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HIGER − ORDER   PARTIAL DERIVATIVES 

We have seen that if y = f(x), then 

y′ =
df

dx
  and    y′′  =

d2f

dx2
 =

d

dx
(

df

dx
) 

That is ,the second derivative  of  f is the derivative of the first derivative of  f. , if z = f (x, y ), 

then we can differentiate  each of  the two ''first'' partial derivatives∂ fl ∂ x   and∂ fl ∂y   with 

respect to both x and  y to obtain four second partial derivatives as follows :  

  Definition 1: SECOND  PARTIAL  DERIVATIVES  

(i) Differentiate twice with respect to   x : 

 

 

 

 

(ii )       Differentiate     first  with respect    to  x and then with respect to y : 

 

 

 

(iii )       Differentiate     first  with respect    to  y and then with respect to x : 

 

 

 

(iv )       Differentiate  twice  with respect    to  y : 

 

 

 

REMARK1.Thederivatives ∂2ƒl∂ x ∂y  and ∂2ƒ∂ y ∂x arecalled  the mixed  second partialsl. 

REMARK2.  It is much easier to denote the second partials byƒxx ,   ƒxx ,   ƒyx    andƒyy ,      We 

 

∂2z

∂x2
 =

𝜕2𝑓

𝜕𝑥2
= ƒ𝑥𝑥  =  

𝜕

𝜕𝑥
(

𝜕ƒ

𝜕𝑥 
) (1) 

∂2z

∂y ∂x
 =

𝜕2𝑓

∂y ∂x
= ƒ𝑥𝑦  =  

𝜕

𝜕𝑦
(

𝜕ƒ

𝜕𝑥 
) (2) 

∂2z

∂x ∂y
 =

𝜕2𝑓

∂x ∂y
= ƒ𝑦𝑥  =  

𝜕

𝜕𝑥
(

𝜕ƒ

𝜕𝑦 
)                                                                                                                                (3) 

∂2z

∂y2
 =

𝜕2𝑓

𝜕𝑦2
= ƒ𝑦𝑦  =  

𝜕

𝜕𝑦
(

𝜕ƒ

𝜕𝑦 
) (4) 
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Will there f are use this notation for the remainder of this section. Note that the symbol ƒxy  

indicates that we differentiate first  with respect to y .                                                               

EXAMPLE  1     Let  z =ƒ(x,y) =x3y2  − xy5     .Calculate the four second partial derivatives . 

Solution.  We have fx  =    3x2y2   −      y5      and    fy =2x3y  −     5xy4  . 

(a)     f
xx  =  

∂
∂×

(fx)    = 6xy2   
 

(b)     f
xy  =  

∂
∂y

(fx )    =  6x2 y− 5y2 

(c)     f
xy  =  

∂
∂x

(fy)    = 
6x2 y −  5y2 

(d)     f
yy  =  

∂
∂y

(fy)    =  2x3− 20xy3 

In Example  1  we saw thatfxy  = fyx      This  result is no accident ,as we see by the following  

theorem whose proof can be found in any intermediate calculus text .t                                     

Theorem 1   :  Suppose  that  f, fx , fy  , fxy and fyx   are all continuous  at (x0  , y0  )  Then 

 

 

This result is often referred to as the equality of mixed partials ≠0 

The definition of second partial derivatives and the theorem on the equality of mixed partials are 

easily extended to functions of three variables. If w =( x ,y , z ), then we have the nine second 

partial derivatives ( assuming that they exist ) : 

∂2f

∂x2
 = fxx  ,

∂2f 

∂y  ∂x
 =    fxy  ,      

∂2f

∂z ∂x
   =  fxz  ,    

∂2f

∂x  ∂y
 = fyx  ,

∂2f 

∂y2
 =    fyy  ,      

∂2f

∂z ∂y
   =  fyz 

∂2f

∂x  ∂z
 = fzx  ,

∂2f 

∂y  ∂z 
=    fzy  ,      

∂2f

∂z2
   =  fzz. 

Theorem2   If  f, fx , fy  , fz and fyx and all six  mixed partial  are continuous  at  a  point 

(x0  , y0  , z0  )then at  a  point  This theorem was first stated by Euler in a 1734 paper devoted to 

a problem  in hydrodynamics 

𝑓𝑥𝑦(𝑥0  , 𝑦0) = 𝑓𝑦𝑥   (𝑥0  , 𝑦0)                      (5) 

𝑓𝑥𝑦 = 𝑓𝑦𝑥  ,       𝑓𝑥𝑧 = 𝑓𝑧𝑥    ,      𝑓𝑦𝑧 = 𝑓𝑧𝑦  . 
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EXAMPLE  2 :   Let 𝑓(𝑥, 𝑦, 𝑧) = 𝑥𝑦3 − 𝑧𝑥5 + 𝑥2𝑦𝑧 be a function ,  Calculate all for nine 

second partial derivatives and show that all three pairs of  mixed partials are equal  

 Solution : We  have 

fx   = y3  − 5zx4   + 2xyz ,    

fy   = 3xy2   + x2z ,   

 and 

fz   =  −  x5  + x2y 

Then 

fxx  =  −20zx3 +  2yz   ,             fyy   =  6xy    ,            fzz   = 0 , 

fxy   =
∂

∂y
(y3  −  5zx4   +   2xyz    )  =    3y2  +  2xz ,  

fyx   =
∂

∂x
(3xy2 + x2z  )  =    3y2  +  2xz , 

fxz   =
∂

∂z
(y3  −  5zx4   +   2xyz    )       = −   5x4  +  2xy , 

fzx   =
∂

∂x
( − x5   +  x2 y   )  =  −5  x4  +  2xy , 

fyz   =
∂

∂z
(3 xy2   + x2 z   )  =    x2, 

fzy   =
∂

∂y
( − x5   + x2 y ) =   x2 

We conclude this section by pointing out  that we can easily define partial derivatives of orders 

higher than two . For example, 

fzyx  =  
∂3f

∂x ∂y ∂z 
   =

∂

∂x
(

∂2 f

∂y ∂z
)  =    

∂

∂x
  (fzy )    

 

EXAMPLE 3   Calculate and for the function of Example 2 .  

Solution We easily obtain the three third partial derivatives: 
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fxxx  =
∂

∂x
(fxx) =  

∂

∂x
(20zx3  +  2yz  ) =  −60zx2 

fzzy  =
∂

∂y
(fxz)  =  

∂

∂y
(5x4  +  2yz  ) = 2x 

fyxz  =
∂

∂z
(fyx)  =  

∂

∂z
(3y2  +  2xz  ) = 2x 

Note that fxzy =  fyxzThis again is no accident and follows from the generalization of Theorem 2 

to mixed third partial derivatives. Finally, the fourth partial derivative fyxzxis given by  

fyxzx  =   
∂

∂x
(fyxz)  =   

∂

∂x
( 2x) = 2.  

  PROBLEMS 

In problems 1-12 , calculate the four second partial derivatives and show that the mixed partials 

are equal .  

1 . f ( x , y ) =  x2 y.  

. f ( x , y ) =  xy2 y.2 

  3 .  f (x ,y )   =  3exy3  

4. f ( x , y ) =  sin (x2  +  y3  ) 

5 .  f (x ,y )  =
4x

y5 

6 . f ( x , y ) =   eytanx. 

7  .  f (x ,y ) =In ( x3y5 − 2 )  

8  . f ( x , y ) =√xy +  2y3 

9.  f (x ,y )  = (x + 5y sin x )اكتبالمعادلةهنا. 

10 . f ( x , y ) = sinh ( 2x -  y ) 

11 .  f (x ,y )   = sin−1 (
x2 −y2

x2 + y2) 

12 . f ( x , y ) =sec  x y   
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In Problems 13 -21 , calculate the nine second partial derivatives and show that the three pairs of 

mixed partials  are equal  

13 . f  ( x , y , z  ) = xyz 

14 . f ( x , y , z ) = x2y3z4 

15 . f  ( x , y , z  ) =
x+  y 

z
 

16 . f  ( x , y , z  ) = sin ( x + 2y +z2 ) 

17. f  ( x , y , z  ) = tan−1 xz

y
 

18 . f  ( x , y , z  ) = cos xyz 

19 . f  ( x , y , z  ) =e3xy  cosz 

20 . f  ( x , y , z  ) = ln ( xy  + z) 

21 . f  ( x , y , z  ) = cosh√x + yz  

22 . How many third partial derivatives are there for a function of (a) two variables; (b) three 

variables?  

23 . How many fourth partial derivatives are there for a function of (a) two variables; (b) three 

variables? 

24  . How many nth partial derivatives are there for a function of (a) two variables; (b) three 

variables ?  

