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HIGER — ORDER PARTIAL DERIVATIVES
We have seen that if y = f(x), then

_dr & d(df)
o Y

T dx? | dx\dx

That is ,the second derivative of fis the derivative of the first derivative of f.,ifz=f(x,y),
then we can differentiate each of the two "first" partial derivativesd fld x ando fldy with
respect to both x and y to obtain four second partial derivatives as follows :

Definition 1: SECOND PARTIAL DERIVATIVES

(i) Differentiate twice with respectto X :

xE T oxZ I T gy

0’z 0*f 6(&)(1)
d0x

(i) Differentiate  first with respect to x and then with respecttoy :

0%z 0% f d (of
=2 g = —(—)(2)
dyox  0vox 0y \0x

(iii ) Differentiate  first with respect to y and then with respect to x :

0%z o} 0 (6f)
x 0y _axay_fy" ~ ax \dy

(3)

(iv) Differentiate twice with respect to y:

0z f 0 (af
ay?  gy2 =fy = dy

5@

REMARKUZ1.Thederivatives 2 f10 x dy and 0%f0 y dx arecalled the mixed second partialsl.

REMARK?2. It is much easier to denote the second partials byfxy, fxx, fyx andf,,, we
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Will there f are use this notation for the remainder of this section. Note that the symbol f,
indicates that we differentiate first with respecttoy .

EXAMPLE 1 Let z=f(x,y) =x3y? —xy® .Calculate the four second partial derivatives .

Solution. We have f

x = 3x’y? - y® and fy=2x%y - Sxy*.
@ f _ 25 = 6xy?
) £, _ () = 6x2y-sy?
(o) fxy _ %(fy) _ 6x*y — 5y°
(d) fyy - aiy(fy) = 2x3- 20xy3

In Example 1 we saw thatf,, =f,, This result is no accident ,as we see by the following
theorem whose proof can be found in any intermediate calculus text .t

Theorem 1 : Suppose that f,f,,f;, ,f,, and f,, areall continuous at (xo ,y, ) Then

fey(Xo . ¥0) = fyx (%0, ¥0) (5)

This result is often referred to as the equality of mixed partials #0

The definition of second partial derivatives and the theorem on the equality of mixed partials are
easily extended to functions of three variables. If w =(x,y, z), then we have the nine second
partial derivatives ( assuming that they exist ) :

02f 0°f 02f

i _ = =f
oxz2 ™0y ox ¥ 9z 0x Xz

L 0%
ax dy  Y*’ayz V' 9z dy vz

9%t 9%t 9%t
— = f

0x 0z = bux "dy 0z =ty 0z2

Theorem2 If f,f,f, ,f, and f,, and all six mixed partial are continuous at a point

(X0 Yo »Zo )thenat a point This theorem was first stated by Euler in a 1734 paper devoted to
a problem in hydrodynamics

fxy = fyx ’ fxz = fax s fyz = fzy .
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EXAMPLE 2: Let f(x,y,z) = xy3 — zx® + x2yz be a function , Calculate all for nine
second partial derivatives and show that all three pairs of mixed partials are equal

Solution : We have

4

f, =y3 —5zx* + 2xyz,

f, =3xy* +x°z,

and

f, = —x° +x%

Then

fox = —20zx3 + 2yz , foy = 6xY , f,, =0,

d 4 2
fey =a—y(y3 — 5zx* + 2xyz ) = 3y* + 2xz,
4 2 2 2
fyx =&(3xy + x°z ) = 3y° + 2xz,
d
fez :g(y3 — 5zx* + 2xyz ) = — 5x* + 2xy,

0
f,x =&(—x5 + x%y ) = =5 x* + 2xy,

d
fy =£(3xy2 + x%z ) = x?
a 5 2 2
fay =a—y(—x + x°y)= x

We conclude this section by pointing out that we can easily define partial derivatives of orders
higher than two . For example,

Lo__ o _a(@f\_ 3
X T 9x dy 0z 0x\dy dz)  0x (fy )

EXAMPLE 3 Calculate and for the function of Example 2 .

Solution We easily obtain the three third partial derivatives:
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foxx = F — (fx) = X(ZOZX + 2yz ) = —60zx
d d

ZZy = dy — () = 6_y(5X4 + 2yz ) =2x
d

0
= -_— 2 =
foxz = aZ(f x) = > (3y? + 2xz ) = 2x

Note that f,,, = fyx, This again is no accident and follows from the generalization of Theorem 2
to mixed third partial derivatives. Finally, the fourth partial derivative fy,.is given by

0 d
fyxzx = &(fyxz) = &( 2x) = 2.
PROBLEMS

In problems 1-12 , calculate the four second partial derivatives and show that the mixed partials
are equal .

1.f(x,y)= x?%y.
F(x,y)=xy?y.2
3. f(x,y) = 33

o

F(x,y)=sin(x? + y3)

5.f(x,y)=;—’5‘

6.f(x,y)= eVtan,.
7. f(x,y)=In(x3y>-2)
8 .f(x,y)=yxy + 2y3

9. f(X,y) = (x+5ysin x )uadllaallis]

10.f(x,y)=sinh(2x- y)

11. f(x,y) =sin 1( _y)

X2 + y?

12 .f(x,y)=sec xy
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In Problems 13 -21 , calculate the nine second partial derivatives and show that the three pairs of
mixed partials are equal

13.f (x,y,z)=xyz

14 .f(x,y,z)=x%y3z*
15.f(x,y,z):X+Ty

16 .f (Xx,y,z )=sin(x+2y+z?)
17.f (x,y,z ):tan‘lg

18.f (x,y,z )=cosxyz
19.f (x,y,z )=e3 cosz
20.f (x,y,z)=In(xy +2)

21.f (x,y,z )=coshy/x+yz

22 . How many third partial derivatives are there for a function of (a) two variables; (b) three
variables?

23 . How many fourth partial derivatives are there for a function of (a) two variables; (b) three
variables?

24 . How many nth partial derivatives are there for a function of (a) two variables; (b) three
variables ?

In Problems 25 -30, calculate the given partial derivative
25.f(x,y)=x%3+ 2y: feyx
26 .T(x,y)=sin(2xy*); fyyt

27 . f(x,y)=In(Bx—2y); fx

28 .f(x,y,2)=x*y+ y*z—3xz; fyy,
29.f(X,y, z)=cos(x+ 2y +3z); f .«

30f(xy, z)=e¥sinz; f



Lecture no.6 by Hussein J. AbdulHussein
Advanced Calculus I Al Muthanna University, College of Science

DIFFERENTILITY AND THE GRADIENT

In this section we discuss the notion of the differentiability of a function of several variables.
There are several ways to introduce this subject and the way we have chosen is designed to
illustrate the great similarities between differentiation of functions of one variable and
differentiation of functions of several variables .

