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         THE DOUBLE INTEGRL 

we began by calculating the area under a curve y = f (x) (and above the x – axis) for x in the 

interval [a, b]. We initially assumed that, on [a, b], f ≥ 0. We carry out a similar development by 

obtaining an expression which represents a volume in 𝑅3  

We being by considering an especially simple case. Let R denote the rectangle in𝑅2 given by  

𝑅 =  {(𝑥 . 𝑦 )}: 𝑎 ≤ 𝑥 ≤ 𝑏  𝑎𝑛𝑑 𝑐 ≤ 𝑦 ≤ 𝑑 }                                                                            (1) 

This rectangle is sketched in Figure 1. Let z = f (x, y) be a continuous function that is 

nonnegative over R.  That is, f (x, y) ≥ 0.  for every (x, y) in R. We now ask: What is the volume 

''under '' the surface z = f (x, y) and ''over '' the rectangle R?  

Step 1. Form a regular partition (i.e., all subintervals have the same length) of the intervals [a, b]. 

and   [c, d]: 

𝑎 = 𝑥0 < 𝑥1 < 𝑥2 < ⋯ < 𝑥𝑛−1 < 𝑥𝑛 = 𝑏 .                                                                           (2) 

    

𝑎 = 𝑦0 < 𝑦1 < 𝑦2 < ⋯ < 𝑦𝑚−1 < 𝑦𝑚 = 𝑑 .                                                                            (3) 

We then define 

∆𝑥 = 𝑥𝑖 − 𝑥𝑖−1 =
𝑏 − 𝑎

𝑛
                                                                                                                  (4) 

∆𝑦 = 𝑦𝑖 − 𝑦𝑖−1 =
𝑏 − 𝑎

𝑛
.                                                                                                                  (5) 

And define the sub rectangles 𝑅𝑖𝑗   by 

𝑅𝑖𝑗 = {(𝑥. 𝑦 ): 𝑥𝑖−1 ≤ 𝑥 ≤ 𝑥𝑖   𝑎𝑛𝑑 𝑦𝑖−1 ≤ 𝑦 ≤   𝑦𝑖}                                                                   (6) 

For i = 1, 2, …., n and j =1, 2…, m. This is sketched in Figure 3. Note that there are nm sub 

rectangles 𝑅𝑖𝑗  covering the rectangle  R. 

Step 2.  Estimate the volume under the surface and over each sub rectangle.  

          Let (𝑥𝑖∗  . 𝑦𝑗∗)   be  a point in 𝑅𝑖𝑗    Then the volume 𝑉𝑖𝑗    under the surface and over𝑅𝑖𝑗    is 

approximated by 

𝑉𝑖𝑗 ≈ 𝑓(𝑥𝑖∗  . 𝑦𝑗∗)∆𝑥∆𝑦 = 𝑓(𝑥𝑖∗  . 𝑦𝑗∗)∆𝐴.                                                                                       (7) 

Where ∆𝐴 = ∆𝑥∆𝑦 is the area of 𝑅𝑖𝑗  The expression on the right –hand side of (7) is simply the 

volume of the parallelepiped (three-dimensional box) with base 𝑅𝑖𝑗 and height (𝑥𝑖∗  . 𝑦𝑗∗)    This 
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volume corresponds to the approximate area 𝐴𝑖  ≈ 𝑓(𝑥𝑖∗)∆𝑥𝑖 the expression 𝑓(𝑥𝑖∗  . 𝑦𝑗∗)∆𝐴  will 

not in general be equal to the volume under the surface S. But if are small the approximation will 

be a good one The difference between the actual 𝑉𝑖𝑗 and the approximate volume given in (7). 

 Step 3.   Add up the approximate volumes to obtain an approximation to the total volume   

The total volume is 

𝑉 = 𝑉]] + 𝑉12 + ⋯ + 𝑉1𝑚 + 𝑉21 + 𝑉22 + ⋯ + 𝑉2𝑚 

+ ⋯ + 𝑉𝑛1 + 𝑉𝑛2 + ⋯ + 𝑉𝑛𝑚                                                                                        (8) 

To simplify notation, we use the summation sign introduced in Section 5. 3. Sine we are 

summing over two variables I and j, we need two such: 

𝑉 = ∑ ∑ 𝑉𝑖𝑗

𝑚

𝑗=1

𝑛

𝑖=1

                                                                                                                                  (9) 

The expression in (9) is called a double sum. If we  the expression  

 In (9), we obtain the expression in (8). Then combining (7) and (9), we have  

𝑉 ≈ ∑ ∑  𝑓(𝑥𝑖∗  . 𝑦𝑗∗)∆𝐴

𝑚

𝑗=1

𝑛

𝑖=1

                                                                                                              (10) 

Step 4. Take a limit as both ∆𝑥 𝑎𝑛𝑑 ∆𝑦  approach zero. 

