CONSTRAINED MAXIMA AND MINIMA

LAGRANGE MULTIPLIERS

In the previous section we saw how to find the maximum and minimum of a function of two variables by taking gradients and applying a second derivative test. It often happens that there are side conditions (or conditions) attached to a problem. For example, we have been asked to find the shortest distance from a point (x_0, y_0) to a line y = mx + b. We could write this problem as follows :

Minimize the function : $z = \sqrt{(x - x_0)^2 + (y - y_0)^2}$

Subject to the constraint : y - mx - b = 0.

As another example, suppose that a region of every point of the region. Then if the sphere is given and if we wish to find the hottest point on the sphere, we have the following problem:

Minimize: w = T(x, y, z)

Subject to the constraint $: x^2 + y^2 + z^2 - r^2 = 0.$

We now generalize these two examples. Let f and g be functions of two variables. Then we can formulate a constrained minimization (or minimization) problem as follows:

Minimize : z = f(x, y)(1)Subject to the constraint : g(x, y) = 0(2)

If f and g are functions of three variables, we have the following problem:

Minimize (or minimize) : $w = f(x, y, z)$	(3)
Subject to the constraint : $g(x, y, z) = 0$.	(4)

We now develop a method for dealing with problems of the type (1),) (2), or (3), (4). Let C be a curve in R^2 or R^3 given parametrically by the differentiable function F(t) That is, C is given by

$$F(t) = x(t)i + y(t)j \qquad (in R2)$$

Or

$$F(t) = x(t)i + y(t)j + z(t)k$$
 (in R³)

Let f(x) denote the function (of two or three variables) that is to be maximized.

Theorem 1. Suppose that f is differentiable at a point x_0 and that among all points on a curve C, f takes its maximum(or minimum) value at x_0 . Then $\nabla f(x_0)$ is orthogonal to C at x_0 . That is since F'(t) is tangent to C, if $x_0 = F(t_0)$, then

 $\nabla f(x_0) \ . F(t_0) = 0$

(5)

Proof. For x on C, x = F(t), so that the composite function f (F(t)) has a maximum (or minimum) at t_0 Therefore its derivative at t_0 is 0. By the chain rule,

$$\frac{\mathrm{d}}{\mathrm{d}t}f(F(t)) = \nabla f(F(t)) \cdot F'(t),$$

And at t₀

 $0 = \nabla f(F(t)) \cdot F'(t_0) = \nabla f(x_0) \cdot F'(t_0),$

And the theorem is proved.

For f as a function of two variables, the result of Theorem 1 is illustrated

We can use Theorem 1 to make an interesting observation. Suppose that, subject to the constraint g(x, y) = 0, f takes its maximum (or minimum) at the Point The equation g(x, y) = 0 determines a curve C in the xy – plane, and by Theorem 1, is orthogonal to Cat But form Section 18.7, is also orthogonal to C Thus we see that

 $\nabla g(x_0, y_0)$ and $\nabla f(x_0, y_0)$ are parallel

Hence there is a number λ such that

 $\nabla f(x_0 \, . \, y_0) = \lambda \, \nabla g \, (x_0 \, . \, y_0)$

We can extend this observation to following rule, which applies equally well to functions of three or more variables:

If supject to the constraint g(x) = 0. f takes its maximum (or minmum)value at a point x_0 . then there is a number λ such that

$$\nabla f(x_0) = \lambda \, \nabla g \, (x_0)$$

(6)

The number is called a Lagrange multiplier We will illustrate the Lagrange multi-plier technique with a number of examples

EXAMPLE 1: Find the maximum values of $f(x, y) = xy^2$ subject to the condition

$$x^2 + y^2 = 1$$

Solution .We have $g(x, y) = x^2 + y^2 - 1 = 0$ Then

$$\nabla f = y^2 i + 2xy^2 j$$
 and $\nabla g = 2xi + 2yj$

At a maximizing or maximizing point we have

$$\nabla f = \lambda \nabla g$$
 .Or

$$y^2i + 2xyj = 2x\lambda i + 2y\lambda j.$$

Which leads to the equations

$$y^2 = 2x\lambda$$

$$2x\lambda = 2y\lambda$$

Multiplying the first equation by y and the second by x, we obtain

$$y^{3} = 2xy\lambda$$

$$2x^{2}y = 2xy\lambda$$
Or
$$y^{3} = 2x^{2}y$$
Butx² = 1 - y².so
$$y^{3} = 2(1 - y^{2})y = 2y - 2y^{3}$$
Or
$$3y^{3} = 2y$$

