THE CHAIN RULE

In this section we derive the chain rule for function s of two and three variables Let us recall the chain rule for the composition of two functions of one variable :

Let y = f(u) and u = g(x) and assme that f and g are differentiable. Then

$$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx} = f'(g(x))g'(x)(1)$$

If z = f(x, y) is a function of two variables, then there are two versions of the chain rule

Theorem 1 CHAIN RULE Let z = f(x, y) be differentiable and suppose that x = x (t) and y = y(t). Assume further thatdx/dt anddy/dt exist and are continuous Then z can be written as a function of the parameter t, and

 $\frac{dz}{dt} = \frac{\partial z}{\partial x}\frac{dx}{dt} + \frac{\partial z}{\partial y}\frac{dy}{dt} = f_x\frac{dx}{dt} + \frac{dy}{dt}(2)$

We can also write this result using our gradient If g(t) = x (t) I +y(t)j, then g'(t) = (dx/dt)i + (dy/dt)j, and (2) can be written as

$$\frac{d}{dt}f(x(t),y(t)) = (f^{\circ}g)'(t) = [f(g(t))]' = \nabla f \cdot g'(t)$$
(3)

Theorem 2 CHAIN RULE Let z = f(x, y) be differentiable and suppose that x and y are function of the two variables r and s That is, x = x(r, s) and y = (r, s)

Suppose further that $\partial x / \partial r$, $\partial x / \partial s$, $\partial y / \partial r$ and $\partial y / \partial s$ all exist and are continuous. Then z can be written as a function of r and s, and

$\frac{\partial z}{\partial r} = \frac{\partial z}{\partial x}\frac{\partial x}{\partial r} + \frac{\partial z}{\partial y}\frac{\partial y}{\partial r}$	(4)
$\frac{\partial z}{\partial s} = \frac{\partial z}{\partial x}\frac{\partial x}{\partial s} + \frac{\partial z}{\partial y}\frac{\partial y}{\partial s}$	(5)

We will leave the proofs of these theorems until the end this section .

EXAMPLE 1: Let $z = f(x, y) = xy^2$. Let x = cost and y = sint Calculate dz/dt

Solution.

$$\frac{\mathrm{d}z}{\mathrm{d}t} = \frac{\partial z}{\partial x}\frac{\mathrm{d}x}{\mathrm{d}t} + \frac{\partial z}{\partial y}\frac{\mathrm{d}y}{\mathrm{d}t} = y^2(-\sin t) + 2xy(\cos t)$$

 $= (\sin^2 t)(-\sin t) + 2(\cos t (\sin t) (\cos t)$

 $= 2 \sin t \cos^2 t - \sin^3 t$

We can calculate this result another way. Since $z = xy^2$ we have $z = (\cos t)(\sin^2 t)$ Then

$$\frac{dz}{dt} = (\cos t) 2(\sin t (\cos t) + (\sin^2 t)(-\sin t))$$
$$= 2 \sin t \cos^2 t - \sin^3 t$$

EXAMPLE 2 Let $z = f(x, y) = \sin xy^2$ Suppose that $x = \frac{r}{s}$ and $y = e^{r-s}$ Calculate $\partial z / \partial r$ and $\partial z / \partial s$

Solution

$$\frac{\partial z}{\partial r} = \frac{\partial z}{\partial x}\frac{\partial x}{\partial r} + \frac{\partial z}{\partial y}\frac{\partial y}{\partial r} = (y^2\cos xy^2)\frac{1}{s} + (2xy\cos xy^2)e^{r-s}$$
$$= \frac{e^{2(r-s)}\cos[(\frac{r}{s})e^{2(r-s)}]}{s} + \frac{2r}{s}\left\{\cos[\frac{r}{s}e^{2(r-s)}]\right\}e^{2(r-s)}$$

And

$$\frac{\partial z}{\partial s} = \frac{\partial z}{\partial x}\frac{\partial x}{\partial s} + \frac{\partial z}{\partial y}\frac{\partial y}{\partial s} = (y^2 \cos xy^2)\frac{-r}{s^2} + (2xy \cos xy^2)(-e^{r-s})$$
$$= \frac{-re^{2(r-s)}\cos[(\frac{r}{s})e^{2(r-s)}]}{s^2} + \frac{2r}{s}\left\{\cos[\frac{r}{s}e^{2(r-s)}]\right\}e^{2(r-s)}$$

The chain rules given in Theorem 1 and Theorem 2 can easily be extended to functions of three or more variables .

