HIGER - ORDER PARTIAL DERIVATIVES

We have seen that if $y=f(x)$, then

$$
\mathrm{y}^{\prime}=\frac{\mathrm{df}}{\mathrm{dx}} \text { and } \quad \mathrm{y}^{\prime \prime}=\frac{\mathrm{d}^{2} \mathrm{f}}{\mathrm{dx}^{2}}=\frac{\mathrm{d}}{\mathrm{dx}}\left(\frac{\mathrm{df}}{\mathrm{dx}}\right)
$$

That is ,the second derivative of f is the derivative of the first derivative of f., if $z=f(x, y)$, then we can differentiate each of the two "first" partial derivatives $\partial \mathrm{fl} \partial \mathrm{x}$ and $\partial \mathrm{fl} \partial \mathrm{y}$ with respect to both x and y to obtain four second partial derivatives as follows :

Definition 1: SECOND PARTIAL DERIVATIVES
(i) Differentiate twice with respect to x :

$$
\begin{equation*}
\frac{\partial^{2} \mathrm{z}}{\partial \mathrm{x}^{2}}=\frac{\partial^{2} f}{\partial x^{2}}=\mathrm{f}_{x x}=\frac{\partial}{\partial x}\left(\frac{\partial \mathrm{f}}{\partial x}\right) \tag{1}
\end{equation*}
$$

(ii) Differentiate first with respect to x and then with respect to y :

$$
\frac{\partial^{2} \mathrm{z}}{\partial \mathrm{y} \partial \mathrm{x}}=\frac{\partial^{2} f}{\partial \mathrm{y} \partial \mathrm{x}}=\mathrm{f}_{x y}=\frac{\partial}{\partial y}\left(\frac{\partial \mathrm{f}}{\partial x}\right)(2)
$$

(iii) Differentiate first with respect to y and then with respect to x :

$$
\begin{equation*}
\frac{\partial^{2} \mathrm{z}}{\partial \mathrm{x} \partial \mathrm{y}}=\frac{\partial^{2} f}{\partial \mathrm{x} \partial \mathrm{y}}=\mathrm{f}_{y x}=\frac{\partial}{\partial x}\left(\frac{\partial \mathrm{f}}{\partial y}\right) \tag{3}
\end{equation*}
$$

(iv) Differentiate twice with respect to y :

$$
\begin{equation*}
\frac{\partial^{2} \mathrm{z}}{\partial \mathrm{y}^{2}}=\frac{\partial^{2} f}{\partial \nu^{2}}=\mathrm{f}_{y y}=\frac{\partial}{\partial y}\left(\frac{\partial \mathrm{f}}{\partial y}\right) \tag{4}
\end{equation*}
$$

REMARK1.Thederivatives $\partial^{2} f 1 \partial \mathrm{x} \partial \mathrm{y}$ and $\partial^{2} f \partial \mathrm{y} \partial \mathrm{x}$ arecalled the mixed second partialsl.
REMARK2. It is much easier to denote the second partials byf $f_{x x}, f_{x x}, f_{y x}$ andf $y_{y y}$, we

Will there f are use this notation for the remainder of this section. Note that the symbol f_{xy} indicates that we differentiate first with respect to y.

EXAMPLE 1 Let $\mathrm{z}=f(\mathrm{x}, \mathrm{y})=\mathrm{x}^{3} \mathrm{y}^{2}-\mathrm{xy}^{5}$.Calculate the four second partial derivatives .
Solution. We have $f x=3 x^{2} y^{2}-y^{5}$ and $f y=2 x^{3} y-5 x y^{4}$.
(a) $\mathrm{f}_{\mathrm{xx}}=\frac{\partial}{\partial \mathrm{x}}\left(\mathrm{f}_{\mathrm{x}}\right)=6 \mathrm{xy}^{2}$
(b) $\quad f_{x y}=\frac{\partial}{\partial y}\left(f_{x}\right)=6 x^{2} y-5 y^{2}$
(c) $f_{x y}=\frac{\partial}{\partial x}\left(f_{y}\right)=6 x^{2} y-5 y^{2}$
(d) $\mathrm{f}_{\mathrm{yy}}=\frac{\partial}{\partial y}\left(\mathrm{f}_{\mathrm{y}}\right)=2 \mathrm{x}^{3}-20 \mathrm{xy}^{3}$

In Example 1 we saw thatf $\mathrm{f}_{\mathrm{xy}}=\mathrm{f}_{\mathrm{yx}}$ This result is no accident, as we see by the following theorem whose proof can be found in any intermediate calculus text .t

Theorem 1 : Suppose that $\mathrm{f}, \mathrm{f}_{\mathrm{x}}, \mathrm{f}_{\mathrm{y}}, \mathrm{f}_{\mathrm{xy}}$ and f_{yx} are all continuous at $\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)$ Then

$$
\begin{equation*}
f_{x y}\left(x_{0}, y_{0}\right)=f_{y x}\left(x_{0}, y_{0}\right) \tag{5}
\end{equation*}
$$

