THE CHAIN RULE

In this section we derive the chain rule for function s of two and three variables Let us recall the chain rule for the composition of two functions ofone variable :

Let $\mathrm{y}=\mathrm{f}(\mathrm{u})$ and $\mathrm{u}=\mathrm{g}(\mathrm{x})$ and assme that f and g are differentiable. Then

$$
\frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x}=f^{\prime}(g(x)) g^{\prime}(x)(1)
$$

If $\mathrm{z}=\mathrm{f}(\mathrm{x}, \mathrm{y})$ is a function of two variables, then there are two versions of the chain rule
Theorem 1 CHAIN RULE Let $\mathrm{z}=\mathrm{f}(\mathrm{x}, \mathrm{y})$ be differentiable and suppose that $\mathrm{x}=\mathrm{x}(\mathrm{t})$ and $\mathrm{y}=$ $\mathrm{y}(\mathrm{t})$. Assume further thatdx/dt anddy/dt exist and are continuous Then z can be written as a function of the parameter t, and

$$
\frac{d z}{d t}=\frac{\partial z}{\partial x} \frac{d x}{d t}+\frac{\partial z}{\partial y} \frac{d y}{d t}=f_{x} \frac{d x}{d t}+\frac{d y}{d t}(2)
$$

We can also write this result using our gradient If $g(t)=x(t) I+y(t) j$, then $g^{\prime}(t)=(d x / d t) i+$ (dy/dt)j, and (2)can be written as

$$
\begin{equation*}
\frac{d}{d t} f(x(t), y(t))=\left(f^{\circ} g\right)^{\prime}(t)=[f(g(t))]^{\prime}=\nabla f \cdot g^{\prime}(t) \tag{3}
\end{equation*}
$$

Theorem 2 CHAIN RULE Let $\mathrm{z}=\mathrm{f}(\mathrm{x}, \mathrm{y})$ be differentiable and suppose that x and y are function of the two variables r and s That is, $x=x(r, s)$ and $y=(r, s)$

Suppose further that $\partial \mathrm{x} / \partial \mathrm{r}, \partial \mathrm{x} / \partial \mathrm{s}, \partial \mathrm{y} / \partial \mathrm{r}$ and $\partial \mathrm{y} / \partial \mathrm{s} \quad$ all exist and are continuous. Then z can be written as a function of r and s , and

$$
\begin{align*}
& \frac{\partial z}{\partial r}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial r}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial r} \tag{4}\\
& \frac{\partial z}{\partial s}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial s} \tag{5}
\end{align*}
$$

We will leave the proofs of these theorems until the end this section.
EXAMPLE 1: Let $\mathrm{z}=\mathrm{f}(\mathrm{x}, \mathrm{y})=\mathrm{xy}^{2}$. Let $\mathrm{x}=\cos \mathrm{t}$ and $\mathrm{y}=\sin \mathrm{t}$ Calculate $\mathrm{dz} / \mathrm{dt}$

Solution.

$$
\begin{aligned}
& \quad \frac{\mathrm{dz}}{\mathrm{dt}}=\frac{\partial \mathrm{z}}{\partial \mathrm{x}} \frac{\mathrm{dx}}{\mathrm{dt}}+\frac{\partial \mathrm{z}}{\partial \mathrm{y}} \frac{\mathrm{dy}}{\mathrm{dt}}=\mathrm{y}^{2}(-\sin \mathrm{t})+2 \mathrm{xy}(\cos \mathrm{t}) \\
& =\left(\sin ^{2} \mathrm{t}\right)(-\sin \mathrm{t})+2(\cos \mathrm{t}(\sin \mathrm{t})(\cos \mathrm{t}) \\
& =2 \sin \mathrm{t} \cos ^{2} \mathrm{t}-\sin ^{3} \mathrm{t}
\end{aligned}
$$

