
Comments in C++

Program comments are explanatory statements that you can include in the C++ code. These

comments help anyone reading the source code. All programming languages allow for some form

of comments.

C++ supports single-line and multi-line comments. All characters available inside any comment

are ignored by C++ compiler.

C++ comments start with /* and end with */. For example:

A comment can also start with //, extending to the end of the line. For example:

When the above code is compiled, it will ignore // prints Hello World and final executable will

produce the following result:

C++ Keywords

The following list shows the reserved words in C++. These reserved words are usually written in

lowercase with special meanings and may not be used as constant or variable or any other

identifier names. It should be noted that these reserved words may not be redefined or used other

than those specified for them.

asm else new this

auto enum operator throw

bool explicit private true

break export protected try

case extern public typedef

/* This is a comment */
/* C++ comments can also
* span multiple lines
*/

#include <iostream>
using namespace std;

main()
{
cout << "Hello World"; // prints Hello World
return 0;
}

Hello World

catch false register typeid

char float reinterpret_cast typename

class for return union

const friend short unsigned

const_cast goto signed using

continue if sizeof virtual

default inline static void

delete int static_cast volatile

do long struct wchar_t

double mutable switch while

dynamic_cast Namespace template

C++ Identifiers

A C++ identifier is a name used to identify a variable, function, class, module, or any other user-

defined item. An identifier starts with a letter A to Z or a to z or an underscore _ followed by zero

or more letters, underscores, and digits (0 to 9).

C++ does not allow punctuation characters such as @, $, and % within identifiers.

C++ is a case-sensitive programming language. Thus, Manpower and manpower are two

different identifiers in C++.

Here are some examples of valid identifiers:

Here are some examples of invalid identifiers:

C++ Data Types

While writing program in any language, you need to use various variables to store various

information. Variables are nothing but reserved memory locations to store values. This means that

when you create a variable you reserve some space in memory.

You may like to store information of various data types like character, wide character, integer,

floating point, double floating point, boolean etc. Based on the data type of a variable, the

operating system allocates memory and decides what can be stored in the reserved memory.

mohd zara abc
move_name a_123 myname50
_temp j a23b9 retVal

7-up salim!
$2 no#

Primitive Built-in Types

C++ offers the programmer a rich assortment of built-in as well as user defined data types.

Following table lists down seven basic C++ data types –

Type Keyword

Boolean bool

Character char

Integer Int

Floating point Float

Double floating point Double

Valueless Void

Wide character wchar_t

Several of the basic types can be modified using one or more of these type modifiers −

 signed

 unsigned

 short

 long

The following table shows the variable type, how much memory it takes to store the value in

memory, and what is maximum and minimum value which can be stored in such type of

variables.

Type Typical Bit Width Typical Range

Char 1byte -127 to 127 or 0 to 255

unsigned char 1byte 0 to 255

signed char 1byte -127 to 127

Int 4bytes -2147483648 to 2147483647

unsigned int 4bytes 0 to 4294967295

signed int 4bytes -2147483648 to 2147483647

short int 2bytes -32768 to 32767

unsigned short int 2bytes 0 to 65,535

signed short int 2bytes -32768 to 32767

long int 8bytes -2,147,483,648 to 2,147,483,647

signed long int 8bytes -2,147,483,648 to 2,147,483,647

unsigned long int 8bytes 0 to 4,294,967,295

long long int 8bytes -(2^63) to (2^63)-1

unsigned long long int 8bytes 0 to 18,446,744,073,709,551,615

Float 4bytes

Double 8bytes

long double 2 or 4 bytes 1 wide character

The size of variables might be different from those shown in the above table, depending on the

compiler and the computer you are using.

Following is the example, which will produce correct size of various data types on your

computer.

This example uses endl, which inserts a new-line character after every line and << operator is

being used to pass multiple values out to the screen. We are also using sizeof() operator to get size

of various data types.

When the above code is compiled and executed, it produces the following result which can vary

from machine to machine −

#include <iostream>
using namespace std;

int main() {
 cout << "Size of char : " << sizeof(char) << endl;
 cout << "Size of int : " << sizeof(int) << endl;
 cout << "Size of short int : " << sizeof(short int) << endl;
 cout << "Size of long int : " << sizeof(long int) << endl;
 cout << "Size of float : " << sizeof(float) << endl;
 cout << "Size of double : " << sizeof(double) << endl;
 cout << "Size of wchar_t : " << sizeof(wchar_t) << endl;

 return 0;
}

Size of char : 1
Size of int : 4
Size of short int : 2
Size of long int : 4
Size of float : 4
Size of double : 8
Size of wchar_t : 4

C++ Variable Types

A variable provides us with named storage that our programs can manipulate. Each variable in

C++ has a specific type, which determines the size and layout of the variable's memory; the range

of values that can be stored within that memory; and the set of operations that can be applied to

the variable.

