
2- Repetitively (Loop):

Loops in programming come into use when we need to repeatedly execute a block of statements. For

example: Suppose we want to print “Hello World” 10 times. This can be done in two ways as shown

below:

a- Iterative Method

An iterative method to do this is to write the cout << statement 10 times.

b- Using Loops

In Loop, the statement needs to be written only once and the loop will be executed 10 times as shown

below.

In computer programming, a loop is a sequence of instructions that is repeated until a certain condition is

reached.

 An operation is done, such as getting an item of data and changing it, and then some condition is

checked such as whether a counter has reached a prescribed number.

 Counter not Reached: If the counter has not reached the desired number, the next instruction in the

sequence returns to the first instruction in the sequence and repeat it.

 Counter reached: If the condition has been reached, the next instruction “falls through” to the next

sequential instruction or branches outside the loop.

There are mainly two types of loops:

1. Entry Controlled loops: In this type of loops the test condition is tested before entering the loop

body. For Loop and While Loop are entry controlled loops.

2. Exit Controlled Loops: In this type of loops the test condition is tested or evaluated at the end of

loop body. Therefore, the loop body will execute atleast once, irrespective of whether the test

condition is true or false. do – while loop is exit controlled loop.

// C++ program to illustrate need of loops
#include <iostream>

using namespace std;

int main()

{

 cout << "Hello World\n";

 cout << "Hello World\n";

 cout << "Hello World\n";

 cout << "Hello World\n";

 cout << "Hello World\n";

 cout << "Hello World\n";

 cout << "Hello World\n";

 cout << "Hello World\n";

 cout << "Hello World\n";

 cout << "Hello World\n";

 return (0);

}

Output

Hello World

Hello World

Hello World

Hello World

Hello World

Hello World

Hello World

Hello World

Hello World

Hello World

1- for Loop

A for loop is a repetition control structure which allows us to write a loop that is executed a specific

number of times. The loop enables us to perform n number of steps together in one line.

Syntax:

In for loop, a loop variable is used to control the loop. First initialize this loop variable to some value,

then check whether this variable is less than or greater than counter value. If statement is true, then loop

body is executed and loop variable gets updated . Steps are repeated till exit condition comes.

 Initialization Expression:

In this expression we have to initialize the loop counter to some value. for example: int i=1;

 Test Expression:

In this expression we have to test the condition. If the condition evaluates to true then we will execute

the body of loop and go to update expression otherwise we will exit from the for loop. For example: i

<= 10;

 Update Expression:

After executing loop body this expression increments/decrements the loop variable by some value.

for example: i++;

for (initialization expr; test expr; update expr)

{

 // body of the loop

 // statements we want to execute

}

Flow diagram:

Example: C++ program to illustrate for loop

2- While Loop

While studying for loop we have seen that the number of iterations is known beforehand, i.e. the number

of times the loop body is needed to be executed is known to us. while loops are used in situations where

we do not know the exact number of iterations of loop beforehand. The loop execution is terminated on

the basis of test condition.

Syntax:

We have already stated that a loop is mainly consisted of three statements – initialization expression, test

expression, update expression. The syntax of the three loops – For, while and do while mainly differs on

the placement of these three statements.

#include <iostream>

using namespace std;

int main()

{

 for (int i = 1; i <= 10; i++)

 {

 cout << "Hello World\n";

 }

 return 0;

}

Output

Hello World

Hello World

Hello World

Hello World

Hello World

Hello World

Hello World

Hello World

Hello World

Hello World

Flow Diagram:

Example: C++ program to illustrate while loop

initialization expression;

while (test_expression)

{

 // statements

 update_expression;

}

#include <iostream>

using namespace std;

int main()

{

 // initialization expression

 int i = 1;

 // test expression

 while (i < 6)

 {

 cout << "Hello World\n";

 // update expression

 i++;

 }

 return 0;

}

Output

Hello World

Hello World

Hello World

Hello World

Hello World

3- do while loop

In do while loops also the loop execution is terminated on the basis of test condition. The main difference

between do while loop and while loop is in do while loop the condition is tested at the end of loop body,

i.e do while loop is exit controlled whereas the other two loops are entry controlled loops.

Note: In do while loop the loop body will execute at least once irrespective of test condition.

Syntax:

Note: Notice the semi – colon(“;”) in the end of loop.

Flow Diagram:

Example: C++ program to illustrate do-while loop

initialization expression;

do

{

 // statements

 update_expression;

} while (test_expression);

#include <iostream>

using namespace std;

int main(){

 int i = 1; // Initialization expression

 do

 {

 // loop body

 cout << "Hello World\n";

 // update expression

 i++;

 } while (i < =5); // test expression

 return 0;

}

Output

Hello World

Hello World

Hello World

Hello World

Hello World

What about an Infinite Loop?