In Problems 25 -30 , calculate the given  partial derivative 

  25 . f ( x, y ) = x2y3 +  2y: fxyx      

26 . f ( x, y ) = sin (2 xy4 ) ;  fxyt     

27 . f ( x, y ) = In (3x − 2y ); fyxy 

28 . f ( x, y, z ) = x2y + y2z − 3 √xz ; fxyz     

29. f ( x, y,  z ) = cos(x +  2y + 3z ) ; fzzx      

30 f ( x, y,  z ) = exy sin z ; fzxyx     . 
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  DIFFERENTILITY AND THE GRADIENT  

In this section we discuss the notion of the differentiability of a function of several  variables. 

There are several  ways to introduce this subject and the way we have chosen is designed to 

illustrate the great similarities between  differentiation of  functions  of one  variable and  

differentiation of  functions of several  variables . 

We begin with a function of one variables, 

Y  =f (x). 

If  f is  differentiable , then 

F' (x)= 
dy

dx
=  lim

∆x→o

∆y

∆x
 

Then if we define the new  function ∈ ( ∆x )by  

∈ (∆x) =
∆y

dx
− f ′(x),  

We have  

lim
∆x→o

∈ (∆x) =  lim
∆x→o

(
∆y

∆x
  − f ′(x)) = lim

∆x→o

∆y

∆x
− f ′(x) 

= f'  (x) -  f ' (x) = 0 .  

Multiplying both sides of (2) by ∆x  and rearranging terms, we obtain 

∆y = f ′(x)∆x +∈ (∆x)  ∆x .    

Note the here ∆y  depends on both ∆x and  x. Finally, since ∆y = f ′(x + ∆x) −   f(x), we obtain  

f ′(x + ∆x) − f(x) = f ′(x)∆x+ ∈ (∆x)  ∆x .     

Why did we do all this? We did so in order to be able to state the following alternative definition 

of differentiability of a function f   of one variable. 

Definition 1 ALTERNATIVE  DEFINITON OF DIFFRENTIABILITY OF A FUNCTION OF 

ONE  VARIABLE    Let f be function of one variable . Then f is differentiable at a number x if 

there is function  f' (x) and  a function  g(∆x )  such that 

f ′(x + ∆x) − f(x) = f ′(x)∆x +  g(∆x),    

Where lim
∆x→o[

g(∆x) /(∆x)] = 0 . 
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We will soon show how the definition (5) can be extended to a function of two or more variables. 

First, we give a definition 

Definition 2    DIFFRENTIABILITY OF A FUNCTION OF TOW VARIABLES:    Let f be  a  

real –valued 

Function of two variables that is defied in a neighborhood of a point (x, y )and such that 

fx( x, y)and fy(x, y ) exist.Then f is differentiable a (x, y) if there exist 

function∈1 (∆x , ∆y)and ∈2 (∆x , ∆y) such that  

 

 

 

Where  

 

 

 

DIFFERENTI A BILTY AND THE  GRADIENT  

In this  section we discuss the notion  of the differentiability of a function of several  variables. 

There are several ways to introduce this subject and the way we have chosen is designed to 

illustrate the great similarities between differentiation of functions of several variables. 

We being with a function of one variables. 

Y =  f(x)  

If  f  is differentiable , then  

f ′(x) =  
dy

dx
=  lim

∆x→0

Δy

Δx
                                                                                                         (1)          

Then if we define the new function  ∈ (∆x) by  

∈ (∆x) =
Δy

Δx
− f ′(x),                                                                                                                 (2) 

 We have  

lim
∆x→0

∈ (∆x) = lim
∆x→0

(
Δy

Δx
− f ′(x)) = lim

∆x→0

Δy

Δx
− f ′(x) = f ′(x) − f ′(x) = 0(3) 

𝑓 (𝑥 + ∆𝑥 , 𝑦 + ∆𝑦 ) − 𝑓 (𝑥 , 𝑦 ) =  𝑓𝑥(𝑥, 𝑦  )∆𝑦 +∈1 (∆𝑥 , ∆𝑦 ) +∈2 (∆𝑥 , ∆𝑦 )  ∆𝑦, 

lim
(∆𝑥,∆𝑦)→(𝑜,0)

∈1 (∆𝑥 , ∆𝑦 ) = 0 𝑎𝑛𝑑   lim
(∆𝑥,∆𝑦)→(𝑜,0)

∈2 (∆𝑥 , ∆𝑦 ) = 0. 
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Multiplying both sides of (2) by ∆x  and rearranging terms , we obtain  

∆y = f ′(x)∆x+∈ (∆x) ∆x 

Note that  here∆y depends on both ∆x and x Finally ,since ∆y = f(x + ∆x) − f (x),    we obtain 

f ( x + ∆x) −  f(x) =  f ′(x)∆x + +∈ (∆x) ∆x                                                            (4) 

Why did we do all this ? We did so in order to be able to state the following alternative definition 

of differentiability of a function f of one variable 

Definition  1  ALTRNATIVE   DEFINTION OF DIFFERENTIABILITY   OF A  FUNCTION 

OF ONEVARIABLE  Let  f   be a function f of one variable  Then  f is differentiable at  a  number 

x if there is a  function   f' (x) and a function g (∆x )  such that  

f (x + ∆x ) − f (x) = f ′(x)∆x + g(∆x)(5) 

Where lim
∆x→0

[
g(∆x)

∆x
) = 0   

We will soon show how the definition (5) can be extended to two or more  variables . First , we 

give a  definition . 

Definition  2    DIFFERENTIABILITY   OF A  FUNCTION OF TOW  VARIABLE S Let  f   be  

areal –valued function f of two  variable s that fx(x , y )and fy(x , y ) exist    Then  f is 

differentiable at  (x, y ) if there exist  function   f' (x) and a 

functions∈1 (∆x , ∆y)and ∈2 (∆x , ∆y)such that 

 

 

Where  

 

 

  

EXAMPLE   1     Let  f (x,  y)  = xy . Show that  f  is differentiable at every point (x , y) in R2 

Solution 

f (x + ∆x, y + ∆y) − f (x, y ) = (x + ∆x)(y + ∆y) − xy = xy + y∆x + x∆y + ∆x∆y − xy

= y∆x + x∆y + ∆x∆y 

𝑓 (𝑥 + ∆𝑥, 𝑦 + ∆𝑦 ) − 𝑓 (𝑥 , 𝑦)

= 𝑓𝑥(𝑥 , 𝑦 )∆𝑥 + 𝑓𝑦(𝑥 , 𝑦 )∆𝑦 +∈1 (∆𝑥 , ∆𝑦)∆𝑥    

+∈2 (∆𝑥 , ∆𝑦)∆𝑦                                                                                                                  (6) 

 

lim
(∆𝑥 ,∆𝑦)→(0,0)

∈1 (∆𝑥 , ∆𝑦) = 0           𝑎𝑛𝑑    lim
(∆𝑥 ,∆𝑦)→(0,0)

∈2 (∆𝑥 , ∆𝑦) = 0                                          (7)     
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Now fx = y and fy = x  so we have  

f (x + ∆x, y + ∆y) − f (x, y ) = fx(x, y)∆x +    fy(x, y)∆y + +∆y∆x + 0. ∆y 

Setting∈1 (∆x , ∆y) = ∆y     and   ∈2 (∆x , ∆y)  = 0 we see that  

lim
(∆x ,∆y)→(0 ,0)

∈1 (∆x , ∆y) = lim
(∆x ,∆y)→(0 ,0)

∈2 (∆x , ∆y) = 0 

This result shows that  f (x, y ) =  xy is differentiable at  every point in  R2 

We now rewrite  our definition of differentiability in a more compact from Since a point(x, y) is  

a vector inR2 we will  write (as we have  done  before ) x =(x , y) .Then if z =f (x , y) we can  

simply write  

Z = f (x) .  