We can calculate this result another way. Since $z=x y^{2}$ we have $z=(\cos t)\left(\sin ^{2} t\right)$ Then
$\frac{\mathrm{dz}}{\mathrm{dt}}=(\cos \mathrm{t}) 2\left(\sin \mathrm{t}(\cos \mathrm{t})+\left(\sin ^{2} \mathrm{t}\right)(-\sin \mathrm{t})\right.$
$=2 \sin \mathrm{t} \cos ^{2} \mathrm{t}-\sin ^{3} \mathrm{t}$
EXAMPLE 2 Let $\mathrm{z}=\mathrm{f}(\mathrm{x}, \mathrm{y})=\sin \mathrm{xy}^{2} \quad$ Suppose that $\mathrm{x}=\frac{\mathrm{r}}{\mathrm{s}}$ and $\mathrm{y}=\mathrm{e}^{\mathrm{r}-\mathrm{s}}$ Calculate $\partial \mathrm{z} /$ $\partial \mathrm{r}$ and $\partial \mathrm{z} / \partial \mathrm{s}$

Solution

$$
\begin{aligned}
\frac{\partial z}{\partial r} & =\frac{\partial z}{\partial x} \frac{\partial x}{\partial r}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial r}=\left(y^{2} \cos x y^{2}\right) \frac{1}{s}+\left(2 x y \cos x y^{2}\right) e^{r-s} \\
& =\frac{e^{2(r-s)} \cos \left[\left(\frac{r}{s}\right) e^{2(r-s)}\right]}{s}+\frac{2 r}{s}\left\{\cos \left[\frac{r}{s} e^{2(r-s)}\right]\right\} e^{2(r-s)}
\end{aligned}
$$

And
$\frac{\partial z}{\partial s}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial s}=\left(y^{2} \cos x y^{2}\right) \frac{-r}{s^{2}}+\left(2 x y \cos x y^{2}\right)\left(-e^{r-s}\right)$
$=\frac{-\mathrm{re}^{2(\mathrm{r}-\mathrm{s})} \cos \left[\left(\frac{\mathrm{r}}{\mathrm{S}}\right) \mathrm{e}^{2(\mathrm{r}-\mathrm{s})}\right]}{\mathrm{s}^{2}}+\frac{2 \mathrm{r}}{\mathrm{s}}\left\{\cos \left[\frac{\mathrm{r}}{\mathrm{S}} \mathrm{e}^{2(\mathrm{r}-\mathrm{s})}\right]\right\} \mathrm{e}^{2(\mathrm{r}-\mathrm{s})}$
The chain rules given in Theorem 1 and Theorem 2 can easily be extended to functions of three or more variables.

Theorem 1' Let $\mathrm{w}=\mathrm{f}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ be a differentiable function If $\mathrm{x}=\mathrm{x}(\mathrm{t}), \mathrm{y}=\mathrm{y}(\mathrm{t}), \mathrm{z}=\mathrm{z}(\mathrm{t})$, and ifdx/dt, dy/dt, and dz/dtexist and are continuous, then

$$
\frac{d w}{d t}=\frac{\partial w}{\partial x} \frac{d x}{d t}+\frac{\partial w}{\partial y} \frac{d y}{d t}+\frac{d w}{d z} \frac{d z}{d t}(6)
$$

Theorem 2' Let $\mathrm{w}=\mathrm{f}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ be a differentiable function and let $\mathrm{x}=\mathrm{x}(\mathrm{r}, \mathrm{s}), \mathrm{y}=\mathrm{y}(\mathrm{r}, \mathrm{s})$, and $\mathrm{z}=\mathrm{z}(\mathrm{r}, \mathrm{s})$ Then if all indicated partial derivatives exist and are continuous, we have

$$
\frac{\partial w}{\partial x}=\frac{\partial w}{\partial x} \frac{\partial x}{\partial r}+\frac{\partial w}{\partial y} \frac{\partial y}{\partial r}+\frac{\partial w}{\partial z} \frac{\partial z}{\partial r}(7)
$$

And

$$
\frac{\partial w}{\partial s}=\frac{\partial w}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial w}{\partial y} \frac{\partial y}{\partial s}+\frac{\partial w}{\partial z} \frac{\partial z}{\partial s}(8)
$$

