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5.2 Legendre’s Equation. 
Legendre Polynomials 

Legendre’s differential equation1

(1) (n constant)

is one of the most important ODEs in physics. It arises in numerous problems, particularly
in boundary value problems for spheres (take a quick look at Example 1 in Sec. 12.10).

The equation involves a parameter n, whose value depends on the physical or
engineering problem. So (1) is actually a whole family of ODEs. For we solved it
in Example 3 of Sec. 5.1 (look back at it). Any solution of (1) is called a Legendre function.
The study of these and other “higher” functions not occurring in calculus is called the
theory of special functions. Further special functions will occur in the next sections.

Dividing (1) by , we obtain the standard form needed in Theorem 1 of Sec. 5.1
and we see that the coefficients and of the new equation
are analytic at , so that we may apply the power series method. Substituting

(2)

and its derivatives into (1), and denoting the constant simply by k, we obtain

.

By writing the first expression as two separate series we have the equation

It may help you to write out the first few terms of each series explicitly, as in Example 3
of Sec. 5.1; or you may continue as follows. To obtain the same general power in all
four series, set (thus ) in the first series and simply write s instead
of m in the other three series. This gives
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1ADRIEN-MARIE LEGENDRE (1752–1833), French mathematician, who became a professor in Paris in
1775 and made important contributions to special functions, elliptic integrals, number theory, and the calculus
of variations. His book Éléments de géométrie (1794) became very famous and had 12 editions in less than
30 years.

Formulas on Legendre functions may be found in Refs. [GenRef1] and [GenRef10].
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(Note that in the first series the summation begins with .) Since this equation with
the right side 0 must be an identity in x if (2) is to be a solution of (1), the sum of the
coefficients of each power of x on the left must be zero. Now occurs in the first and
fourth series only, and gives [remember that ]

(3a) .

occurs in the first, third, and fourth series and gives

(3b) .

The higher powers occur in all four series and give

(3c)

The expression in the brackets can be written , as you may
readily verify. Solving (3a) for and (3b) for as well as (3c) for , we obtain the
general formula

(4) .

This is called a recurrence relation or recursion formula. (Its derivation you may verify
with your CAS.) It gives each coefficient in terms of the second one preceding it, except
for and , which are left as arbitrary constants. We find successively

and so on. By inserting these expressions for the coefficients into (2) we obtain
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These series converge for (see Prob. 4; or they may terminate, see below). Since
(6) contains even powers of x only, while (7) contains odd powers of x only, the ratio

is not a constant, so that and are not proportional and are thus linearly
independent solutions. Hence (5) is a general solution of (1) on the interval 

Note that are the points at which , so that the coefficients of the
standardized ODE are no longer analytic. So it should not surprise you that we do not get
a longer convergence interval of (6) and (7), unless these series terminate after finitely
many powers. In that case, the series become polynomials.

Polynomial Solutions. Legendre Polynomials 
The reduction of power series to polynomials is a great advantage because then we have
solutions for all x, without convergence restrictions. For special functions arising as
solutions of ODEs this happens quite frequently, leading to various important families of
polynomials; see Refs. [GenRef1], [GenRef10] in App. 1. For Legendre’s equation this
happens when the parameter n is a nonnegative integer because then the right side of (4)
is zero for , so that . Hence if n is even, 
reduces to a polynomial of degree n. If n is odd, the same is true for . These
polynomials, multiplied by some constants, are called Legendre polynomials and are
denoted by . The standard choice of such constants is done as follows. We choose
the coefficient of the highest power as

(8) (n a positive integer)

(and ). Then we calculate the other coefficients from (4), solved for in
terms of , that is,

(9)

The choice (8) makes for every n (see Fig. 107); this motivates (8). From (9)
with and (8) we obtain
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Similarly,

and so on, and in general, when ,

(10)

The resulting solution of Legendre’s differential equation (1) is called the Legendre
polynomial of degree n and is denoted by .

From (10) we obtain

(11)

where , whichever is an integer. The first few of these functions
are (Fig. 107)

and so on. You may now program (11) on your CAS and calculate as needed.Pn(x)

P0(x) � 1,     P1(x) � x

P2(x) � 1
2 (3x2 � 1),  P3(x) � 1

2 (5x3 � 3x)

P4(x) � 1
8 (35x4 � 30x2 � 3),  P5(x) � 1

8 (63x5 � 70x3 � 15x)

(11�)

M � n>2 or (n � 1)>2

 �
(2n)!

2n(n!)2
 xn �

(2n � 2)!

2n1! (n � 1)! (n � 2)!
xn�2 � � Á

 Pn(x) � a

M

m�0

 (�1)m 
(2n � 2m)!