Similarly , if w = f (x, y , z )we may write 

W= f (x) , 

Where x is the vector (x, y , z). With this notation  we may  use the symbol  ∆x to denote the 

vector(∆x , ∆y)in R2 or(∆x , ∆y , ∆z) inR2 

Next , we  write 

g(∆x) = ∈1 (∆x , ∆y)∆x +∈2 (∆x , ∆y) ∆y(8) 

Note that(∆x , ∆y) → ( 0 , 0 ) can be written in the compact   form ∆x → 0 .Then if  the 

conditions (7) hold, we see that  

↓ |∆x| = √∆x2 + ∆y 

lim
∆x→0

| g (∆x)|

|∆x|
≤  lim

∆x→0
|∈1 (∆x , ∆y)|

|∆x|

√∆x2 + ∆y2
+ lim
∆x→0

|∈2 (∆x , ∆y)|
|∆x|

√∆x2 + ∆y2
 

 

|∆x|

    ↓ √∆x2 + ∆y2
 ≤ 1 

≤ lim
∆x→0

|∈1 (∆x , ∆y)| + lim
∆x→0

|∈2 (∆x , ∆y)| = 0 + 0 = 0 

Finally , we have the following important definition 
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Definition  3 THE  GRADIENT   Let  f   be  a function f of two variables such thatfx, andfy,exist 

at  a point x =(x, y) Then the gradient of  at  f at x , denoted∇f (x),  is given by 

 

 EXAMPIE    2  In 

Example   1, f (x,  y) =xy fx = y , andfy = x, so that  

Using  this new  notation , we  observe that  

∇f (x). ∆x = (fx i + fyj). (∆xi + ∆y j ) =  fx(x , y )∆x + fy(x , y )∆y 

  Also , 

f (x + ∆x, y + ∆y ) = f  (x + ∆x). 

Thus we  have  the following definition , which  is implied Definition 2 . 

Definition   4 DIFFERENTIABILITY   Let   f be  a function of  two variables  that  is definition 

in  a neighborhood  of  a point  x = (x,  y ). Let∆x = (∆x, ∆y). If  fx(x , y )and fy(x , y )exist , then  

f is differentiable  at x if there is a function g such that  

 

 

Where                                                                                                                                                          

 

 

 

 

Theorem  1: Let   f ,fx ,    and fy bedefined and  con tenuous in  a neighborhood  of x = (x , y 

 ) Then  f is differentiable  at  x 

EXAMPLE      3   Let  z  =f  (x, y )xy2 + ex
2y3

Show  that  f   is differentiable and  calculate∇f .  

Find ∇f (1 , 1) 

Solution .  
∂f

∂x
= y2 cos xy2 + 2xy3ex2y

3
and

∂f

∂y
=

∂f

∂x
= y2 cos xy2 + 2xy3ex2y

3
 

Since
∂f

∂x
  and

∂f

∂y
  are continuo us f is  differentiable  and  

∇𝑓(𝑥) = 𝑓𝑥(𝑥 , 𝑦 )𝑖 + 𝑓𝑦(𝑥 , 𝑦 ) 𝑗                                                                                                      (9) 

𝑓(𝑥 + ∆𝑥 ) − 𝑓(𝑥) = ∇𝑓(𝑥).  ∆𝑥 + 𝑔(∆𝑥),                                                                         (10) 

lim
(∆𝑥→0)

𝑔(∆𝑥)

|∆𝑥|
= 0                                                       (11) 
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∆f (x, y ) = (y2 cos xy2 + 2xy3ex2y
3
)i + (2xy cos xy2 + 3x2y2ex2y

3
) j    

At (1 ,1 ),∇f (1, 1) = (cos 1 + 2e )i + (2 cos 1 + 3e )j 

  we showed  that the existence of all of its partial derivatives  at a point dose not ensure that a 

function is continuous at that point  . However, differentiability (according   to Definition 4 ) 

does ensure continuity .  

Theorem  2 :  If   f  is differentiable  at  x0 = ( x0 , y0)  then  f is continuous  at x0 

Proof    We must show that lim
∆x→0

f(x) = f(x0) But if we  define∆x by  ∆x = x − x0 this  is the 

same as showing that 

lim
∆x→0

f(x0 + ∆x )  = f(x0)(12) 

Since  f is  differentiable  at  x0 

f(x0 + ∆x ) − f(x0) = ∇f(x0). ∆x  + g(∆x).                                                                     (13)   

But  as∆x → 0,   both terms on the right –hand side  of (13) approach zero, so  

lim
∆x→0

[ f(x0 + ∆x ) − f(x0)] = 0,   

Which means that (12) holds and the theorem is proved. 

The converse to this theorem is false, as it is in one –variable calculus. That is, there are 

functions that are continuous, but not differentiable, at a given point . For example, the function  

f (x, y) = √x
3
+ √y 

3
 

 Is continuous at any point (x,  y) inR2  But   

∇f (x, y) =  
1

3x2/3
 i +

1

3y2/3
j,   

So  f not differentiable at any point (x,  y) for which either x or y is zero . That is , is not defined 

on the x – and y- axes Hence   f  is not  differentiable along  these axes . 

 we showed that  

(f + g )′ = f′ + g ′          and   ( af)′ = af′  ; 

that is , the derivative  of the sum  of two functions is the sum  of the derivatives of the  two  

functions and  the derivative of a scalar multiple of  a two    functions is the scalar times  the 

derivative of the  function . These results can  be extended to the gradient  vector .  
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Theorem    3  Let  f  and g be differentiable in a  neighborhood  of  x = (x,  y) . Then for every 

scalar  a,  ,a.f   and f  +g  are differentiable at  x,  and   

 

 

 

Proof   

(i)Form the definition of differentiability (Definition 4), there is a function 

h1(∆x)such that  

f (x + ∆x) − f(x) = ∇f(x). ∆x + h1(∆x), 

 

Where     lim
∆x→0

[(h_1 (∆x))/|∆x| ] = 0  Thus af(x + ∆x )– af (x) = a∇f(x). ∆x + a h1(∆x), and  

lim
∆x→0

ah1(∆x)

|∆x|
= a lim

∆x→0

h1(∆x)

|∆x|
= a0 = 0. 

But 

a 
∂f

∂x
=
∂∂(af)

∂x
 

a∇f(x) = a(fxi + fyj) = (af)xi + (af)yj = ∇(af) 

 Thus                         

af(x + ∆x) − af(x) = ∇af(x)  . ∆x + ah1(∆x), 

Which shows that  af is differentiable and∇(af) = a∇f 

(ii)As above, there is a function h2(∆x)such that g (x, ∆x) − g(x)

= ∇g(x). ∆x + h2(∆x),where  

(f + g)(x + ∆x) − (f + g)(x) = [ f(x + ∆x) + g(x + ∆x)] − [f(x) + g(x)] 

= [f(x + ∆x) − f(x)] + [g(x) + ∆x) − g(x)] 

= ∇f(x) . ∆x + h1(∆x) + ∇g(x).  ∆x + h2(∆x) 

= [∇f(x) + ∇g(x)]. ∆x + [h1(∆x) + h2(∆x)], 

 

(𝑖)∇(𝑎𝑓) = 𝑎∇𝑓, 𝑎𝑛𝑑 

(𝑖𝑖)∇(𝑓 + 𝑔) = ∇𝑓 + ∇𝑔 . 
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Where  

lim
∆x→0

[h1(∆x) + h2(∆x)]

|∆x|
= 0. 

To complete the proof, we observe that    

∇f(x) + ∇g(x) = (fxi + fyj) + (gi + gyj)  = (gx + gy )i + (gx + gy )j 

∂

∂x
(f + g) =

∂f

∂x
+
∂g

∂x
 

= (f + g)xi + (f + g)yj = ∇(f + g) . 

Thus f + g     is  differentiable and  ∇(f + g) = ∇f + ∇g  . 

REMARK.      Any function that satisfies conditions (i) and (ii) of Theorem  3 is called  a linear 

mapping or linear operator .  Linear operator play an extremely important role  in advanced 

mathematics 

All the definitions and theorems in this section hold for functions of three or more variables.  We 

give the equivalent results for functions of three variables below .  

Definition    5  THE GRADIENT   Let f  be scalar function of three  variables that fx, fy, and fz 

exist at a point  x = (x,  y,  z)  Then the  gradient of f at x, denoted ∇f(x),  is given by the  vector 

 

 

Definition    6  DIFFERENTIABILITY      Let f  be a function of three  variables that  is defined 

in a neighborhood  of x = (x,  y,  z)  ,and let  ∆x = (∆x, ∆y, ∆z).  If    fx(x , y, z)fy(x , y, z),  and 

fz  (x , y, z) exist  then  f  is differentiable  at  x  if there is a function g such that  

 

 

Where      

 

 

Equivalently ,  we can write  

 

𝛻𝑓(𝑥) = 𝑓𝑥(𝑥, 𝑦, 𝑧 )𝑖 + 𝑓𝑦(𝑥, 𝑦, 𝑧 )𝑗 + 𝑓𝑧(𝑥, 𝑦, 𝑧 )𝑘 .                                                                            (14)  

𝑓(𝑥 + ∆𝑥) − 𝑓(𝑥) = ∇𝑓 . ∆𝑥 + 𝑔(∆𝑥) 

lim
|∆𝑥|→0

𝑔(∆𝑥)

|∆𝑥|
 = 0 

𝑓(𝑥 + ∆𝑥, 𝑦 + ∆𝑦, 𝑧 + ∆𝑧) − 𝑓(𝑥, 𝑦, 𝑧)