Theorem 3' Let $\mathrm{w}=\mathrm{f}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ be a differentiable function and let $\mathrm{x}=\mathrm{x}(\mathrm{r}, \mathrm{s}, \mathrm{t}), \mathrm{y}=\mathrm{y}(\mathrm{r}, \mathrm{s})$, and $\mathrm{z}=\mathrm{z}(\mathrm{r}, \mathrm{s}, \mathrm{t})$ Then if all indicated partial derivatives exist and are continuous, we have

$$
\begin{align*}
& \frac{\partial w}{\partial x}=\frac{\partial w}{\partial x} \frac{\partial x}{\partial r}+\frac{\partial w}{\partial y} \frac{\partial y}{\partial r}+\frac{\partial w}{\partial z} \frac{\partial z}{\partial r} \\
& \frac{\partial w}{\partial s}=\frac{\partial w}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial w}{\partial y} \frac{\partial y}{\partial s}+\frac{\partial w}{\partial z} \frac{\partial z}{\partial s} \tag{9}\\
& \frac{\partial w}{\partial t}=\frac{\partial w}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial w}{\partial y} \frac{\partial y}{\partial t}+\frac{\partial w}{\partial z} \frac{\partial z}{\partial t}
\end{align*}
$$

PROBLEMS

In problems 1-11, use the chain rule to calculate dz/dt Check your answer by first writing z or w as a function of t and then differentiating.

1. $z=x y, x=e^{t}, y=e^{2 t}$
2. $\mathrm{z}=\mathrm{x}^{2}+\mathrm{y}^{2}, \mathrm{x}=\cos \mathrm{t}, \mathrm{y}=\sin \mathrm{t}$
3. $\mathrm{z}=\frac{\mathrm{y}}{\mathrm{x}}, \mathrm{x}=\mathrm{t}^{2}, \mathrm{y}=\mathrm{t}^{3}$
4. $z=e^{x} \sin y, x=\sqrt{t, y}=\sqrt[3]{t}$
5. $z=\tan ^{-1} \frac{y}{x}, x=\cos 3 t, y=\sin 5 t$
6. $\mathrm{z}=\sinh (\mathrm{x}-2 \mathrm{y}), \mathrm{x}=2 \mathrm{t}^{2}, \mathrm{y}=\mathrm{t}^{2}+1$
7. $w=x^{2}+y^{2}, z^{2}, x=\cos t, y=\sin t, z=t$
8. $w=x y-y z+z x, x \neq e^{t}, y=e^{2 t}, z=e^{3 t}$
9. $w=\frac{x+y}{z}, x=t, y=t^{2}, z=t^{3}$
10. $\mathrm{w}=\sin (\mathrm{x}+2 \mathrm{y}+3 \mathrm{z}), \mathrm{x}=\operatorname{tant}, \mathrm{y}=\sec \mathrm{t}, \mathrm{z}=\mathrm{t}^{5}$
11. $w=\operatorname{In}(2 x-3 y+4 z), x=e^{t}, y=\operatorname{Int}, z=\cosh t$

In problems 12-26, use the chain rule to calculate Check the indicated partial derivatives.
12. $\mathrm{z}=\mathrm{xy} ; \mathrm{x}=\mathrm{r}+\mathrm{s} ; \mathrm{y}=\mathrm{r}-\mathrm{s} ; \partial \mathrm{z} / \partial \mathrm{r}$ and $\partial \mathrm{z} / \partial \mathrm{s}$
$13 . \mathrm{z}=\mathrm{x}^{2}+\mathrm{y}^{2} ; \mathrm{x}=\frac{\cos (\mathrm{r}+\mathrm{s}) ; \mathrm{y}=\sin (\mathrm{r}-\mathrm{s}) ; \quad \partial \mathrm{z}}{\partial \mathrm{r}}$ and $\frac{\partial \mathrm{z}}{\partial \mathrm{s}}$
14. $\mathrm{z}=\frac{\mathrm{y}}{\mathrm{x}} ; \mathrm{x}=\mathrm{e}^{\mathrm{r}} ; \mathrm{y}=\frac{\mathrm{e}^{\mathrm{s}} \partial \mathrm{z}}{\partial \mathrm{r}}$ and $\frac{\partial \mathrm{z}}{\partial \mathrm{s}}$;
15. $\mathrm{z}=\sin \frac{\mathrm{y}}{\mathrm{x}} ; \mathrm{x}=\frac{\mathrm{r}}{\mathrm{s}} ; \mathrm{y}=\frac{\mathrm{s}}{\mathrm{r}} ; \frac{\partial \mathrm{z}}{\partial \mathrm{r}}$ and $\frac{\partial \mathrm{z}}{\partial \mathrm{s}}$

$$
\text { 16. } z=\frac{e^{x+y}}{e^{x-y}} ; x=\operatorname{In} r s ; y=\operatorname{In} \frac{r}{s} ; \frac{\partial z}{\partial r} \text { and } \frac{\partial z}{\partial s}
$$

