Lecture no.9 by Hussein J. AbdulHussein
Advanced Calculus I Al Muthanna University, College of Science

CONSTRAINED MAXIMA AND MINIMA
LAGRANGE MULTIPLIERS

In the previous section we saw how to find the maximum and minimum of a function of two
variables by taking gradients and applying a second derivative test. It often happens that there are
side conditions (or conditions) attached to a problem. For example, we have been asked to find
the shortest distance from a point (x,,y,) toa line y = mx + b. We could write this problem
as follows :

Minimize the function : z = \/(x — x¢)% + (y — ¥o)?
Subject to the constraint : y—mx—b =0.

As another example, suppose that a region of every point of the region. Then if the sphere is
given and if we wish to find the hottest point on the sphere, we have the following problem:

Minimize :w =T(x,y,z)
Subject to the constraint : x? + y% +z2 —r? = 0.

We now generalize these two examples. Let f and g be functions of two variables. Then we can
formulate a constrained minimization (or minimization) problem as follows:

Minimize : z = f (x.y) (D

Subject to the constraint : g(x,y) =0 (2)

If fand g are functions of three variables, we have the following problem:

Minimize (or minimize): w = f (x,y,2) 3)

Subject to the constraint : g(x,y,z) = 0. (€))

We now develop a method for dealing with problems of the type (1),) (2), or (3), (4). LetC bea
curve in R%or R3 given parametrically by the differentiable function F(t) That is, C is given by

F() = x(D)i + y(D)j (in R?)
Or

F(t) = x(t)i + y(t)j + z(Dk (in R®)
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Let f(x) denote the function (of two or three variables) that is to be maximized.

Theorem 1. Suppose that fis differentiable ata point x, and that among all points on a
curve C, f takes its maximum(or minimum) value at x, . Then Vf(x,) is orthogonal to C at
Xo Thatissince F' (t) is tangent to C, if x, = F(ty ), then

Vf(xo) -F(to) =0 )

Proof. For x on C, x = F(t) , so that the composite function f (F(t)) has a maximum (or
minimum) at t, Therefore its derivative at t, is 0. By the chain rule,

%f(F(t)) = VE(F(D) .F'(D),

And at t,

0=Vf(F() .F'(ty) = Vf(xo) . F'(to),
And the theorem is proved.

For f as a function of two variables, the result of Theorem 1 is illustrated

We can use Theorem 1 to make an interesting observation. Suppose that, subject to the constraint
g (x,y) =0, f takes its maximum (or minimum) at the Point The equation g (x, y) =0 determines
a curve C in the xy — plane, and by Theorem 1, is orthogonal to Cat But form Section 18.7, is
also orthogonal to C Thus we see that

Vg(xo.yo)and Vf (x, .ye)are parallel

Hence there is a number A such that

Vf(xo.¥0) = AVg (x0.¥0)
We can extend this observation to following rule, which applies equally well to functions of

three or more variables:

If.supject to the constraint g(x)
= 0.f takes its maximum (or minmum)value at a pointx,.then thereis a number A such that

Vf(xo) = AVg (x0) (6)
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The number is called a Lagrange multiplier We will illustrate the Lagrange multi-plier technique
with a number of examples

EXAMPLE 1 : Find the maximum values of f (X, y )= xy? subject to the condition
x2+y2=1

Solution .We have g (x,y)= x?+y2—1=0 Then

Vf = y2i + 2xy?j and Vg = 2xi + 2yj

At a maximizing or maximizing point we have

Vf=2AVg .Or

y2i + 2xyj = 2xAi + 2yAj.

Which leads to the equations

y? = 2xA

2XA = 2yA

Multiplying the first equation by y and the second by X, we obtain

y3 = 2xyA
2x%y = 2xyA.
Or

y? = 2x%

Butx? = 1 —y2%.s0
y? =2(1—-y?y =2y —2y>
Or

3y3 =2y

T

The solutions to this last equationarey =0 andy = =+ This leads to the six points

3

(1.0)(—1.0).(%. §)<—% 2)(%_\@)(_%_ §>
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Evaluating f(x.y) = xy? at these points , we have

fu.mzzﬂ—10)=o.f<%. §>=f<%:—§>=§%.

And

)i )2
NN B NN Y RN

Thus the maximum value of f is—= and the minimum value of fis -—= Note that there is
33 33

neither a maximum nor a minimum at (1.0 )and (—1.0) even thoughVf(1.0) =
0Vg(1.0) andVf(—1.0) = 0Vg(—1.0) =0

EXAMPLE 2 Find the points sphere x2 + y? +z? = 1 closest to and farthest from the
point (1, 2, 3)

Solution. We wish to minimizef (x.y.z) = (x — 1)? + (y — 2)? + (z — 3)? and maximize
subjectto g(x.y.z) =x?+y?+z2—1=0Wehave Vf(x.y.z) =2(x—1)i+2(y — 2)j +
2(z—3)k.and Vg(x.y.z) = 2xi + 2yj + 2zk Condition

(6) implies that at amaximizing point.Vf = A Vg.so

2(x—1) =2xA
2(y —2) = 2xA
2(z — 3) = 2xA

If A+ 1.then we find that
x—1=xA.or x—xA=1.or x(1—-2)=1.
And

1

X —_—

“1-2a
Similarly, we obtain

3
y—l_}\ and Z_—l—)\

Then
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1= 2 2 2 12 22 32 —
x*+y*+z T (17 + 22+ 3%) a—nz

Sothat (1—-2)%2=14.(1—-21) = +V/14 .

