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Physical Optics 2018/ Dr. Muwafaq Fadhil Al-Mishlab  

9th lecture [ Diffraction Grating] 

1. Introduction 

A periodic, multiple-slit device designed to take advantages of the sensitivity of its diffraction pattern to the 

wavelength of the incident light is called a diffraction grating. In figure (1), the net path difference for waves 

from successive slits is  

∆ =  ∆1 +  ∆2= 𝑎 sin 𝜃𝑖 + 𝑎 sin 𝜃𝑚   -------------------- (1) 

 

 

Fig. 1: Neighboring grating slits illuminated by light incident at 

angle θ with the grating normal. 

  

The two sine terms in the path difference may add or subtract, depending on the direction 𝜃𝑚 of the diffracted 

light. When the incident and diffracted rays are on the same side of the normal, as they are in Fig. 1, 𝜃𝑚 is 

considered positive. When the diffracted rays are on the side of the normal opposite to that of the incident rays, 

𝜃𝑚 is considered negative. In the latter case, the net path difference for waves from successive slits is the 

difference ∆1 −  ∆2. In either case, when ∆ = 𝑚𝜆, all diffracted waves are in phase and the grating equation 

becomes: 

𝑎 (sin 𝜃𝑖 + sin 𝜃𝑚) = 𝑚𝜆,            𝑚 =  0, ±1, ±2, … ..        ---------------- (2) 

When it is not necessary to distinguish angles, the subscript on the angle of diffraction 𝜃𝑚 is dropped. For each 

value of m, monochromatic radiation of wavelength λ is enhanced by the diffractive properties of the grating. 

By Eq. 2, the zeroth order m = 0, occurs at 𝜃𝑚 =  − 𝜃𝑖, the direction of the incident light, for all λ. Thus, light 

of all wavelengths appears in the central or zeroth order peak of the diffraction pattern. Higher orders – both 

plus and minus- produce spectral lines appearing on either side of the zeroth order. For a fixed direction of 

incidence given by 𝜃𝑖, the direction 𝜃𝑚 of each principle maximum varies with wavelength. As a dispersing 

element, the grating is superior to a prism in several ways. Figure (2a) illustrates the formation of the spectral 
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orders of diffraction for monochromatic light. Figure (2b) shows the angular spread of the continuous spectrum 

of visible light for a particular grating. Not that second and third orders in this case partially overlap. Unlike 

the prism, a grating produces greater deviation from the zeroth-order point for longer wavelengths.    

 

 

 

Fig. 1: (a) Formation of the orders of principle maxima for monochromatic light incident 

normally on grating G. (b) Angular spread of the first three orders.  

 

 

2. Free Spectral Range of a Grating 

The nonoverlapping wavelength range in a particular order is called the free spectral range, F. overlapping 

occurs because in the grating equation, the product (a sin θ) may be equal to several possible combinations of 

mλ for the light actually incident and processed by the optical system. Thus, at the position corresponding to 

λ in the first order, we may also find a spectral line corresponding to λ/2 in the second order, λ/3 in the third 

order, and so on. The free spectral range in order m may be determined by the following argument.  
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If λ1 is the shortest detectable wavelength in the incident light, then the longest nonoverlapping wavelength λ2 

in order m is coincident with the beginning of the spectrum again in the next higher order, or 

𝑚𝜆2 = (𝑚 + 1) 𝜆1   

The free spectral range for order m is then given by  

𝐹 =  𝜆2 −  𝜆1 =  
𝜆1

𝑚
  ------------------- (3) 

 

Example 

The shortest wavelength of light present in a given source is 400 nm. Determine the free spectral range in the 

first three orders of grating diffraction. 

Solution 

𝐹 =  
𝜆1

𝑚
     thus  

𝐹1 =  
400

1
= 400 𝑛𝑚 (𝑓𝑟𝑜𝑚 400 𝑡𝑜 800 𝑛𝑚 𝑖𝑛 𝑓𝑖𝑟𝑠𝑡 𝑜𝑟𝑑𝑒𝑟) 

𝐹2 =  
400

2
= 200 𝑛𝑚 (𝑓𝑟𝑜𝑚 400 𝑡𝑜 600 𝑛𝑚 𝑖𝑛 𝑠𝑒𝑐𝑜𝑛𝑑 𝑜𝑟𝑑𝑒𝑟) 

𝐹3 =  
400

3
= 133 𝑛𝑚 (𝑓𝑟𝑜𝑚 400 𝑡𝑜 533 𝑛𝑚 𝑖𝑛 𝑡ℎ𝑖𝑟𝑑 𝑜𝑟𝑑𝑒𝑟)  

 

3. Dispersion of a Grating 

Figure (2b) shows clearly that wavelengths are better separated as their order increases. This property is 

precisely described by the angular dispersion 𝐷 =  
𝑑𝜃𝑚

𝑑𝜆
=  

𝑚

𝑎 cos 𝜃𝑚
   ------------------- (4) 

The equation shows in the first place that for a given small wavelength difference 𝑑𝜆, the angular separation 

𝑑𝜃𝑚 is directly proportional to the order m. Hence the second. order spectrum is twice as wide as the first 

order, the third three times as wide as the first, etc. In the second place, 𝑑𝜃𝑚 is inversely proportional to the 

slit separation a, which is usually referred to as the grating space. The smaller the grating space, the more 

widely spread the spectra will be.  

