The Legendre equation is
(1—2%)y" — 22y +ala+ 1)y =0

where « is a constant.

Section 5.3, Exercise 22

Determine two linearly independent solutions in powers of x for |z| < 1.

Assume y(z Z a,x’ and substitute this into Legendre’s equation.

n=2 n=2 n=1
= Z(n +2)(n+ 1)aproz"™ — Z (n — Dayz™ — Z 2na,z" + oo
n=0 n=0 n=0

= Y [0 +2)(n+ Dager — (n(n+1) — ala + 1)a,) 2"

We obtain the recurrence relation:

(n(n+1) —ala+1))a,
(n+2)(n+1)

Apy2 =

If we let ag = 1 and a; = 0 then we can calculate the following coefficients.

v - ala+1)
T
w = (2(3) — ala+1))as
! (4)(3)
 ala+1)[e®+a— 0]
B 4!
_ ala—2)(a+1)(a+3)
4!
0 — (4(5) — ala+1))ay

(6)(5)
_afa=2)(a+1)(a+3)(@® +a—20)
6!
ala—=2)(a—4)(a+1)(a+3)(a+5)
6!




a--(a=2m+2)(a+1)---(a+2m—1)
(2m)!

agy, — (_1)m

Hence we have one solution

ng2+a(o‘_2)(a+l)(a+3)x4
21 4l
o (a—2m+2)(a+ 1) (a+2m —1) 2m

yi(x) = 1-—

m=3

Using the Ratio Test for absolute convergence we see that

a--(a—2m)(a+1)---(a+2m+1) p2m+2

lim a2(m+1) —  lim (2m+2)!
m— oo a9 x2m m—oo Oc~"(Oz—2m+2)((;+)ll)~~~(a+2m—1) x2m
lim (o —=2m)(a+2m+1) ,
= 1
m—oo | (2m+2)(2m + 1)
= |of

Thus the power series converges for |z| < 1.
If we let ag = 0 and a; = 1 then we can calculate the following coefficients.

1(2) — ala + 1)

o 31
o (a=D(a+2)
N 31
P (3(4) — a(a+1))as
i (5)(4)
~ (a=D(a+2)(e*+a—12)
a 5!
_ (a=1)(a-3)(a+2)(a+4)
5!
P (5(6) — a(a+1))as
(7)(6)
_ _(04—1)(a—3)(a+2)(a+4)(a2+a_30)
7!
_(a=D(a=3)(a —5)(a+2)(a+4)(a+06)
7!
Uomy1 = (_l)m(Oé—1)--.(@—2m+1)(a+2)...(a+2m)

(2m +1)!



Hence we have another solution

(a—Dla+2) 5 (e-D(a=3)(a+2)(a+4) ;

(@) = o= 3! v 5! *
> wla=1) - (a=2m+1)(a+2) - (a+2m) 5.,
+2. (1) 2m+ 1)l o

Using the Ratio Test for absolute convergence we see that

m (a—1)--(a—2m—1)(a+2)---(a+2m+2) _2m+3
P (TR S Gl I )] v
m—o0 a2m+1x2m+1 M 00 (a—l)---(a—27(7;;l7—11—£(1(;!—i-2)---(a+2m) p2m+1
~ lim (a—2m—1)(a—|—2m+2)x2
m—00 (2m + 3)(2m + 2)
= |z

Thus the power series converges for |z| < 1.
We may verify the solutions are linearly independent using the Wronskian.

W (y1,92)(0) = y1(0)y5(0) — 41(0)y2(0) = 1 # 0

Section 5.3, Exercise 23

Show that if « is zero or a positive even integer 2n, the series solution y; reduces to a polyno-
mial of degree 2n containing only even powers of x. Find the polynomials corresponding to
a =0, 2, and 4. Show that if « is a positive odd integer 2n + 1, the series solution y, reduces
to a polynomial of degree 2n + 1 containing only odd powers of . Find the polynomials

corresponding to o = 1, 3, and 5.

