\right) d z d y=\int_{0}^{2}\left\{\left.\left[\left(1-\frac{y}{2}\right) z-\frac{z^{2}}{8}\right] \right\rvert\, 4\left(1-\frac{y}{2}\right)\right\} d y \\
0
\end{gathered}
$$

$$
\begin{gathered}
=\int_{0}^{2}\left\{4(1-y / 2)^{2}-\frac{16[1-(y / 2)]^{2}}{8}\right\} d y=2 \int_{0}^{2}\left(1-\frac{y}{2)^{2}} d y\right. \\
= \\
=-\left.\frac{4}{3}(1-y / 2)^{3}\right|_{0} ^{2}=\frac{4}{3}
\end{gathered}
$$

We could also in any of four other orders (xyz, yzx, yxz, and zxy) to obtain the same result

II. DENSITY AND MASS

Let the function $\rho(\mathrm{x}, \mathrm{y}, \mathrm{z})$ denote the density (in kilograms per cubic meter, say) of a solid S in Then for a " box" of sides $\Delta x, \Delta y$, and Δz, the approximate mass of the box will be equal to $\rho=\left(\mathrm{x}_{\mathrm{i}}{ }^{*}, \mathrm{y}_{\mathrm{j}}{ }^{*}, \mathrm{z}_{\mathrm{k}}^{*}\right) \Delta \mathrm{x} \Delta \mathrm{y} \Delta \mathrm{z}=\rho\left(\mathrm{x}_{\mathrm{i}}{ }^{*}, \mathrm{y}_{\mathrm{j}}{ }^{*}, \mathrm{z}_{\mathrm{k}}{ }^{*}\right) \Delta \mathrm{V}$ if $\Delta \mathrm{x}, \Delta \mathrm{y}$, and $\Delta \mathrm{z}$ small. We then obtain
total mass of $S=\mu(S)=\iiint_{S} \rho(x, y, z) d V$
EXAMPLE 5 The density of the solid of Example 2 is given by $\rho(\mathrm{x}, \mathrm{y}, \mathrm{z})=\mathrm{x}+2 \mathrm{y}+$ $4 \mathrm{zkg} / \mathrm{m}^{3}$ Calculate the total mass of the solid.

Solution

$$
\begin{aligned}
& \mu(S)=\int_{0}^{1} \int_{x^{2}}^{x} \int_{x-y}^{x+y}(x+2 y+4 z) d z d y d x=\int_{0}^{1} \int_{x^{2}}^{x}\left\{\left.\left[(x+2 y) z+2 z^{2}\right]\right|_{x-y} ^{x+y} \begin{array}{l}
x+y
\end{array}\right\} d y d x \\
& \left.=\int_{0}^{1} \int_{x^{2}}^{x}(10 x y+4 y) d y d x=\left.\int_{0}^{1}\left\{5 x y+\frac{4 y^{3}}{3}\right)\right|_{x^{2}} ^{x}\right\} d x \\
& =\int_{0}^{1}\left(5 x^{3}-5 x^{5}+\frac{4}{3} x^{3}-\frac{4}{3} x^{6}\right) d x=\int_{0}^{1}\left(\frac{19}{3} x^{3}-5 x^{5}-\frac{4}{3} x^{6}\right) d x \\
& =\frac{19}{12}-\frac{5}{6}-\frac{4}{21}=\frac{47}{84} k g
\end{aligned}
$$

III . FIRST MOMENTS AND CENTER OF MASS

In \mathbb{R}^{3} we use the symbol M_{yz} to denote the first moment with respect to the yz-plane similarly , M_{xz} denotes the first moment with respect to the xz- plane, and M_{xy}. donates the first moment with respect to the xy - plane Since the distance from appoint

$$
\begin{align*}
& (x, y, z) \text { to the } y z-\text { plane is } x \text {, and so on, we may use familiar reasoning to obtain } \\
& M_{y z}=\iiint_{s} x \rho(x \rho, y, z) d V \tag{11}
\end{align*}
$$