Theorem 1' Let w = f(x, y, z) be a differentiable function If x = x(t), y = y(t), z = z(t), and ifdx/dt, dy/dt, and dz/dtexist and are continuous, then

$$\frac{dw}{dt} = \frac{\partial w}{\partial x}\frac{dx}{dt} + \frac{\partial w}{\partial y}\frac{dy}{dt} + \frac{dw}{dz}\frac{dz}{dt}$$
(6)

Theorem 2' Let w = f(x, y, z) be a differentiable function and let x = x(r, s), y = y(r, s), and z = z(r, s) Then if all indicated partial derivatives exist and are continuous, we have

$$\frac{\partial w}{\partial x} = \frac{\partial w}{\partial x}\frac{\partial x}{\partial r} + \frac{\partial w}{\partial y}\frac{\partial y}{\partial r} + \frac{\partial w}{\partial z}\frac{\partial z}{\partial r}(7)$$

And

$$\frac{\partial w}{\partial s} = \frac{\partial w}{\partial x}\frac{\partial x}{\partial s} + \frac{\partial w}{\partial y}\frac{\partial y}{\partial s} + \frac{\partial w}{\partial z}\frac{\partial z}{\partial s}(8)$$

Theorem 3' Let w = f(x, y, z) be a differentiable function and let x = x (r, s, t), y = y (r, s), and z = z (r, s, t) Then if all indicated partial derivatives exist and are continuous, we have

$\frac{\partial w}{\partial x} = \frac{\partial w}{\partial x}\frac{\partial x}{\partial r} + \frac{\partial w}{\partial y}$	$\frac{\partial y}{\partial r} + \frac{\partial w}{\partial z} \frac{\partial z}{\partial r}$
$\frac{\partial w}{\partial s} = \frac{\partial w}{\partial x}\frac{\partial x}{\partial s} + \frac{\partial w}{\partial y}$	$\frac{\partial y}{\partial s} + \frac{\partial w}{\partial z} \frac{\partial z}{\partial s}(9)$
$\frac{\partial w}{\partial t} = \frac{\partial w}{\partial x}\frac{\partial x}{\partial t} + \frac{\partial w}{\partial y}$	$\frac{\partial y}{\partial t} + \frac{\partial w}{\partial z} \frac{\partial z}{\partial t}$

_ .

PROBLEMS

In problems 1-11, use the chain rule to calculate dz/dt Check your answer by first writing z or w as a function of t and then differentiating.

1.
$$z = xy, x = e^{t}, y = e^{2t}$$

3. $z = \frac{y}{x}, x = t^{2}, y = t^{3}$
5. $z = \tan^{-1}\frac{y}{x}, x = \cos 3t, y = \sin 5t$
7. $w = x^{2} + y^{2}, z^{2}, x = \cos t, y = \sin t, z = t$
8. $w = xy - yz + zx, x \neq e^{t}, y = e^{2t}, z = e^{3t}$
9. $w = \frac{x + y}{z}, x = t, y = t^{2}, z = t^{3}$
2. $z = x^{2} + y^{2}, x = \cos t, y = \sin t$
4. $z = e^{x} \sin y, x = \sqrt{t, y} = \sqrt[3]{t}$
6. $z = \sinh(x - 2y), x = 2t^{2}, y = t^{2} + 1$
7. $w = x^{2} + y^{2}, z^{2}, x = \cos t, y = \sin t, z = t$

