
Operators

Once introduced to variables and constants, we can begin to operate with them by using operators.

What follows is a complete list of operators. At this point, it is likely not necessary to know all of

them, but they are all listed here to also serve as reference.

Assignment Operator (=)
The assignment operator assigns a value to a variable.

This statement assigns the integer value 5 to the variable x. The assignment operation always takes

place from right to left, and never the other way around:

This statement assigns to variable x the value contained in variable y. The value of x at the

moment this statement is executed is lost and replaced by the value of y.

Consider also that we are only assigning the value of y to x at the moment of the assignment

operation. Therefore, if y changes at a later moment, it will not affect the new value taken by x.

For example, let's have a look at the following code - I have included the evolution of the content

stored in the variables as comments:

The following expression is also valid in C++:

It assigns 5 to the all three variables: x, y and z; always from right-to-left.

// assignment operator

#include <iostream>

using namespace std;

int main ()

{

 int a, b; // a:?, b:?

 a = 10; // a:10, b:?

 b = 4; // a:10, b:4

 a = b; // a:4, b:4

 b = 7; // a:4, b:7

 cout << "a:";

 cout << a;

 cout << " b:";

 cout << b;

}

x = 5;

Execute:

a:4 b:7

x = y;

x = y = z = 5;

Arithmetic operators (+, -, *, /, %)
The five arithmetical operations supported by C++ are:

operator description
+ addition

- subtraction

* multiplication

/ division

% modulo

Operations of addition, subtraction, multiplication and division correspond literally to their

respective mathematical operators. The last one, modulo operator, represented by a percentage sign

(%), gives the remainder of a division of two values. For example:

x = 11 % 3;

results in variable x containing the value 2, since dividing 11 by 3 results in 3, with a remainder of

2.

Compound assignment (+=, -=, *=, /=, %=, >>=, <<=, &=, ^=, |=)

Compound assignment operators modify the current value of a variable by performing an operation

on it. They are equivalent to assigning the result of an operation to the first operand:

expression equivalent to...

y += x; y = y + x;

x -= 5; x = x - 5;

x /= y; x = x / y;

price *= units + 1; price = price * (units+1);

and the same for all other compound assignment operators. For example:

Increment and decrement (++, --)
Some expression can be shortened even more: the increase operator (++) and the decrease operator

(--) increase or reduce by one the value stored in a variable. They are equivalent to +=1 and to -=1,

respectively. Thus:

// compound assignment operators

#include <iostream>

using namespace std;

int main ()

{

 int a, b=3;

 a = b;

 a+=2; // equivalent to a=a+2

 cout << a;

}

Execute:
5

1

2

3

++x;

x+=1;

x=x+1;

are all equivalent in its functionality; the three of them increase by one the value of x.

In the early C compilers, the three previous expressions may have produced different executable

code depending on which one was used. Nowadays, this type of code optimization is generally

performed automatically by the compiler, thus the three expressions should produce exactly the

same executable code.

A peculiarity of this operator is that it can be used both as a prefix and as a suffix. That means that

it can be written either before the variable name (++x) or after it (x++). Although in simple

expressions like x++ or ++x, both have exactly the same meaning; in other expressions in which

the result of the increment or decrement operation is evaluated, they may have an important

difference in their meaning: In the case that the increase operator is used as a prefix (++x) of the

value, the expression evaluates to the final value of x, once it is already increased. On the other

hand, in case that it is used as a suffix (x++), the value is also increased, but the expression

evaluates to the value that x had before being increased. Notice the difference:

Example 1 Example 2

x = 3;

y = ++x;

// x contains 4, y contains 4

x = 3;

y = x++;

// x contains 4, y contains 3

In Example 1, the value assigned to y is the value of x after being increased. While in Example 2, it

is the value x had before being increased.

Relational and comparison operators (==, !=, >, <, >=, <=)
Two expressions can be compared using relational and equality operators. For example, to know if

two values are equal or if one is greater than the other.

The result of such an operation is either true or false (i.e., a Boolean value).

