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Third lecture [ Huygens’ Principle, Interference of light] 

1. Huygens’ principle  

Long before people understood the electromagnetic character of light, Christian Huygens—a17th-

century scientist—came up with a technique for propagating waves from one position to another, 

determining, in effect, the shapes of the developing wave fronts. This technique is basic to a quantitative 

study of interference and diffraction, so we cover it here briefly. Huygens claimed that: 

Every point on a known wave front in a given medium can be treated as a point source of secondary 

wavelets (spherical waves “bubbling” out of the point, so to speak) which spread out in all directions 

with a wave speed characteristic of that medium. The developing wave front at any subsequent time is 

the envelope of these advancing spherical wavelets. 

Figure (1) shows how Huygens’ principle is used to demonstrate the propagation of successive (a) plane 

wave fronts and (b) spherical wave fronts. Huygens’ technique involves the use of a series of points 

P1… P8, for example, on a given wave front defined at a time t = 0. From these points—as many as one 

wishes, actually—spherical wavelets are assumed to emerge, as shown in Figures (1a) and (1b). 

Radiating outward from each of the P-points, with a speed v, the series of secondary wavelets of radius 

r = vt defines a new wave front at some time t later. In Figure (1a) the new wave front is drawn as an 

envelope tangent to the secondary wavelets at a distance r = vt from the initial plane wave front. It is, 

of course, another plane wave front. In Figure (1b), the new wave front at time t is drawn as an envelope 

tangent to the secondary wavelets at a distance r = vt from the initial spherical wave front. It is an 

advancing spherical wave front. While there seems to be no physical basis for the existence of Huygens’ 

“secondary” point sources, Huygens’ technique has enjoyed extensive use, since it does predict 

accurately—with waves, not rays—both the law of reflection and Snell’s law of refraction. In addition, 

Huygens’ principle forms the basis for calculating, for example, the diffraction pattern formed with 

multiple slits. We shall soon make use of Huygens’ secondary sources when we set up the problem for 

diffraction from a single slit.  
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Fig. 1 Huygens’ principle applied to the propagation of plane and spherical wave fronts. 

 

2. Interference  

 All waves show the phenomena of interference and diffraction which arise from the superposition of 

more than one wave. At each point of observation within the interference or diffraction pattern the 

phase difference between any two component waves of the same frequency will depend on the different 

paths they have followed and the resulting amplitude may be greater or less than that of any single 

component. Although we speak of separate waves the waves contributing to the interference and 

diffraction pattern must ultimately derive from the same single source. This avoids random phase 

effects from separate sources and guarantees coherence. Interference effects may be classified in two 

ways: 

1) Division of wave front 

Here the wavefront from a single source passes simultaneously through two or more apertures each of 

which contributes a wave at the point of superposition. Diffraction also occurs at each aperture.  
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2) Division of amplitude 

Here a beam of light or ray is reflected and transmitted at a boundary between media of different 

refractive indices. The incident, reflected and transmitted components form separate waves and follow 

different optical paths. They interfere when they are recombined. 

3. Interference of waves from two sources  

We consider first the interference of two waves, represented by E1 and E2, where we take into account 

the vector property of the electric fields. In case of interference, both waves typically originate from a 

single source and reunite after travelling along different paths. The direction of travel of the waves need 

not be the same when the come together, however, they maintain the same frequency, they generally 

do not have the same propagation vector K. we may express the wave equations by: 

𝐸1 =  𝐸01 cos(𝑘1. 𝑟 −  𝜔𝑡 +  𝜖1) 1 

 

𝐸2 =  𝐸02 cos(𝑘2. 𝑟 −  𝜔𝑡 + 𝜖2) 2 

At some general point P, defined by position vector r, the waves intersect to produce a disturbance 

whose electric field Ep is given by the principle of superposition. 

𝐸𝑝 =  𝐸1 +  𝐸2 3 

now E1 and E2 are varying functions with optical frequencies of the order of 1014 to 1015Hz for visible 

light. Thus, both E1 and E2 average to zero over very short time intervals. Measurement of the waves 

by their effect on the eye or some other light detector depends on the energy of the light beam. The 

radiant power density, or irradiance, Ee (W/m2), measures the time average of the square of the wave 

amplitude. To avoid confusion with electric field symbol, we use the symbol I for irradiance.  

 

𝐼 =  𝜖0 𝑐 〈𝐸2〉  4 

Thus, the resulting irradiance at P given by: 

𝐼 =  𝜖0 𝑐 〈𝐸𝑝
2〉 =  𝜖0 𝑐 〈𝐸𝑝 . 𝐸𝑝〉 =  𝜖0 𝑐 〈(𝐸1 + 𝐸2). (𝐸1 + 𝐸2)〉 =  𝜖0 𝑐 〈𝐸1

2 +  𝐸2
2 + 2 𝐸1 𝐸2〉  5 

From Eq. (4), the first two terms correspond to the irradiances of the individual waves, I1, I2. The last 

term depends on interaction of the waves and is called (Interference term), I12, we may then write  
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𝐼 =  𝐼1 +  𝐼2 +  𝐼12  6 

If light behaved without interference, like classical particles, we would expect then I=I1+I2. The 

presence of the third term I12 is indicative of the wave nature of light, which can produce enhancement 

or diminution of the irradiance through interference. Notice that when E1 and E2 are orthogonal, so that 

their dot product vanishes, no interference results. When the electric fields are parallel, the interference 

makes its maximum contribution. Consider the interference term is:  