$M_{x z}=\iiint_{s} y \rho(x \rho, y, z) d$
$\mathrm{M}_{\mathrm{xy}}=\iiint_{\mathrm{s}} \mathrm{z} \rho(\mathrm{x} \rho, \mathrm{y}, \mathrm{z}) \mathrm{d}$
The center of mass of S is then given by
$\overline{(\bar{x}}, \bar{y}, \bar{z})=\left(\frac{M_{y z}}{\mu}, \frac{\mathrm{M}_{\mathrm{xz}}}{\mu}, \frac{\mathrm{M}_{\mathrm{xy}}}{\mu}\right)$,
Where μ denotes mass of S. If $\rho(x \rho, y, z)$ is constant, then as in \mathbb{R}^{1} and \mathbb{R}^{2} the center of mass is called the centroid

EXAMPLE 6 : Find the center of mass of the solid in Example 5.
Solution: We have already found that $\mu=47 / 64$ We next calculate the moments .

$$
\begin{aligned}
& M_{y z}=\int_{0}^{1} \int_{x^{2}}^{x} \int_{x-y}^{x+y} x(x-2 y+4 z) d z d y d x \\
& =\int_{0}^{1} \int_{x^{2}}^{x}\left\{\left(\left(x^{2}+2 x y\right) z+\left.2 x z^{2}\right|_{x-y} ^{x+y}\right\} d x\right. \\
& =\int_{0}^{1} \int_{x^{2}}^{x}\left(10 x^{2} y+4 x y^{2}\right) d y d x=\int_{0}^{1}\left\{\left(5 x^{2} y^{2}+\left.\frac{4 x y^{3}}{3}\right|_{x^{2}} ^{x}\right\} d x\right. \\
& =\int_{0}^{1}\left(5 x^{4}-5 x^{6}+\frac{4}{3} x^{4}-\frac{4}{3} x^{7}\right) d x=1-\frac{5}{7}+\frac{4}{15}-\frac{1}{6}=\frac{27}{70} \\
& M_{x z}=\int_{0}^{1} \int_{x^{2}}^{x} \int_{x-y}^{x+y} y(x+2 y+4 z) d z d y d x \\
& =\int_{0}^{1} \int_{x^{2}}^{x}\left\{\left.\left[\left(x y+2 y^{2}\right) z+2 y z^{2}\right]\right|_{x-y} ^{x}+\frac{y}{x}\right\} d y d x \\
& \left.=\int_{0}^{1} \int_{x^{2}}^{x} 10 x y^{2}+4 y^{3}\right) d y d x=\int_{0}^{1}\left\{\left.\left(\frac{10}{3} x y^{3}+y^{4}\right)\right|_{x^{2}} ^{x}\right\} d x \\
& =\int_{0}^{1}\left(\frac{10}{3} x^{4}-\frac{10}{3} x^{7}+x^{4}-x^{8}\right) d x=\frac{2}{3}-\frac{5}{12}+\frac{1}{5}-\frac{1}{9}=\frac{61}{180} \\
& M_{x y}=\int_{0}^{1} \int_{x^{2}}^{x} \int_{x-y}^{x+y} z(x+2 y+4 z) d z d y d x \\
& \left.=\int_{0}^{1} \int_{x^{2}}^{x}\left\{[x+2 y) \frac{z^{2}}{2}+\frac{4 z^{3}}{3}\right]| |_{x}^{x}+y\right\} d y d z \\
& x+y
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{0}^{1} \int_{x^{2}}^{x}\left[(x+2 y)(2 x y)+\frac{4}{3}\left(6 x^{2} y+2 y^{3}\right)\right] d y d x \\
& =\int_{0}^{1} \int_{x^{2}}^{x}\left(10 x^{2} y+4 x^{2}+\frac{8}{3} y^{3}\right) d y d x \\
& =\int_{0}^{1}\left\{\left.\left(5 x^{2} y^{2}+\frac{4}{3} x y^{3}+\frac{2}{3} y^{4}\right)\right|_{x^{2}} ^{x}\right\} d x \\
& =\int_{0}^{1}\left(5 x^{4}-5 x^{6}+\frac{4}{3} x^{4}-\frac{4}{3} x^{7}+\frac{2}{3} x^{4}-\frac{2}{3} x^{8}\right) d x \\
& =\int_{0}^{1}\left(7 x^{4}-5 x^{6}-\frac{4}{3} x^{7}-\frac{2}{3} x^{8}\right) d x=\frac{7}{5}-\frac{5}{7}-\frac{1}{6}-\frac{2}{27}=\frac{841}{1890}
\end{aligned}
$$

