5.2 Legendre's Equation. Legendre Polynomials $P_{n}(x)$

Legendre's differential equation ${ }^{1}$

$$
\begin{equation*}
\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+n(n+1) y=0 \tag{1}
\end{equation*}
$$

(n constant)
is one of the most important ODEs in physics. It arises in numerous problems, particularly in boundary value problems for spheres (take a quick look at Example 1 in Sec. 12.10).

The equation involves a parameter n, whose value depends on the physical or engineering problem. So (1) is actually a whole family of ODEs. For $n=1$ we solved it in Example 3 of Sec. 5.1 (look back at it). Any solution of (1) is called a Legendre function. The study of these and other "higher" functions not occurring in calculus is called the theory of special functions. Further special functions will occur in the next sections.

Dividing (1) by $1-x^{2}$, we obtain the standard form needed in Theorem 1 of Sec. 5.1 and we see that the coefficients $-2 x /\left(1-x^{2}\right)$ and $n(n+1) /\left(1-x^{2}\right)$ of the new equation are analytic at $x=0$, so that we may apply the power series method. Substituting

$$
\begin{equation*}
y=\sum_{m=0}^{\infty} a_{m} x^{m} \tag{2}
\end{equation*}
$$

and its derivatives into (1), and denoting the constant $n(n+1)$ simply by k, we obtain

$$
\left(1-x^{2}\right) \sum_{m=2}^{\infty} m(m-1) a_{m} x^{m-2}-2 x \sum_{m=1}^{\infty} m a_{m} x^{m-1}+k \sum_{m=0}^{\infty} a_{m} x^{m}=0
$$

By writing the first expression as two separate series we have the equation

$$
\sum_{m=2}^{\infty} m(m-1) a_{m} x^{m-2}-\sum_{m=2}^{\infty} m(m-1) a_{m} x^{m}-\sum_{m=1}^{\infty} 2 m a_{m} x^{m}+\sum_{m=0}^{\infty} k a_{m} x^{m}=0
$$

It may help you to write out the first few terms of each series explicitly, as in Example 3 of Sec. 5.1; or you may continue as follows. To obtain the same general power x^{s} in all four series, set $m-2=s$ (thus $m=s+2$) in the first series and simply write s instead of m in the other three series. This gives

$$
\sum_{s=0}^{\infty}(s+2)(s+1) a_{s+2} x^{s}-\sum_{s=2}^{\infty} s(s-1) a_{s} x^{s}-\sum_{s=1}^{\infty} 2 s a_{s} x^{s}+\sum_{s=0}^{\infty} k a_{s} x^{s}=0
$$

[^0](Note that in the first series the summation begins with $s=0$.) Since this equation with the right side 0 must be an identity in x if (2) is to be a solution of (1), the sum of the coefficients of each power of x on the left must be zero. Now x^{0} occurs in the first and fourth series only, and gives [remember that $k=n(n+1)$]
\[

$$
\begin{equation*}
2 \cdot 1 a_{2}+n(n+1) a_{0}=0 \tag{3a}
\end{equation*}
$$

\]

x^{1} occurs in the first, third, and fourth series and gives

$$
\begin{equation*}
3 \cdot 2 a_{3}+[-2+n(n+1)] a_{1}=0 \tag{3b}
\end{equation*}
$$

The higher powers x^{2}, x^{3}, \cdots occur in all four series and give

$$
\begin{equation*}
(s+2)(s+1) a_{s+2}+[-s(s-1)-2 s+n(n+1)] a_{s}=0 \tag{3c}
\end{equation*}
$$

The expression in the brackets $[\cdots]$ can be written $(n-s)(n+s+1)$, as you may readily verify. Solving (3a) for a_{2} and (3b) for a_{3} as well as (3c) for a_{s+2}, we obtain the general formula

$$
\begin{equation*}
a_{s+2}=-\frac{(n-s)(n+s+1)}{(s+2)(s+1)} a_{s} \quad(s=0,1, \cdots) \tag{4}
\end{equation*}
$$