The name of a variable can be composed of letters, digits, and the underscore character. It must

begin with either a letter or an underscore. Upper and lowercase letters are distinct because C++ is

case-sensitive −

There are following basic types of variable in C++:

Type Type & Description

bool Stores either value true or false.

char Typically a single octet (one byte). This is an integer type.

int The most natural size of integer for the machine.

float A single-precision floating point value.

double A double-precision floating point value.

void Represents the absence of type.

wchar_t A wide character type.

C++ also allows to define various other types of variables, like Enumeration, Pointer, Array,

Reference, Data structures, and Classes.

Variable Definition in C++

A variable definition tells the compiler where and how much storage to create for the variable. A

variable definition specifies a data type, and contains a list of one or more variables of that type as

follows –

Here, type must be a valid C++ data type including char, w_char, int, float, double, bool or any

user-defined object, etc., and variable_list may consist of one or more identifier names separated

by commas. Some valid declarations are shown here –

The line int i, j, k; both declares and defines the variables i, j and k; which instructs the compiler

to create variables named i, j and k of type int.

type variable_list;

int i, j, k;

char c, ch;

float f, salary;

double d;

Variable Initialization in C++

Variables can be initialized (assigned an initial value) in their declaration. The initializer consists

of an equal sign followed by a constant expression as follows −

Some examples are –

For definition without an initializer: variables with static storage duration are implicitly initialized

with NULL (all bytes have the value 0); the initial value of all other variables is undefined.

Variable Declaration in C++

A variable declaration provides assurance to the compiler that there is one variable existing with

the given type and name so that compiler proceed for further compilation without needing

complete detail about the variable. A variable declaration has its meaning at the time of

compilation only, compiler needs actual variable definition at the time of linking of the program.

Example: Try the following example :

type variable_name = value;

int d = 3, f = 5; // declaration of d and f.
int d = 3, f = 5; // definition and initializing d and f.
byte z = 22; // definition and initializes z.
char x = 'x'; // the variable x has the value 'x'.

#include <iostream>
using namespace std;

 int main () {

// Variable definition:
 int a, b;
 int c;
 float f;

 // actual initialization
 a = 10;
 b = 20;
 c = a + b;

 cout << c << endl ;

 f = 70.0/3.0;
 cout << f << endl ;

 return 0;
}

Variable Scope in C++

A scope is a region of the program and broadly speaking there are three places, where variables

can be declared −

 Inside a function or a block which is called local variables,

 In the definition of function parameters which is called formal parameters.

 Outside of all functions which is called global variables.

We will learn what is a function and it's parameter in subsequent chapters. Here let us explain

what are local and global variables.

Local Variables

Variables that are declared inside a function or block are local variables. They can be used only

by statements that are inside that function or block of code. Local variables are not known to

functions outside their own. Following is the example using local variables −

Global Variables

Global variables are defined outside of all the functions, usually on top of the program. The global

variables will hold their value throughout the life-time of your program.

A global variable can be accessed by any function. That is, a global variable is available for use

throughout your entire program after its declaration. Following is the example using global and

local variables –

#include <iostream>
using namespace std;

int main () {
 // Local variable declaration:
 int a, b;
 int c;

 // actual initialization
 a = 10;
 b = 20;
 c = a + b;

 cout << c;

 return 0;
}

When the above code is compiled and executed, it produces the following result –

Initializing Local and Global Variables

When a local variable is defined, it is not initialized by the system, you must initialize it yourself.

Global variables are initialized automatically by the system when you define them as follows −

Data Type Initializer

Int 0

Char ‘\0’

Float 0

Double 0

Pointer NULL

It is a good programming practice to initialize variables properly, otherwise sometimes program

would produce unexpected result.

#include <iostream>
using namespace std;

// Global variable declaration:
int g = 20;

int main () {
 // Local variable declaration:
 int g = 10;

 cout << g;

 return 0;
}

10

