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 THE CALCULATION OF DOUBLE INTEGRALS  

In this section we derive an easy method for calculating  ∬
Ω 
 𝑓(𝑥. 𝑦) 𝑑𝑥 𝑑𝑦 . where Ω  is one 

of the regions . We begin, by considering  

∬
𝑅 

 𝑓 (𝑥. 𝑦 )𝑑𝐴                                                                                                                           (1) 

Where R is the rectangle 𝑅 = {(𝑥. 𝑦 ): 𝑎 ≤ 𝑥 ≤ 𝑏 𝑎𝑛𝑑 𝑐 ≤ 𝑦 ≤ 𝑑}                                          (2) 

If 𝑧 = 𝑓 (𝑥. 𝑦) ≥ 0  𝑓𝑜𝑟 (𝑥. 𝑦) 𝑖𝑛 𝑅 .  then the double integral in (1) is the volume under the 

surface 𝑧 = 𝑓 (𝑥. 𝑦) and over the rectangle R in the xy –plane. We now calculate this volume by 

portioning the x- axis taking ''slices'' parallel to the 𝑦𝑧- plane. This is illustrated in figure 1. We 

can approximate the volume by adding up the volumes of the various' 'slices'' The face of each 

''slice'' lies in the plane 𝑥 = 𝑥𝑖 . and the volume of the I th slice is approximately equal to the area 

of its face times its thickness ∆𝑥  What is the area of the face? If x is fixed, then 𝑧 = 𝑓 (𝑥. 𝑦) can 

be thought by this curve, lying in the plane  𝑥 = 𝑥𝑖 .  Thus the area of the ith face is the area 

bounded by this curve, the y-axis, and the lines y = c and y = d .If 𝑓(𝑥𝑖 . 𝑦 ) is a continuous 

function of y, then the area of the ith face, denoted 𝐴𝑖    is given by 

𝐴𝑖 = ∫𝑓(𝑥𝑖  . 𝑦 ) 𝑑𝑦   

𝑑

𝑐

 

 

By treating 𝑥𝑖  as a constant, we can compute 𝐴𝑖 as an ordinary definite integral, where the 

variable is y Not, too that 𝐴(𝑥) = ∫ 𝑓(𝑥 . 𝑦 ) 𝑑𝑦
𝑑

𝑐
  a function of x only and can therefore be 

integrated as in Chapter 5. Then the volume of the ith slice is approximated by 

𝑉𝑖 ≈ {∫𝑓(𝑥𝑖  . 𝑦 ) 𝑑𝑦

𝑑

𝑐

}∆𝑥  

So that, adding up these ''sub volumes'' and taking the limit as approaches zero, we obtain 

𝑉 = ∫{∫𝑓(𝑥𝑖  . 𝑦 ) 𝑑𝑦

𝑑

𝑐

}  𝑑𝑥 = ∫𝐴(𝑥) 𝑑𝑥                                                                         (3)

𝑏

𝑎

𝑏

𝑎

 

Definition 1: The expression in (3) is called a repeated integral or iterated we also have Integral. 

Since 𝑉 = ∬
𝑅
 𝑓(𝑥. 𝑦)𝑑𝐴 .  
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We obtain  

 

 

 

 

REMARK   1.  Usually we will write equation (4) without braces. We then have 

 ∬
𝑅
 𝑓(𝑥. 𝑦)𝑑𝐴 = ∫ ∫ 𝑓(𝑥𝑖 . 𝑦 ) 𝑑𝑦

𝑑

𝑐
 𝑑𝑥                                                                                   (5)   

𝑏

𝑎
 

REMARK    2. We should emphasize that the first integration in∫ ∫ 𝑓 (𝑥. 𝑦)
𝑑

𝑐

𝑏

𝑎
 𝑑𝑦 𝑑𝑥  is 

performed by treating x as a constant. 

        Similarly, if we instead begin partitioning the y- axis , we find that the area of the face of a 

''slice'' lying in the plane  𝑦 = 𝑦𝑖  is given by  

𝐴𝑖 = ∫ 𝑓(𝑥. 𝑦𝑖)𝑑𝑥 .
𝑏

𝑎
  

    Where now is an integral in the variable x. Thus as before,  

𝑉 = ∫{∫𝑓(𝑥𝑖 . 𝑦 ) 𝑑𝑥

𝑏

𝑎

}  𝑑𝑦 .                                                                                                  (6)   

𝑑

𝑐

 

And  

 

 

EXAMPLE  1   Calculate the volume under the plane 𝑧 = 𝑥 + 2𝑦   and over the rectangle  