The solutions to this last equation are y =0 and y = $\pm \sqrt{\frac{2}{3}}$ This leads to the six points

$$(1.0)(-1.0).\left(\frac{1}{\sqrt{3}}.\sqrt{\frac{2}{3}}\right).\left(-\frac{1}{\sqrt{3}}.\sqrt{\frac{2}{3}}\right).\left(\frac{1}{\sqrt{3}}-\sqrt{\frac{2}{3}}\right).\left(-\frac{1}{\sqrt{3}}-\sqrt{\frac{2}{3}}\right)$$

Evaluating $f(x,y) = xy^2$ at these points , we have

$$f(1.0) = f(-1.0) = 0$$
. $f\left(\frac{1}{\sqrt{3}} \cdot \sqrt{\frac{2}{3}}\right) = f\left(\frac{1}{\sqrt{3}} \cdot -\sqrt{\frac{2}{3}}\right) = \frac{2}{3\sqrt{3}}$.

And

$$f\left(-\frac{1}{\sqrt{3}} \cdot \sqrt{\frac{2}{3}}\right) = f\left(-\frac{1}{\sqrt{3}} \cdot -\sqrt{\frac{2}{3}}\right) = -\frac{2}{3\sqrt{3}}$$

Thus the maximum value of $f is \frac{2}{3\sqrt{3}}$ and the minimum value of $f is -\frac{2}{3\sqrt{3}}$ Note that there is neither a maximum nor a minimum at (1.0) and (-1.0) even though $\nabla f(1.0) = 0 \nabla g(1.0)$ and $\nabla f(-1.0) = 0 \nabla g(-1.0) = 0$

EXAMPLE 2 Find the points sphere $x^2 + y^2 + z^2 = 1$ closest to and farthest from the point (1, 2, 3)

Solution. We wish to minimize $(x \cdot y \cdot z) = (x - 1)^2 + (y - 2)^2 + (z - 3)^2$ and maximize subject to $g(x \cdot y \cdot z) = x^2 + y^2 + z^2 - 1 = 0$ We have $\nabla f(x \cdot y \cdot z) = 2(x - 1)i + 2(y - 2)j + 2(z - 3)k$. and $\nabla g(x \cdot y \cdot z) = 2xi + 2yj + 2zk$ Condition (6) implies that at amaximizing point. $\nabla f = \lambda \nabla g$. so

 $2(x-1) = 2x\lambda$

 $2(y-2) = 2x\lambda$

 $2(z-3) = 2x\lambda$

If $\lambda \neq 1$. then we find that

 $x - 1 = x\lambda$.or $x - x\lambda = 1$.or $x(1 - \lambda) = 1$.

And

$$\mathbf{x} = \frac{1}{1 - \lambda}$$

Similarly, we obtain

$$y = \frac{2}{1-\lambda}$$
 and $z = \frac{3}{1-\lambda}$

Then

$$1 = x^2 + y^2 + z^2 = \frac{1}{(1 - \lambda)^2} \quad (1^2 + 2^2 + 3^2) = \frac{14}{(1 - \lambda)^{2'}}$$

So that $(1 - \lambda)^2 = 14. (1 - \lambda) = \pm \sqrt{14}$.

And $\lambda = 1 \pm \sqrt{14}$

If
$$\lambda = 1 + \sqrt{14}$$
 then $(x. y. z) = \left(-\frac{1}{\sqrt{14}} \cdot -\frac{2}{\sqrt{14}} \cdot -\frac{3}{\sqrt{14}}\right) = 1 - \sqrt{14}$
then $(x. y. z) = \left(\frac{\frac{1}{\sqrt{14.2}}}{\sqrt{14}} \cdot 3\sqrt{14}\right)$

Finally. evaluation shows us that f is maximized at

 $(-1/\sqrt{14}.-2/\sqrt{14}..-3/\sqrt{14})$ and that f is minimized at $(1/\sqrt{14}.2/\sqrt{14}..3/\sqrt{14})$

We note that we can use Lagrange multipliers in R^2 there are two or more constraint equations. Suppose, for example, we wish to maximize (or minimize) $w = f(x \cdot y \cdot z)$ subject to constraints

$$g(x.y.z) = 0 \tag{7}$$

And

$$h(x, y, z) = 0 \tag{8}$$

Each of the equations (7) and (8) represents a surface in R^3 and their intersection forms a curve in R^3 By an argument very similar to the one we used earlier (but applied in R^3 instead of R^2) we find that if f is maximized (or minimized) at $(x_0 . y_0 . z_0)$ then $\nabla f(x_0 . y_0 . z_0)$ in the plane determined by $\nabla g(x_0 . y_0 . z_0)$ and $\nabla h(x_0 . y_0 . z_0)$ thus there are numbers λ and μ such that

$$\nabla f(x_0 . y_0 . z_0) = \lambda \nabla g(x_0 . y_0 . z_0) + \mu \nabla h(x_0 . y_0 . z_0)$$
(9)