We begin with a function of one variables,
Y =f(x).

If fis differentiable , then

e g Ay
F (X)_ dx Al)l(r_r)lo Ax

Then if we define the new function € ( Ax )by

A
€ (Ax) = d—i — ),

We have

lim € (Ax) = lim <ﬂ - f’(x)) = lim & _ f'(x)
Ax—0 Ax—o \ AX Ax—o AX
=f xX)- f'(x)=0.
Multiplying both sides of (2) by Ax and rearranging terms, we obtain
Ay = f'(x)Ax +€ (Ax) AX.
Note the here Ay depends on both Ax and x. Finally, since Ay = f'(x + Ax) — f(x), we obtain
f'(x + Ax) — f(x) = f'(x)Ax+ € (Ax) Ax.

Why did we do all this? We did so in order to be able to state the following alternative definition
of differentiability of a function f of one variable.

Definition 1 ALTERNATIVE DEFINITON OF DIFFRENTIABILITY OF A FUNCTION OF
ONE VARIABLE Let f be function of one variable . Then f is differentiable at a number x if
there is function f' (x) and a function g(Ax) such that

f'(x + Ax) — f(x) = f'(x)Ax + g(Ax),

WhereAlim[g(Ax) /(Ax)] = 0.
X—0
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We will soon show how the definition (5) can be extended to a function of two or more variables.
First, we give a definition

Definition 2 DIFFRENTIABILITY OF A FUNCTION OF TOW VARIABLES: Letfbe a
real —valued

Function of two variables that is defied in a neighborhood of a point (x, y )and such that
fy(x,y)and f,(x,y ) exist.Then f is differentiable a (x, y) if there exist
functione; (Ax,Ay)and €, (Ax, Ay) such that

[+ Ax,y+ Ay)—f (x,y) = fi(x,y )Ay +€; (Ax,Ay) +€; (Ax,Ay) Ay,

Where

(AX,AIJ})rr_l)(O'O) €, (Ax,Ay)=0and (Ax,Al;)rr_l)(O’O) €, (Ax,Ay) = 0.

DIFFERENTI A BILTY AND THE GRADIENT

In this section we discuss the notion of the differentiability of a function of several variables.
There are several ways to introduce this subject and the way we have chosen is designed to
illustrate the great similarities between differentiation of functions of several variables.

We being with a function of one variables.
Y = f(x)
If f isdifferentiable, then

Ay

Fo= Yo 1
() = dx A)1<r—1:lOAX (1)
Then if we define the new function € (Ax) by
A
€ (M) =2~ (), @
Ax

We have

: . (by Ay ) ,
lim € (Ax) = Al)l(r_r)lo E_f x| = Al)l(r_r}OE—f x) =f'(x)— f'(x) =0(03)

Ax—0

2
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Multiplying both sides of (2) by Ax and rearranging terms , we obtain
Ay = f'(x)Ax+€ (Ax) Ax
Note that hereAy depends on both Ax and x Finally ,since Ay = f(x + Ax) — f (x), we obtain
f(x+ Ax) — f(x) = f'(x)Ax + +€ (Ax) Ax (4)

Why did we do all this ? We did so in order to be able to state the following alternative definition
of differentiability of a function f of one variable

Definition 1 ALTRNATIVE DEFINTION OF DIFFERENTIABILITY OF A FUNCTION
OF ONEVARIABLE Let f be a function f of one variable Then f is differentiable at a number
x if there is a function f'(x) and a function g (Ax ) such that

f(x+ Ax) — f(x) = f'(x)Ax + g(Ax)(5)

Where lim w) =0

Ax—0 L Ax

We will soon show how the definition (5) can be extended to two or more variables . First , we
give a definition .

Definition 2 DIFFERENTIABILITY OF A FUNCTION OF TOW VARIABLE S Let f be
areal —valued function f of two variable s that f;(x,y )and f,(x,y ) exist Then fis
differentiable at (x, y) if there exist function f'(x)and a

functionse; (Ax,Ay)and €, (Ax, Ay)such that

fx+Ax,y+Ay)—f(x,y)
= fi(x,¥)Ax + f,(x, ¥ )Ay +€; (Ax,Ay)Ax
+€, (Ax,Ay)Ay (6)

€, (Ax,Ay)=0 and €, (Ax,Ay)=0 (7

lim lim
(Ax ,Ay)—(0,0) (Ax ,Ay)—(0,0)

EXAMPLE 1 Let f(x, y) =xy.Showthat f is differentiable at every point (x , y) in R?
Solution

f(x+Ax,y+ Ay) — f(x,y) = (x + Ax)(y + Ay) — Xy = xy + yAx + XAy + AxAy — xy
= yAx + xAy + AxAy
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Now fy, =y and f, = x so we have
f(x+Axy+Ay) —f(xy) = K& y)Ax+ f,(xy)Ay + +AyAx + 0. Ay
Settinge, (Ax,Ay) = Ay and €, (Ax,Ay) = 0 we see that

€, (Ax,Ay) = (x ’Al}})rg(o 0 €, (Ax,Ay) =0

lim
(Ax ,Ay)—(0,0)
This result shows that f (x,y) = xy is differentiable at every point in R?

We now rewrite our definition of differentiability in a more compact from Since a point(x, y) is
a vector inR? we will write (as we have done before ) x =(x, y) .Then if z =f (x , y) we can
simply write

Z=1(x).
Similarly , if w =1 (X, y, z )we may write
W=1(x),

Where x is the vector (X, y , z). With this notation we may use the symbol Ax to denote the
vector(Ax, Ay)in R? or(Ax, Ay, Az) inR?

Next , we write
g(Ax) = €; (Ax,Ay)Ax +€, (Ax, Ay) Ay(8)

Note that(Ax,Ay) — (0,0) can be written in the compact form Ax — 0.Then if the
conditions (7) hold, we see that

1 |Ax| = \/Ax? + Ay

18 AL _ i e ax, ap) — 2 4 tim e, (ax, ay)| —XL
Ax»0  |Ax| T ax-0' * 8Y AX2 + Ay?  Ax-0 z 8y [Ax? + Ay?
|Ax|

<1
1 /Ax? + Ay?

