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Physical Optics 2018 

Dr. Muwafaq Fadhil Al-Mishlab 

5th lecture [ Interference in dielectric films., Newton ring Exp.] 

1. Interference in Dielectric films 

The familiar appearance colors on the surface of oily water and soap films are associated with the interference 

of light in single or multiple thin surface layers of transparent material. 

 

Fig. 1 Double beam interference of thin film. 

 

Consider the case of a film of transparent material bounded by parallel planes, such as might be formed by an 

oil slick, a metal oxide layer or an evaporated coating on a flat glass substrate (figure (1)). A beam of light 

incident on the film surface at A divides into reflected and refracted portions. This separation of the original 

light into two parts, and interference is usually referred to as Amplitude division. The refracted beam reflects 

again at the film interface B and leaves the film at C, in the same direction as the beam reflected at A. part of 

the beam may reflect internally again at C and continue to experience multiple reflections within the film until 

it has lost its intensity. Unless the reflectance of the film is large, a good approximation is to consider only the 

first two emerging beams. The two parallel beams leaving the film at A and C can be brought together by a 

converging lens. The two beams intersecting at P superpose and interfere. Since the two beams travel different 

paths from point A onward, a relative phase difference developed that can produce constructive or destructive 

interference at P. the optical path difference Δ, in the case of normal incidence, is the additional path length 

ABC traveled by the refracted ray times the refractive index of the film. Thus  

∆ = 𝑛(𝐴𝐵 + 𝐵𝐶) = 𝑛(2𝑡) ---------------------- (1) 

Where t is the thickness of the film. 
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For example, if 2nt= λ0, the two interfering beams would be in phase and produce constructive interference. 

Suppose that 𝑛𝑓  >  𝑛0 𝑎𝑛𝑑 𝑛𝑓  >  𝑛𝑠.  In fact n0 = ns because the media bounding the film are identical, as in 

the case of a water film (soap bubble) in air. Then the reflection at A occurs with light going from lower index 

n0 toward a higher index nf , a condition usually called external reflection. The reflection at B occurs for light 

going from a higher index nf toward lower index ns, the condition of internal reflection. A relative phase shift 

of π occurs between the external and internal reflected beams, so that an additional path difference of λ/2 is 

introduced between the two beams. The net optical path difference between the beams is then λ + λ/2, which 

puts them precisely out of phase, and destructive interference results at P. if, instead, both reflections are 

external (𝑛0  <  𝑛𝑓  <  𝑛𝑠) or both reflections are internal (𝑛0  >  𝑛𝑓  >  𝑛𝑠), no relative phase difference due 

to reflection needs to be taken into account. In that case, constructive interference occurs at P.  

A frequent use of such single layer films is in the production of antireflecting coating on optical surfaces. In 

most cases, the light enters the film from air, so that n0 = 1. Furthermore, if 𝑛𝑠  > 𝑛𝑓 , no relative phase shift 

between the two reflected beams occurs, and the optical path difference alone determines the type of 

interference. If the film thickness is λf/ 4, where λf is the wavelength of light in the film, then 2t = λf/ 2 and the 

optical path difference 2nf t = λ0/2, since λ0= nf λf. destructive interference occurs at this wavelength. In general, 

all one can say is that for constructive interference the two amplitudes add (being in phase), and for destructive 

interference the amplitudes subtract (out of phase). for the difference to be zero, the amplitudes must be equal. 

In the case of normal incident, the reflectance coefficient is given by: 

𝑟 =
1−𝑛

1+𝑛
 --------------------------- (2) 

Where the relative index n = n2 / n1 . The amplitudes of the electric field reflected internally and externally 

from the film in figure (1) are then equal, assuming a non - absorbance film, if the relative indices are equivalent 

for these cases, that is  

𝑛𝑓

𝑛0
=  

𝑛𝑠

𝑛𝑓
 𝑜𝑟  𝑛𝑓 =  √𝑛0 𝑛𝑠 ----------------- (3) 

Consider a multilayer stack of alternating high-low index dielectric films (figure (2)). If the film has thickness 

of λf / 4, a little analysis shows that in this case all emerging beams are in phase. multiple reflections in the 

region of λ0 increase the total reflected intensity and quarter-wave stack performs as an efficient mirror.  
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Fig. 2 Multilayer dielectric mirror of alternating high-low index. 

 

 

Fig. 3 single layer film interference with light incident at arbitrary angle θi. 

 

Returning now to the single-layer film, we want first to generalize the conditions for constructive and 

destructive interference by calculating the optical path difference in the case incident rays are not normal. 

Figure (3) illustrates a ray incident on film at an angle θi. the phase difference at points C and D between 

emerging beams is due to the optical path difference between paths AD and ABC. After points C and D are 

reached, the respective beams are parallel and in the same medium, so that no further phase difference occurs. 

Point G is shown the midway between A and C at the foot of the altitude BG in the isosceles triangle ABC. 