EXAMPLE 3: Find the maximum value of w = xyz among all points $(x \cdot y \cdot z)$ lying on the of intersection of planes x + y + z = 30 and x + y - z = 0

Solution Setting $f(x.y.z) = xyz \cdot g(x.y.z) = x + y + z - 30$. and

$$h(x.y.z) = x + y - z$$
. we obtain

 $\nabla f = yzi + xzj + xyk$

$\nabla g = i + j + k$

 $\nabla \mathbf{h} = \mathbf{i} + \mathbf{j} + \mathbf{k} \,.$

And using equation (9) to obtain the maximum, we obtain the equations

- $yz=\lambda+\mu$
- $xz = \lambda + \mu$
- $xy=\lambda-\mu$

Multiplying the three equations by x, y, and respectively, we find that

$$xyz = (\lambda + \mu)x$$

 $xyz=(\lambda+\mu)y$

 $xyz = (\lambda - \mu)z$

If $\lambda + \mu = 0$. then y z = 0 and xyz = 0, which is not a maximum value since xyz can be positive (for example, x = 8. y = 7. z = 15 is in the constraint set and xyz= 840) Thus we can divide the first two equations by $\lambda + \mu$ to find that.

$$\mathbf{x} = \mathbf{y}$$

Since x + y - z = 0 we have 2x - z = 0. or z = 2x But then

$$30 = x + y + z = x + x + 2x = 4x$$
.

Or

$$x = \frac{15}{2}$$

Then

$$y = \frac{15}{2}$$
. $z = 15$.

And the maximum value of xyz occurs at $(\frac{15}{2}, \frac{15}{2}, 15)$ and is equile to $(\frac{15}{2})(\frac{15}{2})15 = 843\frac{3}{4}$

PROBLEMS

 $1 \cdot \text{Use Lagrange multiers to find the minimum distance from the point (1.2)to the}$ line 2x + 3y = 5

 $2 \cdot \text{Use Lagrange multiers to find the minimum distance from the point } (3. - 2)\text{to}$ theline y = 2 - x

 $3 \cdot$ Use Lagrange multiers to find the minimum distance from the point (1. -1. 2) to

the plane x + y - z = 3

 $4 \cdot$ Use Lagrange multiers to find the minimum distance from the point (3.0.1)to

the plane 2x - y + 4z = 5

 $5\cdot$ Use Lagrange multiers to find the minimum distance from the plane

- ax + by + cz = d to the origin
- $6 \cdot$ Find the maximum and minimum values of $x^2 + y^2$ subject to the condition

$$x^3 + y^3 = 6xy$$

7 · Find the maximum and minimum values of $2x^2 + xy + y^2$ - 2y subject to the condition y = 2x - 1

8 · Find the maximum and minimum values of $x^2 + y^2 + z^2$ subject to the condition

$$z^2 = x^2 - 1$$

9 · Find the maximum and minimum values of

 $x^{3} + y^{3} + z^{3}$ if (x. y. z) lies on the sphere $x^{2} + y^{2} + z^{2} = 4$

10 · Find the maximum and minimum values of

x + y + z if (x, y, z) lies on the sphere $x^2 + y^2 + z^2 = 1$

11 Find the maximum and minimum values of xyz if (x. y. z) is on the ellipsoid $x^2 + (y^2/4) + (z^2/9) = 1$ 12 · Solve Problem 11 if (x, y, z) is on the ellipsoid $\left(\frac{x^2}{a^2}\right) + \left(\frac{y^2}{b^2}\right) + \left(\frac{z^2}{c^2}\right) = 1$

* 13 · Minimize the function
$$x^2 + y^2 + z^2$$
 for (x, y, z) on the planes $3x - y + z$
= 6 and $x + 2y + 2z = 2$

14 · Find the minimum values of $x^3 + y^3 + z^3$ for (x. y. z) is on the planes x + y - z = 3

15 · Find the maximum and minimum distance from the origin to a point on the

ellipsoid
$$\left(\frac{x^2}{a^2}\right) + \left(\frac{y^2}{b^2}\right) = 1$$

16 · Find the maximum and minimum distance from the origin to a point on

ellipsoid
$$\left(\frac{x^2}{a^2}\right) + \left(\frac{y^2}{b^2}\right) + \left(\frac{z^2}{c^2}\right) = 1$$