This result is often referred to as the equality of mixed partials $\neq 0$
The definition of second partial derivatives and the theorem on the equality of mixed partials are easily extended to functions of three variables. If $w=(x, y, z)$, then we have the nine second partial derivatives (assuming that they exist) :

$$
\begin{aligned}
& \frac{\partial^{2} \mathrm{f}}{\partial \mathrm{x}^{2}}=\mathrm{f}_{\mathrm{xx}}, \frac{\partial^{2} \mathrm{f}}{\partial \mathrm{y} \partial \mathrm{x}}=\mathrm{f}_{\mathrm{xy}}, \quad \frac{\partial^{2} \mathrm{f}}{\partial \mathrm{z} \partial \mathrm{x}}=\mathrm{f}_{\mathrm{xz}}, \\
& \frac{\partial^{2} \mathrm{f}}{\partial \mathrm{x} \partial \mathrm{y}}=\mathrm{f}_{\mathrm{yx}}, \frac{\partial^{2} \mathrm{f}}{\partial \mathrm{y}^{2}}=\mathrm{f}_{\mathrm{yy}}, \quad \frac{\partial^{2} \mathrm{f}}{\partial \mathrm{z} \partial \mathrm{y}}=\mathrm{f}_{\mathrm{yz}} \\
& \frac{\partial^{2} \mathrm{f}}{\partial \mathrm{x} \partial \mathrm{z}}=\mathrm{f}_{\mathrm{zx}}, \frac{\partial^{2} \mathrm{f}}{\partial \mathrm{y} \partial \mathrm{z}}=\mathrm{f}_{\mathrm{zy}}, \quad \frac{\partial^{2} \mathrm{f}}{\partial \mathrm{z}^{2}}=\mathrm{f}_{\mathrm{zz}} .
\end{aligned}
$$

Theorem2 If $\mathrm{f}, \mathrm{f}_{\mathrm{x}}, \mathrm{f}_{\mathrm{y}}, \mathrm{f}_{\mathrm{z}}$ and f_{yx} and all six mixed partial are continuous at a point $\left(\mathrm{x}_{0}, \mathrm{y}_{0}, \mathrm{z}_{0}\right)$ then at a point This theorem was first stated by Euler in a 1734 paper devoted to a problem in hydrodynamics

$$
f_{x y}=f_{y x}, \quad f_{x z}=f_{z x}, \quad f_{y z}=f_{z y}
$$

EXAMPLE 2: Let $f(x, y, z)=x y^{3}-z x^{5}+x^{2} y z$ be a function, Calculate all for nine second partial derivatives and show that all three pairs of mixed partials are equal

Solution: We have
$f_{x}=y^{3}-5 z x^{4}+2 x y z$,
$\mathrm{f}_{\mathrm{y}}=3 \mathrm{xy}^{2}+\mathrm{x}^{2} \mathrm{z}$,
and
$f_{z}=-x^{5}+x^{2} y$
Then

$$
\begin{aligned}
& \mathrm{f}_{\mathrm{xx}}=-20 \mathrm{zx}^{3}+2 \mathrm{yz}, \quad \mathrm{f}_{\mathrm{yy}}=6 \mathrm{xy}, \quad \mathrm{f}_{\mathrm{zz}}=0 \\
& \mathrm{f}_{\mathrm{xy}}=\frac{\partial}{\partial \mathrm{y}}\left(\mathrm{y}^{3}-5 \mathrm{zx}^{4}+2 \mathrm{xyz}\right)=3 \mathrm{y}^{2}+2 \mathrm{xz} \\
& \mathrm{f}_{\mathrm{yx}}=\frac{\partial}{\partial \mathrm{x}}\left(3 \mathrm{xy}^{2}+\mathrm{x}^{2} \mathrm{z}\right)=3 \mathrm{y}^{2}+2 \mathrm{xz} \\
& \mathrm{f}_{\mathrm{xz}}=\frac{\partial}{\partial \mathrm{z}}\left(\mathrm{y}^{3}-5 \mathrm{zx} \mathrm{x}^{4}+2 \mathrm{xyz}\right)=-5 \mathrm{x}^{4}+2 \mathrm{xy} \\
& \mathrm{f}_{\mathrm{zx}}=\frac{\partial}{\partial \mathrm{x}}\left(-\mathrm{x}^{5}+\mathrm{x}^{2} \mathrm{y}\right)=-5 \mathrm{x}^{4}+2 \mathrm{xy} \\
& \mathrm{f}_{\mathrm{yz}}=\frac{\partial}{\partial \mathrm{z}}\left(3 \mathrm{xy} \mathrm{y}^{2}+\mathrm{x}^{2} \mathrm{z}\right)=\mathrm{x}^{2} \\
& \mathrm{f}_{\mathrm{zy}}=\frac{\partial}{\partial \mathrm{y}}\left(-\mathrm{x}^{5}+\mathrm{x}^{2} \mathrm{y}\right)=\mathrm{x}^{2}
\end{aligned}
$$