Thus

$$
\begin{aligned}
(\overline{\mathrm{x}}, \overline{\mathrm{y}}, \overline{\mathrm{z}})=\left(\frac{\mathrm{M}_{\mathrm{yz}}}{\mu}, \frac{\mathrm{M}_{\mathrm{xz}}}{\mu},\right. & \left.\frac{\mathrm{M}_{\mathrm{xy}}}{\mu}\right)=\left(\frac{\frac{27}{70}}{\frac{47}{84}}, \frac{\frac{61}{180}}{\frac{47}{84}}, \frac{\frac{841}{1890}}{\frac{47}{84}}\right) \\
& =\left(\frac{162}{235}, \frac{427}{705}, \frac{1682}{2115}\right) \approx(0.689,0.606,0.795)
\end{aligned}
$$

PROBLEMS

In problems 1-7 evaluate the repeated triple integral .

1. $\int_{0}^{1} \int_{0}^{y} \int_{0}^{x} y d z d x d y$
2. $\int_{0}^{2} \int_{-z}^{z} \int_{y-z}^{y+z} 2 x z d x d y d z$
3. $\int_{a_{1}}^{a_{2}} \int_{b_{1}}^{b_{2}} \int_{c_{1}}^{c_{2}} d y d x d z$
4. $\int_{0}^{\frac{\pi}{2}} \int_{0}^{\frac{\pi}{2}} \int_{0}^{z} \sin \left(\frac{x}{z}\right) d x d z d y$
5. $\int_{1}^{2} \int_{1-y}^{1+y} \int_{0}^{y z} 6 x y z d x d z d y$
6. $\int_{0}^{1} \int_{0}^{\sqrt{1-\mathrm{x}^{2}}} \int_{0}^{\mathrm{x}} \mathrm{yz} \mathrm{dz} \mathrm{dydx}$
7. $\int_{0}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} \int_{-\sqrt{1-x^{2-y^{2}}}}^{\sqrt{1-x^{2}-y^{2}}} z^{2} d z d y d x$
8. Change the order of integration in problem 1 and writ the integral in the form
(a) $\int_{?}^{?} \int_{?}^{?} \int_{?}^{?} \mathrm{ydx} \quad \mathrm{dy} \mathrm{dz}$; (b) $\int_{?}^{?} \int_{?}^{?} \int_{?}^{?} \mathrm{y} d \mathrm{dydzdx}$ [Hint: Sketch the region in Problem 1 from the given limits and then find the new limits directly from the figure.]
9. Write the integral of Problem 6 in the form
(a) $\int_{?}^{?} \int_{?}^{?} \int_{?}^{?} \mathrm{yz} \mathrm{dx} \mathrm{dy} \mathrm{dz}$; (b) $\int_{?}^{?} \int_{?}^{?} \int_{?}^{?} \mathrm{yz} \mathrm{dydzdx}$
10. Write the integral of problem 7 in the from $\int_{?}^{?} \int_{?}^{?} \int_{?}^{?} \mathrm{z}^{2} \mathrm{dx} \mathrm{dz} \mathrm{dy}$

In problems 11-18, find the volume of the given solid
11. The tetrahedron with vertices at the points $(0,0,0),(1,0,0),(0,1,0)$ and $(0,0,1)$.

12 . The tetrahedron with vertices at the points $(0,0,0),(a, 0,0),(0, b, 0)$ and $(0,0, c)$
13. The solid in the first octant bounded by the cylinder $x^{2}+z^{2}=9$, the plane $x+y=4$, and the three coordinate planes
14. The solid bounded by planes $x-2 y+4 z=4,-2 x+3 y-z=6, x=0$ and $y=0$

15 .The solid bounded above by the sphere $x^{2}+y^{2}+z^{2}=16$, and below by the plane $z=2$
16. The solid in the first octant bounded by the cylinder $\mathrm{z}=5-\mathrm{x}^{2}$ and the planes $\mathrm{z}=$ y and $z=2 y$ that lies in the half space $y \geq 0$
17. The solid bounded by the ellipsoid $\left(\mathrm{x}^{2} / \mathrm{a}^{2}\right)+\left(\mathrm{y}^{2} / \mathrm{b}^{2}\right)+\left(\mathrm{z}^{2} / \mathrm{c}^{2}\right)=1$
18. The solid bounded by the elliptic cylinder $9 x^{2}+y^{2}=9$ and the planes
$z=0$ and $x+y+9 z=9$

THE TRIPLE INTEGRAL IN CYLINDRICAL AND SPHERICAL COORDINATES
In this section we show how triple integrals can be written by using cylindrical and spherical coordinates .

