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Physical Optics 2018/ Dr. Muwafaq Fadhil Al-Mishlab 

8th lecture [ Fraunhofer diffraction, diffraction by single slit, double-slit diffraction] 

1. Introduction 

Diffraction is any deviation from geometrical optics that results from the obstruction of a wavefront of light. 

For example, an opaque screen with round hole represents such an obstruction. Diffraction phenomena are 

conveniently divided into two general classes, (1) those in which the source of light and the screen on which 

the pattern is observed are effectively at infinite distances from the aperture causing the diffraction and (2) 

those in which either the source or the screen, or both, are at finite distances from the aperture. The phenomena 

coming under class (1) are called, for historical reasons, Fraunhofer diffraction, and those coming under class 

(2) Fresnel diffraction.  

 

 

Fig. 1: Sketches of several common diffraction patterns. 

 

2. Diffraction by A Single Slit 

A rectangular aperture characterized by a length much larger than its width. The source must be far enough 

away, so that the wave fronts of light reaching the slit are essentially plane. This is easily accomplished in 

practice by placing the source in the focal plane of a positive lens. Similarly, we consider the observation screen 

to be effectively at infinity by using another lens on other side of the lit, as shown in figure (1). The light 

reaching any point such as P on the screen is due to parallel rays of light from diffraction portions of wavefront 

at slit (dash line). The waves do not arrive at P in phase. a ray from the center of the slit has an optical path 

length that is an amount Δ shorter than one leaving from a point a vertical distance S above the optical axis.  

The plane portion of a wavefront at the slit opening represents a continuous array of Huygen’s wavelet sources. 

We consider each interval of dimension ds as a source and calculate the result of all such sources by integrating 

over the entire slit width b. each interval ds contributes spherical wavelets at P of the form: 
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𝑑𝐸𝑝 =  (
𝑑𝐸0

𝑟
) 𝑒−𝑖(𝑘𝑟−𝜔𝑡)  ------------------------ (1) 

Where r is the optical path length from the interval ds to the point P. the amplitude 𝑑𝐸0 is divided by r because 

the spherical waves decrease in irradiance with distance, in accordance with the inverse square law, that is,  

𝐸2  ∝  1
𝑟2⁄  𝑎𝑛𝑑 𝐸 ∝  1

𝑟⁄   

 

 

Fig. 2: construction for determining irradiance on a screen due to Fraunhofer 

diffraction by a single slit. 

 

The amplitude at unit distance from the source point is then 𝑑𝐸0. Let us set r = r0 for the wave from ds at s= 0 

then for any other wave originating at the interval ds at height s, taking the difference in phase into account, 

the differential field at P is 

𝑑𝐸𝑝 =  (
𝑑𝐸0

𝑟
) 𝑒−𝑖[𝑘(𝑟0+ ∆) − 𝜔𝑡)]        ----------------------- (2) 

In the amplitude, 
𝑑𝐸0

(𝑟0− ∆)
 , the path difference Δ is unimportant, since Δ<< r0 , and therefore Δ can be neglected. 

The phase is very sensitive to small difference. For intervals ds below the axis, s is negative and the path 

difference is (r0 – Δ), corresponding to shorter optical paths to P. the amplitude of the radiation from each 

interval clearly depends in the size of ds, so that when all such contributions are added by integration, we have 

the total effect at P. we write 

𝑑𝐸0 =  𝐸𝐿 𝑑𝑠     ------------------- (3) 
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Where 𝐸𝐿 is the amplitude per unit width of slit at unity distance away. For a point P at angle θ below the axis. 