This is called a recurrence relation or recursion formula. (Its derivation you may verify with your CAS.) It gives each coefficient in terms of the second one preceding it, except for a_{0} and a_{1}, which are left as arbitrary constants. We find successively

$$
\begin{array}{rl|l}
a_{2}=-\frac{n(n+1)}{2!} a_{0} & a_{3}=-\frac{(n-1)(n+2)}{3!} a_{1} \\
a_{4}=-\frac{(n-2)(n+3)}{4 \cdot 3} a_{2} & a_{5}=-\frac{(n-3)(n+4)}{5 \cdot 4} a_{3} \\
& =\frac{(n-2) n(n+1)(n+3)}{4!} a_{0} & \\
& =\frac{(n-3)(n-1)(n+2)(n+4)}{5!} a_{1}
\end{array}
$$

and so on. By inserting these expressions for the coefficients into (2) we obtain

$$
\begin{equation*}
y(x)=a_{0} y_{1}(x)+a_{1} y_{2}(x) \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
y_{1}(x)=1-\frac{n(n+1)}{2!} x^{2}+\frac{(n-2) n(n+1)(n+3)}{4!} x^{4}-+\cdots \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
y_{2}(x)=x-\frac{(n-1)(n+2)}{3!} x^{3}+\frac{(n-3)(n-1)(n+2)(n+4)}{5!} x^{5}-+\cdots \tag{7}
\end{equation*}
$$

These series converge for $|x|<1$ (see Prob. 4; or they may terminate, see below). Since (6) contains even powers of x only, while (7) contains odd powers of x only, the ratio y_{1} / y_{2} is not a constant, so that y_{1} and y_{2} are not proportional and are thus linearly independent solutions. Hence (5) is a general solution of (1) on the interval $-1<x<1$.

Note that $x= \pm 1$ are the points at which $1-x^{2}=0$, so that the coefficients of the standardized ODE are no longer analytic. So it should not surprise you that we do not get a longer convergence interval of (6) and (7), unless these series terminate after finitely many powers. In that case, the series become polynomials.

Polynomial Solutions. Legendre Polynomials $P_{n}(x)$

The reduction of power series to polynomials is a great advantage because then we have solutions for all x, without convergence restrictions. For special functions arising as solutions of ODEs this happens quite frequently, leading to various important families of polynomials; see Refs. [GenRef1], [GenRef10] in App. 1. For Legendre's equation this happens when the parameter n is a nonnegative integer because then the right side of (4) is zero for $s=n$, so that $a_{n+2}=0, a_{n+4}=0, a_{n+6}=0, \cdots$. Hence if n is even, $y_{1}(x)$ reduces to a polynomial of degree n. If n is odd, the same is true for $y_{2}(x)$. These polynomials, multiplied by some constants, are called Legendre polynomials and are denoted by $P_{n}(x)$. The standard choice of such constants is done as follows. We choose the coefficient a_{n} of the highest power x^{n} as

$$
\begin{equation*}
a_{n}=\frac{(2 n)!}{2^{n}(n!)^{2}}=\frac{1 \cdot 3 \cdot 5 \cdots(2 n-1)}{n!} \quad(n \text { a positive integer }) \tag{8}
\end{equation*}
$$

(and $a_{n}=1$ if $n=0$). Then we calculate the other coefficients from (4), solved for a_{s} in terms of a_{s+2}, that is,

$$
\begin{equation*}
a_{s}=-\frac{(s+2)(s+1)}{(n-s)(n+s+1)} a_{s+2} \quad(s \leqq n-2) \tag{9}
\end{equation*}
$$

The choice (8) makes $p_{n}(1)=1$ for every n (see Fig. 107); this motivates (8). From (9) with $s=n-2$ and (8) we obtain

$$
a_{n-2}=-\frac{n(n-1)}{2(2 n-1)} a_{n}=-\frac{n(n-1)}{2(2 n-1)} \cdot \frac{(2 n)!}{2^{n}(n!)^{2}}
$$

