CONSTRAINED MAXIMA AND MINIMA

LAGRANGE MULTIPLIERS

In the previous section we saw how to find the maximum and minimum of a function of two variables by taking gradients and applying a second derivative test. It often happens that there are side conditions (or conditions) attached to a problem. For example, we have been asked to find the shortest distance from a point $\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)$ to a line $\mathrm{y}=\mathrm{mx}+\mathrm{b}$. We could write this problem as follows :

Minimize the function : $\mathrm{z}=\sqrt{\left(\mathrm{x}-\mathrm{x}_{0}\right)^{2}+\left(\mathrm{y}-\mathrm{y}_{0}\right)^{2}}$
Subject to the constraint : $\mathrm{y}-\mathrm{mx}-\mathrm{b}=0$.
As another example, suppose that a region of every point of the region. Then if the sphere is given and if we wish to find the hottest point on the sphere, we have the following problem:

Minimize : $\mathrm{w}=\mathrm{T}(\mathrm{x}, \mathrm{y}, \mathrm{z})$
Subject to the constraint : $\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}-\mathrm{r}^{2}=0$.
We now generalize these two examples. Let f and g be functions of two variables. Then we can formulate a constrained minimization (or minimization) problem as follows:

Minimize : $z=f(x . y)$
Subject to the constraint : $g(x, y)=0$

If f and g are functions of three variables, we have the following problem:

$$
\begin{align*}
& \text { Minimize (or minimize) : } w=f(x, y, z) \tag{3}\\
& \text { Subject to the constraint : } g(x, y, z)=0 \text {. } \tag{4}
\end{align*}
$$

We now develop a method for dealing with problems of the type (1), (2), or (3), (4). Let C be a curve in R^{2} or R^{3} given parametrically by the differentiable function $F(t)$ That is, C is given by $\mathrm{F}(\mathrm{t})=\mathrm{x}(\mathrm{t}) \mathrm{i}+\mathrm{y}(\mathrm{t}) \mathrm{j} \quad\left(\right.$ in $\left.\mathrm{R}^{2}\right)$

Or
$\mathrm{F}(\mathrm{t})=\mathrm{x}(\mathrm{t}) \mathrm{i}+\mathrm{y}(\mathrm{t}) \mathrm{j}+\mathrm{z}(\mathrm{t}) \mathrm{k} \quad\left(\right.$ in $\left.\mathrm{R}^{3}\right)$

Let $\mathrm{f}(\mathrm{x})$ denote the function (of two or three variables) that is to be maximized.
Theorem 1. Suppose that f is differentiable at a point x_{0} and that among all points on a curve C , f takes its maximum(or minimum) value at x_{0}. Then $\nabla \mathrm{f}\left(\mathrm{x}_{0}\right)$ is orthogonal to C at x_{0} That is since $F^{\prime}(t)$ is tangent to C, if $x_{0}=F\left(t_{0}\right)$, then

$$
\begin{equation*}
\nabla f\left(x_{0}\right) \cdot F\left(t_{0}\right)=0 \tag{5}
\end{equation*}
$$

Proof. For x on $C, x=F(t)$, so that the composite function $f(F(t))$ has a maximum (or minimum) at t_{0} Therefore its derivative at t_{0} is 0 . By the chain rule,
$\frac{\mathrm{d}}{\mathrm{dt}} \mathrm{f}(\mathrm{F}(\mathrm{t}))=\nabla \mathrm{f}(\mathrm{F}(\mathrm{t})) \cdot \mathrm{F}^{\prime}(\mathrm{t})$,
And at t_{0}
$0=\nabla f(F(t)) \cdot F^{\prime}\left(t_{0}\right)=\nabla f\left(x_{0}\right) \cdot F^{\prime}\left(\mathrm{t}_{0}\right)$,
And the theorem is proved.
For f as a function of two variables, the result of Theorem 1 is illustrated
We can use Theorem 1 to make an interesting observation. Suppose that, subject to the constraint $\mathrm{g}(\mathrm{x}, \mathrm{y})=0, \mathrm{f}$ takes its maximum (or minimum) at the Point The equation $\mathrm{g}(\mathrm{x}, \mathrm{y})=0$ determines a curve C in the xy - plane, and by Theorem 1, is orthogonal to Cat But form Section 18.7, is also orthogonal to C Thus we see that