< lim |€; (Ax,Ay)| + lim |€, (Ax,Ay)|=0+0=0
Ax—0 Ax—0

Finally , we have the following important definition
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Definition 3 THE GRADIENT Let f be a function f of two variables such thatfy, andfy exist
at a point x =(X, y) Then the gradient of at fat x , denotedVf (x), is given by

Vi) = file,y)it+ fy(x,y) ) ©)

Example 1,f(x, y)=xyf; =y, andf, = x, so that
Using this new notation , we observe that
Vf (x).Ax = (fX i+ fyj). (Axi+ Ayj) = fi(x,y)Ax + f,(x,y )Ay
Also,
f(x+ Ax,y+Ay) =f (x+ Ax).
Thus we have the following definition , which is implied Definition 2 .

Definition 4 DIFFERENTIABILITY Let fbe afunction of two variables that is definition
in aneighborhood of apoint x =(x, y). LetAx = (Ax, Ay).If f;(x,y)and f,(x,y )exist, then
f is differentiable at x if there is a function g such that

flx +Ax) — f(x) =Vf(x). Ax + g(Ax), (10)

Where

I
(8x-0) |Ax|

(11)

Theorem 1:Let f.f,, andf, bedefinedand con tenuous in a neighborhood of x = (x,y

) Then fis differentiable at x

EXAMPLE 3 Let z =f (x,y)xy? + eXZYSShow that f is differentiable and calculateVf.
Findvf(1, 1)

: of s L of _ of 3
Solution . — = y? cos xy? + 2xy3e*?y andg == y? cosxy? + 2xy3eX%y

. of of . . . .
Slncea and@ are continuo us fis differentiable and

5
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Af(x,y) = (y? cosxy? + 2xy3e*®")i + (2xy cosxy? + 3x%y2eX®") j
At (1,1),Vf(1, 1) = (cos1 + 2e)i+ (2cos1 + 3e)j

we showed that the existence of all of its partial derivatives at a point dose not ensure that a
function is continuous at that point . However, differentiability (according to Definition 4)
does ensure continuity .

Theorem 2: If f isdifferentiable at x, = (xo,y,) then fiscontinuous at x,

Proof We must show that Alim0 f(x) = f(x,) But if we defineAx by Ax = x — X, this is the
X—
same as showing that

Alim0 f(xo + Ax ) =1(x¢)(12)

Since fis differentiable at x,
f(xo + Ax ) —f(xq) = Vf(xq).Ax + g(Ax). (13)
But asAx — 0, both terms on the right —hand side of (13) approach zero, so

Alimo[f(xo + Ax ) —f(x9)] =0,

Which means that (12) holds and the theorem is proved.

The converse to this theorem is false, as it is in one —variable calculus. That is, there are
functions that are continuous, but not differentiable, at a given point . For example, the function

fx, y)=Vx+3iy
Is continuous at any point (X, y) inR? But

.1
Vf (XI Y) = 3X2/3 1+ 3y2/3 )

So f not differentiable at any point (x, y) for which either x or y is zero . That is, is not defined
on the x — and y- axes Hence f is not differentiable along these axes .

we showed that
f+g) =f+g’ and (af)’ =af ;

that is , the derivative of the sum of two functions is the sum of the derivatives of the two
functions and the derivative of a scalar multiple of atwo functions is the scalar times the
derivative of the function . These results can be extended to the gradient vector .
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Theorem 3 Let f and g be differentiable in a neighborhood of x = (x, y) . Then for every
scalar a, ,a.f andf +g are differentiable at x, and

(HV(af) = aVf,and

(iDV(f+g)=Vf+Vg.

Proof
(i)Form the definition of differentiability (Definition 4), there is a function

h, (Ax)such that

f(x + Ax) — f(x) = Vf(x).Ax + h, (Ax),

Where Alimo[(h_l (Ax))/]|Ax| ] = 0 Thus af(x + Ax )-af (x) = aVf(x).Ax + a h; (Ax),and
X—

ahy (&%) - ha(Ax)

=a0 = 0.
Ax50 |Ax| Ax-0  |AX| a
But
of _ 90(af)
x a ox  0x

avf(x) = a(fii + ) = (ah)xi + (af)yj = V(af)
Thus
af(x + Ax) — af(x) = Vaf(x) .Ax + ah;(Ax),
Which shows that af is differentiable andV(af) = aVf

(ii)As above, there is a function h, (Ax)such that g (x, Ax) — g(x)
= Vg(x).Ax + h,(Ax), where

(f+g)(x+4x) — (f+ g)(x) = [f(x + A%) + g(x + Ax)] — [f(x) + g(x)]
= [f(x + Ax) — f(x)] + [g(x) + Ax) — g(x)]
= Vf(x) .Ax + h; (Ax) + Vg(x). Ax + h,(Ax)

= [Vf(x) + Vg(x)]. Ax + [h,(Ax) + h,(Ax)],
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Where

. [h1(A%) + hy(Ax)]
lim =0
AxX—0 |AX|

To complete the proof, we observe that
Vi(x) + Vg(x) = (fud + £,j) + (gi+ gyi) = (8x+ 8y )i+ (8x +8y)j

0 _ o, 0
{ &(f-l_g)_ax-l_ax
=(f+gxi+(E+g)yj=V({+g).

Thus f+ g is differentiable and V(f+ g) = Vf+ Vg .

REMARK.  Any function that satisfies conditions (i) and (ii) of Theorem 3 is called a linear
mapping or linear operator . Linear operator play an extremely important role in advanced
mathematics

All the definitions and theorems in this section hold for functions of three or more variables. We
give the equivalent results for functions of three variables below .

Definition 5 THE GRADIENT Let f be scalar function of three variables that f,, f;, and f,

exist at a point x = (x, y, z) Then the gradient of f at x, denoted Vf(x), is given by the vector

Vilx) = frlx,y,z)i+ f,(,y,2)j + f(x,y,2)k . (14)

Definition 6 DIFFERENTIABILITY  Letf be afunction of three variables that is defined
in a neighborhood of x = (x, y, z) ,and let Ax = (Ax, Ay, Az). If f,(x,y,z)f,(x,y,z), and
f, (x,y,z) exist then f is differentiable at x if there is a function g such that

flx+ Ax) — f(x) = Vf.Ax + g(Ax)

Where

g(Ax)
im =0
|Ax|-0 |Ax]|

Equivalently , we can write

fx+Ax,y+Ay,z+ Az) — f(x,y,2)
= (6, y,z)Ax + f,(x,y,z )Ay + f,(x,y,z ) Az + g(Ax, Ay, Az),

8
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Where

y 9(Ax, Ay, Az)
m =
(Ax,Ay,Az)—(0,0,0) \/sz + Ay? + Az?