Points E and F are determined by constructing the perpendiculars GE and GF to the ray paths AB and BC. The 

optical path difference between emerging beams is then: 

∆=  𝑛𝑓 (𝐴𝐵 + 𝐵𝐶) −  𝑛0 (𝐴𝐷)  ---------------------- (4) 
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Where nf and n0 are the refractive indices of film and external medium.  

∆=  [𝑛𝑓 (𝐴𝐸 + 𝐹𝐶) −  𝑛0 𝐴𝐷] +  𝑛𝑓(𝐸𝐵 + 𝐵𝐹)  ----------------------- (5) 

𝑛0 sin 𝜃𝑖 =  𝑛𝑓 sin 𝜃𝑖  ------------------- (6) 

By inspection, 

𝐴𝐸 = 𝐴𝐺 sin 𝜃𝑡 = (
𝐴𝐶

2
) sin 𝜃𝑡   ---------------------- (7)  , and  

𝐴𝐷 = 𝐴𝐶 sin 𝜃𝑖   ---------------------- (8) 

From Eq. (7) and incorporating Eqs. (8) and (6) 

2𝐴𝐸 = 𝐴𝐶 sin 𝜃𝑡 = 𝐴𝐷 (
sin 𝜃𝑡

sin 𝜃𝑖
) = 𝐴𝐷 (

𝑛0

𝑛𝑓
)    , So that  

𝑛0 𝐴𝐷 = 2𝑛𝑓 𝐴𝐸 =  𝑛𝑓 (𝐴𝐸 + 𝐹𝐶) ----------------------- (9) 

From Eq. 5 

∆ =  𝑛𝑓 (𝐸𝐵 + 𝐵𝐹) = 2𝑛𝑓 𝐸𝐵  ------------------------------ (10) 

The length EB is related to the film thickness t by EB = t cos θt, so we have  

∆ = 2 𝑛𝑓𝑡 cos 𝜃𝑡   -------------------- (11) 

The optical path difference Δ is in terms of the angle of refraction. For normal incidence, θi=θt=0 and Δ=2nf t. 

the corresponding phase difference is 𝛿 =  𝑘∆= (2𝜋 𝜆0)⁄  ∆. If we call Δp the optical path difference given by 

Eq. 11 and Δr the equivalent path difference arising from phase change on reflection, we can state that: 

Constructive interference:  ∆𝑝 + ∆𝑟 = 𝑚𝜆 ------------------------- (12) 

Destructive interference: ∆𝑝 + ∆𝑟 = (𝑚 +
1

2
) 𝜆 ------------------- (13) where m=0,1,2,3,…… 

2. Fringes of Equal Thickness 

If the film is of varying thickness t, the optical path difference ∆ = 2 𝑛𝑓𝑡 cos 𝜃𝑡  , varies even without variation 

in the angle of incidence. Thus, if the direction of the incident light is fixed, say at normal incidence, a bright 

fringe will be associated with a particular thickness for which Δ satisfies the condition for constructive or 

destructive interference. For this reason, fringes produced by a variable-thickness film are called fringes of 

equal thickness. In figure (4), an extended source is used in conjunction with a beam splitter set at an angle of 

450 to the incident light. The beam splitter in this position enables light to strike the film at normal incidence, 

while at  
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Fig. 4 interference from a wedge-shaped film, producing localized fringes of equal thickness. A) viewing assembly 

b) air wedge formed with 2 microscope slides 

 

the same time providing for the transmission of part of the reflected light into the detector (eye). Fringes, often 

called Fizeau fringes, are seen localized at the film, from which the interfering rays diverge. At normal 

incidence, cos θt = 1 and ∆ = 2 𝑛𝑓 𝑡. Thus the condition for bright and dark fringes, Eqs. (12) and (13) is  

2𝑛𝑡 = (m +
1

2
 ) λ      ------------------ (14) bright fringes 

Where Δr is either λ/2 or 0, depending on whether there is or is not a relative phase shift of π between the rays 

reflected from the top and bottom surfaces of the film. One way of forming a suitable wedge is to use two 

clean, glass microscope slides, wedge apart at one end by thin space, as in figure (4b). the resulting air layer 

between the slides shows Fizeau fringes when the slide are illuminated by monochromatic light. For this film, 

the two reflections are from glass to air (internal reflection) and from air to glass (external reflection), so that 

Δ = λ/2. As t increases from 0 to d, Eq. (14) is satisfied for consecutive orders of m, and a series of equally 

spaced, alternating bright and dark fringes will be seen by reflected light. These fringes are virtual, localized 

and cannot be projected onto screen. 