17. $\mathrm{z}=\mathrm{x}^{2} \mathrm{y}^{3} ; \mathrm{x}=\mathrm{r}-\mathrm{s}^{2} ; \mathrm{y}=2 \mathrm{~s}+\mathrm{r} ; \partial \mathrm{z} / \partial \mathrm{r}$ and $\partial \mathrm{z} / \partial \mathrm{s}$
18. $\mathrm{w}=\mathrm{x}+\mathrm{y}+\mathrm{z} ; \mathrm{x}=\mathrm{rs} ; \mathrm{y}=\mathrm{r}+\mathrm{s} ; \mathrm{z}=\mathrm{r}-\mathrm{s} ; \partial \mathrm{w} / \partial \mathrm{r}$ and $\partial \mathrm{w} / \partial \mathrm{s}$
19. $\mathrm{w}=\frac{\mathrm{xy}}{\mathrm{z}} ; \mathrm{x}=\mathrm{r}, \mathrm{y}=\mathrm{s}, \mathrm{z}=\mathrm{t} ; \frac{\partial \mathrm{w}}{\partial \mathrm{r}}, \frac{\partial \mathrm{w}}{\partial \mathrm{s}}$ and $\frac{\partial \mathrm{w}}{\partial \mathrm{t}}$
20. $\mathrm{w}=\frac{\mathrm{xy}}{\mathrm{z}} ; \mathrm{x}=\mathrm{r}+\mathrm{s}, \mathrm{y}=\mathrm{t}-\mathrm{r}, \mathrm{z}=\mathrm{s}-2 \mathrm{t} ; \frac{\partial \mathrm{w}}{\partial \mathrm{r}}, \frac{\partial \mathrm{w}}{\partial \mathrm{s}}$ and $\frac{\partial \mathrm{w}}{\partial \mathrm{t}}$
21. $w=\sin x y z ; x=s^{2} r, y=r^{2} s, z=r-s ; \frac{\partial w}{\partial r}$ and $\frac{\partial w}{\partial s}$
22. $\mathrm{w}=\sinh (\mathrm{x}+2 \mathrm{y}+3 \mathrm{z}) ; \mathrm{x}=\sqrt{\mathrm{r}+\mathrm{s}, \mathrm{y}}=\sqrt[3]{\mathrm{s}-\mathrm{t}, \mathrm{z}}=\frac{1}{\mathrm{r}+\mathrm{t}^{\prime}}, \frac{\partial \mathrm{w}}{\partial \mathrm{r}}, \frac{\partial \mathrm{w}}{\partial \mathrm{s}}$ and $\frac{\partial \mathrm{w}}{\partial \mathrm{t}}$
23. $w=x^{2}+y z^{2} ; x=r s t, y=\frac{r s}{t}, z=\frac{1}{r s t} ; \frac{\partial w}{\partial r}, \frac{\partial w}{\partial s}$ and $\frac{\partial w}{\partial t}$
24. $w=\operatorname{In}(x+2 y+3 z) ; x=r t^{3}+s ; y=t-s^{5}, z=e^{r+s} ; \partial w / \partial r, \partial w / \partial s$ and $\partial w / \partial t$
25. $w=e^{\frac{x y}{z}} ; x=r^{2}+t^{2}, y=s^{2}-t^{2}, z=r^{2}+s^{2} ; \frac{\partial w}{\partial r}, \frac{\partial w}{\partial s}$ and $\frac{\partial w}{\partial t}$
*26. $u=x y+w^{2}-z^{3} ; x=t+r-q, y=q^{2}+s^{2}-t+r, z=\frac{q r+s t}{r^{2}}, w$

$$
=\frac{\mathrm{r}-\mathrm{s}}{\mathrm{t}+\mathrm{q}} ; \frac{\partial \mathrm{u}}{\partial \mathrm{r}}, \frac{\partial \mathrm{u}}{\partial \mathrm{~s}}, \frac{\partial \mathrm{u}}{\partial \mathrm{t}} \text { and } \frac{\partial \mathrm{u}}{\partial \mathrm{q}}
$$