Hence there is a number λ such that

$$
\nabla f\left(x_{0} \cdot y_{0}\right)=\lambda \nabla g\left(x_{0} \cdot y_{0}\right)
$$

We can extend this observation to following rule, which applies equally well to functions of three or more variables:

If.supject to the constraint $g(x)$
$=0 . f$ takes its maximum (or minmum)value at a pointx x_{0}.then thereis a number λ such that

$$
\begin{equation*}
\nabla f\left(x_{0}\right)=\lambda \nabla g\left(x_{0}\right) \tag{6}
\end{equation*}
$$

The number is called a Lagrange multiplier We will illustrate the Lagrange multi-plier technique with a number of examples

EXAMPLE 1: Find the maximum values of $f(x, y)=x y^{2}$ subject to the condition
$x^{2}+y^{2}=1$
Solution.We have $g(x, y)=x^{2}+y^{2}-1=0$ Then
$\nabla f=y^{2} i+2 x y^{2} j$ and $\nabla g=2 x i+2 y j$
At a maximizing or maximizing point we have
$\nabla \mathrm{f}=\lambda \nabla \mathrm{g} . \mathrm{Or}$
$y^{2} i+2 x y j=2 x \lambda i+2 y \lambda j$.
Which leads to the equations
$y^{2}=2 x \lambda$
$2 \mathrm{x} \lambda=2 \mathrm{y} \lambda$
Multiplying the first equation by y and the second by x , we obtain
$y^{3}=2 x y \lambda$
$2 x^{2} y=2 x y \lambda$.
Or
$y^{3}=2 x^{2} y$
Butx ${ }^{2}=1-y^{2}$. so
$y^{3}=2\left(1-y^{2}\right) y=2 y-2 y^{3}$.
Or
$3 y^{3}=2 y$
The solutions to this last equation are $\mathrm{y}=0$ and $\mathrm{y}= \pm \sqrt{\frac{2}{3}}$ This leads to the six points
$(1.0)(-1.0) \cdot\left(\frac{1}{\sqrt{3}} \cdot \sqrt{\frac{2}{3}}\right) \cdot\left(-\frac{1}{\sqrt{3}} \cdot \sqrt{\frac{2}{3}}\right) \cdot\left(\frac{1}{\sqrt{3}}-\sqrt{\frac{2}{3}}\right) \cdot\left(-\frac{1}{\sqrt{3}}-\sqrt{\frac{2}{3}}\right)$

Evaluating $f(x . y)=x y^{2}$ at these points, we have

$$
\mathrm{f}(1.0)=\mathrm{f}(-1.0)=0 . \mathrm{f}\left(\frac{1}{\sqrt{3}} \cdot \sqrt{\frac{2}{3}}\right)=\mathrm{f}\left(\frac{1}{\sqrt{3}} \cdot-\sqrt{\frac{2}{3}}\right)=\frac{2}{3 \sqrt{3}} .
$$

And

$$
\mathrm{f}\left(-\frac{1}{\sqrt{3}} \cdot \sqrt{\frac{2}{3}}\right)=\mathrm{f}\left(-\frac{1}{\sqrt{3}} \cdot-\sqrt{\frac{2}{3}}\right)=-\frac{2}{3 \sqrt{3}}
$$

Thus the maximum value of f is $\frac{2}{3 \sqrt{3}}$ and the minimum value of f is $-\frac{2}{3 \sqrt{3}}$ Note that there is neither a maximum nor a minimum at (1.0) and (-1.0) even though $\nabla f(1.0)=$ $0 \nabla g(1.0)$ and $\nabla f(-1.0)=0 \nabla g(-1.0)=0$

EXAMPLE 2 Find the points sphere $x^{2}+y^{2}+z^{2}=1$ closest to and farthest from the point (1, 2, 3)