Theorem 1" Iff, f, ,f, and f, existand are continuous in a neighborhood of x = (x, y, z )then
f is differentiable at x

Theorem 2'Let fbe function of three variables that is differentiable at x, Then f is
continuous at x,

EXAMPLE 4 Let f(x,y, z) =xy?z3 show that f is differentiable at any point x, calculate
Vf,and find Vf(3,—-1,2)

ion 9f _ 2.3 9f _ 3 of _ 2,2 G of
Solution =Yz ,ay—nyz and aZ—3xy z* Since f’ax’

we know that fis differentiable and that

of

af )
— and — are all continuous,
dy 0z

Vf= y2z3i+ 2xyz3j+ 3 xy?z?k
And
Vf(3,—1,2) = 8i — 48j + 36k .

Theorem 3' Let f and g be differentiable in a neighborhood of x = (x, y, z)Then for any
scalar a,af and f+ g are differentiable atx, and

(V(af) = aVf, and

@Vv(f+g)= Vf+Vyg

We conclude this section with a proof of Theorem 1 . The proof of Theorem 1' is similar

proof of Theorem 1 . We begin by restating the mean value theorem for a function f of one
variable .

Mean Value Theorem Let fbe continuous on [a, b ]Janddifferentiableon(a,
b)Thenthereisanumbercin(a, b)such that

F (b) - f(a)=f'(c)(b —a).
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Now we have assumed that f,f;, andf,, areall continuousina neighborhood N of x = (x,
y) ChooseAx so small that x+Ax N. Then

Yy +Ay) — f (x, y)Af(x) = f(x + Ax

This lerm was added and subiracted

[f x+Ax,y+Ay) —f(x+ Ax,y)]+ [f(x+ Ax,y) —f(x,y)] (15)

If x +isfixed, then f(x+ Ax,y) isa function ofy that
is. Hence by the mean value theorem there is a number c, betweeny and y + Ay such that

f(x+Axy+ Ay) —f(x+ Ax,y) = f,(x + A%, ;) [(y + Ay) — y ]
= f,(x + Ax, c)Ay (16)

Similarly, with fixed, f (x, y) is a function of x only, and we obtain
fx+Ax,y+ y) —f(x+y) =1f(c; ,y) Ax, (17)
Where c; is between x and x +Ax Thus using (16) and (17) in (15), we have
Af (x) = fi(cy ,y) Ax + f(x + Ax, c;)Ay . (18)

Now bothf, and fyarecontinuousatx = (x, y)sosince c;isbetweenxandx +
Ax and c,isbetweeny + Ay, weobtain

Jim f(c1,y) = flery) = KGO(19)

And
Al)i(r;r)l0 fy(x + A%, c;) = fy(cq,y) = £,(x)(20)
Let
E1 (AX) = fx(cli Y) - fx(clf}I) . (21)

From (19) it follows that

Jlim €, (Ax) =0 (22)
Similarly , if

€ (Ax) = f,(x+ Ax,¢c;) — f,(xy), (23)
Then

10
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lim €, (Ax) = 0(24)

|Ax|—0
Now define
g(Ax) =€; (Ax) Ax +€, (Ax)Ay (25)
From (22) and (24) it follows that
g(Ax)

A a0 (26)
Finally, since

fx(cy, y) — fx(cy, y) +€; (8%) from(21) (27)
And

fy(x+ Ax,c;) = f,(xy) +€; (4x), from(23) (28)

We may substitute (27) and (28) into (18) to obtain

Af(x) = f(x + Ax) — f(x) = [f,(x) +€, (Ax)]Ax + [fy(x) +€, (AX)]Ay
= () Ax + f,(x)Ay + g(Ax) = (fxi + fyj). (Ax) + g(Ax),

Where

IAlilrn0 = [g(Ax)/]|Ax| ] = 0,and the proofis (at last )complete .
X|—

PROBLEMS

1. Letf(x,y) = x%y? Show, by using Definition 2, that fis differentiable at any point in R?

2. Letf(x,y) = x®y%?Show , by using Definition 2, that f is differentiable at any point in R?
3 .Letf (x,y) = be any polynomial in the variables x and y . Showthat f is differentiable

In problems 4- 24 calculate the g gradient of the given function If a point is also given,
evaluate the gradient at that point .

4. f(xy) =y (x+y)?5. f(xy) =e/¥;(1,1)
6.f(x,y)=cos(x—y);(g,g) 7.f(x,y) =In(2x—y+ 1)

11
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8.f(x,y) =vx2+y39.f(x,y) = tan_lg ;o (3,3)

10.f (x,y) = ytan(y — x) 11. f(x,y) = x?sinhy

X—
12 .f (x,y) = sec(x + 3y); (0,1) 13.f(x,y)=ﬁ ; (3,1)
x* —y? eXt —eV2
14.f(x,v) = 15.f (x,y) =
xy) Xy 5.f(xy) 3y

T T

16.f(x,y,2) = xyz;(1,2,3) 17 .f(x,y,z) = sinxcosytanz; (g ) ,§)
x? —y? + 72

18. f(x,y,z2) = ———;(1,2,0) 19. f(x,y,z) =xIny—zlnx

3xy

20. f(x,y,2) =xy? +vy2%2%;(2,3,-1) 21. f(x,y,z) = (y — z)eXt?V+3%, (—4,—1,3)

X—2Z
J1—y?+x2

22. f(x,y,z) = xsinylnz;(1,0,1) 23.f(x,y,z) = ;(0,0,1)

24. f(x,y,z) = xcosh z — ysin x

25.Show that if fand g are differentiablefunction of three variables, then V(f + g)
= Vf+ Vg

26.Show thatif fand g are differentiablefunction of three variables, then fgis
differentiable and

V(fg) = f(Vg) + g(Vh).

* 27.Show that Vf = 0 if and Only if fis constant

* 28.Show that Vf = Vg, then there is a constant c for which f(x,y)
= g(x,y ) + c [Hint : Use the result of Problem 27. ]

* 29 . What is the most general function fsuch that Vf(x) = x for every x in R??