18.7 TANGENT PLANES, NORMAL LINES, AND GRADIENTS

Let $\mathrm{z}=\mathrm{f}(\mathrm{x}, \mathrm{y})$ be a function of two variables. As we have seen, the graph of f is a surface in More general, the graph of the equation $F(x, y, z)=0$ is a surface in The surface $F(x, y, z)=0$ is called differentiable at appoint if all exist and are continuous at In a differentiable curve has a unique tangent line at each point. In a differentiable surface in has a unique tangent plane at each point at which are not all zero. We will formally define what we mean by a tangent plane to a surface after a bit, although it should be easy enough to visualize (see Figure 1). We note here that not every surface has a tangent plane at every point . For example, the cone has no tangent plane at the origin (see Figure 2) .
z tangent plane

figure 1
figure 2

Assume that the surface S given by $F(x, y, z)=0$ is differentiable . Let C be any curve lying on S. That is, C can be given parametrically by $g(t)=x(t) I+y(t) j+z(t) k$.(Recall from Definition, the definition of a curve, $F(x, y, z)$ can be written as a function of t, and from of the chain rule [equation (18.6.3)] we have
$\mathrm{F}^{\prime}(\mathrm{t})=\nabla \mathrm{F} \cdot \mathrm{g}^{\prime}(\mathrm{t})$

But since $F(x(t), y(t), z(t))=0$ for all t since $(x(t), y(t), z(t))$ is on S we see that $F^{\prime}(t)=0$ for all t. But $g^{\prime}(t)$ is tangent to the curve number t. Thus (1) implies the following :

The gradient of F at a point $x_{0}=\left(x_{0}, y_{0}, z_{0}\right)$ on S is orthogonal to tangent vector at x_{0} to any curve C remaining on S and passing through x_{0}

This statement is illustrated in Figure 3

FIGURE 3
Thus is we think of all the vectors tangent to a surface at a point x_{0} as constituting a plane, then $\nabla \mathrm{F}\left(\mathrm{x}_{0}\right)$ is normal vector to that plane. This motivates the following definition.

Definition 1 TANGENT PLANE AND NORMALLINE Let F be differentiable at $\mathrm{x}_{0}=$ $\left(\mathrm{x}_{0}, \mathrm{y}_{0}, \mathrm{z}_{0}\right)$ and let the surface S be defined by $\mathrm{F}(\mathrm{x}, \mathrm{y}, \mathrm{z})=0$
(i)The tangent plane to S at $\left(\mathrm{x}_{0}, \mathrm{y}_{0}, \mathrm{z}_{0}\right)$ is the plane passing though the point

$$
\left(\mathrm{x}_{0}, \mathrm{y}_{0}, \mathrm{z}_{0}\right) \text { with normal vector } \nabla \mathrm{F}\left(\mathrm{x}_{0}\right)
$$

(ii)The normal line to S at x_{0} is the line passing though x_{0} having the same direction $\nabla \mathrm{F}\left(\mathrm{x}_{0}\right)$

EXAMPLE 1 Find the equation of the tangent plane and symmetric equations of the normal line to the ellipsoid $\mathrm{x}^{2}+\left(\frac{\mathrm{y}^{2}}{4}\right)+\left(\frac{\mathrm{z}^{2}}{9}\right)=3$ at the point $(1,2,3)$. $x^{2}+\left(\frac{y^{2}}{4}\right)+\left(\frac{z^{2}}{9}\right)-3=0$ we haveSolution . Since $F(x, y, z)=$

$$
\nabla F=\frac{\partial F}{\partial x} i+\frac{\partial f}{\partial y} j+\frac{\partial f}{\partial z} k=2 x i+\frac{y}{2} j+\frac{2 z}{9} k
$$