I. CYLINDRICAL COORDINATES

Recall the cylindrical coordinates of a point in \mathbb{R}^{2} are (r, θ, z) where r and θ are the polar coordinates of the projection of the point onto the $x y$ - plane and z is the usual z-coordinates, In order to calculate an integral of a region given in cylindrical coordinates we go through a procedure very similar to the one we used to write double integrals in polar coordinates

Consider the " cylindrical parallelepiped" given by
$\pi_{\mathrm{c}}=\left\{(\mathrm{r}, \theta, \mathrm{z}): \mathrm{r}_{1} \leq \mathrm{r} \leq \mathrm{r}_{2} ; \theta_{1} \leq \theta \leq \theta_{2} ; \mathrm{z}_{1} \leq \mathrm{z} \leq \mathrm{z}_{2}\right\}$
This solid is sketched in Figure 1. If we partition the z - axis for z in $\left[\mathrm{z}_{1}, \mathrm{z}_{2}\right]$, we obtain "slices "For affixed z the area of the face of a slice of π_{c} is, given by

$$
\begin{equation*}
A_{i}=\int_{\theta_{1}}^{\theta_{2}} \int_{r_{1}}^{r_{2}} r d r d \theta \tag{1}
\end{equation*}
$$

The volume of a slice is , by (1), given by
$V_{i}=A_{i} \Delta z=\left\{\int_{\theta_{1}}^{\theta_{2}} \int_{r_{1}}^{r_{2}} r d r d \theta\right\} \Delta z$
Then adding these volumes and taking the limit as before, we obtain
volume of $\pi_{c}=\int_{z_{1}}^{z_{2}} \int_{\theta_{1}}^{\theta_{2}} \int_{r_{1}}^{r_{2}} r d r d \theta d z$
In general, let region S be given in cylindrical coordinates by
$S=\left\{(r, \theta, z): \theta_{1} \leq \theta \leq \theta_{2}, 0 \leq g_{1}(\theta) \leq r \leq g_{2}(\theta), h_{1}(r, \theta) \leq z \leq h_{2}(r, \theta)\right\}$,
And let f be a function of r , and z Then the triple integral of f over S is given by
$\iiint_{s} f=\int_{\theta_{1}}^{\theta_{2}} \int_{\mathrm{g}_{1}(\theta)}^{g_{2}(\theta)} \int_{\mathrm{h}_{1}(r, \theta)}^{\mathrm{h}_{2}(\mathrm{r}, \theta)} \mathrm{f}(\mathrm{r}, \theta, \mathrm{z}) \mathrm{rdz} d r d \theta$
EXAMPLE 1 Find the mass of a solid bounded by the cylinder $r=\sin \theta$, the planes $z=0, \theta=$ $0,=\theta=\frac{\pi}{3}$, and the cone $z=r$, if the density is given by $\rho(r, \theta, z)=4 r$

Solution. We first note that the solid may be written as

$$
S=\left\{(r, \theta, z): 0 \leq \theta \leq \frac{\pi}{3}, 0 \leq r \leq \sin \theta, 0 \leq z \leq r\right\}
$$