Relative to the lens center, the figure shows that Δ= s sin θ. With these modifications, the differential 

contribution to the field at P from any arbitrary interval ds  

𝑑𝐸𝑝 =  (
𝐸𝐿 𝑑𝑠

𝑟0
) 𝑒−𝑖(𝑘𝑟0+𝑘 𝑟 sin 𝜃− 𝜔𝑡)    

Integration over the width of the slit, we have 

𝐸𝑃 =  (
𝐸𝐿

𝑟0
 ∫ 𝑒−𝑖 𝑘 𝑠 sin 𝜃 𝑑𝑠

𝑏
2⁄

− 𝑏 2⁄
) 𝑒−𝑖(𝑘 𝑟0− 𝜔𝑡)  ----------------------- (4) 

Since we are ultimately concerned with the irradiance, the square of the amplitude which we shall call 𝐸𝑅, we 

retain only the portion in parentheses and integrate: 

𝐸𝑅 =  
𝐸𝐿

𝑟0
  (

𝑒−𝑖𝑘 𝑠 sin 𝜃

𝑖𝑘 sin 𝜃
)

−𝑏
2⁄

𝑏
2⁄

           ---------------------------- (5) 

Inserting the limits of integration into Eq. 5 

𝐸𝑅 =  
𝐸𝐿

𝑟0
 

1

𝑖𝑘 sin 𝜃
 [𝑒(𝑖𝑘𝑏 sin 𝜃)/2 − 𝑒−(𝑖𝑘𝑏 sin 𝜃)/2 ]      ----------------------- (6) 

The phases of the exponential terms suggest we make a convenient substitution,  

𝛽 =  
1

2
 𝑘𝑏 sin 𝜃    --------------------- (7) 

Then 

𝐸𝑅 =  
𝐸𝐿

𝑟0
 

𝑏

2𝑖𝛽
 (𝑒𝑖𝛽 − 𝑒−𝑖𝛽) =  

𝐸𝐿

𝑟0
 

𝑏

2𝑖𝛽
 (2𝑖 sin 𝛽)       ---------------------- (8) 

Where we have applied Euler’s equation to the exponential terms. Simplifying, 

𝐸𝑅 =  
𝐸𝐿 𝑏

𝑟0
 
sin 𝛽

𝛽
     -------------------- (9) 

The amplitude of the resultant field at P given by Eq. 9, where β varies with θ and thus with observation point 

P on the screen. Since phase difference is given in general by kΔ, Eq. 7 indicates a path difference associated 

with β of Δ=(b/2) sin θ, thus β represents the phase difference between waves from the center and either 

endpoint of the slit, where s =b/2. The irradiance at P is proportional to the square of the resultant amplitude 

there, or 

𝐼 = (
𝜖0 𝑐

2
) 𝐸𝑅

2 =  
𝜖0 𝑐

2
 (

𝐸𝐿 𝑏

𝑟0
)

2

 
𝑠𝑖𝑛2 𝛽

𝛽2        or 
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𝐼 =  𝐼0  (
𝑠𝑖𝑛2 𝛽

𝛽2
) =  𝐼0 𝑠𝑖𝑛𝑐2 (𝛽)   ----------------- (10) 

Where 𝐼0 includes all constants factors. Eqs. 9 and 10 now permit us to plot the variation of irradiance with 

vertical distance from the axis at the screen. The (sinc) function has the property that it approaches 1 as its 

argument approaches 0: 

lim
𝛽→0

𝑠𝑖𝑛𝑐 (𝛽) = lim
𝛽→0

(
sin 𝛽

𝛽
) = 1   ----------------- (11) 

Otherwise, its zeros occur when sinβ=0, that is, when  

𝛽 =
1

2
 (𝑘𝑏 sin 𝜃) = 𝑚𝜋, 𝑤𝑖𝑡ℎ 𝑚 =  ±1, ±2, ….   