Solution. We wish to minimizef $(x . y . z)=(x-1)^{2}+(y-2)^{2}+(z-3)^{2}$ and maximize subject to $g(x . y . z)=x^{2}+y^{2}+z^{2}-1=0$ We have $\nabla f(x . y . z)=2(x-1) i+2(y-2) j+$ $2(\mathrm{z}-3) \mathrm{k}$. and $\nabla \mathrm{g}(\mathrm{x} \cdot \mathrm{y} . \mathrm{z})=2 \mathrm{xi}+2 \mathrm{yj}+2 \mathrm{zk}$ Condition
(6) implies that at amaximizing point. $\nabla \mathrm{f}=\lambda \nabla \mathrm{g}$. so
$2(x-1)=2 x \lambda$
$2(y-2)=2 x \lambda$
$2(z-3)=2 x \lambda$
If $\lambda \neq 1$. then we find that
$x-1=x \lambda$. or $x-x \lambda=1$. or $x(1-\lambda)=1$.
And
$x=\frac{1}{1-\lambda}$
Similarly, we obtain
$y=\frac{2}{1-\lambda}$ and $z=\frac{3}{1-\lambda}$
Then

$$
1=x^{2}+y^{2}+z^{2}=\frac{1}{(1-\lambda)^{2}}\left(1^{2}+2^{2}+3^{2}\right)=\frac{14}{(1-\lambda)^{2 \prime}}
$$

So that $(1-\lambda)^{2}=14 .(1-\lambda)= \pm \sqrt{14}$.
And $\lambda=1 \pm \sqrt{14}$

$$
\begin{aligned}
& \text { If } \lambda=1+\sqrt{14} \text { then }(x . y . z)=\left(-\frac{1}{\sqrt{14}} \cdot-\frac{2}{\sqrt{14}} \cdot-\frac{3}{\sqrt{14}}\right)=1-\sqrt{14} \\
& \text { then }(x . y \cdot z)=\left(\frac{\frac{1}{\sqrt{14.2}}}{\sqrt{14}} \cdot 3 \sqrt{14}\right)
\end{aligned}
$$

Finally. evaluation shows us that f is maximized at

$$
(-1 / \sqrt{ } 14 .-2 / \sqrt{ } 14 .-3 / \sqrt{ } 14) \text { and that } f \text { is minimized at }(1 / \sqrt{ } 14.2 / \sqrt{ } 14.3 / \sqrt{ } 14)
$$

We note that we can use Lagrange multipliers in R^{2} there are two or more constraint equations. Suppose, for example, we wish to maximize (or minimize) $w=f(x . y . z)$ subject to constraints

$$
\begin{equation*}
g(x . y \cdot z)=0 \tag{7}
\end{equation*}
$$

And

$$
\begin{equation*}
h(x . y . z)=0 \tag{8}
\end{equation*}
$$

Each of the equations (7) and (8) represents a surface in R^{3} and their intersection forms a curve in R^{3} By an argument very similar to the one we used earlier (but applied in R^{3} instead of R^{2}) we find that if f is maximized (or minimized) at $\left(\mathrm{x}_{0} \cdot \mathrm{y}_{0} \cdot \mathrm{z}_{0}\right)$ then $\nabla \mathrm{f}\left(\mathrm{x}_{0} \cdot \mathrm{y}_{0} \cdot \mathrm{z}_{0}\right)$ in the plane determined $\operatorname{by} \nabla \mathrm{g}\left(\mathrm{x}_{0} \cdot \mathrm{y}_{0} \cdot \mathrm{z}_{0}\right)$ and $\nabla \mathrm{h}\left(\mathrm{x}_{0} \cdot \mathrm{y}_{0} \cdot \mathrm{z}_{0}\right)$ thus there are numbers λ and μ such that

$$
\begin{equation*}
\nabla f\left(x_{0} \cdot y_{0} \cdot z_{0}\right)=\lambda \nabla g\left(x_{0} \cdot y_{0} \cdot z_{0}\right)+\mu \nabla h\left(x_{0} \cdot y_{0} \cdot z_{0}\right) \tag{9}
\end{equation*}
$$

EXAMPLE 3 :Find the maximum value ofw $=x y z$ among all points ($\mathrm{x} . \mathrm{y} . \mathrm{z}$) lying on the of intersection of planes $x+y+z=30$ and $x+y-z=0$