Then

$$
\begin{aligned}
& \mu=\int_{0}^{\frac{\pi}{3}} \int_{0}^{\sin \theta,} \int_{0}^{\mathrm{r}}(4 \mathrm{r}) \mathrm{rdz} \mathrm{dr} \mathrm{~d} \theta \\
& =\int_{0}^{\frac{\pi}{3}} \int_{0}^{\sin \theta,}\left\{\left.4 \mathrm{r}^{2} \mathrm{z}\right|_{0} ^{\mathrm{r}}\right\} \mathrm{drd} \theta=\int_{0}^{\frac{\pi}{3}} \int_{0}^{\sin \theta,} 4 \mathrm{r}^{3} \mathrm{drd} \theta \\
& =\int_{0}^{\pi / 3}\left\{\mathrm{r}^{4} \left\lvert\, \begin{array}{c}
\sin \theta \\
0
\end{array}\right.\right\} \mathrm{d} \theta=\int_{0}^{\pi / 3} \sin ^{4} \theta \mathrm{~d} \theta=\int_{0}^{\pi / 3}\left(\frac{1-\cos 2 \theta}{2}\right)^{2} \mathrm{~d} \theta \\
& =\frac{1}{4} \int_{0}^{\frac{\pi}{3}}\left(1-2 \cos 2 \theta+\frac{1+\cos 4 \theta}{2}\right) \mathrm{d} \theta \\
& \left.=\frac{1}{4}\left(\frac{3 \theta}{2}-\sin 2 \theta+\frac{\sin 4 \theta}{8}\right) \right\rvert\, \frac{\pi}{3}=\frac{1}{4}\left(\frac{\pi}{2}-\frac{\sqrt{3}}{2}-\frac{\sqrt{3}}{16}\right) \\
& =\frac{\pi}{8}-\frac{9 \sqrt{3}}{64}
\end{aligned}
$$

Let S be a region in \mathbb{R}^{3} Sincex $=r \cos x=r \cos \theta . y=r \sin \theta$. and $z=z$, we have

$$
\begin{equation*}
\iiint_{s} f(x \cdot y \cdot z) d V=\iiint_{s} f(r \cos \theta \cdot r \sin \theta \cdot z) r d z d r d \theta \tag{5}
\end{equation*}
$$

Given in rectangular

Coordinates

REMARK. A gain, do not forget the extra r when you convert to cylindrical coordinates.
EXAMPLE 2 Find the mass of the solid bounded by paraboloid $\mathrm{z}=\mathrm{x}^{2}+\mathrm{y}^{2}$ and the plane $\mathrm{z}=4$ if the density at any point is proportional to the distance from the point to the z axis

Solution:The density is given $\operatorname{by} \rho(x . y . z)=a \sqrt{x^{2}+y^{2}}$. where a is a constant of proportionality. Thus since the solid may be written as

$$
S=\left\{(x \cdot y \cdot z):-2 \leq x \leq 2 .-\sqrt{4-x^{2}} \leq y \leq \sqrt{4-x^{2}} \cdot x^{2}+y^{2} \leq z \leq 4\right\} .
$$

We have
$\mu=\iiint_{s} a \sqrt{x^{2}+y^{2}} d V=\int_{-2}^{2} \int_{-\sqrt{4-x^{2}}}^{\sqrt{4-x^{2}}} \int_{x^{2}+y^{2}}^{4} a \sqrt{x^{2}+y^{2}} d z d y d x$
We write this expression in cylindrical, using the fact that $a \sqrt{x^{2}+y^{2}}=$ ar We note that the largest value of r is 2 , since at the "top" of the solid $r^{2}=x^{2}+y^{2}=4$ Then
$\mu=\int_{0}^{2 \pi} \int_{0}^{2} \int_{r^{2}}^{4}(\operatorname{ar}) r d z d r d \theta=\int_{0}^{2 \pi} \int_{0}^{2} \operatorname{ar}^{2}\left(4-x^{2}\right) d r d \theta$
$=\mathrm{a} \int_{0}^{2 \pi}\left\{\left.\left(\frac{4 \mathrm{r}^{3}}{3}-\frac{\mathrm{r}^{2}}{5}\right)\right|_{0} ^{2}\right\} \mathrm{d} \theta=\frac{64 \mathrm{a}}{15} \int_{0}^{2 \pi} \mathrm{~d} \theta=\frac{128}{15} \pi \mathrm{a}$

