HIGER - ORDER PARTIAL DERIVATIVES

We have seen that if y = f(x), then

$$y' = \frac{df}{dx}$$
 and $y'' = \frac{d^2f}{dx^2} = \frac{d}{dx}\left(\frac{df}{dx}\right)$

That is the second derivative of f is the derivative of the first derivative of f., if z = f(x, y), then we can differentiate each of the two "first" partial derivatives $\partial f | \partial x$ and $\partial f | \partial y$ with respect to both x and y to obtain four second partial derivatives as follows :

Definition 1: SECOND PARTIAL DERIVATIVES

(i) Differentiate twice with respect to x:

$$\frac{\partial^2 z}{\partial x^2} = \frac{\partial^2 f}{\partial x^2} = f_{xx} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right) (1)$$

(ii) Differentiate first with respect to x and then with respect to y :

$$\frac{\partial^2 z}{\partial y \partial x} = \frac{\partial^2 f}{\partial y \partial x} = f_{xy} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) (2)$$

(iii) Differentiate first with respect to y and then with respect to x :

$\partial^2 z$	$\partial^2 f$	∂ (∂f)	(2)
dxdy	$= \frac{\partial x \partial y}{\partial x \partial y} = J_{yx}$	$= \frac{1}{\partial x} \left(\frac{1}{\partial y} \right)$	(3)

(iv) Differentiate twice with respect to y:

$$\frac{\partial^2 z}{\partial y^2} = \frac{\partial^2 f}{\partial y^2} = f_{yy} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) (4)$$

REMARK1.The derivatives $\partial^2 f \partial x \partial y$ and $\partial^2 f \partial y \partial x$ are called the mixed second partialsl. REMARK2. It is much easier to denote the second partials by f_{xx} , f_{xx} , f_{yx} and f_{yy} . We Will there f are use this notation for the remainder of this section. Note that the symbol f_{xy} indicates that we differentiate first with respect to y.

EXAMPLE 1 Let $z = f(x,y) = x^3y^2 - xy^5$. Calculate the four second partial derivatives.

Solution. We have $f_x = \ _{3x^2y^2} \ - \ y^5$ and $\ _{f_y} = 2x^3y \ - \ 5xy^4$.

(a) $f_{xx} = \frac{\partial}{\partial x}(f_x) = 6xy^2$

(b)
$$f_{xy} = \frac{\partial}{\partial y}(f_x) = 6x^2 y - 5y^2$$

(c)
$$f_{xy = \frac{\partial}{\partial x}(f_y)} = 6x^2 y - 5y^2$$

(d)
$$f_{yy} = \frac{\partial}{\partial y}(f_y) = 2x^3 - 20xy^3$$

In Example 1 we saw that $f_{xy} = f_{yx}$ This result is no accident , as we see by the following theorem whose proof can be found in any intermediate calculus text .t

Theorem 1 : Suppose that f, f_x , f_y , f_{xy} and $f_{yx}\,$ are all continuous at $(x_0\,$, $y_0\,$) Then

$$f_{xy}(x_0, y_0) = f_{yx}(x_0, y_0)$$
(5)

This result is often referred to as the equality of mixed partials $\neq 0$

The definition of second partial derivatives and the theorem on the equality of mixed partials are easily extended to functions of three variables. If w = (x, y, z), then we have the nine second partial derivatives (assuming that they exist):

$$\begin{split} &\frac{\partial^2 f}{\partial x^2} = f_{xx} \ , \frac{\partial^2 f}{\partial y \ \partial x} = f_{xy} \ , \quad \frac{\partial^2 f}{\partial z \ \partial x} = f_{xz} \ , \\ &\frac{\partial^2 f}{\partial x \ \partial y} = f_{yx} \ , \frac{\partial^2 f}{\partial y^2} = f_{yy} \ , \quad \frac{\partial^2 f}{\partial z \ \partial y} = f_{yz} \\ &\frac{\partial^2 f}{\partial x \ \partial z} = f_{zx} \ , \frac{\partial^2 f}{\partial y \ \partial z} = f_{zy} \ , \quad \frac{\partial^2 f}{\partial z^2} = f_{zz}. \end{split}$$

Theorem2 If f, f_x, f_y, f_z and f_{yx} and all six mixed partial are continuous at a point (x_0, y_0, z_0) then at a point This theorem was first stated by Euler in a 1734 paper devoted to a problem in hydrodynamics

$$f_{xy}=f_{yx}$$
 , $\quad f_{xz}=f_{zx}$, $\quad f_{yz}=f_{zy}$

EXAMPLE 2: Let $f(x, y, z) = xy^3 - zx^5 + x^2yz$ be a function, Calculate all for nine second partial derivatives and show that all three pairs of mixed partials are equal