If & =0 then y;(x) = 1 which is a polynomial of degree zero. If & = 2n for some n € N
then according to the recurrence relation as,.or = 0 for all £ € N which implies that

_afatl) , ala—2)+Da+3)

wlz) =1 o " Al v
2n
a--(a=2m+2)(a+1) - (a+2m—-1) ,,
ﬂ;} (2m)! =

a polynomial of degree 2n containing only even powers of x.

a=0 y(x)=1
a=2 ylx)=1-32"

a=4: ylx)=1- 10x2+3—;x4



If & =1 then yy(x) = x which is a polynomial of degree 1 containing only odd powers of
x. If @ =2n+ 1 for some n € N then according to the recurrence relation ag, 1101 = 0 for
all £ € N which implies that

(a—Dla+2) 5 (e=Dla=3)(a+2)(a+4) ;

yo(x) = = — T x” + = x
2n+1
(a=1)---(a=2m+1)(a+2) --(a+2m) , 4
—1)m m
+;( ) @m 1 1) =

a polynomial of degree 2n + 1 containing only odd powers of z.

=1 ylr)==
)
=3 y(:)s):x—%x?’
4 21
a=5 y(x):x—§x3+5z5

Section 5.3, Exercise 24

The Legendre polynomial P,(x) is defined as the polynomial solution of the Legendre equa-
tion with a = n that also satisfies the condition P,(1) = 1.

(a) Using the results of Problem 23, find the Legendre polynomials Py(z), ..., Ps(z).
We can easily see that Py(z) =1 and P;(z) = x. Since

Py(z) = a(l—32%)
Py(1) = a(1-3)=1

then a = —1/2 and we have

In the same way we see that

Pg(l’) =

S
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35
Pyz) = a(1l—102%+ E:EA‘)
35
P(l) = a 1—10+§) =1



14 21
Ps(z) = a<$—§x3+5x5)
14 21
Ps(1) = all-—+2)=1
5(1) a( 3+5)
15
a = —.
8

To summarize

Po(l') 1

Py (x) x

Pyx) — %(3932 .y

Pya) = 5(50° —3)

Py(z) = %(35:& — 302% + 3)
Ps(z) = %(6?@5 — 702° + 157)

(b) Plot the graphs of Py(z), ..., Ps(z) for =1 < x < 1.

PQ(ZL') = 1
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Py(z) = é(35954 —302° + 3)
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Ps(z) = é(63955 — 702° + 152)
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(c¢) Find the zeros of Py(x), ..., Ps(x).
Py(z) = 1 has no zeros.

Pi(z) = x has a zero at z = 0.

1
Py(x) = $(32% — 1) has zeros at = +—.

V3

3
Ps(x) = 1(52® — 3z) has zeros at = 0 and at z = ﬂ:\/g.

15+
Py(z) = £(352* — 302% + 3) has zeros at x = £ %ﬁ

35 4+ 2/70

£(632° — 702® + 15x) has zeros at 2 = 0 and at = £ &



Section 5.3, Exercise 25

It can be shown that the general formula for P,(x) is

[n/2]
1 (—1)*2n — 2k,
P _ n
n() = o ; Kn—B)(n—2k)"

where [n/2] denotes the greatest integer less than or equal to n/2. By observing the form of
P,(x) for n even and n odd, show that P,(—1) = (—1)".

By exercise 23 we know P,(z) is a polynomial of even (odd) degree when n is even (odd)
and contains only even (odd) powers of z. Thus P,(x) is an even (odd) function when n is
even (odd). By exercise 24, P,(1) = 1, thus when n is even P,(—1) =1 = (—1)" and when
nis odd P,(—1) = —P,(1) = -1 = (—1)™.

Section 5.3, Exercise 26

The Legendre polynomials play an important role in mathematical physics. For example in
solving Laplace’s equation (the potential equation) in spherical coordinates, we encounter
the equation

*F(p) dF (o)
—_— HF =
i + cot do +n(n+1)F(p) =0, 0<p<m,

where n is a positive integer. Show that the change of variable x = cosp leads to the
Legendre equation with o« = n for y = f(x) = F(arccos z).
Using the chain rule for derivatives we see that

dF (o) _ dF(p) de  dF(arccosz)

— =——— 2 (—sinyp) = ﬁ(—singo) = —sinpy’
dy de  dy dx da -

Differentiating once more we have

’F d
dgo(;p ) gp | siney] = —cosy’ +sin’ oy,

Substituting into the equation above we have

0 = 0—cosgy +sin®py” + cot p (—singy’) +n(n + 1)y
= sin®y” —2cospy’ +n(n+ 1)y
(1 —cos? p)y" — 2cospy’ +n(n+1)y

(1 —2*)y" — 22y +n(n+ 1y.