The irradiance is plotted as a function of β in figure (2). Setting k=2π/λ, the condition for zeros of the (sinc) 

function and so of the irradiance is  

mλ= b sin θ  --------------- (12) 

On the screen, therefore, the irradiance is a maximum at θ = 0, or y = 0  and drops to zero at the values y such 

that 𝑦 =
𝑚𝜆𝑓

𝑏
=  

𝑚𝜆 𝐿

𝑏
   -------------- (13) 

The approximation in Eq. 13 comes from setting sin θ= y/f, since θ is small angle. The irradiance pattern is 

symmetrical about y = 0 

 

Fig. 3: Sinc function (solid line) plotted as a function of β. The irradiance function (dashed line) for single 

slit Fraunhofer diffraction is just the square of sinc β, normalized to I0 at the center of the pattern. 
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The secondary maxima of the single-slit diffraction do not quit fall at the midpoint between zeros. The maxima 

coincide with maxima of the sinc function, point satisfying 

𝑑

𝑑𝛽
 (

sin 𝛽

𝛽
) =  

𝛽 cos 𝛽−sin 𝛽

𝛽2 = 0   

Example 

What is the ratio of irradiance at central peak maximum to the first of the secondary maxima? 

The ratio to be calculated is  

𝐼𝛽=0

𝐼𝛽=1.43𝜋
=  

(𝑠𝑖𝑛2  𝛽 𝛽2⁄ )𝛽=0

(𝑠𝑖𝑛2  𝛽 𝛽2⁄ )𝛽=1.43𝜋
=  

1

(𝑠𝑖𝑛2  𝛽 𝛽2⁄ )𝛽=1.43𝜋
=  (

𝛽2

𝑠𝑖𝑛2 𝛽
)

1.43𝜋

=  
20.18

0.952
= 21.2  

Thus, the maximum irradiance of the nearest secondary peak is only 4.7% that of the central peak.   

The central maximum represents essentially the image of the slit on a distant screen. We observe that the edges 

of the image are not sharp but reveal a series of maxima and minima that tail off into the shadow surrounding 

the image. These effects are typical of the blurring of images due to diffraction. The angular width of the central 

maximum is defined as the angle Δθ between the first minima on either side. Using Eq. 12 with m = ±1 and 

approximating sin θ by θ, we get 

∆𝜃 =  
2𝜆

𝑏
  --------- (14) 

From Eq. 14 it follows that the central maximum will spread as the slit width is narrowed. Since the length of 

the slit is very large compared to its width, the diffraction pattern due to points of the wave front along the 

length of the slit has a very small angular width and is not prominent on the screen. 

3. Beam Spreading 

According to Eq.14, the angular spread of the central maximum in the far field is independent of distance 

between aperture and screen. The linear dimensions of the diffraction pattern thus increase with distance L, as 

shown in figure (3), such that the width W of the central maximum is given by 

𝑊 = 𝐿 ∆𝜃 =  
2 𝐿 𝜆

𝑏
   ---------------- (15) 

We may describe the content of Eq. 15 as a linear spread of a beam of light, originally constricted to a width 

b.   
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Fig. 4: Spread of the central maximum in the far-field diffraction pattern of a 

single-slit. 

 

 Example 

Imagine a parallel beam of 546 nm light of width b = 0.5 mm propagating across the laboratory, a distance 

of 10 m. determines the final width of the beam due to diffraction spreading. 

 

Solution  

Using Eq. 15  

𝑊 = 𝐿 ∆𝜃 =  
2 𝐿 𝜆

𝑏
=  

2 (10)(546 ×10−9)

0.5 × 10−3 = 21.8 𝑚𝑚  

 

4. Double-Slit Diffraction  

The diffraction pattern of a plane wavefront that is obstructed everywhere except at two narrow slits is 

calculated in the same manner as for single slit. The mathematical argument departs from that for the single 

slit with Eq. 4, where limits of integration are now changed to those indicated in figure (5). Extracting the 

amplitude alone, we get 

𝐸𝑅 =  
𝐸𝐿

𝑟0
 ∫ 𝑒𝑖𝑠𝑘 sin 𝜃 𝑑𝑠

−(
1

2
)(𝑎−𝑏)

−(
1

2
)(𝑎+𝑏)

+  
𝐸𝐿

𝑟0
 ∫ 𝑒𝑖𝑠𝑘 sin 𝜃 𝑑𝑠

(
1

2
)(𝑎+𝑏)

(
1

2
)(𝑎−𝑏)

   --------------- (16) 