= 𝑓𝑥(𝑥, 𝑦, 𝑧 )∆𝑥 + 𝑓𝑦(𝑥, 𝑦, 𝑧 )∆𝑦 + 𝑓𝑧(𝑥, 𝑦, 𝑧 )∆𝑧 + 𝑔(∆𝑥, ∆𝑦, ∆𝑧),    
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Where  

 

 

Theorem   1'  If f, fx  ,fy  and fz  exist and are continuous in a neighborhood  of x = (x,  y,  z )then  

f  is differentiable  at x 

Theorem   2' Let  f be  function of three variables that is differentiable  at x0 Then  f  is 

continuous at  x0 

EXAMPLE   4   Let  f(x, y, z) =xy2z3  show that f  is differentiable at any  point   x0  calculate 

∇f , and  find ∇f(3, −1,2) 

Solution  
∂f

∂x
= y2z3,

∂f

∂y
= 2xyz3 and 

∂f

∂z
= 3 xy2z2 Since  f ,

∂f

∂x
 ,
∂f

∂y
   and 

∂f

∂z
  are all continuous ,

we  know that  f is  differentiable and  that  

∇f =   y2z3i +  2xyz3j + 3 xy2z2k  

And  

∇f(3, −1,2) = 8i − 48j + 36k  . 

Theorem   3'  Let  f  and  g be differentiable   in a neighborhood  of x = (x,  y,  z )Then  for any 

scalar  a , af  and  f+ g  are  differentiable  at x , and  

 

 

 

We conclude this section  with  a proof  of Theorem   1  . The proof of Theorem  1'   is similar 

proof  of Theorem   1  .  We begin by restating the mean value theorem for a function f of one 

variable .  

Mean Value Theorem    Let   f be continuous on [a, b ]anddifferentiableon(a,

b)Thenthereisanumbercin(a, b)such  that 

F (b) -  f(a)=f '(c)(b –a). 

lim
(∆x,∆y,∆z)→(0,0,0)

𝑔(∆x, ∆y, ∆z)

√∆𝑥2 + ∆𝑦2 + ∆𝑧2
= 0 

(𝑖)∇(𝑎𝑓) = 𝑎∇𝑓 , 𝑎𝑛𝑑 

(𝑖𝑖)∇(𝑓 + 𝑔) =     ∇𝑓 + ∇𝑔 



Lecture no.6                                                                                by Hussein J. AbdulHussein 

Advanced Calculus I                                                Al Muthanna University, College of Science                  

 

10 
 

Now we have  assumed  that  f,fx,   andfy,    are all continuous in a  neighborhood  N of x = (x, 

y) Choose∆x  so small  that  x+∆x   N . Then  

∆f(x) = f(x + ∆x  ,y  +∆y) − f (x, y) 

[f  (x + ∆x, y + ∆y) − f(x + ∆x , y)] + [f (x + ∆x, y) − f (x, y )] ⏞                                        
This  lerm was added  and  subiracted

    (15) 

If  x  + is fixed ,  then f (x + ∆x, y)  is a function  of y   that  

is. Hence by the mean value theorem there is a number  c2 between y and y + ∆y  such  that 

f (x + ∆x, y + ∆y) − f (x + ∆x, y) = fy(x + ∆x, c2)[(y + ∆y) − y ]

= fy(x + ∆x, c2)∆y                                                                                                                            (16) 

Similarly,  with  fixed , f (x, y ) is a function  of x only , and  we  obtain  

f (x + ∆x, y +  y) − f(x + y) = fx(c1  , y) ∆x, (17) 

Where   c1  is  between x  and  x  +∆x Thus  using (16) and (17)  in (15) ,  we have  

∆f (x) =  fx(c1  , y) ∆x + fy(x + ∆x, c2)∆y .                                   (18) 

Now bothfx and fyarecontinuousatx = (x, y)sosince   c1isbetweenxandx +

 ∆x and   c2isbetweeny + ∆y, weobtain 

lim
∆x→0

fx(c1, y) = fx(c1, y) = fx(x)(19) 

And 

lim
∆x→0

fy(x + ∆x, c2) = fy(c1, y) = fy(x)(20) 

Let 

∈1 (∆x) = fx(c1, y) − fx(c1, y) .                                                                                                 (21) 

From  (19) it follows that   

lim
∆x→0

∈1 (∆x) = 0                                                                                                                              (22) 

Similarly ,  if 

∈1 (∆x) = fy(x + ∆x, c2) − fy(x, y),                                                                                          (23) 

Then  
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lim
|∆x|→0

∈2 (∆x) = 0(24) 

Now define  

g(∆x) =∈1 (∆x) ∆x +∈2 (∆x)∆y                                                                                     (25) 

From (22) and (24) it follows that 

lim
|∆x|→0

g(∆x)

|∆x|
= 0  .                                                                           ( 26) 

Finally , since  

fx(c1, y) − fx(c1, y) +∈1 (∆x)                   from(21)                  ( 27) 

And  

fy(x + ∆x, c2) =  fy(x, y) +∈2 (∆x),         from(23)                                                            (28) 

We may substitute (27) and (28)  into (18)  to obtain  

∆f(x) = f(x + ∆x) − f(x) = [fx(x) +∈2 (∆x)]∆x + [fy(x) +∈2 (∆x)]∆y

= fx(x)∆x + fy(x)∆y + g(∆x) = (fxi + fyj).  (∆x) + g(∆x), 

Where  

lim
|∆x|→0

= [g(∆x)/|∆x| ] → 0, and the proof is (at last )complete .               

 

PROBLEMS      

1.   Let f (x, y) = x2y2 Show , by using Definition 2 , that f is differentiable at any  point in R2   

2.   Let f (x, y) = x2y2Show , by using Definition 2 , that f is differentiable at any  point in R2   

3  . Let f (x, y) = be any polynomial in the variables x and y . Showthat  f  is  differentiable  

In problems   4- 24 calculate the g gradient of the given  function If a point is also given, 

evaluate the gradient at that point .  

4.  f (x, y) = y (x + y)2 5.   f (x, y) = e√xy; (1, 1) 

6 . f (x, y) = cos(x − y); (
π

2
,
π

4
)                     7. f (x, y) = In(2x − y + 1)                                    
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8 . f (x, y) = √x2 + y39. f (x, y) = tan−1
y

x
 ;    (3,3) 

   10. f (x, y) = y tan(y − x)         11 .  f (x, y) = x2 sin hy 

12 . f (x, y) = sec(x + 3y);  (0, 1)                13. f (x, y) =
x − y

x + y
  ;   (3, 1) 

14. f (x, y) =
x2 − y2

x2 − y2
                                     15. f (x, y) =

ex2 − e−y2

3y
 

16. f (x, y, z) = xyz ; (1,2, 3)                           17 . f (x, y, z) = sin x cos y tan z; (
π

6
 ,
π

4
 ,
π

3
 )  

18 .  f (x, y, z) =   
x2 − y2 + z2

3xy
 ; (1, 2,0)      19 .  f (x, y, z) = x ln y − z ln x  

20 .  f (x, y, z) = xy2 + y2z3 ; (2, 3, −1)       21.  f (x, y, z) = (y − z)ex+2y+3z; (−4,−1, 3) 

22.   f (x, y, z) = x sin yln z; (1, 0, 1)               23 . f (x, y, z) =
x − z

√1 − y2 + x2
 ; (0, 0, 1) 

24.  f (x, y, z) = xcosh z − ysin x 

25. Show that if  f and g are  differentiablefunction of three variables , then ∇(f + g)

= ∇f + ∇g 

26. Show that if  f and g are  differentiablefunction of three variables , then  fg is 

differentiable and 

∇(fg) = f(∇g) + g(∇f). 

∗ 27. Show that ∇f = 0 if  and 0nly  if  f is constant 

∗ 28. Show that ∇f = ∇g , then there  is a  constant c for which  f(x, y)

= g(x, y ) + c  [Hint ∶ Use the result of Problem 27. ] 

∗ 29 .What is the most general function  f such  that ∇f(x) = x for every x in R2 ? 