Solution Setting $\mathrm{f}(\mathrm{x} . \mathrm{y} . \mathrm{z})=\mathrm{xyz} . \mathrm{g}(\mathrm{x} . \mathrm{y} . \mathrm{z})=\mathrm{x}+\mathrm{y}+\mathrm{z}-30$. and

$$
h(x . y . z)=x+y-z . \text { we obtain }
$$

$\nabla f=y z i+x z j+x y k$
$\nabla \mathrm{g}=\mathrm{i}+\mathrm{j}+\mathrm{k}$
$\nabla \mathrm{h}=\mathrm{i}+\mathrm{j}+\mathrm{k}$.
And using equation (9) to obtain the maximum, we obtain the equations
$y z=\lambda+\mu$
$x z=\lambda+\mu$
$x y=\lambda-\mu$
Multiplying the three equations by x, y, and respectively, we find that
$x y z=(\lambda+\mu) x$
$x y z=(\lambda+\mu) y$
$x y z=(\lambda-\mu) z$
If $\lambda+\mu=0$. then $\mathrm{y} z=0$ and $\mathrm{xyz}=0$, which is not a maximum value since xyz can be positive (for example, $x=8 . y=7 . z=15$ is in the constraint set and $x y z=840$) Thus we can divide the first two equations by $\lambda+\mu$ to find that.
$x=y$
Since $x+y-z=0$ we have $2 x-z=0$. or $z=2 x$ But then

$$
30=x+y+z=x+x+2 x=4 x
$$

Or
$x=\frac{15}{2}$
Then
$y=\frac{15}{2} . \quad z=15$.
And the maximum value of xyz occurs at $\left(\frac{15}{2} \cdot \frac{15}{2} .15\right)$ and is equle to $\left(\frac{15}{2}\right)\left(\frac{15}{2}\right) 15=843 \frac{3}{4}$

PROBLEMS

1 • Use Lagrange multiers to find the minimum distance from the point (1.2)to the line $2 x+3 y=5$

2 - Use Lagrange multiers to find the minimum distance from the point (3. -2)to theline $y=2-x$

3 • Use Lagrange multiers to find the minimum distance from the point (1. 1.2)to the plane $\mathrm{x}+\mathrm{y}-\mathrm{z}=3$
$4 \cdot$ Use Lagrange multiers to find the minimum distance from the point (3.0.1)to the plane $2 \mathrm{x}-\mathrm{y}+4 \mathrm{z}=5$

5 • Use Lagrange multiers to find the minimum distance from the plane
$a x+b y+c z=d$ to the origin
$6 \cdot$ Find the maximum and minimum values of $x^{2}+y^{2}$ subject tothe condition

$$
x^{3}+y^{3}=6 x y
$$

$7 \cdot$ Find the maximum and minimum values of $2 x^{2}+x y+y^{2}$
$-2 y$ subject tothe condition $y=2 x-1$
$8 \cdot$ Find the maximum and minimum values of $x^{2}+y^{2}+z^{2}$ subject tothe condition

$$
z^{2}=x^{2}-1
$$

$9 \cdot$ Find the maximum and minimum values of
$x^{3}+y^{3}+z^{3}$ if (x.y.z)lies on the sphere $x^{2}+y^{2}+z^{2}=4$
$10 \cdot$ Find the maximum and minimum values of
$x+y+z$ if $(x . y . z)$ lies on the sphere $x^{2}+y^{2}+z^{2}=1$
11 Find the maximum and minimum values of xyz if (x.y.z)is on the ellipsoid
$x^{2}+\left(y^{2} / 4\right)+\left(z^{2} / 9\right)=1$
12. Solve Problem 11 if (x.y.z) is on the ellipsoid $\left(\frac{x^{2}}{a^{2}}\right)+\left(\frac{y^{2}}{b^{2}}\right)+\left(\frac{z^{2}}{c^{2}}\right)=1$

* 13•Minimize the function $x^{2}+y^{2}+z^{2}$ for $(x . y . z)$ on the planes $3 x-y+z$

$$
=6 \text { and } x+2 y+2 z=2
$$

$14 \cdot$ Find the minimum values of $x^{3}+y^{3}+z^{3}$ for ($x . y . z$)is on the planes $x+y-z=3$
$15 \cdot$ Find the maximum and minimum distance from the origin to a point on the
ellipsoid $\left(\frac{x^{2}}{a^{2}}\right)+\left(\frac{y^{2}}{b^{2}}\right)=1$
$16 \cdot$ Find the maximum and minimum distance from the origin to a point on
ellipsoid $\left(\frac{x^{2}}{a^{2}}\right)+\left(\frac{y^{2}}{b^{2}}\right)+\left(\frac{z^{2}}{c^{2}}\right)=1$