1
s o ———=&y)#(0,0)

230 Let f(xy) = O +YDsnxEEyE

| (x,y)=(0,0)

0,

(a) Calculate f,(0, 0) andf, (0, 0)

12
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(b)Explain why f; and f,are not continuous at (0, 0)
(c) Show that fis differentiable at(0,0)
31.Suppose that fis differentiable function of one variable and g is a differentiable

function of three variables. Show that f°g is differentiable andVf °g = f'(g)Vg

13
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THE CHAIN RULE

In this section we derive the chain rule for function s of two and three variables Let us recall
the chain rule for the composition of two functions ofone variable :

Lety = f(u)and u = g (x)and assme that fand g are differentiable. Then

dy dydu

¥ T = P (g0)g D)

If z =f (X, y) is a function of two variables, then there are two versions of the chain rule

Theorem 1 CHAIN RULE Let z =f (X, y) be differentiable and suppose that x =x (t) and y=
y(t). Assume further thatdx/dt anddy/dt exist and are continuous Then z can be written as a
function of the parameter t, and

dz_azdx+azdy_ dx+dy(2)
dt  oxdt aydt_fxdt dt

We can also write this result using our gradient If g(t) =x (t) I +y(t)j, then g'(t)= (dx/dt)i +
(dy/dt)j,and (2)can be written as

d
Ef(x(t),y(t)) =9 ®)=[flg®N]'=Vf -g'(®) (3)

Theorem 2 CHAIN RULE Let z =f (X, y) be differentiable and suppose that x and y are
function of the two variables r and s That is , x=x(r, s) and y =(r, S)

Suppose further that dx/ dr ,0x/ ds ,dy/ dr and dy/ ds  all exist and are continuous . Then
z can be written as a function of r and s, and

dz 0z0dx O0zdy
= )
dr 0xdr Jdyor
62_026x+6zay .
ds 0dxds 0Jyads ®)

We will leave the proofs of these theorems until the end this section .

EXAMPLE 1: Let z = f(x,y) = xy?.Letx = cost and y = sint Calculate dz/dt
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Solution.

dz_azdx 8Zdy 0 4 2 "
dt  oJxdt ay a7 “(=sint) + 2xy(cost)
= (sin? t)(—sint) + 2(cos t (sint) (cost)

= 2sint cos?t — sin3t

We can calculate this result another way . Since z = xy? we have z = (cost)(sin?t) Then

d_i = (cost) 2(sint (cost) + (sin?t)(—sint)

= 2 sint cos?t — sin3t

EXAMPLE 2 Let z=f(xy) =sinxy? Suppose that x = Eandy = e"% Calculatedz/
dr and 0z/ ds

Solution
0z 0zdx 0z0y 5 o 1 2 res
Fre &6r ayor = (y“ cosxy )§+ (2xy cosxy“)e
eZ(r—s) COS[(E)eZ(r—s)] 2
— S 2(r s) 2(r-s)
. + — . {cos[S ]}e
And

62_626X+626y + , a
ds ~ 0xds = dyds (v* cos xy ) (2xy cos xy?)(—e"™*)
—1re2(=9) cos[(2)e2 (9]

2r
— S e2(r—s) 2(r-s)
32 +— . {cos[S ]}e

The chain rules given in Theorem 1 and Theorem 2 can easily be extended to functions of three
or more variables .

Theorem 1' Letw=f (X, y, z) be a differentiable function If x = x(t) ,y =y (t),z = z (t),
and ifdx/dt, dy/dt, and dz/dtexist and are continuous, then

dw dwdx L dw dy dw dz ©
dt  ox dt dy dt dz dt
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Theorem 2' Letw =f(X,y,z) beadifferentiable function and let x=x (r, s), y=y (r, s), and
z=z (r, s) Then if all indicated partial derivatives exist and are continuous, we have

ow Jdwdx dwdy OJwoz
—=——+t—=+ ——(7)
dx Oxor OJdyodr 0zor

And

ow 6W6x+away+ 6W62(8)
ds  0xds 0dyds 0z0s

Theorem 3' Letw =f(X,y,z) beadifferentiable functionand let x=x(r, s, t), y=y (r, ),
and z=z (r, s, t) Then if all indicated partial derivatives exist and are continuous, we have

6W_6W6x+away+awaz
dx 0dxdr dyor 09zor
6W_6W6x+away+awaz(9)
ds O0xds Odyds 0z0s
6W_6W6x+away+awaz
at o9x ot dydt 0z ot

PROBLEMS

In problems 1-11, use the chain rule to calculate dz/dt Check your answer by first writing z or w
as a function of t and then differentiating.

1. z=xy,x=¢e'y=¢e? 2.z =x%+y?%x=cost,y =sint
x=t3y =1t 4.z = e*siny,x = [ty =t

1 6.z = sinh(x — 2y),x = 2t4,y =t? + 1

5. z= tan~ X,x= coth,y=sin5t
X

7.w= x?+y?%z%x =costy=sint,z=t
8B.w=xy—yz+zx,x #e\,y= e, z=¢

X+
9.w = Zy,x=t,y=t2,z=t3
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10.w = sin(x + 2y + 3z),x = tant,y = sect,z =t°

11. w=In(2x — 3y + 4z),x = e,y = Int,z =cosht

In problems 12-26, use the chain rule to calculate Check the indicated partial derivatives.
12.z=xy;x=r+s;y =r—s;0z/ 0r and 0z/ 0s

cos(r+s);y=sin(r—s); 0z 0z
13.z= x> +y%x= (r+s)y (r=s) and —

or Js
14 oy _eS 0z daz_
.Z—X,X—e,y— r an p
15 7 = si y _r _s_az 0z
.z-sz,X—S,y—r,aran s
eXty r 0z 0z
16.z=ex_y; x=Inrs;y=1In S—;aandg

17.z =x%y3;,x =r—s?%y=2s+r; dz/0r and dz/ ds

18. w=x+y+z;x=r5;y=r+s;z=r—s; dw/dr and dw/ ds

19 Xy B _taw ow ow
.w—Z,x—r,y—s,z— 'ar'(')san ot
20w=Tx=r+s,y=t-rz=s-2, Pang 2
W= X =Tds,y = LZ=Ss ,ar,asan it
21 si s’r r’s r—s aWa daW
.W = sinxyz;x = = Zz=r—s; — and—
Yz 'y ’ " or ds

1 ow JO0w daw
r+tor " as ¢ ot

22.w =sinh(x+2y +32);x=r+sy=s—tz=

23w = xv? + 2__t_rs_l_awaw ow
WEXY A YEX =LY =08 s o 9s o0 e

24.w=In(x+2y+3z);x=rt3+s;y=t—s%z=e"5;0w/dr ,0w/dsand dw/ ot

= ow ow ow
25.w=ez;x=r’+t5,y=s?—t4,z=r*+s%— ,—and —
Y Jr 0s ot
r+ st
>|<26'u=Xy-|_Wz_ZSJXZt"'r_q,Y:qz+52—t+r,z=qrz , W