To indicate that this is happening, we define 

∆𝑠 = √(∆𝑥)2 + (∆𝑦)2 

Geometrically, ∆𝑠 is the length of a diagonal of the rectangle  𝑅𝑖𝑗  whose sides have 

lengths∆𝑥 𝑎𝑛𝑑∆𝑦  ,∆𝑠∆𝑠 → 0 . the number of sub rectangles𝑅𝑖𝑗 increase without bound and the 

area of each𝑅𝑖𝑗 approaches zero. 

 

This writing out is done by summing over j first and then over i. For example,  

∑ ∑ 𝑎𝑖𝑗

4

𝑗=1

3

𝑖=1

= ∑(𝑎𝑖1

3

𝑖=1

+ 𝑎𝑖2 + 𝑎𝑖3 + 𝑎𝑖4) 

= 𝑎11 + 𝑎12 + 𝑎13 + 𝑎14 + 𝑎21 + 𝑎22 + 𝑎23 + 𝑎24 + 𝑎31 + 𝑎32 + 𝑎33 + 𝑎34 
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''true'' volume over   the approximation (10) gets better and better as ∆𝑠 → 0 which enables us to 

write  

 

 

 

EXAMPLE  1  Calculate volume under the plane  and over the rectangle 𝑅 = {(𝑥. 𝑦): 1 ≤ 𝑥 ≤

2 𝑎𝑛𝑑  3 ≤ 𝑦 ≤ 5} 

Solution.  Step 1  

For simplicity, we partition each of the intervals [1, 2]and [3, 5] into n subintervals of equal 

length (i.e.  =n): 

1 = 𝑥0 < 𝑥1 < ⋯ < 𝑥𝑛 = 2 

3 = 𝑦0 < 𝑦1 < ⋯ < 𝑦𝑛 = 5.  

Where 

𝑥𝑖 = 1 +
𝑖

𝑛
 .  ∆𝑥 =

1

𝑛
 

And  

𝑦𝑖 = 3 +
2𝑖

𝑛
 .  ∆𝑦 =

2

𝑛
  

Step 2  

Then choosing𝑥𝑖∗ = 𝑥𝑖   𝑎𝑛𝑑 𝑦𝑗∗ = 𝑦𝑖 . we obtain  

𝑉𝑖𝑗 ≈ 𝑓(𝑥𝑖∗  . 𝑦𝑗∗)∆𝐴 = (𝑥𝑖 + 2𝑦𝑖)∆𝑥∆𝑦  

= [(1 +
𝑖

𝑛
) + 2 (3 +

2𝑖

𝑛
)] 

1

𝑛
 ∙

2

𝑛
  

= (7 +
𝑖

𝑛
+

4𝑗

𝑛
)

2

𝑛2
 

Step 3 

𝑉 = lim
∆𝑠→0 

∑ ∑  𝑓(𝑥𝑖∗  . 𝑦𝑗∗)∆𝐴

𝑚

𝑗=1

𝑛

𝑖=1

                                                                                                              (11) 
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𝑉𝑖𝑗 = ∑ ∑ 𝑉 ≈ ∑ ∑  

𝑛

𝑗=1

𝑛

𝑖=1

𝑛

𝑗=1

𝑛

𝑖=1

(
14

𝑛2
+

2𝑖

𝑛3
+

8𝑗

𝑛3
) 

= ∑ ∑  
14

𝑛2

𝑛

𝑗=1

𝑛

𝑖=1

+ ∑ ∑  

𝑛

𝑗=1

2𝑖

𝑛3

𝑛

𝑖=1

+ ∑ ∑  
8𝑗

𝑛3

𝑛

𝑗=1

𝑛

𝑖=1

 

    (1)                      (2)                    (3)   

It is not difficult to evaluate each of these double sums. There are 𝑛2  terms in each sum. Since 
14

