
Control Structures
A computer can process a program in one of the following ways:

- In sequence: in which the program executes the statements from first to last. The first statement is

executed, then the second, then the third, and so on, until the program reaches its end and

terminates;

- Selectively (Conditional), by making a choice, which is also called a branch;

- Repetitively (Loop), by executing a statement over and over, using a structure called a loop; or by

calling a function.

Figure 1 illustrates the first three types of program flow. The two most common control structures are

selection and repetition. In selection, the program executes particular statements depending on some

condition(s). In repetition, the program repeats particular statements a certain number of times based on

some condition(s).

Thus, Control structures are portions of program code that contain statements within them and, depending

on the circumstances, execute these statements in a certain way.

Figure 1: Flow of execution

1- Conditionals: Decision Making

There come situations in real life when we need to make some decisions and based on these decisions, we

decide what should we do next. Similar situations arise in programming also where we need to make some

decisions and based on these decisions we will execute the next block of code.

In order for a program to change its behavior depending on the input, there must a way to test that input.

Conditionals allow the program to check the values of variables and to execute (or not execute) certain

statements. C++ has if and switch-case conditional structures. Figure 2 shows the decision making

statements available in C/C++ are:

Figure 2: Decision making statements available in C/C++

1- Selection: if and if...else , if, if-else and else if statements
Although there are only two logical values, true and false, they turn out to be extremely useful because

they permit programs to incorporate decision making that alters the processing flow. In C++, there are two

selections, or branch control structures: if statements and the switch structure. This section discusses

how if and if...else statements can be used to create

• One-way selection: If

• Two-way selection. If …. else

• Multiple selections. Else if

- One-way selection: (If)

In C++, one-way selections are incorporated using the if statement.

The syntax of one-way selection is:

Note the elements of this syntax. It begins with the reserved word if, followed by an expression contained

within parentheses, followed by a statement. Note that the parentheses around the expression are part of the

syntax. The expression is sometimes called a decision maker because it decides whether to execute the

statement that follows it. The expression is usually a logical expression. If the value of the expression is

true, the statement executes. If the value is false, the statement does not execute and the computer goes on

if(expression)

{

 // Statements to execute if condition is true
statement1;

statement2;

…

}

to the next statement in the program. The statement following the expression is sometimes called the action

statement. Figure 2 shows the flow of execution of the if statement (one-way selection).

Figure 3: one way selection

Note, If there is only one statement, the curly braces may be omitted, giving the form:

Example: The following C++ program finds the absolute value of an integer.

#include <iostream>

using namespace std;

int main() {

int number, temp;

cout << "Line 1: Enter an integer: ";

cin >> number;

cout << endl;

temp = number;

if (number < 0)

number = - number;

cout << "The absolute value of " << temp << " is " << number << endl;

return 0;

}

Sample Run:

In this sample run, the user input is shaded. Enter an

integer: -6734

The absolute value of -6734 is 6734

if(condition)

statement;

Note: Consider the following C++ statements:

if (score >= 60); //Line 1

grade = 'P'; //Line 2

Because there is a semicolon at the end of the expression (see Line 1), the if statement in Line 1 terminates.

The action of this if statement is null, and the statement in Line 2 is not part of the if statement in Line 1.

Hence, the statement in Line 2 executes regardless of how the if statement evaluates.

- Two-Way Selection (if .. else)

To implement two-way selections, C++ provides the if. . .else statement. Two-way selection uses the

following syntax:

Take a moment to examine this syntax. It begins with the reserved word if, followed by a logical expression

contained within parentheses, followed by a statement, followed by the reserved word else, followed by a

second statement. Statements 1 and 2 are any valid C++ statements. In a two-way selection, if the value of

the expression is true, statement1 executes. If the value of the expression is false, statement2 executes.

Figure 3 shows the flow of execution of the if. . .else statement (two-way selection).