_r—s_au du du dau
" t+q’'dr’0s’at an aq
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18.7 TANGENT PLANES, NORMAL LINES, AND GRADIENTS

Let z=f(x, y) be a function of two variables . As we have seen, the graph of fis a surface in
More general, the graph of the equation F(x , y, z) =0 is a surface in The surface F(x , y, z) =0 is
called differentiable at appoint if all exist and are continuous at In a differentiable curve has a
unique tangent line at each point . In a differentiable surface in has a unique tangent plane at
each point at which are not all zero . We will formally define what we mean by a tangent plane
to a surface after a bit, although it should be easy enough to visualize (see Figure 1). We note
here that not every surface has a tangent plane at every point . For example, the cone has no
tangent plane at the origin (see Figure 2) .

z tangent plane

HN

(Xo,Y0,20)

figure 1

figure 2

Assume that the surface S given by F (X, vy, z)=0 is differentiable . Let C be any curve lying
on S. Thatis, C can be given parametrically by g (t)=x(t)I + y(t) j+ z(t) k.(Recall from
Definition , the definition of a curve, F(X, Y, z) can be written as a function of t, and from of
the chain rule [equation (18. 6. 3)] we have

F'(t) = VF.g'(t)
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But since F (x(t), y(t),z (t))=0 for all t since (x(t), y(t),z (t))ison S we see that F'(t)=0 for all
t. But g '(t) is tangent to the curve number t. Thus (1) implies the following :

The gradient of F at a point xy = ( xg,¥0,Zo) onSis orthogonal to tangent vector at x, to

any curve C remaining on S and passing through x,

This statement is illustrated in Figure 3

surface Vi(xo)

f(x,y,2)=0

Xo=(X0,Y0,20) ,

FIGURE 3
Thus is we think of all the vectors tangent to a surface at a point x, as constituting a plane, then

VF (x,) is normal vector to that plane . This motivates the following definition.

Definition 1 TANGENT PLANE AND NORMALLINE Let F be differentiable at x, =

(X0,Y¥0,Zo) and letthe surface S be defined by F(x,y, z)=0
(i) The tangent plane to S at( Xy, o, Zg)is the plane passing though the point

(X0, Yo, Zo)With normal vector VF (x,)
(ii)The normal line to S at x, is the line passing though x, having the same
direction VF (x)

EXAMPLE 1 Find the equation of the tangent plane and symmetric equations of the normal
- - - 2 2 -
line to the ellipsoid x2 + (y:) + (%) = 3 atthe point (1, 2, 3).

2 2
xz+(y:)+(%)—3=0wehave501ution . Since F(x, y,z) =
AP L S

i j 5, K= xi 2]

F=—
v 0x dy
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Then VF (1,2,3) = 2i+]j +§ k, and the equation of the tangent plane is

2
2(x—1)+(y—2)+§ (z—3) =0,
Or

2
2x+y+§z=6

The normal line is given by

x—1
2

3
=y—2= E(Z—3)

The situation is even simpler if we can write the surface in the form z=f(x , y).

That is , the surface is the graph of function of two variables. Then F(x, y, z )=

And the normal vector N to the tangent plane is

N = f (x0,¥0)i + fy (x0,¥0) j — k (2)

REMARK . One interesting consequence of this fact is that if z = f(x, y)and
if Vi(xy,y,) = 0, then the tangent plane to the surface at (xq, yo, f{(Xo, Vo)), N = (0f/ 0x)i +
(0f/ dy)j — k = —k. is parallel to the xy-plane (i.e.,it is horizontal ). This occurs because at
Thus the z-axis is normal to the tangent plane.

EXAMPLE 2 Find the tangent plan and normal line to the surface z =x3y® at the point (2, 1,
8)

Solution N=(5-)i+ (g—;)] — k= 3x%y% + 5x3y%4 — k = 12i + 40j —k Then the tangent
plane is given by

12(x—2)+40(y—1)—(z—8) =0,

Or

12x + 40y —z = 56

Symmetric equations of the normal line are
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x—2 y—1 z-8

12 40 -1

We can write the equation of the tangent plane to a surface =z f(x ,y ) so that it looks like the
equation of the tangent line to a curve in This will further illustrate the connection between the
derivative of a function of one variable and the gradient .Recall from Section 17. 5 that if p is
appoint on a plane and N is normal vector, then if Q denotes any other point on the plane, the
equation of the plane can be written

PQ. N=0. (3)

In this case, since z =f (x ,y ), apOint on the surface takes the form (x,y, z)=(x ,y, f(X, y)).
Thensince N = fi + fj — k, the equation of the tangent plane at (xo,y, f(xo,y0)) becomes ,
using (3),

0=1[x,y,2) — X0, ¥0,Z0o)] - ( fe+f, —1 )
=X—X0,V-Yo0,Z— Zg) . ( fX+fy‘—1)
= (x=x0) fx + (y-yolfy, = (2= zy) (4)
We can rewrite (4) as
z=f(Xo,y0) + (Xx—%) fx+ (y-yofy, (5)

Denote  (xq,Vo) byx, and (x,y )by Then (5)can be written as

z=f(xo) + (x —x0) . Vf(xp). (6)

Recall the if y=1f(x) is differentiable at x, then the equation of the tangent line to the
curve at the point (xo f(x,)) is given by

Y=I00) gy,
X — X
Or
y = k) + (x — x)F (ko). 7

This similarity between (6) and (7) illustrates quite vividly the important of the gradient
vector of a function of several variables asthe generalization of the derivative of a function
of one variable .
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PROBLEMS

In Problems 1-16 find the equation of the tangent plane and symmetric equations of the
normal line to given surface at the given point .