𝑛2  

does not depend on I or  j, we evaluate the sum(1) by simply adding up the term
14

𝑛2  a total of 𝑛2  

times Thus 

∑ ∑  

𝑛

𝑗=1

𝑛2(

𝑛

𝑖=1

14

𝑛2
) = 14 

Next, if we set  𝑖 = 1 𝑖𝑛 (3), then we have ∑
8𝑗

𝑛3
𝑛
𝑖=1   Similarly, setting 𝑖 = 2. 3. 4 … . 𝑛 in (3) 

yields∑
8𝑗

𝑛3
𝑛
𝑖=1   Thus in (3) we obtain the term∑

8𝑗

𝑛3
𝑛
𝑖=1  times. But 

∑  
8𝑗

𝑛3

𝑛

𝑗=1

=
8

𝑛3
∑  𝑗

𝑛

𝑗=1

=
8

𝑛3
(1 + 2 + ⋯ + 𝑛) 

Equation 5.4. 14 

↘=
8

𝑛3
[
𝑛(𝑛 + 1)

2
] 

=
4(𝑛 + 1)

𝑛2
 

Thus 

∑ ∑  
8𝑗

𝑛3

𝑛

𝑗=1

𝑛

𝑖=1

= 𝑛 {∑  
8𝑗

𝑛3

𝑛

𝑗=1

} = 𝑛 [
4(𝑛 + 1)

𝑛2
] =

4(𝑛 + 1)

𝑛
 

To calculate (2), we use the same argument as in (3): 

∑  
2𝑖

𝑛3

𝑛

𝑗=1

= 𝑛 (
2𝑖

𝑛3
) =

2𝑖

𝑛2′ 
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So that 

∑ ∑  
2𝑖

𝑛3

𝑛

𝑗=1

𝑛

𝑖=1

= ∑  
2𝑖

𝑛2
=

2

𝑛2

𝑛

𝑖=1

∑ 𝑖

𝑛

𝑖=1

=
2

𝑛2
 [

𝑛(𝑛 + 1)

2
] =

𝑛 + 1

𝑛
 

Finally, we have  

∑ ∑  𝑉𝑖𝑗

𝑛

𝑗=1

𝑛

𝑖=1

 ≈ 14 +
4(𝑛 + 1)

𝑛
+

𝑛 + 1

𝑛
 

Step 4 

Now as  ∆𝑠 → 0 .  both and approach 0. 𝑠𝑜 𝑛 = (𝑏 − 𝑎)/∆𝑥 → ∞Thus 

𝑉 = lim
∆𝑠→0

∑ ∑  𝑓(𝑥𝑖∗  . 𝑦𝑗∗)∆𝐴

𝑛

𝑗=1

𝑛

𝑖=1

= lim
𝑛→∞

∑ ∑  𝑓(𝑥𝑖∗  . 𝑦𝑗∗)∆𝐴

𝑛

𝑗=1

𝑛

𝑖=1

 

= lim
𝑛→∞

[14 + 4 (
𝑛 + 1

𝑛
) +

𝑛 + 1

𝑛
] = 14 + 4 + 1 = 19  

 

 

Definition   1 THE DOUBLE INTEGRAL Let 𝑧 = 𝑓(𝑥.  𝑦) and let the rectangle R be given by 

(1). Let ∆𝐴 = ∆𝑥∆𝑦  Suppose that  

lim
∆𝑠→0

∑ ∑  𝑓(𝑥𝑖∗  . 𝑦𝑗∗)∆𝐴

𝑚

𝑗=1

𝑛

𝑖=1

 

exists and is independent of the way in which the points (𝑥𝑖∗  . 𝑦𝑗∗) are chosen. Then the double 

integral of  f over R, written  ∬
𝑅

 𝑓(𝑥. 𝑦)𝑑𝐴. is defined by  

 

 

  

  If the limit in (12) exists, then the function f is said to be integrable over R.  

We observe that this definition says nothing about volumes ,For example, if f (x, y)  

∬𝑅 = 𝑓(𝑥. 𝑦)𝑑𝐴 = lim
∆𝑠→0

∑ ∑  𝑓(𝑥𝑖∗  . 𝑦𝑗∗)∆𝐴

𝑚

𝑗=1

𝑛

𝑖=1

                                                                            (12) 
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Takes on negative values in R, then the limit in (12) will not represent the volume under the 

surface However, the limit in (12) may still exist, and in that case 𝑓 will be integrable over R .   