Using $(2 n)!=2 n(2 n-1)(2 n-2)$! in the numerator and $n!=n(n-1)$! and $n!=n(n-1)(n-2)$! in the denominator, we obtain

$$
a_{n-2}=-\frac{n(n-1) 2 n(2 n-1)(2 n-2)!}{2(2 n-1) 2^{n} n(n-1)!n(n-1)(n-2)!} .
$$

$n(n-1) 2 n(2 n-1)$ cancels, so that we get

$$
a_{n-2}=-\frac{(2 n-2)!}{2^{n}(n-1)!(n-2)!}
$$

Similarly,

$$
\begin{aligned}
a_{n-4} & =-\frac{(n-2)(n-3)}{4(2 n-3)} a_{n-2} \\
& =\frac{(2 n-4)!}{2^{n} 2!(n-2)!(n-4)!}
\end{aligned}
$$

and so on, and in general, when $n-2 m \geqq 0$,

$$
\begin{equation*}
a_{n-2 m}=(-1)^{m} \frac{(2 n-2 m)!}{2^{n} m!(n-m)!(n-2 m)!} \tag{10}
\end{equation*}
$$

The resulting solution of Legendre's differential equation (1) is called the Legendre polynomial of degree n and is denoted by $P_{n}(x)$.

From (10) we obtain
(11)

$$
\begin{aligned}
P_{n}(x) & =\sum_{m=0}^{M}(-1)^{m} \frac{(2 n-2 m)!}{2^{n} m!(n-m)!(n-2 m)!} x^{n-2 m} \\
& =\frac{(2 n)!}{2^{n}(n!)^{2}} x^{n}-\frac{(2 n-2)!}{2^{n} 1!(n-1)!(n-2)!} x^{n-2}+-\cdots
\end{aligned}
$$

where $M=n / 2$ or $(n-1) / 2$, whichever is an integer. The first few of these functions are (Fig. 107)

(11')

$$
\begin{array}{ll}
P_{0}(x)=1, & P_{1}(x)=x \\
P_{2}(x)=\frac{1}{2}\left(3 x^{2}-1\right), & P_{3}(x)=\frac{1}{2}\left(5 x^{3}-3 x\right) \\
P_{4}(x)=\frac{1}{8}\left(35 x^{4}-30 x^{2}+3\right), & P_{5}(x)=\frac{1}{8}\left(63 x^{5}-70 x^{3}+15 x\right)
\end{array}
$$

and so on. You may now program (11) on your CAS and calculate $P_{n}(x)$ as needed.

Fig. 107. Legendre polynomials

The Legendre polynomials $P_{n}(x)$ are orthogonal on the interval $-1 \leqq x \leqq 1$, a basic property to be defined and used in making up "Fourier-Legendre series" in the chapter on Fourier series (see Secs. 11.5-11.6).

PROBREMSET 5.2

1-5 LEGENDRE POLYNOMIALS AND

 FUNCTIONS1. Legendre functions for $\boldsymbol{n}=\mathbf{0}$. Show that (6) with $n=0$ gives $P_{0}(x)=1$ and (7) gives (use $\ln (1+x)=$ $\left.x-\frac{1}{2} x^{2}+\frac{1}{3} x^{3}+\cdots\right)$

$$
y_{2}(x)=x+\frac{1}{3} x^{3}+\frac{1}{5} x^{5}+\cdots=\frac{1}{2} \ln \frac{1+x}{1-x} .
$$

Verify this by solving (1) with $n=0$, setting $z=y^{\prime}$ and separating variables.
2. Legendre functions for $\boldsymbol{n}=1$. Show that (7) with $n=1$ gives $y_{2}(x)=P_{1}(x)=x$ and (6) gives

$$
\begin{aligned}
y_{1} & =1-x^{2}-\frac{1}{3} x^{4}-\frac{1}{5} x^{6}-\cdots \\
& =1-\frac{1}{2} x \ln \frac{1+x}{1-x}
\end{aligned}
$$

3. Special \boldsymbol{n}. Derive (11^{\prime}) from (11).
4. Legendre's ODE. Verify that the polynomials in (11^{\prime}) satisfy (1).
5. Obtain P_{6} and P_{7}.