1.x2+y?+22=1;(1,0,0) 2.x2+y%?+2z%2=1;(0,1,0)
3.x2+y2+22=1;(0,0,1) 4.x2+y?*+2z2=1;(1,1,1)
x2 y2 72 x2 y2 72
5.a—2+b—2+c—2 =3;(a,b,c) 6a—2+§+c—2 =3;(—a,b,—c)
1 1 1 1 1 d—2
7.x2+y2+722=6;(4,1,9) 8.ax+ by+cz =d; (; B . )
9.xyz =4;(1,2,2) 10.xy2 +yz? +zx* =1;(1,1,1)
11.4x% + y? 4+ 522 = 15;(3,1,-2) 12. xe¥ —ye® =1;(1,0,0)
T T
13.sinxy — 2 cosyz = 0; (7 ,1,5) 14.x2 +y? +4x+ 2y +8z2=7;(2,-3,-1)
X+y
15.e¥% =5:(1,1,In5) 16. -— =1 (1,1,3)

In Problems 7-24, write the equation of the tangent plane in the form (6) and find the
symmetric equations of the normal line to given surface

17 .z=xy?%(1,1,1) 18.z = In(x — 2y); (3,1,0)
in (2 +5)(1T1T 1) 20 ¥V (5,43)
— X = — 2= H ) T
19.z = sin v); 3'20" X—y
21.7 = tan—lf;(—z,z,—g) 22.7 = sinhxy?; (0,3, 0)
T T . T n
23.z=sec(X_Y)i(§wgw2) 24.72 = e*cosy + eycosx;(E,O,eZ)

* 25. Find the two points of intersection of the surface z = x? + y? and the line

x—3 y+1 z+2
1 -1 =2
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DIRECTIONAL DERIVES AND THE GRADIENT

Let us take another look at the partial derivatives % andg—; of the function z =(x, y) . We have

of . f(xo + Ax,y0) — f(X0,¥0)

7% o Yo) = lim - (1)

This measures the rate of fas we approach the point ( x,,y,) a long a vector parallel to the x-
axis [since (xo + Ax,y,) — (Xo,¥0) = (Ax,0) = Axi ] Similarly

of . F(X0,¥0 +4y) — f(X0,¥0)
gy KorYo) = lim, Ay (2)

measures the rate of change of fas we approach the point ( x,,y,) along a vector parallel to
the y — axis .

It is frequently of interest to compute the rate of change of fas we approach (x,,y,) along a
vector that is not parallel to one of the coordinate axes The situation is depicted in Figure 1.
Suppose that (x, y) approaches the fixed point ( x,,y,) along the line segment joining them,
and let t denote the distance between the two points. We want to determine the relative rate of
change in f with respect to a change in f with respect to a change in t . Let u denote a unit vector

with the initial point at ( x,,y,) and parallel toPQ (see Figure 2). Since u andPQ are parallel
, there is , by Theorem a value of t such that

—

PQ =tu
 Toay) | \Fy)
ey QW)
Figure 2
Figure 1
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Notthat t >0ifuand PQ have the same directionandt <0 if uand PQ have opposite
directions . Now

PQ = (x —x0)i + (y — yo)i , 4)

And since u is a unit vector, we have
u = cos 0i + sin 0j (5)

Where 6 is the direction of u Thus inserting (4) and (5) into (3), we have
(x—x%g)i+ (y —yp)j = tcosbi+ tsin0j,
or
X =Xg +tcosHO
y =y, +tsind (6)

The equations (6) are the parametric equations of the line passing through p and Q Using (6) ,
we have

z=f(xy) =f(xg +tcosB,y, +tsinB) (7)

Remember that is fixed —it is the direction of approach Thus(x,y) = (X¢,¥o) anngTQ is
equivalentto t —» 0 in (7) Hence to compute the instantaneous rate of change of f as (x,y) —

(Xo,vo) along the vector PQ we need compute But by the chain rule ,

RGN GG

Or
%zfx(x,y)cose+f(x,y) sin© (8)
dt y

And

dz

prie [fx(xo +tcos O,y +t sinB]cosH

+ [fy(xo +tcosB,y,+tsinB] sinB 9
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If we set we obtain the instantaneous rate of change of f in the direction —P_Q) at the
point (xo,y,). That is,

< lt=0 = fx(X ,y0) cos 8 + £, (Xq,yo) sin 6. (10)

But (10) can be written [ using (5)] as

dz
E lt=0 = V(%o ;Yo) -u (11)

This leads to the following definition.

Definition 1 DIRCTIONAL DERIVATIVE Let f be differentiable at a point x, =
(X0 ,Yo) inR? and let u be a unit vector . Then the directional derivative of f in the direction u
, denoted f',(x,), is given by

flu(xo) = Vf (x) . u (12)
REMARK 1. Note that if u=1, then Vf .u = df/ dx and (12) reduces to the partial derivative

of/ ox Similarly, if u = j, then (12) reduces to df/ dy

REMARK 2. Definition 1 makes sense if fis a function of three variables . Then, of course,
uis a unit vector inR3

REMARK 3. There is another definition of the directional derivative . It is given by

f(xo + hy) — f(xo)

: (13)

f'u(x0) = llll_l’)r(l)

It can be shown that if limit in (13) exists , it is equal toVf (x,) . u if fis differentiable .

EXAMPLI: Let z = f(x, y) = xy? Calculate the directional derivative of f in the direction of
the vector v=2i +3j at the point (4, -1)

Solution A unit vector in the direction v is u= (2/V13)i + 3/V13)j Also, Vf = y2i +
2xyj . Thus

' = _ 2y exy _ 2ytexy
fu(x,y)—Vf(X).u—\/E+\/1_3— 5

At
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(4,-1),f' ,(4,—1) = —2213

EXAMPLE 2 Let z=f(x, y, z) = xIn y—e*?3 Calculate the directional derivative of
f in the direction of the vector v =i —j + 3k Evaluate this derivative at the point (—5,1,—2)

1

Solution A unit vector in the direction v is u= (\/H

)i— 1/V1D)j + (3/vV1Dk, and
Vf=(Iny—z3e*3)i + gj — 3xz2eX*3 k
Thus

In y — 73eX23 _ (g) — Oxz2eX23

fu(x) =Vf(x).u=

NGET '
And at (-5,1,-2)
fu(-5,1,-2) = 222
PROBLEMS

In problems 1-15, calculate the directional derivative of the given function at the given point
in the direction of the given vector v .