3. Newton’s Rings 

If the fringes of equal thickness are produced in the air film between a convex surface of a long-focus lens and 

a plane glass surface, the contour lines will be circular. The ring-shaped fringes thus produced were studied in 

detail by Newton, although he was not able to explain them correctly. For purposes of measurement, the 

observations are usually made at normal incidence by an arrangement such as that in Fig. (5), where the glass 

plate G reflects the light down on the plates. After reflection, it is transmitted by G and observed in the low-

power microscope T. Under these conditions the positions of the maxima are given by Eq. (l4), where t is the 

thickness of the air film. Now if we designate by R the radius of curvature of the surface A and assume that A 

and B are just touching at the center, the value of t for any ring of radius, is the sagitta of the arc, given by 
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𝑡 =  
𝑟2

2𝑅
   --------------------------- (15) 

 Fig. 5 Experimental arrangement used in 

viewing and measuring Newton's rings. 

 

Because the ring diameters depend on wavelength, white light will produce only a few colored rings near the 

point of contact. With monochromatic light, however, an extensive fringe system such as that shown in Figure. 

(6) is observed. When the contact is perfect, the central spot is black. This is direct evidence of the relative 

phase change of 1t between the two types of reflection, air-to-glass and glass-to-air. If there were no such phase 

change, the rays reflected from the two surfaces in contact should be in the same phase and produce a bright 

spot at the center. In an interesting modification of the experiment, due to Thomas Young, the lower plate has 

a higher index of refraction than the lens, and the film between is filled with an oil of intermediate index. Then 

both reflections are at "rare to-dense" surfaces, no relative phase change occurs, and the central fringe of the 

reflected system is bright. The experiment does not tell us at which surface the phase change in the ordinary 

arrangement occurs, but it is now definitely known that it occurs at the lower (air-to-glass) surface. 

 

Fig. 6 Newton's rings. 
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A geometrical relation exists between the radius rm of the mth-order dark fringe, the corresponding air-film 

thickness tm and the radius of curvature R of the air film or lens surface.  

𝑅2 =  𝑟𝑚
2 +  (𝑅 −  𝑡𝑚)2 ----------------- (16) 

 

 

 

 

 

 

 

 

 

Example: A plano-convex lens (n=1.523) of 1/8 diopter power is placed, convex surface down, on an 

optically flat surface. Using a traveling microscope and sodium light (λ=589.3nm), interference fringes are 

observed. determine the radii of the first and tenth dark rings? 

Air film thickness at mth dark ring given by 

𝑡𝑚 = 𝑚𝜆
2𝑛𝑓

⁄ . Since the film is air, nf= 1 and tm = mλ/2. The ring radii given by Eq. (16). On neglecting the 

very small term 𝑡𝑚
2  , this is 𝑟𝑚

2 = 2𝑅𝑡𝑚. The radius of curvature of the convex surface of the lens is found 

from the lens maker’s eq. 

1

𝑓
=  (𝑛 − 1) (

1

𝑅1
−  

1

𝑅2
)  

With f=8 m, n=1.523, R2 =ơ, this gives R = 4.184m. then  

𝑟𝑚
2 = 2𝑅𝑡𝑚 = 2𝑅 (

𝑚𝜆

2
) = 𝑚𝑅𝜆  

𝑟1
2 = (1)(4.184)(589.3 𝑥 10−9) = 2.466𝑥 10−6 𝑚2  

𝑟10
2 = (10)(4.184)(589.3 𝑥 10−9) = 24.66 𝑥 10−6 𝑚2  

Or 

r1= 1.57 mm and r10= 4.97 mm.  
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Problems 

Q1/ Young's experiment is performed with orange light from a krypton arc. If the fringes are measured with 

a micrometer eyepiece at a distance 100 cm from the double slit, it is found that 25 of them occupy a distance 

of 12.87 mm between centers. Find the distance between the centers of the two slits. 

Q2/ A double slit with a separation of 0.250 mm between centers is illuminated with green light from a 

cadmium-arc lamp. How far behind the slits must one go to measure the fringe separation and find it to be 0.80 

mm between centers? 

Q3/ Two harmonic waves with amplitudes of 1.6 and 2.8 interfere at some point on a screen. What fringe 

contrast or visibility results there if their electric field vectors are parallel and if they are perpendicular? 

Q4/ Two slits are illuminated by light that consist of two wavelengths. one wavelength is known to be 436 nm. 

On screen, the fourth minimum of the 436nm light coincides with the third maximum of the other light. What 

is the wavelength of the unknown light? 

Q5/ In a Young’s experiment, narrow double slits 0.2 mm apart diffract monochromatic light onto a screen 1.5 

m away. The distance between the fifth minima on either side of the zeroth- order maxima is measured to be 

34.73 mm. determine the wavelength of the light? 

Q6/ Sodium light (589.3 nm) from a narrow-slit illuminates a Fresnel biprism made of glass of index 1.5. the 

biprism is twice as far from a screen on which fringes are observed as it is from the slit. The fringes are observed 

to be separated by 0.03 cm. what is the biprism angle? 

Q7/ A Newton’s ring apparatus is illuminated by light with two wavelength components. One of the 

wavelengths is 546 nm. If the eleventh bright ring of the 546 nm fringe system coincides with the tenth ring of 

the other, what is the second wavelength? what is the radius at which overlap takes place and the thickness of 

the air film there? The spherical surface has a radius of 1m. 