𝑅 = {(𝑥. 𝑦): 1 ≤ 𝑥 ≤ 2 𝑎𝑛𝑑 3 ≤ 𝑦 ≤ 5} 

      Solution.  We calculated this volume in Example Using equation (5), we have  

𝑉 =∬
𝑅

 𝑓(𝑥. 2 𝑦)𝑑𝐴 = ∫[∫(𝑥. 2 𝑦)𝑑𝑦]  𝑑𝑥

5

3

2

1

  

 

∬𝑅 𝑓(𝑥. 𝑦)𝑑𝐴 = ∫{∫𝑓(𝑥𝑖 . 𝑦 ) 𝑑𝑦

𝑑

𝑐

}  𝑑𝑥                                                                            (4)   

𝑏

𝑎

 

∬𝑅 𝑓(𝑥. 𝑦)𝑑𝐴 = ∫∫𝑓(𝑥𝑖  . 𝑦 ) 𝑑𝑥

𝑏

𝑎

 𝑑𝑦                                                                                   (7)   

𝑑

𝑐
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Similarly, using equation (7), we have  

𝑉 = ∫{∫ (𝑥 + 2𝑦)𝑑𝑥}𝑑𝑦 = ∫ [(
𝑥2

2

𝑏

3

2

1

𝑏

3

+ 2𝑦𝑥)|𝑥=1
𝑥=2 ] 𝑑𝑦  

= ∫{2

𝑏

3

+ 4𝑦) − (
1

2
+ 2𝑦)}𝑑𝑦 =  ∫ (2𝑦 +

3

2

5

3

 )𝑑𝑦 

= (𝑦2 +
3

2
𝑦) |3  =19

5                                                                                  

EXAMPLE    2   Calculate the volume of the region beneath the surface 𝑧 = 𝑥𝑦2 + 𝑦3 and over 

the rectangle  𝑅 = {(𝑥. 𝑦): 0 ≤ 𝑥 ≤ 2 𝑎𝑛𝑑 1 ≤ 𝑦 ≤ 3} 

                Solution.  A computer- drawn sketch of this region is given in Figure 3. Using equation 

(5), we have      

𝑉 = ∫ ∫ (
3

1

2

0

𝑥𝑦2 + 𝑦3)𝑑𝑦𝑑𝑥 = ∫ [(
𝑥𝑦3

3

2

0

+
𝑦4

4
)|1
3]𝑑𝑥 

= ∫ [(9𝑥 +
81

4
) − (

𝑥

3
+
1

4
)] 𝑑𝑥 = ∫ (

26

3

2

0

2

0

𝑥 + 20) 𝑑𝑥  

= (
13𝑥2

3 
+ 20𝑥) |0

2 =
52

3
+ 40 =

172

3
 

You should verify that the same answer is obtained by using equation (7). 

We now extend our results to more general regions Let  

Ω = {(𝑥. 𝑦 ): 𝑎 ≤ 𝑥 ≤ 𝑏 𝑎𝑛𝑑 𝑔1(𝑥) ≤ 𝑦 ≤ 𝑔2(𝑥)}                                                                       (8)  

 This region is sketched in Figure 4. We assume that for every x in [a, b],  

𝑔1(𝑥) ≤ 𝑔2(𝑥)                                                                                                                                        (9) 

If we partition the x –axis as before, then we obtain slices lying in the planes 𝑥 = 𝑥𝑖  .  

 𝐴𝑖 = ∫ 𝑓 (𝑥𝑖 . 𝑦 )𝑑𝑦                           𝑉𝑖 = {∫ 𝑓 (𝑥𝑖. 𝑦 )𝑑𝑦}∆𝑥 .
 

𝑔2(𝑥𝑖)

𝑔1(𝑥𝑖)

𝑔2(𝑥𝑖)

𝑔1(𝑥𝑖)
 

And 
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  𝑉 = ∬
Ω 

𝑓(𝑥. 𝑦 )𝑑𝐴 = ∫∫ 𝑓 (𝑥𝑖. 𝑦 )𝑑𝑦 𝑑𝑥
      

𝑔2(𝑥𝑖)

𝑔1(𝑥𝑖)

𝑏

𝑎

                                                                     (10) 

Similarly, let 

Ω = {(𝑥. 𝑦): ℎ1(𝑦) ≤ 𝑥 ≤ ℎ2(𝑦)𝑎𝑛𝑑 𝑐 ≤ 𝑦 ≤ 𝑑} 

𝑉 = ∫ ∫ 𝑓(𝑥. 𝑦)𝑑𝑥 𝑑𝑦
ℎ2(𝑦)

ℎ1(𝑦)

𝑑

𝑐

                                                                                                         (12) 

                                   

We summarize these results in the following theorem: 

Theorem1 :Let f   be continuous over a region Ω given by equation (8) or (11) 