II. SPHERICAL COORDINATES

Recall that a point p in \mathbb{R}^{3} can be written in the spherical coordinates ($\rho . \theta . \varphi$) where $\rho \geq 0$, $0 \leq \theta<2 \pi .0 \leq \varphi \leq \pi$ Here is distance between the point and the origin, θ is the same as in cylindrical coordinates, and φ is the angle between $\overrightarrow{0 \mathrm{P}}$ and the positive z - axis Consider the "parallelepiped"

$$
\begin{equation*}
\pi_{s}=\left\{(\rho \cdot \theta \cdot \varphi): \rho_{1} \leq \rho \leq \rho_{2} \cdot \theta_{1} \leq \theta \leq \theta_{2} \cdot \varphi_{1} \leq \varphi \leq \varphi_{2}\right\} \tag{6}
\end{equation*}
$$

To approximate the volume of π_{9} we partition the intervals $\left[\rho_{1} \cdot \rho_{2}\right] \cdot\left[\theta_{1} \cdot \theta_{2}\right]$ and $\left[\varphi_{1} \cdot \varphi_{2}\right]$ This partition gives us a number of "spherical boxes ", one, The length of an arc of a circle is given by

$$
\begin{equation*}
\mathrm{L}=\mathrm{r} \theta \tag{7}
\end{equation*}
$$

Where r is the radius of the circle and θ is the angle that "cuts off" ,the one side of the spherical box $\Delta \rho$ is. Since $\rho=\rho_{\mathrm{i}}$ the equation of a sphere, we find, from (7), that the length of a second side is $\rho_{\mathrm{i}} \sin \varphi_{\mathrm{k}} \Delta \theta$, approximately, by
$V_{\mathrm{i}} \approx(\Delta \rho)\left(\rho_{\mathrm{i}} \Delta \varphi\right)\left(\rho_{\mathrm{i}} \sin \varphi_{\mathrm{k}} \Delta \theta\right)$.
And using a familiar argument, we have
volume of $\pi_{s}=\iiint_{\pi_{s}} \rho^{2} \sin \varphi \mathrm{~d} \rho \mathrm{~d} \vartheta \mathrm{~d} \theta=\int_{\theta_{1}}^{\theta_{2}} \int_{\varphi_{1}}^{\varphi_{2}} \int_{\rho_{1}}^{\rho_{2}} \rho^{2} \sin \varphi \mathrm{~d} \rho \mathrm{~d} \varphi \mathrm{~d} \theta$
If f is a function of the variables $\rho . \theta$ and φ. we have

$$
\begin{equation*}
\iiint_{\pi_{\mathrm{s}}} \mathrm{f}=\iiint_{\pi_{\mathrm{s}}} \mathrm{f}(\rho \cdot \theta \cdot \varphi) \rho^{2} \sin \varphi \mathrm{~d} \rho \mathrm{~d} \varphi \mathrm{~d} \theta \tag{9}
\end{equation*}
$$

More generally, let the region S be defined in spherical coordinates by

$$
\begin{equation*}
S=\left\{(\rho \cdot \theta \cdot \varphi): \theta_{1} \leq \theta \leq \theta_{2} \cdot g_{1}(\theta) \leq \varphi \leq g_{2}(\theta) \cdot \mathrm{h}_{1}(\theta \cdot \varphi) \leq \mathrm{p} \leq \mathrm{h}_{2}(\theta \cdot \varphi)\right\} \tag{10}
\end{equation*}
$$

$$
\begin{equation*}
\iiint_{\mathrm{s}} \mathrm{f}=\int_{\theta_{1}}^{\theta_{2}} \int_{g_{1}(\theta)}^{\mathrm{g}_{2}(\theta)} \int_{\mathrm{h}_{1}(\theta \cdot \varphi)}^{\mathrm{h}_{2}(\theta \cdot \varphi)} \mathrm{f}(\rho \cdot \theta \cdot \varphi) \rho^{2} \sin \varphi \mathrm{~d} \rho \mathrm{~d} \varphi \mathrm{~d} \theta \tag{11}
\end{equation*}
$$

Recall that to convert from rectangular to spherical coordinates, we have that formulas
$x=\rho \sin \varphi \cos \theta . \quad y=\rho \sin \varphi \sin \theta . \quad z=\rho \cos \varphi$
Thus to convert from a triple integral in rectangular coordinates to a triple integral in spherical coordinates, we have
$\iiint_{S} f(x . y \cdot z) d V=\iiint_{S} f(\rho \sin \varphi \cos \theta \rho \sin \varphi \sin \theta \cdot \rho \cos \varphi) \quad \rho^{2} \sin \varphi d \rho d \varphi d \theta$
Given in rectangular coordinates
Given in spherical coordinates