∗ 30 . Let  f (x, y) =

{
 
 

 
 
(x2 + y2) sin

1

√x2 + y2
(x, y) ≠ (0, 0)

(x, y ) = (0, 0)
0,                                                                       

 

(a) Calculate fx(0, 0) andfy(0, 0) 
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(b)Explain why fx and fyare not  continuous at (0, 0) 

(c) Show that  f is   differentiable at(0 ,0) 

31. Suppose that  f is differentiable  function of one variable and g is a differentiable 

   function  of three variables. Show that  f°g is differentiable and∇f °g = f ′(g)∇g 
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THE CHAIN RULE 

In this section we derive the chain rule for function s of two   and three variables Let us recall 

the chain rule for the composition of two  f unctions ofone  variable ∶ 

Let y = f(u)and u = g (x)and assme that f and g are  differentiable.  Then 

dy

dx
=

dy

du

du

dx
= f ′(g(x))g′(x)(1) 

If z  =f (x,  y) is a function of two variables ,  then there are two versions of the chain rule 

Theorem  1  CHAIN RULE  Let  z =f (x,  y) be differentiable and suppose that x =x (t) and y= 

y(t). Assume further thatdx/dt anddy/dt   exist and are continuous Then z can be written as a 

function of the parameter t, and 

 

 

 

We can also write this result using our gradient If g(t) =x (t) I  +y(t)j, then g'(t)=  (dx/dt)i +

(dy/dt)j, and (2)can be written as 

  Theorem  2  

 

Theorem  2     CHAIN RULE  Let  z =f (x,  y) be differentiable and suppose that x and y are  

function of the two variables r and s That is , x= x(r, s) and y =(r, s) 

Suppose further that ∂x/ ∂r  , ∂x/ ∂s  , ∂y/ ∂r  and ∂y/ ∂s      all exist  and are continuous . Then 

z can  be written  as a function  of r and s, and  

 

 

 

 

We will leave the proofs of these theorems until the  end  this section . 

EXAMPLE  1∶ Let  z = f(x, y) = xy2 . Let x = cos t  and y = sin t  Calculate  dz/dt 

𝑑𝑧

𝑑𝑡
=

𝜕𝑧

𝜕𝑥

𝑑𝑥

𝑑𝑡
+

𝜕𝑧

𝜕𝑦

𝑑𝑦

𝑑𝑡
= 𝑓𝑥

𝑑𝑥

𝑑𝑡
+

𝑑𝑦

𝑑𝑡
(2) 

 

 

𝑑

𝑑𝑡
𝑓(𝑥(𝑡), 𝑦(𝑡)) = (𝑓 °𝑔)′(𝑡) = [𝑓(𝑔(𝑡))]′ = ∇𝑓 ∙ 𝑔′(𝑡)                                          (3) 

 

 

 

 

𝜕𝑧

𝜕𝑟
=

𝜕𝑧

𝜕𝑥

𝜕𝑥

𝜕𝑟
+

𝜕𝑧

𝜕𝑦

𝜕𝑦

𝜕𝑟
                                                                                                                     (4)         

𝜕𝑧

𝜕𝑠
=

𝜕𝑧

𝜕𝑥

𝜕𝑥

𝜕𝑠
+

𝜕𝑧

𝜕𝑦

𝜕𝑦

𝜕𝑠
                                                                                                                       (5)  
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Solution. 

dz

dt
=

∂z

∂x

dx

dt
+

∂z

∂y

dy

dt
= y2(− sin t) + 2xy(cos t) 

= (sin 2 t)(− sin t) + 2(cos t (sin t) (cos t) 

= 2 sin t cos2t − sin3t 

We can calculate this result another  way . Since  z = xy2  we have z = (cos t)(sin2t)   Then 

dz

dt
= (cos t) 2(sin t (cos t) +  (sin2t)(− sin t) 

= 2 sin t cos2t − sin3t 

EXAMPLE  2    Let  z = f (x, y) = sin xy2   Suppose that  x =
r

s
and y = er−s  Calculate∂z/

∂r and ∂z/ ∂s 

Solution 

∂z

∂r
=

∂z

∂x

∂x

∂r
+

∂z

∂y

∂y

∂r
= (y2 cos xy2)

1

s
+ (2xy cos xy2)er−s 

=
e2(r−s) cos[(

r
s)e

2(r−s)]

s
+

2r

s
{cos[

r

s
e2(r−s)] } e2(r−s) 

And 

∂z

∂s
=

∂z

∂x

∂x

∂s
+

∂z

∂y

∂y

∂s
 =   (y2 cos xy2)

−r

s2
+ (2xy cos xy2)(−er−s) 

=
−re2(r−s) cos[(

r
s)e

2(r−s)]

s2
+

2r

s
{cos[

r

s
e2(r−s)] } e2(r−s) 

 The chain rules given in Theorem 1 and Theorem 2 can easily be extended to functions of three 

or more  variables . 

Theorem  1'  Let w= f (x, y , z)  be a differentiable function If x = x(t) , y = y (t), z = z (t),

and  ifdx/dt, dy/dt, and dz/dtexist  and are continuous, then 

 

 

𝑑𝑤

𝑑𝑡
=

𝜕𝑤

𝜕𝑥

𝑑𝑥

𝑑𝑡
+

𝜕𝑤

𝜕𝑦

𝑑𝑦

𝑑𝑡
+ 

𝑑𝑤

𝑑𝑧

𝑑𝑧

𝑑𝑡
(6) 



Lecture no.7                                                                                by Hussein J. AbdulHussein 

Advanced Calculus I                                                Al Muthanna University, College of Science                  

 

3 
 

Theorem  2'  Let w = f (x, y , z)   be a differentiable function and  let  x= x (r, s), y=y (r,  s), and 

z=z (r,  s)  Then if all indicated partial derivatives exist  and are continuous, we have 

 

 

And 

 

 

Theorem  3'  Let w = f (x, y , z)   be a differentiable function and  let  x= x (r, s, t), y=y (r,  s), 

and z=z (r,  s, t )  Then if all indicated partial derivatives exist  and are continuous, we have 

 

 

 

 

 

 

PROBLEMS    

In problems 1-11, use the chain rule to calculate dz/dt Check  your answer by first writing  z or w 

as  a function of t  and then  differentiating.  

1.  z = xy, x = et, y = e2t                                   2. z = x2 + y2, x = cos t, y = sin t 

3. z =
y

x
, x = t2, y = t3                                              4. z =  ex sin y, x = √t, y = √t

3
 

5.  z =  tan−1
y

x
, x = cos 3t, y = sin

5t                  6. z = sinh(x − 2y), x = 2t2, y = t2 + 1
 

  7. w =  x2 + y2, z2, x  = cos t, y = sin t , z = t   

8. w = xy − yz + zx, x ≠ et, y =   e2t, z = e3t 

9. w =
x + y

z
 , x = t, y = t2, z = t3 

𝜕𝑤

𝜕𝑥
=

𝜕𝑤

𝜕𝑥

𝜕𝑥

𝜕𝑟
+

𝜕𝑤

𝜕𝑦

𝜕𝑦

𝜕𝑟
+ 

𝜕𝑤

𝜕𝑧

𝜕𝑧

𝜕𝑟
(7) 

𝜕𝑤

𝜕𝑠
=

𝜕𝑤

𝜕𝑥

𝜕𝑥

𝜕𝑠
+

𝜕𝑤

𝜕𝑦

𝜕𝑦

𝜕𝑠
+ 

𝜕𝑤

𝜕𝑧

𝜕𝑧

𝜕𝑠
(8) 

𝜕𝑤

𝜕𝑥
=

𝜕𝑤

𝜕𝑥

𝜕𝑥

𝜕𝑟
+

𝜕𝑤

𝜕𝑦

𝜕𝑦

𝜕𝑟
+ 

𝜕𝑤

𝜕𝑧

𝜕𝑧

𝜕𝑟
 

𝜕𝑤

𝜕𝑠
=

𝜕𝑤

𝜕𝑥

𝜕𝑥

𝜕𝑠
+

𝜕𝑤

𝜕𝑦

𝜕𝑦

𝜕𝑠
+ 

𝜕𝑤

𝜕𝑧

𝜕𝑧

𝜕𝑠
(9) 

𝜕𝑤

𝜕𝑡
=

𝜕𝑤

𝜕𝑥

𝜕𝑥

𝜕𝑡
+

𝜕𝑤

𝜕𝑦

𝜕𝑦

𝜕𝑡
+ 

𝜕𝑤

𝜕𝑧

𝜕𝑧

𝜕𝑡
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10.w = sin(x + 2y + 3z), x = tant, y = sec t, z = t5  

11.  w = In(2x − 3y + 4z), x = et, y =   Int, z = cos h t 

In problems 12-26, use the chain rule to calculate Check  the indicated partial derivatives. 