 $10. w = sin(x + 2y + 3z), x = tant, y = sec t, z = t^5$

11. $w = In(2x - 3y + 4z), x = e^t, y = Int, z = cos h t$

In problems 12-26, use the chain rule to calculate Check the indicated partial derivatives. 12. z = xy; x = r + s; y = r - s; $\partial z / \partial r$ and $\partial z / \partial s$ 13. $z = x^2 + y^2$; $x = \frac{\cos(r+s); y = \sin(r-s);}{\partial r}$ and $\frac{\partial z}{\partial s}$ 14. $z = \frac{y}{y}$; $x = e^{r}$; $y = \frac{e^{s} \partial z}{\partial r}$ and $\frac{\partial z}{\partial s}$; 15. $z = sin \frac{y}{x}$; $x = \frac{r}{s}$; $y = \frac{s}{r}$; $\frac{\partial z}{\partial r}$ and $\frac{\partial z}{\partial s}$ 16. $z = \frac{e^{x+y}}{e^{x-y}}$; $x = \ln rs$; $y = \ln \frac{r}{s}$; $\frac{\partial z}{\partial r}$ and $\frac{\partial z}{\partial s}$ 17. $z = x^2y^3$; $x = r - s^2$; y = 2s + r; $\partial z / \partial r$ and $\partial z / \partial s$ 18. w = x + y + z; x = rs; y = r + s; z = r - s; $\partial w / \partial r$ and $\partial w / \partial s$ 19. $w = \frac{xy}{z}$; x = r, y = s, z = t; $\frac{\partial w}{\partial r}$, $\frac{\partial w}{\partial s}$ and $\frac{\partial w}{\partial t}$ 20. w = $\frac{xy}{z}$; x = r + s, y = t - r, z = s - 2t; $\frac{\partial w}{\partial r}$, $\frac{\partial w}{\partial s}$ and $\frac{\partial w}{\partial t}$ 21. w = sin xyz; x = s²r, y = r²s, z = r - s; $\frac{\partial w}{\partial r}$ and $\frac{\partial w}{\partial r}$ 22. w = sin h(x + 2y + 3z); x = $\sqrt{r + s}$, y = $\sqrt[3]{s - t}$, z = $\frac{1}{r + t'}$, $\frac{\partial w}{\partial r}$, $\frac{\partial w}{\partial s}$ and $\frac{\partial w}{\partial t}$ 23. w = xy² + yz²; x = rst, y = $\frac{rs}{t}$, z = $\frac{1}{rst}$; $\frac{\partial w}{\partial r}$, $\frac{\partial w}{\partial s}$ and $\frac{\partial w}{\partial t}$ 24. w = In(x + 2y + 3z); x = rt³ + s; y = t - s⁵, z = e^{r+s}; $\partial w / \partial r$, $\partial w / \partial s$ and $\partial w / \partial t$ 25. w = $e^{\frac{xy}{z}}$; x = r² + t², y = s² - t², z = r² + s²; $\frac{\partial w}{\partial r}$, $\frac{\partial w}{\partial s}$ and $\frac{\partial w}{\partial t}$ * 26. $u = xy + w^2 - z^3$; x = t + r - q, $y = q^2 + s^2 - t + r$, $z = \frac{qr + st}{r^2}$, w $=\frac{r-s}{t+a};\frac{\partial u}{\partial r},\frac{\partial u}{\partial s},\frac{\partial u}{\partial t}$ and $\frac{\partial u}{\partial a}$

18.7 TANGENT PLANES, NORMAL LINES, AND GRADIENTS

Let z=f(x, y) be a function of two variables. As we have seen, the graph of f is a surface in More general, the graph of the equation F(x, y, z) = 0 is a surface in The surface F(x, y, z) = 0 is called differentiable at appoint if all exist and are continuous at In a differentiable curve has a unique tangent line at each point. In a differentiable surface in has a unique tangent plane at each point at which are not all zero. We will formally define what we mean by a tangent plane to a surface after a bit, although it should be easy enough to visualize (see Figure 1). We note here that not every surface has a tangent plane at every point. For example, the cone has no tangent plane at the origin (see Figure 2).

z tangent plane

figure 2

Assume that the surface S given by F(x, y, z)=0 is differentiable. Let C be any curve lying on S. That is, C can be given parametrically by g(t)=x(t)I + y(t) j + z(t) k.(Recall from Definition, the definition of a curve, F(x, y, z) can be written as a function of t, and from of the chain rule [equation (18. 6. 3)] we have