We conclude this section by pointing out that we can easily define partial derivatives of orders higher than two . For example,

$$
f_{z y x}=\frac{\partial^{3} f}{\partial x \partial y \partial z}=\frac{\partial}{\partial x}\left(\frac{\partial^{2} f}{\partial y \partial z}\right)=\frac{\partial}{\partial x}\left(f_{z y}\right)
$$

EXAMPLE 3 Calculate and for the function of Example 2.
Solution We easily obtain the three third partial derivatives:

$$
\begin{aligned}
& \mathrm{f}_{\mathrm{xxx}}=\frac{\partial}{\partial \mathrm{x}}\left(\mathrm{f}_{\mathrm{xx}}\right)=\frac{\partial}{\partial \mathrm{x}}\left(20 \mathrm{zx}^{3}+2 \mathrm{yz}\right)=-60 \mathrm{zx}^{2} \\
& \mathrm{f}_{\mathrm{zzy}}=\frac{\partial}{\partial \mathrm{y}}\left(\mathrm{f}_{\mathrm{xz}}\right)=\frac{\partial}{\partial \mathrm{y}}\left(5 \mathrm{x}^{4}+2 \mathrm{yz}\right)=2 \mathrm{x} \\
& \mathrm{f}_{\mathrm{yxz}}=\frac{\partial}{\partial \mathrm{z}}\left(\mathrm{f}_{\mathrm{yx}}\right)=\frac{\partial}{\partial \mathrm{z}}\left(3 \mathrm{y}^{2}+2 \mathrm{xz}\right)=2 \mathrm{x}
\end{aligned}
$$

Note that $f_{x z y}=f_{y x z}$ This again is no accident and follows from the generalization of Theorem 2 to mixed third partial derivatives. Finally, the fourth partial derivative $f_{y x z x}$ is given by

$$
\mathrm{f}_{\mathrm{yxzx}}=\frac{\partial}{\partial \mathrm{x}}\left(\mathrm{f}_{\mathrm{yxz}}\right)=\frac{\partial}{\partial \mathrm{x}}(2 \mathrm{x})=2 .
$$

PROBLEMS

In problems 1-12, calculate the four second partial derivatives and show that the mixed partials are equal.
$1 . f(x, y)=x^{2} y$.
. $f(x, y)=x y^{2} y .2$
3. $f(x, y)=3 e^{x y 3}$
4. $f(x, y)=\sin \left(x^{2}+y^{3}\right)$
5. $\mathrm{f}(\mathrm{x}, \mathrm{y})=\frac{4 \mathrm{x}}{\mathrm{y}^{5}}$
$6 . f(x, y)=e^{y} \tan _{x}$.
7. $\mathrm{f}(\mathrm{x}, \mathrm{y})=\operatorname{In}\left(\mathrm{x}^{3} \mathrm{y}^{5}-2\right)$
$8 . f(x, y)=\sqrt{x y+2 y^{3}}$
9. $\mathrm{f}(\mathrm{x}, \mathrm{y})=(\mathrm{x}+5 \mathrm{y} \sin \mathrm{x})$ (اكتبالمعادلةهنا.
10. $f(x, y)=\sinh (2 x-y)$
11. $f(x, y)=\sin ^{-1}\left(\frac{x^{2}-y^{2}}{x^{2}+y^{2}}\right)$
12. $f(x, y)=\sec x y$

In Problems 13-21, calculate the nine second partial derivatives and show that the three pairs of mixed partials are equal
13.f($x, y, z)=x y z$
14.f($x, y, z)=x^{2} y^{3} z^{4}$
15.f $(x, y, z)=\frac{x+y}{z}$
16.f $(x, y, z)=\sin \left(x+2 y+z^{2}\right)$
17. $f(x, y, z)=\tan ^{-1} \frac{x z}{y}$
18.f $(x, y, z)=\cos x y z$
19.f $(\mathrm{x}, \mathrm{y}, \mathrm{z})=\mathrm{e}^{3 \mathrm{xy}} \cos \mathrm{z}$
20.f($\mathrm{x}, \mathrm{y}, \mathrm{z})=\ln (\mathrm{xy}+\mathrm{z})$
21.f $(x, y, z)=\cosh \sqrt{x+y z}$
22. How many third partial derivatives are there for a function of (a) two variables; (b) three variables?
23. How many fourth partial derivatives are there for a function of (a) two variables; (b) three variables?

24 . How many nth partial derivatives are there for a function of (a) two variables; (b) three variables?

In Problems 25-30, calculate the given partial derivative

$$
25 \cdot f(x, y)=x^{2} y^{3}+2 y: f_{x y x}
$$

$26 . f(x, y)=\sin \left(2 x y^{4}\right) ; f_{x y t}$
27.f($x, y)=\operatorname{In}(3 x-2 y) ; f_{y x y}$
28.f($x, y, z)=x^{2} y+y^{2} z-3 \sqrt{x z} ; f_{x y z}$
29. $f(x, y, z)=\cos (x+2 y+3 z) ; f_{z z x}$
$30 \mathrm{f}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\mathrm{e}^{\mathrm{xy}} \sin \mathrm{z} ; \mathrm{f}_{\mathrm{zxyx}}$.