EXAMPLE 3 Calculate the volume enclosed by the sphere $x^{2}+y^{2}+z^{2}=a^{2}$
Solution. In rectangular coordinates, since

$$
\begin{aligned}
S=\{(x . y . z): & -a \leq x \leq a \cdot-\sqrt{a^{2}-x^{2}} \leq y \leq \sqrt{a^{2}-x^{2}}-\sqrt{a^{2}-x^{2}-y^{2}} \leq z \\
& \left.\leq \sqrt{a^{2}-x^{2}-y^{2}}\right\}
\end{aligned}
$$

We can write the volume as
$V=\int_{-a}^{a} \int_{\sqrt{a^{2}-x^{2}}-}^{\sqrt{a^{2}}} \int_{-\sqrt{a^{2}-x^{2}-y^{2}}}^{\sqrt{a^{2}-x^{2}-y^{2}}} d z d y d x$
This expression is very tedious to calculate. So instead, we note that the region enclosed by a sphere can be represented in spherical coordinates as
$S=\{(\rho . \theta \cdot \varphi): 0 \leq \rho \leq \mathrm{a} .0 \leq \theta \leq 2 \pi .0 \leq \varphi \leq \pi\}$
Thus
$V=\int_{0}^{2 \pi} \int_{0}^{\pi} \int_{0}^{a} \rho^{2} \sin \varphi d \rho d \varphi d \theta=\int_{0}^{2 \pi} \int_{0}^{\pi} \frac{a^{3}}{3} \sin \varphi d \varphi d \theta$
$\frac{a^{3}}{3} \int_{0}^{2 \pi}\left\{-\left.\cos \varphi\right|_{0} ^{\pi}\right\} d \theta=\frac{a^{3}}{3} \int_{0}^{2 \pi} d \theta \frac{a^{3}}{3}$
EXAMPLE 4 Find the mass of the sphere in Example 3 if its density at a proportional to the distance from the point to the origin

Solution. We have density $=a \sqrt{a^{2}+x^{2}+y^{2}}=a \rho$ Thus
$\mu=\int_{0}^{2 \pi} \int_{0}^{\pi} \int_{0}^{a} a \rho\left(\rho^{2} \sin \varphi d \rho d \varphi d \theta=\frac{a a^{4}}{4} \int_{0}^{2 \pi} \int_{0}^{\pi} \sin \varphi d \varphi d \theta\right.$
$=\frac{a a^{4}}{4}(4 \pi)=\pi a^{4} a$
EXAMPLE 5 Find the centroid of the "ice-cream- cone-shaped" region below the sphere $\mathrm{x}^{2}+$ $y^{2}+z^{2}=z$ and above the cone $z^{2}=x^{2}+y^{2}$

Solution. The region is sketched in Figure 5. Since $x^{2}+y^{2}+z^{2}=\rho^{2}$ andz $=\rho \cos \varphi$. the sphere $\left\{(\mathrm{x} . \mathrm{y} . \mathrm{z}): \mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}=\mathrm{z}\right\}$ can be written in spherical coordinates as

Since $x^{2}+y^{2}=\rho^{2} \sin ^{2} \varphi \cos ^{2} \theta+\rho^{2} \sin ^{2} \varphi \sin ^{2} \theta \rho^{2} \sin ^{2} \varphi$ the equation of the cone is $\rho^{2} \cos ^{2} \varphi=\rho^{2} \sin ^{2} \varphi . \quad$ or $\quad \cos ^{2} \varphi=\sin ^{2} \varphi$.