NOTE.   ∬
𝑅

𝑓(𝑥. 𝑦)𝑑𝐴  Is a number, not a function This is analogous to the fact that the definite 

integral  ∫ 𝑓(𝑥)
𝑏

𝑎
𝑑𝑥 is a number. We will not encounter indefinite double integrals in this book  

       

Theorem 1 :Existence of the Double Integral Over a Rectangle If 𝑓 is continuous on R, then 𝑓 is 

intergrable  over R .  

       We now turn to the question of defining double integrals over regions in ℝ2 that are not 

rectangular. We will denote a region in  ℝ2  by Ω. In 𝑔1 . 𝑔2 . ℎ1  and ℎ2 denote continuous 

functions Amore general region Ω  We assume that the region is bounded.This means that there 

is a number M such that for ever(𝑥.  𝑦)𝑖𝑛 Ω . |(𝑥. 𝑦 )| = √𝑥2 + 𝑦2 ≤ 𝑀  Since  Ω  is bounded, 

we can draw a rectangle R around it Let be defined over  Ω  We then define a new function F by 

𝐹(𝑥. 𝑦) = {
𝑓(𝑥. 𝑦 ).

0.                 
          𝑓𝑜𝑟(𝑥. 𝑦 )𝑖𝑛 𝛺                                                                              (13)  

            𝑓𝑜𝑟 (𝑥. 𝑦)𝑖𝑛 𝑅  𝑏𝑢𝑡 𝑛𝑜𝑡 𝑖𝑛 Ω                                   

Definition 2 : INTEGRABILITY OVER A REGION    Let   f be defined for (x, y) in and let F be 

defined by (13) Then we write  

 

 If the integral on the right exists. In this case we say that f is integrable over Ω 

REMARK. If we divide R into nm sub rectangles, then we can see what is happening. for each 

sub rectangle  𝑅𝑖𝑗 that lies entirely  Ω. 𝑓 = 𝑓.   So the volume of the ''parallelepiped '' a above𝑅𝑖𝑗   

is given by 

 𝑉𝑖𝑗 ≈  𝑓(𝑥𝑖∗  . 𝑦𝑗∗)∆𝑥∆𝑦 = 𝐹(𝑥𝑖∗  . 𝑦𝑗∗)∆𝑥∆𝑦 

However, if 𝑅𝑖𝑗  is in R but not in Ω  then  𝐹 = 0 .   so  

  𝑉𝑖𝑗 ≈ 𝐹(𝑥𝑖∗  . 𝑦𝑗∗)∆𝑥∆𝑦 = 0 

 

Finally, if 𝑅𝑖𝑗     is partly in Ω  and outside of Ω .  then there is no real problem since, as ∆𝑠 →

0 . the sum of the volumes above these rectangles (along the boundary of Ω will approach zero --

-un less the boundary Ω  of is very complicated indeed. Thus we see that the limit of the sum of 

∬
Ω  𝑓(𝑥 . 𝑦 ) = ∬R 𝑓(𝑥 . 𝑦 )  𝑑𝐴                                                                                               (14)  
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the volumes of the ''parallepliceds'' above R is the same as the volumes of the ''parallepliceds'' 

above Ω This should  help explain the ''reasonableness'' of expression (14)   

Theorem 2 Existence of the Double Integral Over a More General Region    Let Ω  be one of the 

regions depicted in Figure 7 where the functions𝑔1𝑎𝑛𝑑𝑔2 𝑜𝑟 ℎ1 𝑎𝑛𝑑  ℎ2 are continuous. Let F be 

defined by (13). If f is continuous over Ω.   then f is integrable over Ω and its integral is given by 

(14). 

REMARK 1.  There are some regions Ω  that are so complicated that there are functions 

continuous but not integrable over Ω  We will not concern ourselves with such regions in this 

book. 

 REMARK 2. If f is nonnegative and integrable over Ω .  then 

   ∬
Ω 

 𝑓(𝑥 . 𝑦 )𝑑𝐴      

Is defined as the volume under the surface  𝑧 = 𝑓 (𝑥. 𝑦 )  and over the region Ω   

REMARK 3. If the function f (x,  y)  =1 is integrable over Ω then 

   ∬
Ω 

1𝑑𝐴 = ∬
Ω 

𝑑𝐴                                                                                                                         (15) 

 equal to the area of the region Ω To see this, note that  

𝑉𝑖𝑗 ≈ 𝑓(𝑥𝑖∗  . 𝑦𝑗∗)∆𝐴 = ∆𝐴 .  