Integration and substitution of the limits leads to  

𝐸𝑅 =  
𝐸𝐿

𝑟0
 

1

𝑖𝑘 sin 𝜃
 [𝑒(1 2)⁄  𝑖𝑘 (−𝑎+𝑏) sin 𝜃 − 𝑒(1 2)⁄  𝑖𝑘 (−𝑎−𝑏) sin 𝜃 +  𝑒(1 2)⁄  𝑖𝑘 (𝑎+𝑏) sin 𝜃 − 𝑒(1 2)⁄  𝑖𝑘 (𝑎−𝑏) sin 𝜃]  

Reintroducing the substitution of Eq. 7, involving the slit width b,  

𝛽 =  
1

2
 𝑘𝑏 sin 𝜃   ---------------------- (17) 

and a similar one involving the slit separation a, 
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𝑎 =  
1

2
 𝑘𝑎 sin 𝜃  --------------------- (18) 

Our equation is written more compactly as  

𝐸𝑅 =  
𝐸𝐿

𝑟0
 

𝑏

2𝑖𝛽
 [𝑒𝑖𝑎(𝑒𝑖𝛽 − 𝑒−𝑖𝛽) +  𝑒−𝑖𝑎(𝑒𝑖𝛽 −  𝑒−𝑖𝛽)]   

Employing Euler’s equation, 

𝐸𝑅 =  
𝐸𝐿

𝑟0
 

𝑏

2𝑖𝛽
 (2𝑖 sin 𝛽) (2 cos 𝛼)  

 

 

Fig. 5: Specification of slit width and separation for double-slit 

diffraction. 

 

 

 

Finally,  

𝐸𝑅 =  
2𝐸𝐿 𝑏

𝑟0
 
sin 𝛽

𝛽
 cos 𝛼  --------------------- (19) 

The irradiance is now 

𝐼 =  (
𝜖0𝑐

2
) 𝐸𝑅

2 =  (
𝜖0𝑐

2
) (

2𝐸𝐿 𝑏

𝑟0
)

2

 (
sin 𝛽

𝛽
)

2

 𝑐𝑜𝑠2 𝛼  ----------------- (20) 

Or 

𝐼 = 4𝐼0  (
sin 𝛽

𝛽
)

2

 𝑐𝑜𝑠2 𝛼  ------------------------- (21) 

Where 

𝐼0 =  (
𝜖0𝑐

2
) (

𝐸𝐿 𝑏

𝑟0
)

2

 

As defined in Eq. 10 for the single slit. Since the maximum value of Eq. 21 is 4I0 , we see that the double slit 

provides four times the maximum irradiance in the pattern center as compared with the single slit. This is 
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exactly what should be expected where the beams are in phase and amplitudes add. The factor (
sin 𝛽

𝛽
)

2

 is that 

of Eq. 10 for single slit diffraction. The 𝑐𝑜𝑠2 𝛼 factore, when 𝛼 is written out as in Eq. 18, is  

𝑐𝑜𝑠2 𝛼 =  𝑐𝑜𝑠2  [
𝑘 𝑎 sin 𝜃

2
] =  𝑐𝑜𝑠2  [

𝜋 𝑎 sin 𝜃

𝜆
]  

The diffraction envelope has a minimum when β = mπ, with m = ±1, ±2, …, as shown. In terms of the spatial 

angle θ, this condition is 

Diffraction minimum: m λ = b sin θ --------------- (22) 

 

  

Fig. 6: a) interference (solid line) and Fraunhofer diffraction (dashed line) b) irradiance for double slit.   

 

 

5. Several typical Fraunhofer diffraction patterns 

In successive order, we show the far field diffraction pattern for a circular aperture (Figure 4-20), and a 

rectangular aperture (Figure 4-21). Equations that describe the locations of the bright and dark fringes in the 

patterns accompany each figure. 
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Fig. 7: Fraunhofer diffraction pattern for a circular aperture 
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Fig. 8: Fraunhofer diffraction pattern for a rectangular aperture. 

 