Then $\nabla F(1,2,3)=2 i+j+\frac{2}{3} k$, and the equation of the tangent plane is
$2(x-1)+(y-2)+\frac{2}{3}(z-3)=0$,
Or
$2 x+y+\frac{2}{3} z=6$
The normal line is given by
$\frac{x-1}{2}=y-2=\frac{3}{2}(z-3)$
The situation is even simpler if we can write the surface in the form $\mathrm{z}=\mathrm{f}(\mathrm{x}, \mathrm{y})$.
That is, the surface is the graph of function of two variables. Then $F(x, y, z)=$
$\mathrm{F}_{\mathrm{x}}=\mathrm{f}_{\mathrm{x}}, \quad \mathrm{F}_{\mathrm{y}}=\mathrm{f}_{\mathrm{y}}, \quad \mathrm{F}_{\mathrm{z}}=-1$,
And the normal vector N to the tangent plane is

$$
\begin{equation*}
N=f_{x}\left(x_{0}, y_{0}\right) i+f_{y}\left(x_{0}, y_{0}\right) j-k \tag{2}
\end{equation*}
$$

REMARK. One interesting consequence of this fact is that if $z=f(x, y)$ and if $\nabla f\left(x_{0}, y_{0}\right)=0$, then the tangent plane to the surface at $\left(\mathrm{x}_{0}, \mathrm{y}_{0}, \mathrm{f}\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)\right), \mathrm{N}=(\partial \mathrm{f} / \partial \mathrm{x}) \mathrm{i}+$ $(\partial \mathrm{f} / \partial \mathrm{y}) \mathrm{j}-\mathrm{k}=-\mathrm{k}$. is parallel to the xy -plane (i.e.,it is horizontal). This occurs because at Thus the z -axis is normal to the tangent plane.

EXAMPLE 2 Find the tangent plan and normal line to the surface $\mathrm{z}=\mathrm{x}^{3} \mathrm{y}^{5}$ at the point (2, 1, 8)

Solution $N=\left(\frac{\partial f}{\partial x}\right) i+\left(\frac{\partial f}{\partial y}\right) j-k=3 x^{2} y^{5} i+5 x^{3} y^{4} j-k=12 i+40 j-k \quad$ Then the tangent plane is given by
$12(x-2)+40(y-1)-(z-8)=0$,
Or
$12 x+40 y-z=56$
Symmetric equations of the normal line are
$\frac{x-2}{12}=\frac{y-1}{40}=\frac{z-8}{-1}$
We can write the equation of the tangent plane to a surface $=\mathrm{zf}(\mathrm{x}, \mathrm{y})$ so that it looks like the equation of the tangent line to a curve in This will further illustrate the connection between the derivative of a function of one variable and the gradient .Recall from Section 17. 5 that if p is appoint on a plane and N is normal vector, then if Q denotes any other point on the plane, the equation of the plane can be written

$$
\begin{equation*}
\overrightarrow{\mathrm{PQ}} . \quad \mathrm{N}=0 \tag{3}
\end{equation*}
$$

In this case, $\operatorname{since} \mathrm{z}=\mathrm{f}(\mathrm{x}, \mathrm{y})$, ap0int on the surface takes the form $(\mathrm{x}, \mathrm{y}, \mathrm{z})=(\mathrm{x}, \mathrm{y}, \mathrm{f}(\mathrm{x}, \mathrm{y})$). Then since $N=f_{x} i+f_{y} j-k$, the equation of the tangent plane at $\left(x_{0}, y_{0} f\left(x_{0}, y_{0}\right)\right)$ becomes , using (3),

$$
\begin{align*}
& 0=\left[(x, y, z)-\left(x_{0}, y_{0}, z_{0}\right)\right] \cdot\left(f_{x}+f_{y}-1\right) \\
& =\left(x-x_{0}, y-y_{0}, z-z_{0}\right) \cdot\left(f_{x}+f_{y},-1\right) \\
& \quad=\left(x-x_{0}\right) f_{x}+\left(y-y_{0}\right) f_{y},-\left(z-z_{0}\right) \tag{4}
\end{align*}
$$

We can rewrite (4) as

$$
\begin{equation*}
z=f\left(x_{0}, y_{0}\right)+\left(x-x_{0}\right) f_{x}+\left(y-y_{0}\right) f_{y} \tag{5}
\end{equation*}
$$

Denote $\left(x_{0}, y_{0}\right)$ byx x_{0} and ($\left.x, y\right)$ by Then (5) can be written as

$$
\begin{equation*}
z=f\left(x_{0}\right)+\left(x-x_{0}\right) . \nabla f\left(x_{0}\right) . \tag{6}
\end{equation*}
$$