The relational operators in C++ are:

operator Description
== Equal to

!= Not equal to

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

Here there are some examples:

1

2

3

4

5

(7 == 5) // evaluates to false

(5 > 4) // evaluates to true

(3 != 2) // evaluates to true

(6 >= 6) // evaluates to true

(5 < 5) // evaluates to false

Of course, it's not just numeric constants that can be compared, but just any value, including, of

course, variables. Suppose that a=2, b=3 and c=6, then:

1

2

3

4

(a == 5) // evaluates to false, since a is not equal to 5

(a*b >= c) // evaluates to true, since (2*3 >= 6) is true

(b+4 > a*c) // evaluates to false, since (3+4 > 2*6) is false

((b=2) == a) // evaluates to true

Be careful! The assignment operator (operator =, with one equal sign) is not the same as the

equality comparison operator (operator ==, with two equal signs); the first one (=) assigns the value

on the right-hand to the variable on its left, while the other (==) compares whether the values on

both sides of the operator are equal. Therefore, in the last expression ((b=2) == a), we first

assigned the value 2 to b and then we compared it to a (that also stores the value 2), yielding true.

Logical operators (!, &&, ||)
The operator ! is the C++ operator for the Boolean operation NOT. It has only one operand, to its

right, and inverts it, producing false if its operand is true, and true if its operand is false. Basically,

it returns the opposite Boolean value of evaluating its operand. For example:

1

2

3

4

!(5 == 5) // evaluates to false because the expression at its right (5 == 5) is true

!(6 <= 4) // evaluates to true because (6 <= 4) would be false

!true // evaluates to false

!false // evaluates to true

The logical operators && and || are used when evaluating two expressions to obtain a single

relational result. The operator && corresponds to the Boolean logical operation AND, which

yields true if both its operands are true, and false otherwise. The following panel shows the result

of operator && evaluating the expression a&&b:

&& OPERATOR (and)
a b a && b

true true True

true false False

false true False

false false False

The operator || corresponds to the Boolean logical operation OR, which yields true if either of its

operands is true, thus being false only when both operands are false. Here are the possible results

of a||b:

|| OPERATOR (or)
a b a || b

true true True

true false True

false true True

false false False

For example:
1

2

((5 == 5) && (3 > 6)) // evaluates to false (true && false)

((5 == 5) || (3 > 6)) // evaluates to true (true || false)

When using the logical operators, C++ only evaluates what is necessary from left to right to come

up with the combined relational result, ignoring the rest. Therefore, in the last example

((5==5)||(3>6)), C++ evaluates first whether 5==5 is true, and if so, it never checks

whether 3>6 is true or not. This is known as short-circuit evaluation, and works like this for these

operators:

operator short-circuit
&& if the left-hand side expression is false, the combined result is false (the right-hand side

expression is never evaluated).
|| if the left-hand side expression is true, the combined result is true (the right-hand side

expression is never evaluated).

This is mostly important when the right-hand expression has side effects, such as altering values:

if ((i<10) && (++i<n)) { /*...*/ } // note that the condition increments i

Here, the combined conditional expression would increase i by one, but only if the condition on

the left of && is true, because otherwise, the condition on the right-hand side (++i<n) is never

evaluated.

Conditional ternary operator (?)
The conditional operator evaluates an expression, returning one value if that expression evaluates

to true, and a different one if the expression evaluates as false. Its syntax is:

If condition is true, the entire expression evaluates to result1, and otherwise to result2.

1

2

3

4

7==5 ? 4 : 3 // evaluates to 3, since 7 is not equal to 5.

7==5+2 ? 4 : 3 // evaluates to 4, since 7 is equal to 5+2.

5>3 ? a : b // evaluates to the value of a, since 5 is greater than 3.

a>b ? a : b // evaluates to whichever is greater, a or b.

condition ? result1 : result2

For example:

In this example, a was 2, and b was 7, so the expression being evaluated (a>b) was not true, thus

the first value specified after the question mark was discarded in favor of the second value (the one

after the colon) which was b (with a value of 7).

Comma operator (,)
The comma operator (,) is used to separate two or more expressions that are included where only

one expression is expected. When the set of expressions has to be evaluated for a value, only the

right-most expression is considered. For example, the following code:

would first assign the value 3 to b, and then assign b+2 to variable a. So, at the end,

variable a would contain the value 5 while variable b would contain value 3.

Bitwise operators (& , | , ^ , ~ , << , >>)
Bitwise operators modify variables considering the bit patterns that represent the values they store.

Operator Description Example
& Binary AND Operator copies a bit to the result if

it exists in both operands.
(A & B) = 12, i.e., 0000 1100

| Binary OR Operator copies a bit if it exists in

either operand.
(A | B) = 61, i.e., 0011 1101

^ Binary XOR Operator copies the bit if it is set in

one operand but not both.
(A ^ B) = 49, i.e., 0011 0001

~ Binary One's Complement Operator is unary and

has the effect of 'flipping' bits.
(~A) = ~(60), i.e,. 1100 0011

<< Binary Left Shift Operator. The left operands

value is moved left by the number of bits specified

by the right operand.