Figure 4: Two way selection

if(expression)

{

 // Execute this block if condition is true

statementA1;

statementA2;

…

}else

{

 // Execute this block if condition is false

 statementB1;

 statementB2;

 …

}

Example: The program is to check a given integer number if it is divisible by 7 or not.

- Multiple Selections: (If … else if)

The eif else if is used to decide between two or more blocks based on multiple conditions:

If condition1 is met, the block corresponding to the if is executed. If not, then only if condition2 is met is

the block corresponding to the else if executed. There may be more than one else if, each with its own

condition. Once a block whose condition was met is executed, any else ifs after it are ignored. Therefore,

in an if-else-if structure, either one or no block is executed.

An else may be added to the end of an if-else-if. If none of the previous conditions are met, the else block is

executed. In this structure, one of the blocks must execute, as in a normal if-else.

Example: Here is an example using these control structures:

#include <iostream>

using namespace std;

main(){

int num;

cout<<”Please Enter The Number” <<endl ; cin>>num;

if (num % 7 == 0)

cout << “This number is divisible by 7”;

else

cout << “This number is not divisible by 7”;

return (0);

}

if(expression)

{

statementA1;

statementA2;

…

}else if (expression)

{

 statementB1;

 statementB2;

 …

}else

{

 statementN1;

 statementN2;

}

Nested-if
A nested if in C++ is an if statement that is the target of another if statement. Nested if statements means

an if statement inside another if statement. Syntax:

Example: C++ program to illustrate nested-if statement

#include <iostream>

 using namespace std;

int main()

{

int x = 6;

int y = 2;

if(x > y)

cout << “x is greater than y\n”;

else if(y > x)

cout << “y is greater than x\n”;

else

cout << “x and y are equal\n”;

return (0);

}

The output of this program is

x is greater than y.

If we replace lines 5 and 6 with

Int x= 2;

Int y= 6;
then the output is

y is greater than x.

If we replace the lines with

Int x= 2;

Int y= 2;
then the output is

x and y are equal.

if (condition1)

{

 // Executes when condition1 is true

 if (condition2)

 {
 // Executes when condition2 is true

 }

}

#include <iostream>

using namespace std;

int main(){

int i = 10;

if (i == 10)

{

 // First if statement

 if (i < 15)

 cout<<"i is smaller than 15\n";

 // Will only be executed if statement above is true

 if (i < 12)

 cout<<"i is smaller than 12 too\n";

 else

 cout<<"i is greater than 15";

}

return 0;

}

Execute:

i is smaller than 15

i is smaller than 12 too

2- Selection: Switch-case
The switch-case is another conditional structure that may or may not execute certain statements. However,

the switch-case has peculiar syntax and behavior:

The switch evaluates expression and, if expression is equal to constant1, then the statements

beneath case constant 1: are executed until a break is encountered. If expression is not equal to

constant1, then it is compared to constant2. If these are equal, then the statements beneath case

constant 2: are executed until a break is encountered. If not, then the same process repeats for each of

the constants, in turn. If none of the constants match, then the statements beneath default: are executed.

Due to the peculiar behavior of switch-caseS, curly braces are not necessary for cases where there is more

than one statement (but they are necessary to enclose the entire switch-case). switch-caseS generally

have if-else equivalents but can often be a cleaner way of expressing the same behavior.

Example: Here is an example using switch-case:

// assignment operator

#include <iostream>

using namespace std;

int main (){

int x = 6;

switch(x) {

 case 1:

 cout << “x is 1 \n”;

 break;

 case 2:

 cout << "x is 2 \n";

 break;

 case 3:

 cout << "x is 3 \n";

 break;

 default:

 cout << "x is not 1, 2, or 3";

 }

}

Execute:

This program will print

x is not 1, 2, or 3.

If we replace line 5 with
int x = 2;

then the program will print
x is 2.

switch(expression)

{

case constant1:

statementA1

statementA2

...

break;

case constant2:

statementB1

statementB2

...

break;

...

default:

statementZ1

statementZ2

...

}