 So the double integral (15) is the limit of the sum of areas of rectangles in Ω 

        We close this section by stating five theorems about double integrals. Each one is analogous 

to a theorem a bout definite integrals.  

Theorem 3 :If  f is integrable over Ω then for any constant c, cf  is integrable over Ω   and 

 

 

Theorem 4: If  f is integrable over Ω. Then f+ g is integrable over Ω   and    

 (see Theorem 5.5.5). 

Theorem 5: If  f is integrable over Ω1  and Ω2.  where  Ω1  and Ω2  have no points in common 

except perhaps  those  of their  common boundary, then f    is integrable over Ω = Ω1  ∪  Ω2 .  and 

 
   ∬Ω 𝑓(𝑥. 𝑦)𝑑𝐴 = ∬Ω1  

𝑓(𝑥. 𝑦)𝑑𝐴 + ∬Ω2
𝑓(𝑥. 𝑦) 𝑑𝐴                                                    

   ∬
Ω 𝑐𝑓 (𝑥.  𝑦)𝑑𝐴 = 𝑐 ∬

Ω 
𝑓(𝑥. 𝑦)𝑑𝐴                                                                            (16)  

   ∬
Ω 

[𝑓 (𝑥.  𝑦) + 𝑔(𝑥. 𝑦)]𝑑𝐴 = ∬
Ω 𝑓(𝑥. 𝑦)𝑑𝐴 + ∬

Ω 𝑔(𝑥. 𝑦) 𝑑𝐴                       (17)  
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Theorem 6 :If  f and g  are  integrable over Ω 𝑎𝑛𝑑   𝑓 (𝑥.  𝑦 ) ≤ 𝑔 (𝑥. 𝑦 ) for every (x , y )  in 

Ω. 𝑡ℎ𝑒𝑛  ∬
Ω 

𝑓(𝑥. 𝑦)𝑑𝐴 ≤ ∬
Ω 

𝑔 (𝑥. 𝑦)𝑑𝐴                                                           (18) 

Theorem 7: Let f be integrable over Suppose that there exist constants m and M such   that  

𝑚 ≤ f (𝑥. 𝑦 ) ≤ M                                                                                                                             (19)  

 For every (x, y) in Ω  If 𝐴Ω  denotes the area of Ω .  then 

    

   

        EXAMPLE   2  Let Ω   be the rectangle {(𝑥. 𝑦 ): 𝑎 ≤ 𝑥 ≤ 𝑏 𝑎𝑛𝑑 𝑐 ≤ 𝑦 ≤ 𝑑}   Find upper 

and  lower bounds for 

      ∬
Ω 

sin(𝑥 − 3𝑦3)𝑑𝐴 

   Solution. Since −1 ≤ sin(𝑥 − 3𝑦3)𝑑𝐴 ≤ 1.  and since𝐴Ω = (𝑏 − 𝑎)(𝑑 − 𝑐).   we have, using 

(20), 

−(𝑏 − 𝑎)(𝑑 − 𝑐) ≤      ∬
Ω 

sin(𝑥 − 3𝑦3)𝑑𝐴 ≤ (𝑏 − 𝑎)(𝑑 − 𝑐)      

EXAMPLE  3   Let Ω be the disk {(𝑥. 𝑦 ): 𝑥2 + 𝑦2 ≤ 1} Find upper and lower bounds for 

      ∬
Ω 

1

1+𝑥2+𝑦2 𝑑𝐴   

Solution .Since  0 ≤ 𝑥2 + 𝑦2 ≤ 1 𝑖𝑛 Ω . 𝑤𝑒 𝑒𝑎𝑠𝑖𝑙𝑦 𝑠𝑒𝑒 𝑡ℎ𝑎𝑡   

1

2
≤

1

1 + 𝑥2 + 𝑦2
≤  1    

Since the area of the disk is  𝜋  we  have 

   
𝜋

2
≤     ∬

Ω 

1

1 + 𝑥2 + 𝑦2
𝑑𝐴 ≤ 𝜋     

 

 

  

𝑚𝐴Ω 
≤ ∬Ω 𝑓(𝑥. 𝑦)𝑑𝐴 ≤   𝑀𝐴Ω 

                                                                                                    (20) 
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PROBLEMS  

In problems 1- 8, let denote the rectangle  {(𝑥. 𝑦): 0 ≤ 𝑥 ≤ 3 𝑎𝑛𝑑 1 ≤ 𝑦 ≤ 2 }Use the technique 

employed in Example 1to calculate the given double integral. Use Theorem 3 and /or 4 where 

appropriate.  