(𝑖)𝐼𝑓Ω 𝑖𝑠 𝑜𝑓𝑡ℎ𝑒  𝑓𝑜𝑟𝑚 (8). 𝑤ℎ𝑒𝑟𝑒 𝑔1 𝑎𝑛𝑑𝑔2 𝑎𝑟𝑒  𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 . 𝑡ℎ𝑒𝑛 

 

 

 

(𝑖𝑖)𝐼𝑓Ω 𝑖𝑠 𝑜𝑓𝑡ℎ𝑒  𝑓𝑜𝑟𝑚 (11). 𝑤ℎ𝑒𝑟𝑒 ℎ1 𝑎𝑛𝑑ℎ2 𝑎𝑟𝑒  𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 . 𝑡ℎ𝑒𝑛 

 

 

 

REMARK     1. We have not actually proved this theorem here but have merely indicated why it 

should be so A rigorous proof can be found in any advanced calculus text. 

REMARK     2. Not that this theorem says nothing about volume. It can be used to calculate any 

double integral if the hypotheses of the theorem are satisfied and if each function being 

integrated has an antiderivative that can be written in terms of elementary functions  

EXAMPLE 3   Find the volume of the solid under the surface 𝑧 = 𝑥2 + 𝑦2  and lying above the 

region  Ω = {(x. y ): 0 ≤ 𝑥 ≤ 1 𝑎𝑛𝑑 𝑥2 ≤ 𝑦 ≤ √𝑥} 

Solution is sketched in Figure 7. We see 0 ≤ 𝑥 ≤ 1 𝑎𝑛𝑑 𝑥2 ≤ 𝑦 ≤ √𝑥 that Then using (10), we 

have 

∬Ω 𝑓 (x. y ) dA =  ∫ ∫ 𝑓(𝑥. 𝑦 ) 𝑑𝑦 𝑑𝑥 
𝑔2(𝑥)

𝑔1(𝑥)

𝑏

𝑎

  

∬Ω 𝑓 (x. y ) dA =  ∫ ∫ 𝑓(𝑥. 𝑦 ) 𝑑𝑥 𝑑𝑦 
ℎ2(𝑦)

ℎ1(𝑦)

𝑑

𝑐
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𝑉 = ∫ ∫ (𝑥2 + 𝑦2 )𝑑𝑦 𝑑𝑥 =  ∫ {(𝑥2𝑦 +
𝑦3 

3
) |
𝑥2
√𝑥} 𝑑𝑥

1

0

√𝑥

𝑥2
1

0
  

= ∫ {(
1

0

𝑥2√𝑥 +
(√𝑥)

3

3
) − (𝑥2 ⋅ 𝑥2 +

(𝑥2)3

3
)}𝑑𝑥 

= ∫ (𝑥5/2 +
𝑥3/2

3
− 𝑥4 −

𝑥6

3
)𝑑𝑥 

1

0

 

= (
2𝑥

7
2

7
+
2𝑥

5
2

15
−
𝑥5

5
−
𝑥7

21
) =

2

7
+

2

15
−
1

5
−

1

21
=

18

105
                                           

We can calculate this integral in another way We note that x varies 𝑥 =  𝑦2 𝑎𝑛𝑑 𝑥 = √𝑦  

between the curves Then using (12), since 0 ≤ 𝑦 ≤ 1 𝑎𝑛𝑑 𝑦2 ≤ 𝑥 ≤ √𝑦 we have  

𝑉 = ∫ ∫
(𝑥2 + 𝑦2 )𝑑𝑥 𝑑𝑦.

 

√𝑦

𝑦2

1

0

 

Which is easily seen to be equal to 18/105  

 

EXAMPLE 4    Let  𝑓 (𝑥. 𝑦 ) = 𝑥2𝑦 Calculate the integral of  f over the region bounded by the 

x-axis and the semicircle  𝑥2 + 𝑦2 = 4. 𝑦 ≥ 0  

Solution.   The region of integration is sketched in Figure 8. Using equation (8) , we see that 0 ≤

𝑦 ≤ √4 − 𝑥2 . −2 ≤ 𝑥 ≤ 2.  so that , integrating first with respect to y , we obtain 

∬
Ω
𝑥2𝑦 𝑑𝐴 = ∫ ∫ 𝑥2𝑦 𝑑𝑦𝑑𝑥 

√4−𝑥2

0

2

−2

 

= ∫ {
𝑥2𝑦2

2
|0
√4−𝑥2} 𝑑𝑥 = ∫

𝑥2(4 − 𝑥2)