Recall the if $\mathrm{y}=\mathrm{f}(\mathrm{x})$ is differentiable at x_{0} then the equation of the tangent line to the curve at the point $\left(\mathrm{x}_{0}, \mathrm{f}\left(\mathrm{x}_{0}\right)\right)$ is given by
$\frac{\mathrm{y}-\mathrm{f}\left(\mathrm{x}_{0}\right)}{\mathrm{x}-\mathrm{x}_{0}}=\mathrm{f}^{\prime}\left(\mathrm{x}_{0}\right)$,
Or
$y=f\left(x_{0}\right)+\left(x-x_{0}\right) f^{\prime}\left(x_{0}\right)$.
This similarity between (6) and (7) illustrates quite vividly the important of the gradient vector of a function of several variables as the generalization of the derivative of a function of one variable.

PROBLEMS

In Problems 1-16 find the equation of the tangent plane and symmetric equations of the normal line to given surface at the given point.

$$
\begin{array}{cc}
\text { 1. } x^{2}+y^{2}+z^{2}=1 ;(1,0,0) & 2 \cdot x^{2}+y^{2}+z^{2}=1 ;(0,1,0) \\
\text { 3. } x^{2}+y^{2}+z^{2}=1 ;(0,0,1) & 4 \cdot x^{2}+y^{2}+z^{2}=1 ;(1,1,1) \\
\text { 5. } \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=3 ;(a, b, c) & \text { 6. } \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=3 ;(-a, b,-c) \\
\text { 7. } x^{\frac{1}{2}}+y^{\frac{1}{2}}+z^{\frac{1}{2}}=6 ;(4,1,9) & \text { 8.ax }+b y+c z=d ;\left(\frac{1}{a}, \frac{1}{b}, \frac{d-2}{c}\right) \\
\text { 9. } x y z=4 ;(1,2,2) & 10 \cdot x^{2}+y z^{2}+z^{2}=1 ;(1,1,1) \\
\text { 11. } 4 x^{2}+y^{2}+5 z^{2}=15 ;(3,1,-2) & 12 \cdot x^{y}-y^{3}=1 ;(1,0,0) \\
\text { 13. } \sin x y-2 \cos y z=0 ;\left(\frac{\pi}{2}, 1, \frac{\pi}{3}\right) & 14 \cdot x^{2}+y^{2}+4 x+2 y+8 z=7 ;(2,-3,-1) \\
\text { 15. } e^{x y z}=5 ;(1,1, \ln 5) & 16 . \sqrt{\frac{x+y}{z-1}}=1 ;(1,1,3)
\end{array}
$$

In Problems 7-24, write the equation of the tangent plane in the form (6) and find the symmetric equations of the normal line to given surface

$$
\begin{aligned}
17 . \mathrm{z}=\mathrm{xy}^{2} ;(1,1,1) & 18 \cdot \mathrm{z}=\operatorname{In}(\mathrm{x}-2 \mathrm{y}) ;(3,1,0) \\
19 . \mathrm{z}=\sin (2 \mathrm{x}+5 \mathrm{y}) ;\left(\frac{\pi}{8}, \frac{\pi}{20}, 1\right) & 20 \cdot \mathrm{z}=\sqrt{\frac{\mathrm{x}+\mathrm{y}}{\mathrm{x}-\mathrm{y}} ;(5,4,3)} \\
21 . \mathrm{z}=\tan ^{-1} \frac{y}{x} ;\left(-2,2,-\frac{\pi}{4}\right) & 22 \cdot \mathrm{z}=\operatorname{sinhxy} ;(0,3,0) \\
23 . z=\sec (x-y) ;\left(\frac{\pi}{2}, \frac{\pi}{6}, 2\right) & 24 \cdot \mathrm{z}=\mathrm{e}^{\mathrm{x}} \cos \mathrm{y}+\mathrm{e}^{\mathrm{y}} \cos \mathrm{x} ;\left(\frac{\pi}{2}, 0, \mathrm{e}^{\frac{\pi}{2}}\right)
\end{aligned}
$$

$* 25$. Find the two points of intersection of the surface $z=x^{2}+y^{2}$ and the line $\frac{x-3}{1}=\frac{y+1}{-1}=\frac{z+2}{-2}$.