 $F'(t) = \nabla F.g'(t)$

But since F(x(t), y(t), z(t))=0 for all t since (x(t), y(t), z(t)) is on S we see that F'(t)=0 for all t. But g'(t) is tangent to the curve number t. Thus (1) implies the following :

The gradient of F at a point $x_0 = (x_0, y_0, z_0)$ on S is orthogonal to tangent vector at x_0 to any curve C remaining on S and passing through x_0

This statement is illustrated in Figure 3

FIGURE 3

Thus is we think of all the vectors tangent to a surface at a point x_0 as constituting a plane, then $\nabla F(x_0)$ is normal vector to that plane. This motivates the following definition.

Definition 1 TANGENT PLANE AND NORMALLINE Let F be differentiable at $x_0 = (x_0, y_0, z_0)$ and let the surface S be defined by F(x, y, z)=0

(i) The tangent plane to S at(x_0, y_0, z_0) is the plane passing though the point

 (x_0, y_0, z_0) with normal vector $\nabla F(x_0)$

(ii) The normal line to S at x_0 is the line passing though x_0 having the same

direction $\nabla F(x_0)$

EXAMPLE 1 Find the equation of the tangent plane and symmetric equations of the normal line to the ellipsoid $x^2 + \left(\frac{y^2}{4}\right) + \left(\frac{z^2}{9}\right) = 3$ at the point (1, 2, 3).

$$\begin{aligned} x^2 + \left(\frac{y^2}{4}\right) + \left(\frac{z^2}{9}\right) - 3 &= 0 \text{ we haveSolution } . \text{ Since } F(x, y, z) = \\ \nabla F &= \frac{\partial F}{\partial x} \text{ i} + \frac{\partial f}{\partial y} \text{ j} + \frac{\partial f}{\partial z} \text{ k} = 2x\text{i} + \frac{y}{2} \text{ j} + \frac{2z}{9} \text{ k} \end{aligned}$$

Then $\nabla F(1, 2, 3) = 2i + j + \frac{2}{3}k$, and the equation of the tangent plane is

$$2(x-1) + (y-2) + \frac{2}{3}(z-3) = 0,$$

Or

$$2x + y + \frac{2}{3}z = 6$$

The normal line is given by

$$\frac{x-1}{2} = y - 2 = \frac{3}{2} (z - 3)$$

The situation is even simpler if we can write the surface in the form z = f(x, y).

That is, the surface is the graph of function of two variables. Then F(x, y, z) =

$$F_x = f_x$$
 , $F_y = f_y$, $F_z = -1$

And the normal vector N to the tangent plane is

$$N = f_x (x_0, y_0)i + f_y (x_0, y_0) j - k$$
(2)

REMARK. One interesting consequence of this fact is that if z = f(x, y) and if $\nabla f(x_0, y_0) = 0$, then the tangent plane to the surface at $(x_0, y_0, f(x_0, y_0))$, $N = (\partial f / \partial x)i + (\partial f / \partial y)j - k = -k$. is parallel to the xy-plane (i.e., it is horizontal). This occurs because at Thus the z-axis is normal to the tangent plane.

EXAMPLE 2 Find the tangent plan and normal line to the surface $z = x^3y^5$ at the point (2, 1, 8)

Solution $N = \left(\frac{\partial f}{\partial x}\right)i + \left(\frac{\partial f}{\partial y}\right)j - k = 3x^2y^5i + 5x^3y^4j - k = 12i + 40j - k$ Then the tangent plane is given by

$$12(x-2) + 40(y-1) - (z-8) = 0,$$

Or

12x + 40y - z = 56

Symmetric equations of the normal line are

 $\frac{x-2}{12} = \frac{y-1}{40} = \frac{z-8}{-1}$

We can write the equation of the tangent plane to a surface = z f(x, y) so that it looks like the equation of the tangent line to a curve in This will further illustrate the connection between the derivative of a function of one variable and the gradient .Recall from Section 17. 5 that if p is appoint on a plane and N is normal vector, then if Q denotes any other point on the plane, the equation of the plane can be written