6-9 CAS PROBLEMS

6. Graph $P_{2}(x), \cdots, P_{10}(x)$ on common axes. For what x (approximately) and $n=2, \cdots, 10$ is $\left|P_{n}(x)\right|<\frac{1}{2}$?
7. From what n on will your CAS no longer produce faithful graphs of $P_{n}(x)$? Why?
8. Graph $Q_{0}(x), Q_{1}(x)$, and some further Legendre functions.
9. Substitute $a_{s} x^{s}+a_{s+1} x^{s+1}+a_{s+2} x^{s+2}$ into Legendre's equation and obtain the coefficient recursion (4).
10. TEAM PROJECT. Generating Functions. Generating functions play a significant role in modern applied mathematics (see [GenRef5]). The idea is simple. If we want to study a certain sequence $\left(f_{n}(x)\right)$ and can find a function

$$
G(u, x)=\sum_{n=0}^{\infty} f_{n}(x) u^{n}
$$

we may obtain properties of $\left(f_{n}(x)\right)$ from those of G, which "generates" this sequence and is called a generating function of the sequence.
(a) Legendre polynomials. Show that
(12)

$$
G(u, x)=\frac{1}{\sqrt{1-2 x u+u^{2}}}=\sum_{n=0}^{\infty} P_{n}(x) u^{n}
$$

is a generating function of the Legendre polynomials. Hint: Start from the binomial expansion of $1 / \sqrt{1-v}$, then set $v=2 x u-u^{2}$, multiply the powers of $2 x u-u^{2}$ out, collect all the terms involving u^{n}, and verify that the sum of these terms is $P_{n}(x) u^{n}$.
(b) Potential theory. Let A_{1} and A_{2} be two points in space (Fig. 108, $r_{2}>0$). Using (12), show that

$$
\begin{aligned}
\frac{1}{r} & =\frac{1}{\sqrt{r_{1}^{2}+r_{2}^{2}-2 r_{1} r_{2} \cos \theta}} \\
& =\frac{1}{r_{2}} \sum_{m=0}^{\infty} P_{m}(\cos \theta)\left(\frac{r_{1}}{r_{2}}\right)^{m}
\end{aligned}
$$

This formula has applications in potential theory. $(Q / r$ is the electrostatic potential at A_{2} due to a charge Q located at A_{1}. And the series expresses $1 / r$ in terms of the distances of A_{1} and A_{2} from any origin O and the angle θ between the segments $O A_{1}$ and $O A_{2}$.)

Fig. 108. Team Project 10
(c) Further applications of (12). Show that $P_{n}(1)=1, P_{n}(-1)=(-1)^{n}, P_{2 n+1}(0)=0$, and $P_{2 n}(0)=(-1)^{n} \cdot 1 \cdot 3 \cdots(2 n-1) /[2 \cdot 4 \cdots(2 n)]$.

11-15 FURTHER FORMULAS

11. ODE. Find a solution of $\left(a^{2}-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+$ $n(n+1) y=0, a \neq 0$, by reduction to the Legendre equation.
12. Rodrigues's formula (13) ${ }^{2}$ Applying the binomial theorem to $\left(x^{2}-1\right)^{n}$, differentiating it n times term by term, and comparing the result with (11), show that

$$
\begin{equation*}
P_{n}(x)=\frac{1}{2^{n} n!} \frac{d^{n}}{d x^{n}}\left[\left(x^{2}-1\right)^{n}\right] . \tag{13}
\end{equation*}
$$