2

2

−2

2

−2

𝑑𝑥 

= ∫ (2
2

−2

𝑥2 −
𝑥4

2
)𝑑𝑥 = (

2𝑥3

3
−
𝑥5

10
)|−2
2 =

64

15
 

We can also use equation (11) and integrate first with respect to x. Then −√4 − 𝑦2  ≤ 𝑥 ≤

√4 − 𝑦2 . 0 ≤ 𝑦 ≤ 2. 𝑎𝑛𝑑    

𝑉 = ∫ ∫ 𝑥2𝑦 𝑑𝑥𝑑𝑦 = ∫ (
𝑥3𝑦

3
) |

−√4−𝑦2

√4−𝑦2
2

0

√4−𝑦2

√4−𝑦2

2

0

)dy 
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= ∫
2

3
(4 −

2

−2

𝑦2)3/2𝑦𝑑𝑦 =
−2

15
(4 − 𝑦2)

5
2|0
2 =

64

15
 

REVERSING THE ORDER OF INTEGRATION 

EXAMPLE 5    Evaluate ∫ ∫ (
𝑥

𝑦
)𝑑𝑦𝑑𝑥 

𝑥2

1

2

1
  

                   Solution 

∫ ∫ (
𝑥

𝑦
) 𝑑𝑦𝑑𝑥 

𝑥2

1

2

1

= ∫ {𝑥𝐼𝑛 𝑦 |1
𝑥2

2

1

} 𝑑𝑥 = ∫ 𝑥𝐼𝑛 𝑥2 𝑑𝑥 = ∫ 2𝑥𝐼𝑛 x 𝑑𝑥
2

1

2

1

 

It is necessary to use integration by complete the problem. Setting 𝑢 = 𝐼𝑛 𝑥 𝑎𝑛𝑑 𝑑𝑣 =

2𝑥 𝑑𝑥.  𝑤𝑒 ℎ𝑎𝑣𝑒  𝑑𝑢 = (
1

𝑥
)𝑑𝑥 . 𝑣 = 𝑥2 . 𝑎𝑛𝑑 

∫ 2𝑥 𝐼𝑛 𝑥 𝑑𝑥 = 𝑥2 𝐼𝑛 𝑥 |1
2 −∫ 𝑥 𝑑𝑥 = 4 𝐼𝑛 2 − 

𝑥2

2

2

1

 
2

1

 |1
2 = 4 𝐼𝑛 2 −

3

2
  

 

There is an easier way to calculate the double integral. We simply reverse the order of 

integration of integration is Figure 9. If we want to integrate first with respect to x, we note that 

we can describe the region by  

Ω = {( 𝑥. 𝑦 ):√𝑦 ≤ 𝑥 ≤ 2 𝑎𝑛𝑑 1 ≤ 𝑦 ≤ 4},Then  

∫ ∫ 𝑑𝑦𝑑𝑥 = ∬
𝑥

𝑦
Ω

𝑑𝐴 = ∫ ∫
𝑥

𝑦
𝑑𝑥𝑑𝑦 = ∫ {

𝑥2

2𝑦

4

1

2

√𝑦

4

1

𝑥2

1

2

1

|
√𝑦
2 }𝑑𝑦 

   

= ∫ (
2

𝑦
−
1

2
)𝑑𝑦 = (2𝐼𝑛𝑦 −

𝑦

2
) |1
4 = 2𝐼𝑛4 −

3

2

4

1

  

= 4𝐼𝑛 −
3

2
  

REMARK. Why is it legitimate to reverse the order of integration? There is a theorem † that 

asserts the following:  Suppose that the  region Ω  can be written as  

Ω = {(𝑥. 𝑦 ): 𝑎 ≤ 𝑥 ≤ 𝑏. 𝑔1(𝑥) ≤ 𝑦 ≤ 𝑔2(𝑥)} = {(𝑥. 𝑦 ): 𝑐 ≤ 𝑦 ≤ 𝑑. ℎ1(𝑦) ≤ 𝑥 ≤ ℎ2(𝑦)} 
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Then if f is continuous on Ω .  

∬
Ω
 𝑓 (𝑥. 𝑦 )𝑑𝐴 =  ∫ ∫ 𝑓 (𝑥. 𝑦 )𝑑𝑦 𝑑𝑥 = ∫ ∫ 𝑓(𝑥. 𝑦 )𝑑𝑥 

ℎ2(𝑦)

ℎ1(𝑦)

𝑑

𝑐

𝑔2(𝑥)

𝑔1(𝑥)

𝑏

𝑎
     

EXAMPLE 6 : Compute  ∫ ∫ 𝑒𝑥
2
𝑑𝑥𝑑𝑦 

2

𝑦

2

0
 

Solution.  We first observe that the double integral cannot be evaluated directly since it is 

impossible to find an antiderivative for𝑒𝑥
2
    Instead, we reverse the order of integration Form 