An infinite loop (sometimes called an endless loop) is a piece of coding that lacks a functional exit so

that it repeats indefinitely. An infinite loop occurs when a condition always evaluates to true. Usually,

this is an error.

Example: C++ program to demonstrate infinite loops using for and while

// Uncomment the sections to see the output
#include <iostream>

using namespace std;

int main ()

{

int i;

// This is an infinite for loop as the condition expression is blank

for (; ;)

{

 cout << "This loop will run forever.\n";

}

// This is an infinite for loop as the condition

// given in while loop will keep repeating infinitely

/*

while (i != 0)

{

 i-- ;

 cout << "This loop will run forever.\n";

}

*/

// This is an infinite for loop as the condition

// given in while loop is "true"

/*

while (true)

{

 cout << "This loop will run forever.\n";

}

*/

}

Output:

This loop will run forever.

This loop will run forever.

...................

Nested loops

A loop can be nested inside of another loop. C++ allows at most 256 levels of nesting.

Example: C++ program uses a nested for loop to find the prime numbers from 2 to 100.

Important Points:

 Use for loop when number of iterations is known beforehand, i.e. the number of times the loop body

is needed to be executed is known.

 Use while loops where exact number of iterations is not known but the loop termination condition is

known.

 Use do while loop if the code needs to be executed at least once like in Menu driven programs.

 In summary: C++ programming language provides the following type of loops to handle looping

requirements:

Loop Tool Description

for loop Execute a sequence of statements multiple times and abbreviates the code that manages

the loop variable.

while loop Repeats a statement or group of statements while a given condition is true. It tests the

condition before executing the loop body.

do...while

loop

Like a „while‟ statement, except that it tests the condition at the end of the loop body.

nested

loops

You can use one or more loop inside any another „while‟, „for‟ or „do..while‟ loop.

The goto statement

goto allows to make an absolute jump to another point in the program. This unconditional jump ignores

nesting levels, and does not cause any automatic stack unwinding. Therefore, it is a feature to use with care,

and preferably within the same block of statements, especially in the presence of local variables.

The destination point is identified by a label, which is then used as an argument for the goto statement.

A label is made of a valid identifier followed by a colon (:).

#include <iostream>

using namespace std;

int main () {

int i, j;

for (i = 2; i<= 100; i++)

{

for (j = 2 ; j <= (i/j) ; j++)

if (!(I % j))

break; // if factor found, not prime

if (j > (i/j))

cout << i << " is prime\n";

}

return 0;

}

goto is generally deemed a low-level feature, with no particular use cases in modern higher-level

programming paradigms generally used with C++. But, just as an example, here is a version of our

countdown loop using goto:

More Advanced Looping Techniques

 Range-based for loop in C++

 for_each loop in C++

Jumping out of a loop

Sometimes, while executing a loop, it becomes necessary to skip a part of the loop or to leave the loop as

soon as certain condition becocmes true, that is jump out of loop. C language allows jumping from one

statement to another within a loop as well as jumping out of the loop.

1) break statement

break leaves a loop, even if the condition for its end is not fulfilled. It can be used to end an infinite loop, or

to force it to end before its natural end. For example, let's stop the countdown before its natural end:

// break loop example

#include <iostream>

using namespace std;

int main ()

{

 for (int n=10; n>0; n--)

 {

 cout << n << ", ";

 if (n==3)

 {

 cout << "countdown aborted!";

 break;

 }

 }

Return (0);

}

Output

10, 9, 8, 7, 6, 5, 4, 3, countdown aborted!

// goto loop example

#include <iostream>

using namespace std;

int main ()

{

 int n=10;

mylabel:

 cout << n << ", ";

 n--;

 if (n>0) goto mylabel;

 cout << "liftoff!\n";

 return (0)

}

Output

10, 9, 8, 7, 6, 5, 4, 3, 2, 1, liftoff!

2) continue statement

The continue statement causes the program to skip the rest of the loop in the current iteration, as if the end

of the statement block had been reached, causing it to jump to the start of the following iteration. For

example, let's skip number 5 in our countdown:

// continue loop example

#include <iostream>

using namespace std;

int main ()

{

 for (int n=10; n>0; n--) {

 if (n==5)

 continue;

 cout << n << ", ";

 }

 cout << "liftoff!\n";

return (0);

}

Output

10, 9, 8, 7, 6, 4, 3, 2, 1, liftoff!