[^1]13. Rodrigues's formula. Obtain (11') from (13).
14. Bonnet's recursion. ${ }^{3}$ Differentiating (13) with respect to u, using (13) in the resulting formula, and comparing coefficients of u^{n}, obtain the Bonnet recursion.
(14) $(n+1) P_{n+1}(x)=(2 n+1) x P_{n}(x)-n p_{n-1}(x)$,
where $n=1,2, \cdots$. This formula is useful for computations, the loss of significant digits being small (except near zeros). Try (14) out for a few computations of your own choice.
15. Associated Legendre functions $\boldsymbol{P}_{\boldsymbol{n}}^{\boldsymbol{k}}(\boldsymbol{x})$ are needed, e.g., in quantum physics. They are defined by
\[

$$
\begin{equation*}
P_{n}^{k}(x)=\left(1-x^{2}\right)^{k / 2} \frac{d^{k} p_{n}(x)}{d x^{k}} \tag{15}
\end{equation*}
$$

\]

and are solutions of the ODE

$$
\begin{equation*}
\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+q(x) y=0 \tag{16}
\end{equation*}
$$

where $q(x)=n(n+1)-k^{2} /\left(1-x^{2}\right)$. Find $P_{1}^{1}(x)$, $P_{2}^{1}(x), P_{2}^{2}(x)$, and $P_{4}^{2}(x)$ and verify that they satisfy (16).

5.3 Extended Power Series Method: Frobenius Method

Several second-order ODEs of considerable practical importance-the famous Bessel equation among them-have coefficients that are not analytic (definition in Sec. 5.1), but are "not too bad," so that these ODEs can still be solved by series (power series times a logarithm or times a fractional power of x, etc.). Indeed, the following theorem permits an extension of the power series method. The new method is called the Frobenius method. ${ }^{4}$ Both methods, that is, the power series method and the Frobenius method, have gained in significance due to the use of software in actual calculations.

Frobenius Method

Let $b(x)$ and $c(x)$ be any functions that are analytic at $x=0$. Then the $O D E$
(1)

$$
y^{\prime \prime}+\frac{b(x)}{x} y^{\prime}+\frac{c(x)}{x^{2}} y=0
$$

has at least one solution that can be represented in the form

$$
\begin{equation*}
y(x)=x^{r} \sum_{m=0}^{\infty} a_{m} x^{m}=x^{r}\left(a_{0}+a_{1} x+a_{2} x^{2}+\cdots\right) \quad\left(a_{0} \neq 0\right) \tag{2}
\end{equation*}
$$

where the exponent r may be any (real or complex) number (and r is chosen so that $a_{0} \neq 0$).

The ODE (1) also has a second solution (such that these two solutions are linearly independent) that may be similar to (2) (with a different r and different coefficients) or may contain a logarithmic term. (Details in Theorem 2 below.)

[^2]
[^0]: ${ }^{1}$ ADRIEN-MARIE LEGENDRE (1752-1833), French mathematician, who became a professor in Paris in 1775 and made important contributions to special functions, elliptic integrals, number theory, and the calculus of variations. His book Éléments de géométrie (1794) became very famous and had 12 editions in less than 30 years.

 Formulas on Legendre functions may be found in Refs. [GenRef1] and [GenRef10].

[^1]: ${ }^{2}$ OLINDE RODRIGUES (1794-1851), French mathematician and economist.

[^2]: ${ }^{3}$ OSSIAN BONNET (1819-1892), French mathematician, whose main work was in differential geometry.
 ${ }^{4}$ GEORG FROBENIUS (1849-1917), German mathematician, professor at ETH Zurich and University of Berlin, student of Karl Weierstrass (see footnote, Sect. 15.5). He is also known for his work on matrices and in group theory.

 In this theorem we may replace x by $x-x_{0}$ with any number x_{0}. The condition $a_{0} \neq 0$ is no restriction; it simply means that we factor out the highest possible power of x.

 The singular point of (1) at $x=0$ is often called a regular singular point, a term confusing to the student, which we shall not use.

