
Constant Objects

Some data must stay the same throughout a program. In C++, you can use a named constant to

instruct a program to mark those memory locations in which data is fixed throughout program

execution.

Named constant: A memory location whose content is not allowed to change during program

execution. To allocate memory, we use C++’s declaration statements. The syntax to declare a

named constant is:

In C++, const is a reserved word. C++ programmers typically prefer to use uppercase letters to

name a named constant.

Ex:

const double CONVERSION = 2.54;

const int NO_OF_STUDENTS = 20;

const char BLANK = ' ';
const double PI = 3.1415947;

Thus the value of PI for example cannot be modified by the program. Even a statement such as the

following will merely result in an error message:

PI = PI + 2.0; // invalid

Using a named constant to store fixed data, rather than using the data value itself, has one major

advantage. If the fixed data changes, you do not need to edit the entire program and change the old

value to the new value wherever the old value is used. Instead, you can make the change at just one

place, recompile the program, and execute it using the new value throughout.

Program Stages

All most programs are consists of the following stages:

Inputting Data

Processing

Outputting Data or Display Results

Beginning

End

const datatype const_name = value;

1- Beginning and End:

Each program must have one beginning which is represented by the main function:

Void main () {

While the end is represented by: } for the main function

Note:

Sometimes we use int main(), or sometimes void main(). Now the question comes into our mind,

that what are the differences between these two.

The main() function is like other functions. It also takes arguments, and returns some value. One

point we have to keep in mind that the program starts executing from this main() function. So the

operating system calls this function. When some value is returned from main(), it is returned to

operating system.

The void main() indicates that the main() function will not return any value, but the int main()

indicates that the main() can return integer type data. When our program is simple, and it is not

going to terminate before reaching the last line of the code, or the code is error free, then we can

use the void main(). But if we want to terminate the program using exit() method, then we have to

return some integer values (zero or non-zero). In that situation, the void main() will not work. So it

is good practice to use int main() over the void main().

The important note that when we use int main() we should use return(0); before the end of the

main function.

2- Entering Data

Each program is developed to perform a specific task. So it needs to deal with data related to the

task. During the execution of the program, these data must be stored into the memory. C++

compiler uses constant and variable to allocate memory for the entered data.

Putting Data into Variables:

In C++, you can place data into a variable in two ways:

1. Use C++’s assignment statement.

2. Use input (read) statements.

1. Assignment Statement

The assignment statement takes the following form:

In an assignment statement, the value of the expression should match the data type

of the variable. The expression on the right side is evaluated, and its value is

variable = expression;

assigned to the variable (and thus to a memory location) on the left side. A variable

is said to be initialized the first time a value is placed in the variable. In C++, = is

called the assignment operator.

Ex: This program illustrates how data in the variables are manipulated.

Notes:
• This statement is valid in C++:

num = num + 2;

means “evaluate whatever is in num, add 2 to it, and assign the new value to the memory location

num.” The expression on the right side must be evaluated first; that value is then assigned to the

memory location specified by the variable on the left side.

Thus, the sequence of C++ statements:

num = 6;

num = num + 2; and the statement:

num = 8;

• Suppose that x, y, and z are int variables. The following is a legal statement in C++: x = y = z;

In this statement, first the value of z is assigned to y, and then the new value of y is assigned to x.

2. Input (Read) Statement

Previously, you learned how to put data into variables using the assignment statement. In this

section, you will learn how to put data into variables from the standard input device, using C++’s

input (or read) statements.

#include <iostream>
#include <string>
using namespace std;
int main() {
int num1, num2;
 double sale;
 char first;

 num1 = 4;
 num2 = 4 * 5 - 11;
 sale = 0.02 * 1000;
 first = 'D';

 cout << "num1 = " << num1 << endl;
 cout << "num2 = " << num2 << endl;
 cout << "sale = " << sale << endl;
 cout << "first = " << first << endl;

return 0;
}

Execute:

num1 = 4

num2 = 9

sale = 20

first = D

Putting data into variables from the standard input device is accomplished via the use of cin and

the operator >>. The syntax of cin together with >> is:

This is called an input (read) statement. In C++, >> is called the stream extraction operator.

Ex: This program illustrates how input statements work.

Note: cin (pronounced ‘‘see-in’’), which stands for common input, cout (pronounced

‘‘see-out’’), which stands for common output.

3- Processing

This stage represents the task of the program.

#include <iostream>
using namespace std;

main()
{
int feet;
int inches;

cout << "Enter two integers separated by spaces: "<< endl;
cin >> feet >> inches;

cout << "Feet = " << feet << endl;
cout << "Inches = " << inches << endl;
return 0;
}

Sample Run:

In this sample run, the user input is 23 and 7

Enter two integers separated by spaces: 23 7

Feet = 23

Inches = 7

cin >> variable1 >> variable2 >> variable3 ... ;

4- Output Data

Usually the standard output device is the display screen. The C++ cout statement is the

instance of the ostream class. It is used to produce output on the standard output device

which is usually the display screen. The data needed to be displayed on the screen is

inserted in the standard output stream (cout) using the insertion operator(<<).

Escape sequences

Escape sequences are special characters used in control string to modify the format of an

output. These specific characters are translated into another character or a sequence of

characters that may be difficult to represent directly. For example, you want to put a line

break in the output of a C++ statement then you will use “\n” character which is an escape

sequence itself.

An escape sequence consists of two or more characters. For all sequences, the first character

will be ”\” i.e. backslash. The other characters determine the interpretation of escape

sequence. For example, “n” of “\n” tells the cursor to move on the next line.

Escape

sequence

Description

\' single quote

\" double quote

\? question mark

\\ backslash

\a audible bell (alert)

\b backspace

\f form feed - new page

\n line feed - new line

\r carriage return

\t horizontal tab

\v vertical tab

#include <iostream>

using namespace std;

int main()
{
 char sample[] = "I Like ";

 cout << sample << " C++ Language";

 return 0;
}

New Line (\n)

When a new line is necessary in the output, then this escape sequence is used. For example:

Cout << ”COMPUTER\nSCIENCE”;

First of all, “COMPUTER” is printed and”\n” shifts the cursor to the next line. Then “SCIENCE”

is printed on second line. A screenshot of output is shown below:

Tab (\t)

A TAB is equal to eight spaces. Whenever TAB button is pressed from the keyboard, then 8

spaces are left blank. This escape sequence performs the functionality of TAB key in the output

stream. The code given below will insert a TAB between two words.

cout<<”COMPUTER\tSCIENCE”;

Alert Bell (\a)

This escape sequence is used to play beep during execution. For example:

cout<<”COMPUTER\aSCIENCE”;

First of all, “COMPUTER” is printed then a beep is played and after that “SCIENCE”

is printed.

Backspace (\b)

Whenever we want to delete a single character, we press the button “backspace” from our

keyboard. The same functionality can be achieved in C++ output with this escape sequence. For

example:

cout<<”COMPUTER\bSCIENCE”;

First of all, “COMPUTER” is printed and after that “\b” comes which deletes the last

character i.e. “R”. After that, “SCIENCE” is printed.

COMPUTER

SCIENCE

COMPUTER SCIENCE

COMPUTERSCIENCE

Ex: Sample program

Program output:

HW: Write a C++ program to generate the screen output shown below.

#include <iostream>
using namespace std;
int main() {
 cout << "\nThis is\t a string\n\t\t" " with \"many\" escape sequences!\n";
return 0;
}

This is a string

with "many" escape sequences!

I

"RUSH"

\TO\

AND

/FRO/