Section 5.3, Exercise 27

Show that for n =0, 1, 2, 3, the corresponding Legendre polynomial is given by

1 oa
—onpl dgn

P, (x) (2 —1)™.

This formula, known as Rodrigues’ formula, is true for all positive integers n.
For the case n =0

Poe) = o T 1 =1
W)= 5001 da -
For the case n =1
Plo)= — L@ 1y= L=
1() ﬁ%( —1)=522) =2
For the case n = 2
1 &, , 1a* 2 1d 3 2
_ 3.2 1
) 2’
For the case n = 3
1 d 2 3 1 d° 6 4 2 1 d? 5 3
Py(z) = 23—3'$(x - 1) :@ﬁ(‘% — 32" + 3z —1):@@(627 — 122° 4 6x)
1 d 1
= ——(30z* — 3622+ 6) = —(1202% — 72
18 4z 20 v+ 6) = 5120z 7)
55 3
= 2:)3 2x.

Section 5.3, Exercise 28
Show that the Legendre equation can also be written as
(1 - 2%y = —ala+1)y.
Then it follows that
[(1—2®) P ()] = —n(n + 1)Py(2) and [(1—a*)P,, ()] = —m(m + 1) P(2).

By multiplying the first equation by P,,(x) and the second equation by P, (z), integrating
by parts, and then subtracting one equation from the other, show that

/1 P,(x)P,(x)de =0 ifn#m.

This property of the Legendre polynomials is known as the orthogonality property. If m = n,
it can be show that the value of the preceding integral is 2/(2n + 1).



Starting with the Legendre equation
0 = (1—2%)y" — 22y +ala+1)y
= (1-2°)(y) + (1 -2")y +ala+ 1)y
—ala+1)y = [(1—2%)y] (product rule).
Thus when y(x) = P,(z) we have
(1 —2*) P (2)] = —n(n+1)P,(x).
Suppose we multiply this equation by P,,(x) where m # n, then

(1= 2*)Py(2)] Pulz) = —n(n+1)Py(z) ()
1 1
/ (1 —2*)P)(2)] Pn(z)de = —n(n+1) / Po(z)P,,(7) dx
-1 -1
We can apply integration by parts to the integral on the left-hand side of this equation.
u = DPp() v = (1—2?)P)(2)
du = P! (z) dv = [(1—2?)P! ()] dx

Thus
1

/_ (1= )P ()] Pu(z)dz = Pu(@)[(1 -2, - / (1 - 22)P.(2) Pl (z) de

1 1

_ -/_(1—x2)P,;(z)P;n(x)da;.

1
Similarly when y(z) = P,,(z) we have
(1 = 2*) Py, ()] = —m(m + 1) Py (2).
Suppose we multiply this equation by P, (z), then
(1 =) Py (@) Pu(2) = —m(m + 1)P(2) Pu(2)

1 1
/ (1 —2*)P ()] Py(z)dxr = —m(m+ 1)/ P, (x)P,(x) dz
—1 -1
We can apply integration by parts to the integral on the left-hand side of this equation.
u = Pu() v = (1—-2*)P ()
du = P!(x) dv = [(1—2*)P! (2)] dx
Thus
1 1
[ a-2pan@d = R@-P@I, - [ 0= PP d

1



Combining the equations we see that

/_ (1— )P (2)Pl(x) dr = / (1 — 22) P! (2) Py (x) da

1 1

m(m+1)/_l P, (z)P,(x)dx = n(n+1)/_1Pn(x)Pm(:c) dx

[m(m+1) —n(n+ 1)]/ P, (z)P,(z)dz = 0.

-1
Thus either

/_1 Py (2)Py(x) dz = 0

1
which is the orthogonality property, or

O=[mm+1)—nn+1)]=m-—n)(m+n+1)

Since m, n € N and we have assumed m # n then this equation is not satisfied.

Section 5.3, Exercise 29

Given a polynomial f of degree n, it is possible to express f as a linear combination of Fj,
P1> Pg, ey Pni

n

f(x) = arPu(x).

k=0
Using the result of Problem 28, show that
2k+1 (!
U = — / f(z)Py(x) dx.
-1
Suppose
flo) =) apPu().
k=0
then

f(@)Pu() = ) arPu(x) P(e)

k=0
P = I;ak /_ Pila)Po(a) da
B 2
T 2mg1m

2m2+1/_1f(:c)Pm(x)d:c .