A << 2 = 240 i.e., 1111 0000

>> Binary Right Shift Operator. The left operands

value is moved right by the number of bits

specified by the right operand.

A >> 2 = 15 i.e., 0000 1111

// conditional operator

#include <iostream>

using namespace std;

int main ()

{

 int a,b,c;

 a=2;

 b=7;

 c = (a>b) ? a : b;

 cout << c << '\n';

}

Execute:

7

a = (b=3, b+2);

Example

Try the following example to understand all the bitwise operators available in C

Explicit type casting operator
Type casting operators allow to convert a value of a given type to another type. There are several

ways to do this in C++. The simplest one, which has been inherited from the C language, is to

precede the expression to be converted by the new type enclosed between parentheses (()):

1

2

3

int i;

float f = 3.14;

i = (int) f;

The previous code converts the floating-point number 3.14 to an integer value (3); the remainder is

lost. Here, the typecasting operator was (int). Another way to do the same thing in C++ is to use

the functional notation preceding the expression to be converted by the type and enclosing the

expression between parentheses:

i = int (f);

Both ways of casting types are valid in C++.

#include <iostream>

using namespace std;

int main()

{

 int a = 60; /* 60 = 0011 1100 */

 int b = 13; /* 13 = 0000 1101 */

 int c = 0;

 c = a & b; /* 12 = 0000 1100 */

 cout << "1- Value of c is " << c << endl;

 c = a | b; /* 61 = 0011 1101 */

 cout << "2- Value of c is " << c << endl;

 c = a ^ b; /* 49 = 0011 0001 */

 cout << "3- Value of c is " << c << endl;

 c = ~a; /*-61 = 1100 0011 */

 cout << "4- Value of c is " << c << endl;

 c = a << 2; /* 240 = 1111 0000 */

 cout << "5- Value of c is " << c << endl;

 c = a >> 2; /* 15 = 0000 1111 */

 cout << "6 - Value of c is " << c <<

endl;

return 0;

}

Execute:

1- Value of c is 12

2- Value of c is 61

3- Value of c is 49

4- Value of c is -61

5- Value of c is 240

6- Value of c is 15

Precedence of operators
A single expression may have multiple operators. For example:

x = 5 + 7 % 2;

In C++, the above expression always assigns 6 to variable x, because the % operator has a higher

precedence than the + operator, and is always evaluated before. Parts of the expressions can be

enclosed in parenthesis to override this precedence order, or to make explicitly clear the intended

effect. Notice the difference:

1

2

x = 5 + (7 % 2); // x = 6 (same as without parenthesis)

x = (5 + 7) % 2; // x = 0

From greatest to smallest priority, C++ operators are evaluated in the following order:

Level Precedence group Operator Description Grouping

1 Scope :: scope qualifier Left-to-right

2 Postfix (unary) ++ -- postfix increment / decrement Left-to-right

() functional forms

[] subscript

. -> member access

3 Prefix (unary) ++ -- prefix increment / decrement Right-to-left

~ ! bitwise NOT / logical NOT

+ - unary prefix

& * reference / dereference

new delete allocation / deallocation

Sizeof parameter pack

(type) C-style type-casting

4 Pointer-to-member .* ->* access pointer Left-to-right

5 Arithmetic: scaling * / % multiply, divide, modulo Left-to-right

6 Arithmetic: addition + - addition, subtraction Left-to-right

7 Bitwise shift << >> shift left, shift right Left-to-right

8 Relational < > <= >= comparison operators Left-to-right

9 Equality == != equality / inequality Left-to-right

10 And & bitwise AND Left-to-right

11 Exclusive or ^ bitwise XOR Left-to-right

12 Inclusive or | bitwise OR Left-to-right

13 Conjunction && logical AND Left-to-right

14 Disjunction || logical OR Left-to-right

15 Assignment-level

expressions

= *= /= %=

+= -=

>>= <<= &=

^= |=

assignment / compound

assignment

Right-to-left

?: conditional operator

16 Sequencing , comma separator Left-to-right

When an expression has two operators with the same precedence level, grouping determines which

one is evaluated first: either left-to-right or right-to-left.

Enclosing all sub-statements in parentheses (even those unnecessary because of their precedence)

improves code readability.