12. z = xy; x = r + s; y = r − s; ∂z/ ∂r  and ∂z/ ∂s 

13 . z =  x2 + y2; x =
cos(r + s); y = sin(r − s);     ∂z

∂r
 and

∂z

∂s
 

  14. z =
y

x
 ; x = er; y =

es  ∂z

∂r
 and

∂z

∂s
;  

15. z = sin
y

x
; x =

r

s
; y =

s

r
;
∂z

∂r
 and

∂z

∂s
 

16. z =
ex+y

ex−y
;   x = In rs ; y = In 

r

s 
;  
∂z

∂r
 and

∂z

∂s
 

17. z = x2y3; x = r − s2; y = 2s + r;  ∂z/ ∂r  and ∂z/ ∂s    

18 . w = x + y + z ; x = rs; y = r + s; z = r − s; ∂w/ ∂r  and ∂w/ ∂s   

19 . w =
xy

z
; x = r, y = s, z = t;

∂w

∂r
 ,
∂w

∂s
and 

∂w

∂t
 

20.w =
xy

z
; x = r + s , y = t − r, z = s − 2t;

∂w

∂r
 ,
∂w

∂s
and 

∂w

∂t
 

21 . w = sin xyz; x = s2r, y = r2s, z = r − s; 
∂w

∂r
 and

∂w

∂s
 

22.w = sin h(x + 2y + 3z); x = √r + s, y = √s − t, z3 =
1

r + t′
 ,
∂w

∂r
 ,
∂w

∂s
and 

∂w

∂t
 

23.w = xy2 + yz2; x = rst , y =
rs

t
, z =  

1

rst
 ;  

∂w

∂r
 ,
∂w

∂s
and 

∂w

∂t
 

24.w = In(x + 2y + 3z); x = rt3 + s; y = t − s5, z = er+s ; ∂w/ ∂r  , ∂w/ ∂s and  ∂w/ ∂t 

25.w = e
xy
z  ; x = r2 + t2, y = s2 − t2, z = r2 + s2;

∂w

∂r
 ,
∂w

∂s
and 

∂w

∂t
 

∗ 26 . u = xy + w2 − z3; x = t + r − q, y = q2 + s2 − t + r, z =
qr + st

r2
, w

=
r − s

t + q
;
∂u

∂r
 ,
∂u

∂s
,
∂u

∂t
 and 

∂u

∂q
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18 .7  TANGENT  PLANES, NORMAL   LINES,  AND GRADIENTS 

Let  z= f(x, y) be a function  of two  variables . As we have  seen, the graph of  f is a surface in  

More general, the graph of the equation F(x , y, z) =0 is a surface in The surface F(x , y, z) =0  is 

called differentiable at appoint  if  all exist and are continuous at  In a differentiable curve has a 

unique tangent  line at each point . In a differentiable surface in has a unique tangent plane at 

each point  at which are not all zero . We will formally define what we mean by a tangent plane 

to a surface after a bit, although it should be easy enough to visualize (see Figure 1). We note 

here that not every   surface has  a tangent plane at every point . For example, the cone  has no 

tangent plane at the origin (see Figure  2) . 

                z     tangent plane    

 z  

 

    

 )                                                                                                                            0,z0,y0x(                      

z = √x2 + y2          

 Z=f(x,y)   

   

Y  0  y 0  

 x x 

 

             figure 1 

figure 2 

 

Assume that the surface  S given by  F (x,  y, z )=0 is differentiable .  Let  C  be any curve lying 

on  S.  That is, C can be given parametrically by  g (t)=x(t)I   + y(t)  j+ z(t) k.(Recall from  

Definition  ,  the definition of a curve,  F(x,  y, z) can be written  as a function of  t, and from of 

the chain rule  [equation (18. 6. 3 )] we have 

F′(t) = ∇F. g′(t)   
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But since  F (x(t),  y(t),z (t))=0 for all t  since (x(t),  y(t),z (t)) is on  S  we see that F'(t)=0 for all 

t. But g '(t) is tangent to the curve number  t.   Thus (1) implies the following : 

  

 

This statement is illustrated in Figure  3 

 ∇f(x0) surface 

f(x,y,z)=0 

 

 

                                                                                            )0,z0,y0=(x0X  

 

 

FIGURE    3  

Thus is we think of all the vectors tangent to a surface at a point x0 as constituting a plane,  then 

∇F (x0) is  normal  vector to that plane . This motivates the following definition. 

Definition    1   TANGENT  PLANE   AND NORMALLINE    Let  F  be differentiable at x0  =

( x0, y0, z0)      and  let the surface  S be defined by F(x , y, z)=0 

(i)The tangent plane to S at( x0, y0, z0)is the plane  passing though the point 

 ( x0, y0, z0)with  normal vector ∇F (x0) 

               (ii)The normal  line  to S at x0 is the  line    passing though x0 having the same 

 direction ∇F (x0) 

EXAMPLE   1 Find the equation of the tangent plane and symmetric equations of the normal  

line to the ellipsoid x2 + (
y2

4
) + (

z2

9
) = 3   at the point (1, 2, 3 ).  

Solution   .  Since F(x,   y, z) = x2 + (
y2

4
) + (

z2

9
) − 3 = 0 we have 

∇F =
∂F

∂x
 i +

∂f

∂y
 j +

∂f

∂z
 k = 2xi +

y

2
 j +

2z

9
 k   

The gradient of F  at a point  𝑥0  = ( 𝑥0, 𝑦0, 𝑧0)   on S is orthogonal to tangent vector at 𝑥0  to  

any curve C remaining  on S  and passing through  𝑥0  
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Then  ∇F (1, 2, 3) = 2i + j +
2

3
 k,  and the equation of the tangent plane is 

2(x − 1) + (y − 2) +
2

3
 (z − 3) = 0, 

Or 

2x + y +
2

3
 z = 6  

The normal line is given by  

x − 1

2
= y − 2 = 

3

2
 (z − 3) 

The situation is even simpler if we can write the surface in the form z= f(x , y). 

That is , the surface is the graph of function of two variables. Then F(x,  y, z )= 

Fx = fx ,      Fy = fy ,      Fz = −1,   

And the normal vector N to the tangent plane is  

  

 

         REMARK .  One interesting consequence of this fact is that if z = f(x,  y)and 

if ∇f(x0, y0) = 0,  then the tangent plane to the surface at (x0, y0, f(x0, y0)), N = (∂f/ ∂x)i +

(∂f/ ∂y)j − k = −k. is parallel to  the xy-plane (i.e.,it is horizontal ). This occurs because at  

Thus the  z-axis is normal to the tangent plane.  

EXAMPLE   2 Find the tangent plan  and  normal line to the surface z  =x3y5 at the point (2,  1, 

8) 

Solution  N=(
∂f

∂x
) i + (

∂f

∂y
) j − k = 3x2y5i + 5x3y4j − k = 12i + 40j − k    Then the  tangent  

plane is given by  

12(x − 2) + 40(y − 1) − (z − 8) = 0, 

 Or  

12x + 40y − z = 56 

        Symmetric equations of the normal line are     

𝑁 = 𝑓𝑥  (𝑥0, 𝑦0)𝑖 + 𝑓𝑦 (𝑥0, 𝑦0) 𝑗 − 𝑘                                                                                      (2) 
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x − 2

12
=

y − 1

40
=

z − 8

−1
 

We can write the equation of the tangent plane to a surface = z f(x  ,y )  so that it looks like the 

equation of the tangent line to a  curve in  This will further illustrate the connection between the 

derivative of a function of one variable and the gradient .Recall from Section 17. 5 that if p is 

appoint on a plane and N is normal vector, then if Q denotes any other point on the plane, the 

equation of the plane can be written  

PQ⃗⃗⃗⃗  ⃗ .     N = 0 .                                                                                                                                    (3) 

In this case, since z  = f (x  ,y ),  ap0int on the surface takes the form (x , y ,  z)=(x  , y , f(x,  y)). 

Then since N  =  fxi + fyj − k , the equation  of the tangent plane at (x0, y0 f(x0, y0))   becomes  ,  

using  (3), 

0 = [(x , y , z) − (x0, y0 , z 0 )]  .  (  fx + fy , − 1  ) 

= (x − x0, y – y0 , z − z 0 ) .  (  fx + fy , − 1) 

= (x − x0)  fx + (y – y0)fy, − (z − z 0 )                                                                                      (4)  

We can  rewrite (4) as  

z = f (x0, y0) + ( x − x0)  fx + (y – y0)fy,                                                                                 (5) 

Denote    (x0, y0)  byx0   and   (x , y  ) by  Then  (5) can  be  written as  

  

   

 Recall the  if  y = f (x)  is differentiable at   x0  then the  equation  of the  tangent  line  to the 

curve at the  point (x0 , f (x0))  is given by  

y − f (x0)

x − x0
= f ′(x0) , 

Or 

y = f(x0)  + (x − x0)f
′(x0).                                                                                                           (7) 

This  similarity  between  (6)  and (7) illustrates quite vividly  the important of the  gradient 

vector of  a function  of  several  variables  as the  generalization  of the derivative of  a  function 

of  one variable . 