If a photographic plate is used in the focal of the lens record the spectrum, it is convenient to describe the 

spread of wavelengths on the plate in terms of a linear dispersion 
𝑑𝑦

𝑑𝜆
 , where y is measured along the plate. 

Since 𝑑𝑦 = 𝑓 𝑑𝜃, the linear dispersion is given by 

𝑙𝑖𝑛𝑒𝑎𝑟 𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛 =  
𝑑𝑦

𝑑𝜆
= 𝑓 

𝑑𝜃𝑚

𝑑𝜆
= 𝑓 𝐷    --------------- (5) 
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Example 

Light of wavelength 500 nm is incident normally on a grating with 5000 grooves/cm. determine its angular 

and linear dispersion in the first order when used with a lens of focal length 0.5 m. 

Solution 

The grating constant or groove separation a is 

𝑎 =  
1

5000 𝑐𝑚−1
= 2 ×  10−4 𝑐𝑚  

For zeroth order, there is no dispersion. For first order, Eq. 4 requires the diffraction angle θ1, which can be 

found the grating equation (2) 

sin 𝜃1 =  
(1)𝜆

𝑎
=  

500 × 10−7

2 × 10−4
= 0.25 

Thus, θ1= 14.50 and cos θ1 = 0.968. 

The angular dispersion in the wavelength region around 500 nm can now be calculated: 

𝐷 =  
𝑚

𝑎 cos 𝜃𝑚
=  

1

(2 × 10−4 𝑐𝑚)(0.968)
= 5164

𝑟𝑎𝑑

𝑐𝑚
= 5.164 ×  10−4  

𝑟𝑎𝑑

𝑛𝑚
 × 

1800

𝜋 𝑟𝑎𝑑
=  0.02960/𝑛𝑚 

The linear dispersion is then found from 

𝑓𝐷 = (500𝑚𝑚)(5.164 × 10−4  𝑟𝑎𝑑
𝑛𝑚⁄ ) = 0.258

𝑚𝑚

𝑛𝑚
 

 

 

4. Resolution of a Grating 

By the resolution of grating, we mean its ability to produce distinct peaks for closely spaced wavelengths in a 

particular order. Recall that the resolving power ( R ) is define in general by 

𝑅 =  
𝜆

(∆𝜆)𝑚𝑖𝑛
   -------------------- (6) 

Where (∆𝜆)𝑚𝑖𝑛 is the minimum wavelength interval of two spectral components that are just resolved by 

Rayleigh’s criterion (it was decided by Rayleigh to arbitrarily fix the separation a: = 01 = Alb as the criterion 

for resolution of two diffraction patterns. This quite arbitrary choice is known as Rayleigh's criterion. The 

angle 𝜃1 is sometimes called the resolving power of the aperture b, although the ability to resolve increases as 

𝜃1 becomes smaller. A more appropriate designation for 𝜃1 is the minimum angle of resolution. For normally 

incident light of wavelength 𝜆 + ∆𝜆, and principle maximum of order m, we have by the grating Eq. 2,  

𝑎 sin 𝜃 = 𝑚 (𝜆 + dλ)  -------------------------- (7) 

To satisfy Rayleigh’s criterion this peak must coincide (same θ) with the first minimum of neighboring 

wavelength’s peak in the same order, or 

𝑎 sin 𝜃 =  (𝑚 + 
1

𝑁
)  𝜆  ------------------------ (8) 
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From Eqs. 7 and 8, Hence we can equate the extreme path differences in the two cases and obtain 

𝑚𝑁𝜆 + 𝜆 = 𝑚𝑁 (𝜆 + ∆𝜆)  

From which it immediately follows that 

𝜆

∆𝜆
= 𝑚𝑁 -------------------- (9) 

For a grating of N grooves, the resolving power is simply proportional to the order of the diffraction. In a given 

order of diffraction, the resolving power increases with the total number of grooves. If the grating has 5000 

grooves/cm, and width of 8 cm, then N=40000 and the resolving power in first power is 40000. This means 

that in the region of λ = 500 nm, spectral components as close together as 0.0125 nm can be resolved. In the 

second order, this figure improves to 0.0063 nm, and so on. The best value for grating resolving power are in 

the range of 105 𝑡𝑜 106.  

Notice that the resolving power, like dispersion, is independent of groove spacing for a given diffraction angle. 

If we write (N = W/a) for a ruled grating width W and incorporate the grating equation for normal incidence, 

Eq. 9 becomes 

𝑅 = 𝑚𝑁 = (
𝑎 sin 𝜃𝑚

𝜆
) 

𝑊

𝑎
  

Or  

𝑅 =  
𝑊 sin 𝜃𝑚

𝜆
   ----------------------- (10) 

According to Eq. 10, the resolution of a grating at diffraction angle 𝜃𝑚 depends on the width of the grating 

rather than on the number of its grooves.  

Actual gratings used in the study of spectra are made by ruling fine grooves with a diamond point either on a 

plane glass surface to produce a transmission grating or more often on a polished metal mirror to produce a 

reflection grating. 

 

 

 

 

 