Figure 10 we see that Ω  can be written as 0 ≤ 𝑦 ≤ 𝑥. 0 ≤ 𝑥 ≤ 2. 𝑠𝑜 

∫ ∫ 𝑒𝑥
2
𝑑𝑥𝑑𝑦 = ∬

Ω
𝑒𝑥

2
 𝑑𝐴

2

𝑦

2

0

= ∫ ∫ 𝑒𝑥
2
𝑑𝑦𝑑𝑥 = ∫ (𝑦𝑒𝑥

2
|𝑦=0
𝑦=𝑥
)𝑑𝑥 = ∫

𝑥𝑒𝑥
2
𝑑𝑥

=
1

2
𝑒𝑥

2
|0
2 =

1

2
(𝑒4 − 1)

2

0

2

0

𝑥

0

2

0

 

 

EXAMPLE 7 : Revers the order of in the iterated  integral ∫ ∫ 𝑓(𝑥. 𝑦 )𝑑𝑥𝑑𝑦 
2

√𝑦

1

0
   

Solution.. This region is divided into  two sub regions Ω1 𝑎𝑛𝑑 Ω2  What  happens  if we  

integrate first  with  respect we see to  y ?𝐼𝑛 Ω1 .  0 ≤ 𝑦 ≤ 𝑥
2.  𝐼𝑛 Ω2 . 0 ≤ 𝑦 ≤ 1. 𝑇ℎ𝑢𝑠 

∫ ∫ 𝑓(𝑥. 𝑦 )𝑑𝑥𝑑𝑦 =∬
Ω

𝑓(𝑥. 𝑦 )𝑑𝐴 =∬
Ω1

𝑓(𝑥. 𝑦 )𝑑𝐴 +∬
Ω2

𝑓(𝑥. 𝑦 )𝑑𝐴
2

√𝑦

1

0

 

= ∫ ∫ 𝑓(𝑥. 𝑦)𝑑𝑦𝑑𝑥 + ∫ ∫ 𝑓(𝑥. 𝑦)𝑑𝑦 𝑑𝑥 
1

0

2

1

𝑥2

0

2

1

 

EXAMPLE 8 : Find the volume in the first octant bounded by the three coordinate planes and the 

surface 𝑧 = 1/(1 + 𝑥 + 3𝑦)3 

Solution. The solid here extends the infinite region {(𝑥. 𝑦 ): 0 ≤ 𝑥 ≤∝   𝑎𝑛𝑑  0 ≤ 𝑦 ≤∝ }𝑇ℎ𝑢𝑠 

𝑉 = ∫ ∫
1

(1 + 3𝑦)3
𝑑𝑥𝑑𝑦 = ∫ lim

𝑁→∝
(−

1

2(1 + 𝑥 + 3𝑦)2
|0
𝑁) 𝑑𝑦

∝

0

∝

0

∝

0

 

= ∫
1

2(1 + 3𝑦)2
𝑑𝑦 =

∝

0

lim
𝑁→∝

(−
1

6(1 + 3𝑦)
|0
𝑁) =

1

6
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Not that improper double integrals   can be treated in the same way that we treat improper ''single 

'' integrals  

EXAMPLE 9:Find the volume of the solid bounded by the three coordinate plane 2𝑥 + 𝑦 + 𝑧 = 2 

Solution.  We have z = 2- 2x – y and this expression must be integrated over the region in the xy-

plane bounded by the line 2x+ y = 2 (obtained when z = 0) and the x- and y – axes.  

𝑉 = ∫ ∫ (2 − 2𝑥 − 𝑦)𝑑𝑦𝑑𝑥 = ∫ {(2𝑦 − 2𝑥𝑦 −
𝑦2

2
) |0
2−2𝑥}𝑑𝑥

1

0

2−2𝑥

0

1

0
  

  = ∫ {2(2 − 2𝑥) − 2𝑥 (2 − 2𝑥) −
(2−2𝑥)2

2
} 𝑑𝑥

1

0
      

  = ∫ (2𝑥2 − 4𝑥 + 2)𝑑𝑥 = ( 
2𝑥3

3
− 2𝑥2 − 2𝑥) |0

1 =
2

3

1

0
 

EXAMPLE 10:  Find the volume of the solid bounded by the circular paraboloid  𝑥 = 𝑦2 + 𝑥2 

and the plane 𝑥 = 1 

Solution.  There are many ways to obtain its volume. Perhaps the best way to do so is to get 

another perspective on the picture. In Figure 14 we redraw Figure 13 with x as the vertical axis. 