𝑧 = 𝑓 (𝑥0) + ( 𝑥 − 𝑥0)   .  𝛻𝑓(𝑥0).                                                                                                         (6) 
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PROBLEMS    

In Problems  1-16 find the equation of the  tangent plane and  symmetric  equations of the 

normal  line  to given  surface  at  the given point .  

1. x2 + y2 + z2 = 1; (1, 0, 0)                                        2. x2 + y2 + z2 = 1; (0, 1, 0)                     

3. x2 + y2 + z2 = 1; (0, 0, 1)                                          4. x2 + y2 + z2 = 1; (1, 1, 1) 

5.
x2

a2
+

y2

b2
+

z2

c2
 = 3 ; (a , b, c )                                      6.

x2

a2
+

y2

b2
+

z2

c2
 = 3 ; (−a , b,−c ) 

7.  x
1
2 + y

1
2 + z

1
2 = 6; (4, 1, 9)                               8. ax + by + cz = d;  (

1

a
  ,

1

b
,

d − 2

c
  ) 

9. xyz = 4; (1, 2, 2)                                                    10. xy2 + yz2 + zx2 = 1; (1, 1, 1 ) 

11. 4x2 + y2 + 5z2 = 15; (3, 1, −2)                                12.   xey − ye3 = 1; (1, 0, 0 ) 

13. sin xy − 2 cos yz = 0; (
 π

2
  ,1,

π

3
)                 14 . x2 + y2 + 4x + 2y + 8z = 7; (2, −3,−1) 

15. exyz = 5; (1, 1, In 5)                                             16.√
x + y

z − 1
 = 1; (1, 1, 3)  

In Problems  7-24,  write the equation of the  tangent plane in the form (6)  and find the   

symmetric  equations of the normal  line  to given  surface   

17 . z = xy2; (1, 1, 1 )                                            18. z = In(x − 2y); (3, 1, 0 ) 

19. z = sin (2x + 5y); (
π

8
,
π

20
, 1)                                         20 . z = √

x + y

x − y
; (5, 4, 3)

 

 

 21. z =  tan−1 y

x 
 ; (−2, 2 , −

π

4
)                                               22. z = sin hxy2; ( 0, 3, 0)   

23. z = sec (x − y); (
π

2
,
π

6
, 2)                                        24. z =  ex cos y + ey cos x ; (

π

2
, 0 , e

π
2)

 
 

∗ 25. Find the two points of  intersection of the surface  z = x2 + y2 and the line 

x − 3

1
=

y + 1

−1
=

z + 2

−2
 . 
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 DIRECTIONAL DERIVES AND THE GRADIENT 

Let us take another look at the partial derivatives 
∂f

∂x
 and

∂f

∂y
  of the function  z  =(x,  y ) . We have 

∂f

∂x
(x0, y0) = lim

∆x→0

f (x0 + ∆x , y0) − f( x0, y0)

∆x
                                                              (1)      

This measures the rate of  f as we approach the point ( x0, y0)  a long a vector parallel to the x- 

axis  [since (x0 + ∆x , y0) − (x0, y0) = (∆x, 0) = ∆xi  ]    Similarly 

  

∂f

∂y
(x0, y0) = lim

∆y→0

f (x0 , y0 + ∆y) − f( x0, y0)

∆y
                                                              (2)      

measures the rate of  change of  f as we approach the point ( x0, y0)  a long a vector parallel to 

the y – axis .  

It is frequently of interest to compute the rate of change of  f as we approach  ( x0, y0) along a 

vector that is not parallel to one of  the coordinate axes The situation is depicted in Figure  1. 

Suppose that (x,  y) approaches the fixed point  ( x0, y0) along the line segment joining them, 

and let  t denote the distance between the two points.  We want to determine the relative rate of 

change in f with respect to a change in f with respect to a change in t . Let u denote a  unit vector 

with the initial point at  ( x0, y0) and parallel toPQ⃗⃗⃗⃗  ⃗  (see Figure  2) .  Since u andPQ⃗⃗⃗⃗  ⃗  are  parallel 

, there is , by Theorem  a value of t such that 

PQ⃗⃗⃗⃗  ⃗ = tu                                                                                                                                                   (3)      

Q(x,y)     

 u F(x,y) )0,y0f(x   

 )0,Y0P(X                                                        

 

 Q(x,y) )0,y0P(x 

    Figure 2          

               

 

Figure 1 
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Not that  t  > 0 if u and  PQ⃗⃗ ⃗⃗ ⃗⃗  ⃗     have the same direction and t  < 0 if u and  PQ⃗⃗ ⃗⃗ ⃗⃗  ⃗   have opposite 

directions . Now 

PQ⃗⃗⃗⃗  ⃗ = (x − x0)i + (y − y0)j  ,                                                                                                            (4)   

And since u is a unit vector, we have 

u = cos θi + sin θj                                                                                                                           (5) 

Where θ     is the direction of u Thus inserting  (4) and (5) into (3), we have 

(x − x0)i + (y − y0)j = t cos θi + t sin θj,     

or 

x = x0 + t cos θ 

y = y0 + t sin θ                                                                                                                                     (6) 

The equations (6) are the parametric equations of the line passing through p and Q Using  (6) , 

we have 

z = f (x, y ) = f(x0 + t cos θ , y0 + t sin θ )                                                                                  (7) 

 Remember that   is fixed —it is the direction of approach Thus(x, y) → (x0 , y0)   along  PQ⃗⃗ ⃗⃗ ⃗⃗  ⃗   is 

equivalent to t → 0  in (7) Hence to compute the instantaneous rate of change of  f  as (x, y) →

(x0 , y0)     along  the vector   PQ⃗⃗ ⃗⃗ ⃗⃗  ⃗ we need compute But by the chain rule ,  

dz

dt
=

∂f

∂x
(x, y )

dx

dt
+

∂f

∂y
 (x, y )

dy

dt
    

Or 

dz

dt
= fx(x , y) cos θ + fy(x , y) sin θ                                                                                                (8) 

And 

dz

dt
= [fx(x0 + t cos θ , y0 + t sin θ ] cos θ 

+ [fy(x0 + t cos θ , y0 + t sin θ ] sin θ                                                            (9) 
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If we set we obtain the  instantaneous rate of change of  f in the direction   PQ⃗⃗ ⃗⃗ ⃗⃗  ⃗  at the 

point (x0 , y0).     That  is , 

dz

dt
|t=0 = fx(x0 , y0) cos θ + fy(x0 , y0) sin θ.                                                                          (10) 

 But (10) can  be written [ using (5)] as 

dz

dt
|t=0 = ∇f( x0 , y0) . u                                                                                                                    (11) 

This leads to the following definition. 

Definition   1 DIRCTIONAL   DERIVATIVE   Let   f be differentiable at a point  x0 = 

(x0 , y0)  in R2  and let  u be a unit  vector . Then the directional derivative of  f  in the direction u 

, denoted  f ′
u(x0),  is given by  

  

 

REMARK    1.  Note that if  u= I, then ∇f  . u = ∂f/ ∂x  and (12) reduces to the partial  derivative 

∂f/ ∂x Similarly,  if u = j, then (12) reduces to ∂f/ ∂y 

REMARK    2. Definition 1 makes sense if  f is a function  of  three  variables . Then, of course, 

u is  a unit vector  inR3     

REMARK    3.  There is another definition of the directional derivative . It is given by 

f ′
u(x0) = lim

h→0

f(x0 + hu) − f(x0)

h
                                                                                                (13) 

 

It can be shown that if limit in (13) exists , it is equal to∇f (x0) .  u   if  f is differentiable . 

EXAMPL1:  Let  z = f (x, y) = xy2  Calculate the directional derivative of  f in the direction of 

the vector  v=2i  +3j   at the point (4,  -1)  

Solution  A unit vector in the direction  v is u= (2/√13)i + 3/√13)j   Also, ∇f = y2i +

2xyj . Thus   

f′u(x, y) = ∇f(x). u =
2y2

√13
+

6xy

√13
=

2y2+6xy

√13
  

At  

𝑓′
𝑢
(𝑥0) = ∇𝑓 (𝑥0) .  𝑢                                                                                                                        (12)    
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(4, −1), f ′
u(4, −1) = −22√13 

EXAMPLE  2              Let  z = f (x, y, z) = xIn y−exz3  Calculate the directional derivative of  

f in the direction of the vector  v = i − j + 3k  Evaluate this  derivative at the point (−5,1 , −2) 

Solution  A unit vector in the direction  v is u= (
1

√11
) i − 1/√11)j + (3/√11)k,  and 

∇f = (In y − z3exz3)i +
x

y
j − 3xz2exz3 k 

Thus 

f′u(x) = ∇f(x) . u =
In y − z3exz3 − (

x
y) − 9xz2exz3

√11
, 

 (−5,1 , −2)And at  

f′u(−5,1 , −2) =
5+188e40

√11
  

PROBLEMS   

In problems  1-15 , calculate the directional derivative of the given  function  at the given point 

in the direction of the given vector  v . 