$$\overrightarrow{PQ}. \quad N = 0. \tag{3}$$

In this case, since z = f(x, y), ap0int on the surface takes the form (x, y, z)=(x, y, f(x, y)). Then since $N = f_x i + f_y j - k$, the equation of the tangent plane at $(x_0, y_0 f(x_0, y_0))$ becomes, using (3),

$$0 = [(x, y, z) - (x_0, y_0, z_0)] \cdot (f_x + f_{y_i} - 1)$$

= $(x - x_0, y - y_0, z - z_0) \cdot (f_x + f_{y_i} - 1)$
= $(x - x_0) f_x + (y - y_0) f_{y_i} - (z - z_0)$ (4)

We can rewrite (4) as

$$z = f(x_0, y_0) + (x - x_0) f_x + (y - y_0) f_{y_i}$$
(5)

Denote (x_0, y_0) by x_0 and (x, y) by Then (5) can be written as

$$z = f(x_0) + (x - x_0) \cdot \nabla f(x_0).$$
(6)

Recall the if y = f(x) is differentiable at x_0 then the equation of the tangent line to the curve at the point $(x_0, f(x_0))$ is given by

$$\frac{y - f(x_0)}{x - x_0} = f'(x_0),$$

Or
$$y = f(x_0) + (x - x_0)f'(x_0).$$
 (7)

This similarity between (6) and (7) illustrates quite vividly the important of the gradient vector of a function of several variables as the generalization of the derivative of a function of one variable .

PROBLEMS

In Problems 1-16 find the equation of the tangent plane and symmetric equations of the normal line to given surface at the given point .

$$1.x^2 + y^2 + z^2 = 1; (1, 0, 0)$$
 $2.x^2 + y^2 + z^2 = 1; (0, 1, 0)$ $3.x^2 + y^2 + z^2 = 1; (0, 0, 1)$ $4.x^2 + y^2 + z^2 = 1; (1, 1, 1)$ $5.\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 3; (a, b, c)$ $6.\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 3; (-a, b, -c)$ $7.x^{\frac{1}{2}} + y^{\frac{1}{2}} + z^{\frac{1}{2}} = 6; (4, 1, 9)$ $8.ax + by + cz = d; (\frac{1}{a}, \frac{1}{b}, \frac{d-2}{c})$ $9.xyz = 4; (1, 2, 2)$ $10.xy^2 + yz^2 + zx^2 = 1; (1, 1, 1)$ $11.4x^2 + y^2 + 5z^2 = 15; (3, 1, -2)$ $12.xe^y - ye^3 = 1; (1, 0, 0)$ $13.sin xy - 2 cos yz = 0; (\frac{\pi}{2}, 1, \frac{\pi}{3})$ $14.x^2 + y^2 + 4x + 2y + 8z = 7; (2, -3, -1)$ $15.e^{xyz} = 5; (1, 1, \ln 5)$ $16.\sqrt{\frac{x+y}{z-1}} = 1; (1, 1, 3)$

In Problems 7-24, write the equation of the tangent plane in the form (6) and find the symmetric equations of the normal line to given surface

$$17 . z = xy^{2}; (1, 1, 1)$$

$$18. z = ln(x - 2y); (3, 1, 0)$$

$$19. z = sin (2x + 5y); \left(\frac{\pi}{8}, \frac{\pi}{20}, 1\right)$$

$$20. z = \sqrt{\frac{x + y}{x - y}}; (5, 4, 3)$$

$$21. z = tan^{-1}\frac{y}{x}; \left(-2, 2, -\frac{\pi}{4}\right)$$

$$22. z = sin hxy^{2}; (0, 3, 0)$$

$$23. z = sec (x - y); \left(\frac{\pi}{2}, \frac{\pi}{6}, 2\right)$$

$$24. z = e^{x} cos y + e^{y} cos x; \left(\frac{\pi}{2}, 0, e^{\frac{\pi}{2}}\right)$$

 \ast 25. Find the two points of intersection of the surface $\,z=x^2+y^2$ and the line

$$\frac{x-3}{1} = \frac{y+1}{-1} = \frac{z+2}{-2}.$$