Solution : We have

 $\begin{array}{ll} f_x &= y^3 \, - 5 z x^4 \, + 2 x y z \, , \\ \\ f_y &= 3 x y^2 \, \, + x^2 z \, , \end{array}$

and

$$f_z = - x^5 + x^2 y$$

Then

$$\begin{split} f_{xx} &= -20zx^{3} + 2yz , \qquad f_{yy} = 6xy , \qquad f_{zz} = 0 , \\ f_{xy} &= \frac{\partial}{\partial y}(y^{3} - 5zx^{4} + 2xyz) = 3y^{2} + 2xz , \\ f_{yx} &= \frac{\partial}{\partial x}(3xy^{2} + x^{2}z) = 3y^{2} + 2xz , \\ f_{xz} &= \frac{\partial}{\partial z}(y^{3} - 5zx^{4} + 2xyz) = -5x^{4} + 2xy , \\ f_{zx} &= \frac{\partial}{\partial x}(-x^{5} + x^{2}y) = -5x^{4} + 2xy , \\ f_{yz} &= \frac{\partial}{\partial z}(3xy^{2} + x^{2}z) = x^{2} , \\ f_{zy} &= \frac{\partial}{\partial y}(-x^{5} + x^{2}y) = x^{2} \end{split}$$

We conclude this section by pointing out that we can easily define partial derivatives of orders higher than two . For example,

$$f_{zyx} = \frac{\partial^3 f}{\partial x \ \partial y \ \partial z} = \frac{\partial}{\partial x} \left(\frac{\partial^2 f}{\partial y \ \partial z} \right) = \frac{\partial}{\partial x} \left(f_{zy} \right)$$

EXAMPLE 3 Calculate and for the function of Example 2.

Solution We easily obtain the three third partial derivatives:

$$f_{xxx} = \frac{\partial}{\partial x}(f_{xx}) = \frac{\partial}{\partial x}(20zx^3 + 2yz) = -60zx^2$$
$$f_{zzy} = \frac{\partial}{\partial y}(f_{xz}) = \frac{\partial}{\partial y}(5x^4 + 2yz) = 2x$$
$$f_{yxz} = \frac{\partial}{\partial z}(f_{yx}) = \frac{\partial}{\partial z}(3y^2 + 2xz) = 2x$$

Note that $f_{xzy} = f_{yxz}$ This again is no accident and follows from the generalization of Theorem 2 to mixed third partial derivatives. Finally, the fourth partial derivative f_{yxzx} is given by

$$f_{yxzx} = \frac{\partial}{\partial x}(f_{yxz}) = \frac{\partial}{\partial x}(2x) = 2.$$

PROBLEMS

In problems 1-12, calculate the four second partial derivatives and show that the mixed partials are equal.

1. $f(x, y) = x^2 y$. . $f(x, y) = xy^2 y.2$ 3. $f(x, y) = 3e^{xy3}$ 4. $f(x, y) = \sin(x^2 + y^3)$ 5. $f(x, y) = \frac{4x}{y^5}$ 6. $f(x, y) = \frac{4x}{y^5}$ 6. $f(x, y) = e^y \tan_x$. 7. $f(x, y) = \ln(x^3y^5 - 2)$ 8. $f(x, y) = \sqrt{xy + 2y^3}$ 9. $f(x, y) = (x + 5y \sin x)^{1/3}$ 10. $f(x, y) = \sinh(2x - y)$ 11. $f(x, y) = \sinh(2x - y)$ 12. $f(x, y) = \sec x y$

- In Problems 13 -21, calculate the nine second partial derivatives and show that the three pairs of mixed partials are equal
- 13. f (x, y, z) = xyz 14. f (x, y, z) = $x^2y^3z^4$ 15. f (x, y, z) = $\frac{x+y}{z}$ 16. f (x, y, z) = sin (x + 2y + z²) 17. f (x, y, z) = tan⁻¹ $\frac{xz}{y}$ 18. f (x, y, z) = cos xyz 19. f (x, y, z) = e^{3xy} cosz 20. f (x, y, z) = ln (xy + z) 21. f (x, y, z) = cosh $\sqrt{x + yz}$

22. How many third partial derivatives are there for a function of (a) two variables; (b) three variables?

23 . How many fourth partial derivatives are there for a function of (a) two variables; (b) three variables?

24 . How many nth partial derivatives are there for a function of (a) two variables; (b) three variables ?

In Problems 25 - 30, calculate the given partial derivative

25. f (x, y) =
$$x^2y^3$$
 + 2y: f_{xyx}

26. f (x, y) = sin (2 xy⁴); f_{xyt} 27. f (x, y) = In (3x - 2y); f_{yxy} 28. f (x, y, z) = x²y + y²z - 3 \sqrt{xz} ; f_{xyz} 29. f (x, y, z) = cos(x + 2y + 3z); f_{zzx}

30 f (x, y, z) = $e^{xy} \sin z$; f_{zxyx} .