1. f(x, y) = xy at(2, 3); v = i + 3j 

2. f(x, y) = 2x2 − 3y2 at (1,−1); v = −i + 2j 

3. f(x, y) = In(x +  3y)at(2, 4); v = i + j 

4. f(x, y) = ax2 + by2 at (c, d); v = ai + Bj 

5. f(x, y) = tan−1
y

x
 at (2, 2); v = 3i − 2j 

6. f(x, y) =
x − y

x + y
at (4, 3); v = −i − 2j 

7. f(x, y) = xey + yex at(1, 2); v = i + j 

8. f(x, y) = sin(2x + 3y) at (
π

12
,
π

9
) ; v = −2j + 3j 

9. f(x, y, z) = xy + yz + xz at (1, 1, 1 ); v = i + j + k 

10. f(x, y, z ) = xy3z5 at(−3,−1, 2); v = −i − 2j + k 
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11. f(x, y, z) = In (x + 2y + 3z)at (1, 2, 0); v = 2i + j − k 

12. f(x, y, z) = xeyz at(2, 0, −4); v = −i + 2j + 5k 

13. f(x, y, z) = x2y3 + z√x at (1, −2, 3); v = 5j + k 

14. f(x, y, z) = e−(x2+y2+z2) at (1, 1, 1); v = i + 3j − 5k 

15. f(x, y, z) =
1

√x2 + y2 + z2
 at (−1, 2, 3 ); v = i − j + k 

 

THE TOTAL DIFFERENTAL AND  APPROXIMATION 

In Section  3.8  we used the notions of increments and differentials to approximate a function 

.We used the fact that if ∆x  was small, then 

f(x + ∆x) − f(x) = ∆y ≈ f ′(x)∆x .                                                                                               (1)   

We also defined the differential d y b y  

dy = f ′(x)dx = f ′(x )∆x                                                                                                                  (2)       

(since dx  defined to be  equal to ∆x  ) . Not that in (2) it is not required that   ∆x  be small 

We now extend these ideas to functions of two or three  variables. 

Definition   1  INCREMNT  AND TOTAL  DIFFERENTIAL  Let  f  =  f(x) be a function of two 

or three variables, and  let ∆x  =(∆x, ∆y)or ( ∆x  , ∆y, ∆z)       

(i)The increment of f , denoted  ∆f , is defined by 

∆f = f(x + ∆x  ) − f(x)                                                                                                                   (3)     

(ii)The total differential of f , denoted  df, is  given by 

df = ∇f(x). ∆x .                                                                                                                                    (4) 

Note that equation (4) is very similar in form to equation (2). 

REMARK   1.   If f is  a function of two variables , then (3) and (4)  become 

∆f = f(x + ∆x, y + ∆y) − f(x, y),                                                                                                  (5)  

And the total differential is  

df = fx(x + ∆x, y + ∆y) − f (x, y)                                                                                                  (6) 
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REMARK   1.   If f is  a function of three variables , then (3) and (4)  become 

∆f = f(x + ∆x, y + ∆y , z + ∆z) − f(x, y, z)                                                                                 (7) 

And 

df = fx(x, y, z)∆x + fy(x, y, z)∆y + fz(x, y, z)∆z.                                                                       (8) 

REMARK   3.  Note that in the definition of  the total differential , it is not required that be |∆x| 

small . 

From Theorems  .1 and  . 1' and the definition of differentiability , we see that  |∆x|   if  is small 

and  if f  is differentiable ,  then   

∆f ≈ df.                                                                                                                                             (9) 

We can use the relation (9) to approximate functions of several variables in much the same way 

that  we used the relation (1) to approximate the values of functions of one variable . 

 EXAMPLE   1  Use the total differential to estimate √(2.98)2 + (4.  03)2  

Solution  Let f(x, y) = √x2 + y2 Then we are asked to calculate f (2.98, 4.  03)  We know 

thatf(3, 4) = √32 + 42 = 5 .   Thus we need to calculate Now  at (3,  4), 

∇f(x) =
x

√x2 + y2
 i +

y

√x2 + y2
j =

3

5
i +

4

5
j . 

 Then using  (6), we have   

df =
3

5
∆x +

4

5
 ∆y = (0.6)(−0.02) + (0.8)(0.03) = 0.012 . 

Hence 

f(3 − 0.02, 4 + 0.03) − f(3,4) = ∆f ≈ df = 0.012, 

So 

f(2.98,4.03) ≈ f(3,4) + 0.012 = 5.012 . 

The exact value of √(2.98)2 + (4.03)2  is √8.8804 + 16.2409 =√25.1213 ≈ 5.012115 , so 

that ∆f ≈ 0.012115  and  our  approximation is  very good indeed . 

EXAMPLE    2  The radius of a cone is measured to be 15 cm and the height  of the cone is 

measured to  be 25  cm . There is a maximum error o f  ± 0.02  cm  in the  measurement of the 
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radius and ± 0.05 cm  in the measurement of the height (a) What is the approximate volume of 

the cone? (b)what is the maximum error in the  calculation of the volume ? 

Solution (a) V=
1

3
πr2h ≈

1

3
π(15)2 25 = 1875πcm3 ≈ 5890.5cm3  

(b)∇v = vri + vh j =
2

3
πrhi +

1

3
πr2 j = π(250i + 75j)Then choosing∆x = 0.02 and∆y

= 0.05 to find  the maximum error , we have  

∆v ≈ dv = ∇v.  ∆x = π[250(0.02) + 75(0.05)] = π(5 + 3.75) = 8.75π ≈ 27.5cm3 

Thus the maximum error in the calculation  is , approximately,   27.5cm3 , which means that 

5890.5 -27.5  <V<5890.5 +27.5, 

Or 

5863cm3 < v < 5918cm3  

Note that  an error of 27.5cm3 is  only a relative error of  27.5/5890.5 ≈ 0.0047, which  is  a 

very small relative error (see p . 158 for discussion of relative error ). 

EXAMPLE   3.  A cylindrical tin can has an  inside radius of 5 cm and height of 12cm . The 

thickness of  the is tin is 0.2 cm. Estimate the amount of tin needed to construct the can (in 

clueing its ends).  

Solution  .We need  to estimate the difference between the ’’outer’’ and  ‘’inner’’ volumes of the 

can We  have V= πr2hThe inner volume is (52)(12) = 300πcm3,   and the outer volume 

isπ (5.2)2(12.4).The difference is  

∆v = π (5.2)2(12.4) − 300π ≈ dv. 

Since ∆v = 2πrhi + πr2j = π(120 + 25j), we have 

dv = π(120(0.2) + 25(0.4)) = 34π . 

Thus the amount of tin needed is, approximately, 34πcm3 ≈ 106.8cm3  
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PROBLEMS  

In problems  1-12, calculate the total differential  d f 

1. f(x, y) = xy3                                                                  2. f(x, y) = tan−1
y

x
        

3. f(x, y) = √
x − y

x + y
                                                            4. f(x, y) = xey 

5. f(x, y) = In(2x + 3y)                                                  6. f(x, y) = sin(x − 4y) 

7. f(x, y, z) = xy2zs                                                          8. f(x, y, z) =
xy

z
    

9. f(x, y, z) = In(x + 2y + 3z)                                10. (x, y, z) = secxy − tan z    

11. f(x, y, y) = cosh(xy − z)                                   12. f(x, y, z) =
x − z

y + 3x
     

13. Let  f(x, y) = xy2    

(a)Calculate explicitly he difference ∆f − df 

(b)Verify your answer by calculating  ∆f − df at the point (1, 2), where ∆x = −0.01 and ∆y

= 0.03. 

∗ 14. Repeat the steps of problem 13 for the function f(x, y) = x3y2 . 

In problems 15 -23, use the total differential to estimate the given number . 

15.  
3.01

5.99
                                                                         16. 19.8√65         

17. √35.6√64.08
3

                                                               18. (2.01)4 (3. 04)7  − ( 2.01) (3. 04)9  

19.√
5.02 − 3.96

5.02 + 3.96
                                                             20.  ((4.95)2  + (7.02))

1
5    

21.
(3.02)(1.97)

√8.95
                                                               22. sin(

11π

24
)  cos (

13π

36
)  

               

 