The volume of the indicated element is (1 − 𝑥) ∆𝑦 ∆𝑧.  𝑤ℎ𝑒𝑟𝑒 𝑥 = 𝑦2 + 𝑧2  We can take 

advantage  of symmetry to write  

𝑉 = 4∫ ∫ (1 − 𝑥)𝑑𝑦𝑑𝑥 = 4∫ ∫ (1 − 𝑦2 − 𝑧2)𝑑𝑦𝑑𝑧
√1−𝑧2

0

1

0

√1−𝑧2

0

1

0

 

= 4∫ (𝑦 −
𝑦3

3
− 𝑦𝑧2)

1

0

  |𝑦=0
√1−𝑧2𝑑𝑧   

    = 4∫ {(1 −)1/2 −
(1−𝑧2)1/2

3
− 𝑧2(1 − 𝑧2)1/2}𝑑𝑧

1

0
                                                                         

We can integrate this by making  the substitution 𝑧 = sin 𝜃 𝑇ℎ𝑒𝑛  

𝑉 = 4∫ ( cos 𝜃 −
𝑐𝑜𝑠3𝜃

3

𝜋
2

0

− 𝑠𝑖𝑛2𝜃 cos 𝜃) cos 𝜃 𝑑𝜃 

= 4∫ [𝑐𝑜𝑠𝜃

𝜋
2

0

(1 − 𝑠𝑖𝑛2𝜃)⏟        
=𝑐𝑜𝑠2𝜃

−
𝑐𝑜𝑠3𝜃

3
] cos 𝜃 𝑑𝜃 

=
8

3
∫ 𝑐𝑜𝑠4𝜃𝑑𝜃 =

2

3
∫ (1 + 𝑐𝑜𝑠2

𝜋
2

0

𝜋
2

0

𝜃)2 𝑑𝜃 
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=
2

3
∫ (1 + 2 cos 2 𝜃 + 𝑐𝑜𝑠2 2𝜃)𝑑𝜃

𝜋
2

0

 

=
2

3
∫ (1 + 2 cos 2 𝜃 +

1

2
+
1

2
cos 4𝜃)𝑑𝜃

𝜋
2

0

=
2

3
∙
3

2
∙
𝜋

2
=
𝜋

2
 

PROBLEMS :   In problems 1-23 evaluate the given double integral. 

1 ∙  ∫ ∫ 𝑥𝑦2𝑑𝑥𝑑𝑦
2

0

1

0

                                            2 ∙   ∫ ∫ (𝑥2 − 𝑦3)𝑑𝑦𝑑𝑥
4

2

3

−1

 

3 ∙  ∫ ∫ 𝑒(𝑥−𝑦)𝑑𝑥𝑑𝑦
4

0

3

2

                                        4 ∙  ∫ ∫ 𝑥3𝑦 𝑑𝑦𝑑𝑥
𝑥

𝑥2

1

0

   

  5 ∙  ∫ ∫ 𝑥 − 𝑦2𝑑𝑥𝑑𝑦                             6 ∙ ∫ ∫ (𝑥 + 2𝑦)𝑑𝑦 𝑑𝑥 
𝑐𝑜𝑠𝑥

𝑠𝑖𝑛𝑥

𝜋
3

𝜋
4

       
2+3𝑦

1+𝑦

4

2

 

7 ∙  ∫ ∫ 𝑥𝑦2𝑑𝑥𝑑𝑦                                       8 ∙ ∫ ∫
1

𝑥

3𝑦5

𝑦5
2

1
 𝑑𝑥𝑑𝑦           

  