1 ∙     ∬
Ω 

(2𝑥 + 3𝑦 )𝑑𝐴                                              2 ∙     ∬
Ω 

(𝑥 − 𝑦)𝑑𝐴 

3 ∙     ∬
Ω 

(𝑦 − 𝑥)𝑑𝐴                                                    4 ∙     ∬
Ω 

(𝑎𝑥 + 𝑏𝑦 + 𝑐)𝑑𝐴           

 5 ∙     ∬
Ω 

(𝑥2 + 𝑦2)𝑑𝐴                                               6 ∙     ∬
Ω 

(𝑥2 − 𝑦2)𝑑𝐴            

7 ∙     ∬
Ω 

(2𝑥2 + 3𝑦2)𝑑𝐴                                           8 ∙     ∬
Ω 

(𝑎𝑥2 − 𝑏𝑦)𝑑𝐴   

In problems 9-14 let Ω denote the rectangle   {(𝑥. 𝑦 ): 0 ≤ 𝑥 ≤ 3 𝑎𝑛𝑑 − 2 ≤ 𝑦 ≤ 3} Calculate the 

double integral. 

9 ∙     ∬
Ω 

(𝑥 + 𝑦)𝑑𝐴                                                      10 ∙     ∬
Ω 

(3𝑥 − 𝑦)𝑑𝐴 

11 ∙     ∬
Ω 

(𝑦 − 2𝑥)𝑑𝐴                                         12 ∙     ∬
Ω 

(𝑥2 + 2𝑦2)𝑑𝐴  

13 ∙     ∬
Ω 

(𝑥2 − 𝑦2)𝑑𝐴                                 14 ∙     ∬
Ω 

(3𝑥2 − 5𝑦2)𝑑𝐴   

15 ∙  ∬
Ω 

(𝑥2𝑦2 + 𝑥𝑦)𝑑𝐴. 𝑤ℎ𝑒𝑟𝑒 Ω is the 𝑟𝑒𝑐𝑡𝑎𝑛𝑔𝑙𝑒 {(𝑥. 𝑦): 0 ≤ 𝑥 ≤ 3 𝑎𝑛𝑑 1 ≤ 𝑦 ≤ 2 } 

16 ∙  ∬
Ω 

𝑒−(𝑥2 − 𝑦2) 𝑑𝐴 . 𝑤ℎ𝑒𝑟𝑒 Ω 𝑖𝑠 𝑡ℎ𝑒  𝑑𝑖𝑠𝑘 𝑥2 + 𝑦2 ≤ 4 

17 ∙∙  ∬
Ω 

[(𝑥 − 𝑦)/(4 − 𝑥2 − 𝑦2)]𝑑𝐴. 𝑤ℎ𝑒𝑟𝑒 Ω 𝑖𝑠 𝑡ℎ𝑒  𝑑𝑖𝑠𝑘 𝑥2 + 𝑦2 ≤ 1 

18 ∙  ∬
Ω 

cos(√𝑥 − √𝑦) 𝑑𝐴. 𝑤ℎ𝑒𝑟𝑒 Ω 𝑖𝑠 𝑡ℎ𝑒 𝑟𝑒𝑔𝑖𝑜𝑛 𝑜𝑓 𝑃𝑟𝑜𝑏𝑙𝑒𝑚 17  

19 ∙ ∬
Ω 

𝐼𝑛 (1 + 𝑥 + 𝑦)𝑑𝐴. 𝑤ℎ𝑒𝑒𝑟𝑒 Ω 𝑖𝑠 𝑡ℎ𝑒 𝑟𝑒𝑔𝑖𝑜𝑛 𝑏𝑜𝑢𝑛𝑑𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑙𝑖𝑛𝑒𝑠 𝑦 = 𝑥. 𝑦

= 1 − 𝑥 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑥 − 𝑎𝑥𝑖𝑠  