And since the equation is

$$
\varphi=\frac{\pi}{4}
$$

Thus, assuming that the density of the region is the constant k, we have
$\mu=\int_{0}^{2 \pi} \int_{0}^{\frac{\pi}{4}} \int_{0}^{\cos ^{2} \varphi} \mathrm{k} \rho^{2} \sin \varphi \mathrm{~d} \rho \mathrm{~d} \varphi \mathrm{~d} \theta$
$=\mathrm{k} \int_{0}^{2 \pi} \int_{0}^{\frac{\pi}{4}} \sin \varphi\left\{\frac{\rho^{3}}{3} \left\lvert\, \begin{array}{c}\cos \varphi \\ 0\end{array}\right.\right\} \mathrm{d} \varphi \mathrm{d} \theta=\mathrm{k} \int_{0}^{2 \pi} \int_{0}^{\frac{\pi}{4}} \frac{\cos ^{3} \varphi}{3} \sin \varphi \mathrm{~d} \varphi \mathrm{~d} \theta$
$=\mathrm{k} \int_{0}^{2 \pi}\left\{-\left.\frac{\cos ^{4} \varphi}{12}\right|_{0} ^{\frac{\pi}{4}}\right\} \mathrm{d} \theta=\frac{1}{12} \mathrm{k} \int_{0}^{2 \pi} \frac{3}{4} \mathrm{~d} \theta=\pi \mathrm{k} / 8$
Since $x=\rho \sin \varphi \cos \theta$. we have
$M_{y z}=k \int_{0}^{2 \pi} \int_{0}^{\frac{\pi}{4}} \int_{0}^{\cos \varphi}(\rho \sin \varphi \cos \varphi) \rho^{2} \sin \varphi d \rho d \varphi d \theta$
$=\mathrm{k} \int_{0}^{2 \pi} \cos \theta \mathrm{~d} \theta \int_{0}^{\pi / 4} \int_{0}^{\cos \varphi} \rho^{2} \sin ^{2} \varphi \mathrm{~d} \rho \mathrm{~d} \varphi=0$
Since $\int_{0}^{2 \pi} \cos \theta d \theta=0$
(an unsurprising result because of symmetry) Similarly, $\operatorname{since} y=\rho \sin \varphi \sin \theta$.
$M_{x z}=k \int_{0}^{2 \pi} \int_{0}^{\frac{\pi}{4}} \int_{0}^{\cos \varphi}(\rho \sin \varphi \sin \varphi) \rho^{2} \sin \varphi d \rho d \varphi d \theta=0$
(again because of symmetry) Finally, since $z=\rho \cos \varphi$.
$M_{x y}=k \int_{0}^{2 \pi} \int_{0}^{\frac{\pi}{4}} \int_{0}^{\cos \varphi}(\rho \cos \varphi) \rho^{2} \sin \varphi d \rho d \varphi d \theta$

$$
\begin{array}{r}
=\frac{\mathrm{k}}{4} \int_{0}^{2 \pi} \int_{0}^{\pi / 4} \cos ^{5} \varphi \sin \varphi \mathrm{~d} \varphi \mathrm{~d} \theta= \\
=\frac{\mathrm{k}}{4} \int_{0}^{2 \pi}\left\{\left.-\frac{\cos ^{6} \varphi}{6} \right\rvert\, \begin{array}{c}
\pi / 4 \\
0
\end{array}\right\} \mathrm{d} \theta \\
\\
\frac{1}{24} \cdot \frac{7}{8} \mathrm{k} \int_{0}^{2 \pi} \mathrm{~d} \theta=\frac{7 \pi \mathrm{k}}{96}
\end{array}
$$

PROBLEMS

Solve problems 1-11 by using cylindrical coordinates

1. Find the volume of the region inside both the sphere $x^{2}+y^{2}+z^{2}=4$ and the cylinder $(x-1)^{2}+y^{2}=1$
2. Find the centroid of the region of problem 1
3. Suppose the density of the region of problem 1 is proportional to the square of the distance to the xy-plane and is measured in kilograms per cubic meter. Find the center of mass of the region

4 .Find the volume of the solid bounded above by the paraboloidz $=4-x^{2}-y^{2}$ and below by the $x y$-plane
5. Find the center of mass of the solid of Problem 4 if the density is proportional to the distance to the $x y$ - plane
6. Find the volume of the solid bounded by the plane $z=y$ and the paraboloid $z=x^{2}+y^{2}$
7. Find the centroid of the region of Problem 6.
8. Find the volume of the solid bounded by the two cones $z^{2}=x^{2}+y^{2}$ and $z^{2}=16 x^{2}+$ $16 y^{2}$ between $z=0$ and $z=2$
9. Find the center of mass of the solid in problem 8 if the density at any point is proportional to the distance to the z - axis