2nm! (n � m)! (n � 2m)!
 xn�2m

Pn(x)

an�2m � (�1)m 
(2n � 2m)!

2nm! (n � m)! (n � 2m)!
 .

n � 2m � 0

 �
(2n � 4)!

2n2! (n � 2)! (n � 4)!

 an�4 � � 

(n � 2)(n � 3)

4(2n � 3)
 an�2

–1

–1 x

Pn(x) P0

P1

P4

P3

P2

1

1

Fig. 107. Legendre polynomials
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The Legendre polynomials are orthogonal on the interval , a basic
property to be defined and used in making up “Fourier–Legendre series” in the chapter
on Fourier series (see Secs. 11.5–11.6).

�1 � x � 1Pn(x)

1–5 LEGENDRE POLYNOMIALS AND
FUNCTIONS

1. Legendre functions for Show that (6) with
gives and (7) gives (use 

)

Verify this by solving (1) with , setting 
and separating variables.

2. Legendre functions for Show that (7) with
gives and (6) gives

3. Special n. Derive from (11).

4. Legendre’s ODE. Verify that the polynomials in 
satisfy (1).

5. Obtain and .

6–9 CAS PROBLEMS
6. Graph on common axes. For what x

(approximately) and is ?

7. From what n on will your CAS no longer produce
faithful graphs of ? Why?

8. Graph , and some further Legendre
functions.

9. Substitute into Legen-
dre’s equation and obtain the coefficient recursion (4).

10. TEAM PROJECT. Generating Functions. Generating
functions play a significant role in modern applied
mathematics (see [GenRef5]). The idea is simple. If we
want to study a certain sequence and can find a
function

,

we may obtain properties of from those of G,
which “generates” this sequence and is called a
generating function of the sequence.
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(a) Legendre polynomials. Show that

(12)

is a generating function of the Legendre polynomials.
Hint: Start from the binomial expansion of 
then set , multiply the powers of 
out, collect all the terms involving , and verify that
the sum of these terms is .

(b) Potential theory. Let and be two points in
space (Fig. 108, ). Using (12), show that

This formula has applications in potential theory. (
is the electrostatic potential at due to a charge Q
located at . And the series expresses in terms of
the distances of and from any origin O and the
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Fig. 108. Team Project 10

(c) Further applications of (12). Show that
, and

.

11–15 FURTHER FORMULAS
11. ODE. Find a solution of 

, by reduction to the Legendre
equation.

12. Rodrigues’s formula (13)2 Applying the binomial
theorem to , differentiating it n times term
by term, and comparing the result with (11), show that
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2OLINDE RODRIGUES (1794–1851), French mathematician and economist.
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15. Associated Legendre functions are needed, e.g.,
in quantum physics. They are defined by

(15)

and are solutions of the ODE

(16)

where . Find 
, and and verify that they satisfy (16).P4
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 (x)13. Rodrigues’s formula. Obtain from (13).

14. Bonnet’s recursion.3 Differentiating (13) with
respect to u, using (13) in the resulting formula, and
comparing coefficients of , obtain the Bonnet
recursion.

(14)

where . This formula is useful for com-
putations, the loss of significant digits being small
(except near zeros). Try (14) out for a few computations
of your own choice.
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3OSSIAN BONNET (1819–1892), French mathematician, whose main work was in differential geometry.
4GEORG FROBENIUS (1849–1917), German mathematician, professor at ETH Zurich and University of Berlin,

student of Karl Weierstrass (see footnote, Sect. 15.5). He is also known for his work on matrices and in group theory.
In this theorem we may replace x by x � x0 with any number x0. The condition a0 
 0 is no restriction; it

simply means that we factor out the highest possible power of x.
The singular point of (1) at x � 0 is often called a regular singular point, a term confusing to the student,

which we shall not use.

5.3 Extended Power Series Method: 
Frobenius Method

Several second-order ODEs of considerable practical importance—the famous Bessel
equation among them—have coefficients that are not analytic (definition in Sec. 5.1), but
are “not too bad,” so that these ODEs can still be solved by series (power series times a
logarithm or times a fractional power of x, etc.). Indeed, the following theorem permits
an extension of the power series method. The new method is called the Frobenius
method.4 Both methods, that is, the power series method and the Frobenius method, have
gained in significance due to the use of software in actual calculations.

T H E O R E M  1 Frobenius Method

Let and be any functions that are analytic at . Then the ODE

(1)

has at least one solution that can be represented in the form

(2)

where the exponent r may be any (real or complex) number (and r is chosen so that
).

The ODE (1) also has a second solution (such that these two solutions are linearly
independent) that may be similar to (2) (with a different r and different coefficients)
or may contain a logarithmic term. (Details in Theorem 2 below.)
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