√9−𝑦2

√9−𝑦2
3

0
   

9 ∙  ∬
Ω
(𝑥2 + 𝑦2)𝑑𝐴.𝑤ℎ𝑒𝑟𝑒 Ω = {(x. y ): 1 ≤ x ≤ 2 and − 1 ≤ 𝑦 ≤ 1} 

10 ∙   ∬
Ω
2𝑥𝑦𝑑𝐴.  𝑤ℎ𝑒𝑟𝑒 Ω =  {(𝑥. 𝑦 ): 0 ≤ 𝑥 ≤ 4 𝑎𝑛𝑑  1 ≤ 𝑦 ≤ 3} 

11 ∙∬
Ω

(x − y )2 dA.where Ω =  {(𝑥. 𝑦 ):−2 ≤ 𝑥 ≤ 2 𝑎𝑛𝑑  0 ≤ 𝑦 ≤ 1} 

12 ⋅∬
Ω

sin(2𝑥 + 3𝑦 )𝑑𝐴 . 𝑤ℎ𝑒𝑟𝑒  Ω =  {(𝑥. 𝑦 ): 0 ≤ 𝑥 ≤ 𝜋/6 𝑎𝑛𝑑  0 ≤ 𝑦 ≤ 𝜋/18} 

13 ∙∬
Ω

 𝑥𝑒(𝑥
2+𝑦)  𝑑𝐴 . 𝑤ℎ𝑒𝑟𝑒 Ω  is the region of Problem 10 ∙ 

14 ∙∬
Ω

(𝑥 − 𝑦2)dA . where Ω  is the region in the first  quadrant bounded   by  the  x

− axis . the  y − axis . and the  unit circle  

15 ∙   ∬
Ω
(𝑥2 + 𝑦)𝑑𝐴.𝑤ℎ𝑒𝑟𝑒 Ω is the region of Problem 14  

16 ∙   ∬
Ω
(𝑥3 + 𝑦3)𝑑𝐴. 𝑤ℎ𝑒𝑟𝑒 Ω is the region of Problem 14  
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17 ∙∬
Ω

(𝑥 − 2𝑦)dA . where Ω  is the triangular  region in  bounded   by  the lines  y

= x. y = 1 −  x  and the   𝑦 −  axis 

18 ∙∬
Ω

 𝑥𝑒(𝑥+2𝑦)  𝑑𝐴 . 𝑤ℎ𝑒𝑟𝑒 Ω  is the region of Problem 17 ∙ 

19 ∙∬
Ω

(𝑥2 + 𝑦)dA . where Ω  is the region in the first  quadrant between the  

         parabolas y = 𝑥2 𝑎𝑛𝑑  𝑦 = 1 − 𝑥2 

20 ∙∬
Ω

(
1

√𝑦
)𝑑𝐴.𝑤ℎ𝑒𝑟𝑒 Ω  is the region of Problem 19 ∙ 

 21 ∙∬
Ω

(
y

√𝑥2 + 𝑦2
)𝑑𝐴 . 𝑤ℎ𝑒𝑟𝑒 Ω = {(x. y ): 1 ≤ x ≤ y and − 1 ≤ 𝑦 ≤ 2}  

22 ∙  ∬
Ω

[𝑒−𝑦/(1 + 𝑥2)] dA . where Ω  is the first  quadrant  

23 ∙  ∬
Ω

(x +  𝑦)𝑒−(𝑥+𝑦) dA . where Ω  is the first  quadrant 

In problems 24-33, (a) sketch the region over which the integral is taken. Then (b) change the 

order of integration, and (c) evaluate the given integral. 

24 ∙ ∫ ∫ 𝑑𝑥𝑑𝑦                                                                      25 ∙ ∫ ∫ (𝑥 + 𝑦 )𝑑𝑦𝑑𝑥             
8

−5

4

0
   

3

−1

2

0
  

 26 ∙ ∫ ∫
𝑦3

𝑥3
𝑑𝑥𝑑𝑦                                                                27 ∙ ∫ ∫ 𝑑𝑦𝑑𝑥             

𝑥

0

1

0
   

3

−1

2

0
 

28 ∙ ∫ ∫ 𝑑𝑦𝑑𝑥                                                                      29 ∙ ∫ ∫ 𝑦 𝑑𝑥𝑑𝑦             
𝑐𝑜𝑠𝑦

0

𝜋/2

0

         
1

𝑥

1

0

 

30 ∙ ∫ ∫ (4 − 𝑥2)3/2𝑑𝑥𝑑𝑦                                      31 ∙ ∫ ∫ (1 + 𝑦6)𝑑𝑦𝑑𝑥     
√𝑥
3

√𝑥

1

0

    
√4−𝑦2

0

2

0

  

32 ∙ ∫ ∫ √3 + 𝑥3𝑑𝑥𝑑𝑦                                                    33 ∙ ∫ ∫
1

(1 + 𝑦2)7/5
𝑑𝑦𝑑𝑥     

∞

𝑥

∞

0

      
1

√𝑦

1

0
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34 ∙ 𝑆ℎ𝑜𝑤 𝑡ℎ𝑎𝑡  𝑖𝑓 𝑏𝑜𝑡ℎ  𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙𝑠 𝑒𝑥𝑖𝑠𝑡.  𝑡ℎ𝑒𝑛 

 ∫ ∫ 𝑓(𝑥 + 𝑦 )𝑑𝑦𝑑𝑥  =   ∫ ∫ 𝑓(𝑥 + 𝑦 )𝑑𝑥𝑑𝑦             
∞

𝑦

𝑥

0

        
𝑥

−5

𝑥

0

 

In problems 35 -44, find the volume of the given solid  

35. The solid bounded by the plane 𝑥 + 𝑦 + 𝑧 = 3 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑡ℎ𝑟𝑒𝑒 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 𝑝𝑙𝑎𝑛𝑒𝑠    

36. The solid bounded by the planes 𝑥 = 0. 𝑧 = 0.  𝑥 + 2𝑦 + 𝑧 = 6. 𝑎𝑛𝑑 − 2𝑦 + 𝑧 = 6 

 37 ∙ The solid bounded by the cylinders 𝑥2 + 𝑦2 = 4 𝑎𝑛𝑑 𝑦2 + 𝑧2 = 4 

38 ∙ The solid bounded by the cylinder 𝑥2 + 𝑧2 = 1 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑝𝑙𝑎𝑛𝑒𝑠 𝑦 = 0 𝑎𝑛𝑑 𝑦 = 2 

39 ∙ Tℎ𝑒 𝑒𝑙𝑙𝑖𝑝𝑠𝑜𝑖𝑑  𝑥2 + 4𝑦2 + 9𝑧2 = 36    

40 ∙ The solid bounded above by  the sphere 𝑥2 + 𝑦2 + 𝑧2 = 9 𝑎𝑛𝑑 𝑏𝑒𝑙𝑜𝑤 𝑏𝑦 𝑡ℎ𝑒 𝑝𝑙𝑎𝑛  𝑧

= √5  

41 ∙  The solid bounded by the planes  y = 0 . y = x.  and the cylinder x + 𝑧2 = 2 

42 ∙ The solid bounded by the parabolic  cylinder 𝑥 = 𝑧2𝑎𝑛𝑑 𝑝𝑙𝑎𝑛𝑒𝑠 𝑦 = 1. 𝑦 = 5. 𝑧

= 1. 𝑎𝑛𝑑 𝑥 = 0  

43 ∙ The solid bounded by the parabolid  y =  𝑥2 + 𝑧2 𝑎𝑛𝑑 𝑡ℎ𝑒  𝑝𝑙𝑎𝑛 𝑥 + 𝑦 = 3 

44 ∙  The solid bounded by the surface z = 𝑒−(𝑥+𝑦)𝑎𝑛𝑑 𝑡ℎ𝑒 𝑡ℎ𝑟𝑒𝑒 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 𝑝𝑙𝑎𝑛𝑒 

45 ∙ 𝑈𝑠𝑒 𝑎 𝑑𝑜𝑢𝑏𝑙𝑒 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙 𝑡𝑜 𝑓𝑖𝑛𝑑 𝑡ℎ𝑒 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑒𝑎𝑐ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑒𝑔𝑖𝑜𝑛𝑠 𝑏𝑜𝑢𝑛𝑑𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑥

− 𝑎𝑥𝑖𝑠 𝑎𝑛𝑑 𝑡ℎ𝑒  𝑐𝑢𝑟𝑣𝑒𝑠 𝑦 =  𝑥3 + 1 𝑎𝑛𝑑 𝑦 = 3 −  𝑥2 

46  𝑈𝑠𝑒 𝑎 𝑑𝑜𝑢𝑏𝑙𝑒 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙 𝑡𝑜 𝑓𝑖𝑛𝑑 𝑡ℎ𝑒 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑒𝑎𝑐ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑒𝑔𝑖𝑜𝑛𝑠 𝑏𝑜𝑢𝑛𝑑𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒  𝑐𝑢𝑟𝑣𝑒𝑠 𝑦  

=  𝑥
1
𝑚 𝑎𝑛𝑑 𝑦 =  𝑥

1
𝑛. 𝑤ℎ𝑒𝑟𝑒 𝑚 𝑎𝑛𝑑 𝑛  𝑎𝑟𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑎𝑛𝑑  𝑛 > 𝑚              

47. Le𝑓(𝑥. 𝑦) = 𝑔(𝑥)ℎ(𝑦). t where𝑔 𝑎𝑛𝑑 ℎ  are continuous Let Ω be the rectangle {(𝑥. 𝑦): 𝑎 ≤

𝑥 ≤ 𝑏 𝑎𝑛𝑑 𝑐 ≤ 𝑦 ≤ 𝑑} 𝑆ℎ𝑜𝑤 𝑡ℎ𝑎𝑡   

∬
Ω

𝑓(𝑥. 𝑦)𝑑𝐴 =  {∫ 𝑔(𝑥)𝑑𝑥}  ⋅  {∫ ℎ(𝑦)𝑑𝑦} 
𝑑

𝑐

𝑏

𝑎

 

48. Sketch the solid whose volume is given by 𝑉 = ∫ ∫ (𝑥 + 3𝑦)𝑑𝑥𝑑𝑦 
2

0

3

1
 

49. Sketch the solid whose volume is given by  𝑉 = ∫ ∫ √ 𝑥2 + 𝑦2𝑑𝑥𝑑𝑦
√𝑥

 𝑥2
1

0
   