1.f(x,y) = xy at(2,3);v=1i+ 3j
2.f(x,y) = 2x? — 3y?at(1,-1);v=—i+2j
3.f(x,y) = In(x+ 3y)at(2,4);v=1+]j

4.f(x,y) = ax? + by? at (c,d); v = ai + Bj
5.f(x,y) = tan_lg at (2,2);v =3i—2j

Y at(4,3);v = —i— 2j
x+ya ,3);v=—i—2j

6.f(x,y) =

7.f(x,y) = xe¥ +ye*at(1,2);v=1i+]j

8.1(x,y) = sin(2x+3y) at (=5,5);v=—2j+3
HXY) = Yalizrg) V=972
9.f(x,y,z) =xy+yz+xzat(1,1,1);v=i+j+k

10.f(x,y,z) = xy3z° at(-3,-1,2);v=—-i—2j + k
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11.f(x,y,z) = In (x + 2y + 3z)at (1,2,0);v=2i+j—k
12.f(x,y,z) = xe¥* at(2,0,—4); v = —i + 2j + 5k
13.f(x,y,z) = x%y3 + zv/xat(1,-2,3);v = 5 +k

14.f(x,y,z) = e~ (P+y?+2%) 5t (1,1,1);v=i+3j—5k

15.f(x,y,z) =

at(-1,2,3);v=i—j+k

1
VX2 +y?+2z2

THE TOTAL DIFFERENTAL AND APPROXIMATION

In Section 3.8 we used the notions of increments and differentials to approximate a function
\We used the fact that if Ax was small, then

f(x + Ax) — f(x) = Ay = ' (x)AX. (D
We also defined the differentialdy by
dy = f'(x)dx = f'(x )Ax (2)
(since dx defined to be equal to Ax ). Not that in (2) it is not required that Ax be small
We now extend these ideas to functions of two or three variables.

Definition 1 INCREMNT AND TOTAL DIFFERENTIAL Let f = f(x) be a function of two
or three variables, and let Ax =(Ax, Ay)or ( Ax , Ay, Az)

(i)The increment of f, denoted Af, is defined by

Af = f(x + Ax ) — f(x) 3)
(ii) The total differential of f, denoted df,is given by
df = Vf(x).Ax. 4)
Note that equation (4) is very similar in form to equation (2).
REMARK 1. Iffis afunction of two variables , then (3) and (4) become

Af = f(x + Ax,y + Ay) — f(x,y), (5)
And the total differential is

df = f,(x + Ax,y + Ay) — f (X, y) (6)
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REMARK 1. If fis afunction of three variables , then (3) and (4) become

Af = f(x + Ax,y + Ay, z + Az) — f(x,y,2) (7)
And
df = f,(x,y, 2)Ax + f,(x,y,2) Ay + f,(x,y, 2) Az (8)

REMARK 3. Note that in the definition of the total differential , it is not required that be |Ax|
small .

From Theorems .1 and . 1' and the definition of differentiability , we see that |Ax| if is small
and if f is differentiable , then

Af =~ df, 9)

We can use the relation (9) to approximate functions of several variables in much the same way
that we used the relation (1) to approximate the values of functions of one variable .

EXAMPLE 1 Use the total differential to estimate /(2.98)2 + (4. 03)2

Solution Let f(x,y) = 4/x? + y? Then we are asked to calculate f (2.98, 4. 03) We know
thatf(3,4) = V32 + 42 = 5. Thus we need to calculate Now at (3, 4),
3 4
=i+ o
JXZ4yr x2+y? 5

5
Then using (6), we have

Vi(x) =

3 4
df = EAX + c Ay = (0.6)(—0.02) + (0.8)(0.03) = 0.012.

Hence
f(3 —0.02,4 + 0.03) — f(3,4) = Af =~ df = 0.012,
So

£(2.98,4.03) ~ f(3,4) + 0.012 = 5.012.

The exact value of \/(2.98)2 + (4.03)? is v8.8804 + 16.2409 =v25.1213 ~ 5.012115, s0
that Af ~ 0.012115 and our approximation is very good indeed .

EXAMPLE 2 The radius of a cone is measured to be 15 cm and the height of the cone is
measured to be 25 cm . There is a maximum error o f + 0.02 cm in the measurement of the
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radius and + 0.05 cm in the measurement of the height (a) What is the approximate volume of
the cone? (b)what is the maximum error in the calculation of the volume ?

Solution (a) V= gm‘zh ~ én(lS)z 25 = 1875ncm? ~ 5890.5cm?3

2 1
MV =vi+vj= §T[I'hi + gm‘z j = m(250i + 75j)Then choosingAx = 0.02 andAy

= 0.05 to find the maximum error,we have
Av = dv = Vv. Ax = t[250(0.02) + 75(0.05)] = (5 + 3.75) = 8.75n =~ 27.5cm3
Thus the maximum error in the calculation is , approximately, 27.5cm3, which means that
5890.5 -27.5 <V<5890.5 +27.5,
Or
5863cm? < v < 5918cm3

Note that an error of 27.5cm3 is only a relative error of 27.5/5890.5 ~ 0.0047, which is a
very small relative error (see p . 158 for discussion of relative error ).

EXAMPLE 3. A cylindrical tin can has an inside radius of 5 cm and height of 12cm . The
thickness of the is tin is 0.2 cm. Estimate the amount of tin needed to construct the can (in
clueing its ends).

Solution .We need to estimate the difference between the *’outer’” and ’inner’” volumes of the
can We have V= nr2hThe inner volume is (5%)(12) = 300mtcm?, and the outer volume
ist (5.2)%(12.4).The difference is

Av = 1 (5.2)%(12.4) — 300m ~ dv.
Since Av = 2mrhi 4+ 7r?j = (120 + 25j), we have
dv = 1(120(0.2) + 25(0.4)) = 34.

Thus the amount of tin needed is, approximately, 34mcm3 ~ 106.8cm3
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PROBLEMS

In problems 1-12, calculate the total differential d f

1.f(x,y) = xy3 2.f(x,y) = tan_lg
X —
3.f(x,y) = Fi 4.f(x,y) = xeY¥
5.f(x,y) = In(2x + 3y) 6.f(x,y) = sin(x — 4y)
Xy

7.f(x,y,z) = xy?z° 8.f(x,y,z) = —
9.f(x,y,z) = In(x + 2y + 3z) 10.(x,y,z) = secxy — tanz
11.£(x,y,y) = cosh(xy — z) 12.£(x,y,2) = ———

f(x,y,y) = cosh(xy — z f(x,y,z = 3x

13.Let f(x,y) = xy?
(a)Calculate explicitly he difference Af — df

(b)Verify your answer by calculating Af — df at the point (1, 2), where Ax = —0.01 and Ay
= 0.03.

* 14. Repeat the steps of problem 13 for the function f(x,y) = x3y?.

In problems 15 -23, use the total differential to estimate the given number .

3.01

15. =55 16.19.8V65
17.v/35.6164.08 18.(2.01)* (3.04)7 — (2.01) (3.04)°
1o, [202-396 20. ((4.95)2 + (7.02))5

"[5.02 + 3.96 - ((495)7 +(7.02))
1 (3.02)(1.97) . 11m (13n>
. S0t .sin( 24) cos {5z