AndA=1++14

1 2 3
If A =1+ V14 then (x.y.z =(— — _ ):1—\/14
(xy.2) V14 14 V14
_1
Vv14.2
then (x.yv.z) =| —— .3V14
(xy.z) Nev v

Finally. evaluation shows us that f is maximized at
(—=1/V14.—2/V14 .—3/vY14 )and that fis minimized at (1/vV14.2/v14 .3/V14 )

We note that we can use Lagrange multipliers in R? there are two or more constraint equations.
Suppose, for example, we wish to maximize (or minimize) w = f(x.y .z) subject to constraints

gxy.z) =0 (7)
And
h(xy.z) =0 (8)

Each of the equations (7) and (8) represents a surface in R and their intersection forms a curve
in R3 By an argument very similar to the one we used earlier (but applied in R? instead of R? )
we find that if fis maximized (or minimized ) at ( X, .yo -Zo) then Vf(x,.yo.2Z9) inthe
plane determined byVg (xq.yo-29) and Vh (xq.yg-2o) thusthere are numbers

Aand p such that

Vf (x0.Y0-20) = AVg (x0.Y0 -20) + uVh (X0 .Y - Zp) €C))

EXAMPLE 3 :Find the maximum value ofw = xyz among all points (x.y .z) lying on the of
intersection of planes x+y+z=30and x+y—z=0

Solution Setting f (x.y.z) =xyz .g(x.y.z) =x+y+z—30.and
h (x.y.z) = x+y — z.we obtain

Vf = yzi + xzj + xyk
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Vg=i+j+k
Vh=i+j+k.

And using equation (9) to obtain the maximum, we obtain the equations

yZz=A+p
XZ=A+ L
Xy =A—H

Multiplying the three equations by X, y, and respectively, we find that

xyz = (A + wx
xyz = (A + W)y
xyz = (A — Wz

IfA+pn=0.thenyz=0andxyz =0, which is not a maximum value since xyz can be
positive (for example,x = 8.y = 7.z = 15 is in the constraint set and xyz= 840) Thus we can
divide the first two equations by A + p to find that.

X=y
Sincex+y—z=0 wehave 2x —z = 0.or z = 2x But then

30=x+y+z=x+x+2x = 4x.

And the maximum value of xyz occurs at (175 175 .15) and is equle to (175) (12—5) 15 = 843 %
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PROBLEMS

1 - Use Lagrange multiers to find the minimum distance from the point (1. 2)to the
line 2x + 3y =5

2 - Use Lagrange multiers to find the minimum distance from the point (3. — 2)to
theliney =2 — x
3 - Use Lagrange multiers to find the minimum distance from the point (1. —1.2)to
the planex+y—z =3

4 - Use Lagrange multiers to find the minimum distance from the point (3.0.1)to
theplane 2x—y+4z=>5
5 - Use Lagrange multiers to find the minimum distance from the plane
ax + by + cz = d to the origin
6 - Find the maximum and minimum values of x? + y? subject tothe condition

x3 +y3 = 6xy

7 - Find the maximum and minimum values of 2 x? + xy + y?
— 2y subject tothe conditiony = 2x — 1

8 - Find the maximum and minimum values of x? + y? + z% subject tothe condition
z2=x%-1
9 - Find the maximum and minimum values of

x3+y3 + 23 if (x.y.z)lies on the sphere x* + y?> + z? = 4

10 - Find the maximum and minimum values of
X+ y+zif (x.y.z)lies on the sphere x> +y* + z> =1
11 Find the maximum and minimum values of xyz if (x.y.z)is on the ellipsoid

x2+ (¥ /4) + (22/9) =1
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52 y? 22
12 - Solve Problem 11 if (x.y.z)is on the ellipsoid <¥> + <ﬁ> + (;) =1
x+ 13 - Minimize the function x* + y* + z*> for (x.y.z)onthe planes3x—y +z
=6andx + 2y + 2z = 2
14 - Find the minimum values of x> + y3 + z3 for (x.y.z)is on the planesx+y —z = 3

15 - Find the maximum and minimum distance from the origin to a point on the

XZ y2
ellipsoid (a_2> + (b_2> =1

16 - Find the maximum and minimum distance from the origin to a point on

X2 y2 ZZ
ellipsoid (a_2> + (b_2> + <c_2> =1