𝐼12 = 2 𝜖0 𝑐 〈𝐸1. 𝐸2〉  7 

 Where E1 and E2 are given by Eqs. (1) and (2), their dot product, 

𝐸1. 𝐸2 =  𝐸01 . 𝐸02 cos(𝑘1. 𝑟 −  𝜔𝑡 + 𝜖1) cos(𝑘2. 𝑟 −  𝜔𝑡 +  𝜖2)  8 

 

𝛼 = 𝑘1. 𝑟 −  𝜔𝑡 +  𝜖1  ,   𝛽 =  𝑘2. 𝑟 −  𝜔𝑡 +  𝜖2  9 

 

𝐸1. 𝐸2 =  𝐸01 . 𝐸02 cos(𝛼 −  𝜔𝑡) cos(𝛽 −  𝜔𝑡)  10 

 

〈𝐸1. 𝐸2〉 =  𝐸01 . 𝐸02[cos 𝛼 cos 𝛽  〈𝑐𝑜𝑠2 𝜔𝑡〉

+ sin 𝛼 sin 𝛽〈𝑠𝑖𝑛2 𝜔𝑡〉 +  (cos 𝛼 sin 𝛽 + sin 𝛼 cos 𝛽) 〈sin 𝜔𝑡 cos 𝜔𝑡〉 ]  

11 

Over any number of complete cycles,  

〈𝑐𝑜𝑠2𝜔𝑡〉 =  
1

2
  ,  〈𝑠𝑖𝑛2𝜔𝑡〉 =  

1

2
  and 〈sin 𝜔𝑡 cos 𝜔𝑡〉 = 0  

 

〈𝐸1. 𝐸2〉 =
1

2
  𝐸01 . 𝐸02 cos(𝛼 −  𝛽)  12 

Or  

〈𝐸1. 𝐸2〉 =
1

2
  𝐸01 . 𝐸02 cos  [(𝑘1 . 𝑘2).  𝑟 +  (𝜖1 −  𝜖2)]  13 

Where the expression in brackets is the phase difference between E1 and E2  

𝛿 =  (𝑘1 −  𝑘2). 𝑟 + (𝜖1 −  𝜖2) 14 

 Combining Eqs. (7), (13) and (14) 
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𝐼12 =  𝜖0 𝑐 𝐸01 . 𝐸02 cos 𝛿 
15 

Similarly, I1 and I2 in Eq. (6) can be shown to produce  

𝐼1 =  𝜖0 𝑐 〈𝐸1
2〉 =  

1

2
 𝜖0 𝑐 𝐸01

2  16 

 

𝐼2 =  𝜖0 𝑐 〈𝐸2
2〉 =  

1

2
 𝜖0 𝑐 𝐸02

2  17 

In the case 𝐸01‖𝐸02 , their dot product in Eq. 15 is identical with their magnitudes.  

𝐼12 =  2 √𝐼1𝐼2 cos 𝛿 18 

So that we may writ, finally 

𝐼 =  𝐼1 +  𝐼2 + 2 √𝐼1𝐼2 cos 𝛿   19 

When cos 𝛿 = +1, constructive interference produces the max irradiance: 

𝐼𝑚𝑎𝑥 =  𝐼1 +  𝐼2 + 2 √𝐼1𝐼2   20 

This condition occurs whenever the phase difference 𝛿 = 2𝑚𝜋, where m is any integer or zero. On the 

other hand, when cos 𝛿 = −1, destructive interference produced the minimum, or irradiance.  

𝐼𝑚𝑖𝑛 =  𝐼1 +  𝐼2 − 2 √𝐼1𝐼2   21 

A condition that occurs whenever 𝛿 = (2𝑚 + 1)𝜋. A plot of irradiance I versus phase 𝛿, in figure (1a), 

exhibits periodic fringes. Destructive interference is complete, that is, cancellation is complete, when 

I1 = I2 = I0. Then Eqs. (18) and (19) give: 

𝐼𝑚𝑎𝑥 = 4 𝐼0 𝑎𝑛𝑑 𝐼𝑚𝑖𝑛 = 0 
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Fig. 1 irradiance of interference fringes as a function of phase. b) Imin=0, when I1= I2  

Resulting fringes, shown in figure (1b), now exhibit contrast. A measure of fringes contrast, also called 

visibility, with values between 0 and 1, is given by the quantity  

𝑓𝑟𝑖𝑛𝑔𝑒 𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 =  
𝐼𝑚𝑎𝑥− 𝐼𝑚𝑖𝑛

𝐼𝑚𝑎𝑥+ 𝐼𝑚𝑖𝑛
   22 

Another useful form of Eq. (19), for the case of interfering beams of equal amplitude, is found by 

writing: 

𝐼 =  𝐼0 +  𝐼0 + 2 √𝐼0
2 cos 𝛿 = 2 𝐼0 (1 + cos 𝛿)  

1 + cos 𝛿 ≡ 2𝑐𝑜𝑠2  (
𝛿

2
)  

The irradiance of two equal beam is  

𝐼 =  4𝐼0 𝑐𝑜𝑠2  (
𝛿

2
)    23 
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Example: two interfering beams with parallel electric fields are given by  

𝐸1 = 2 cos (𝑘1. 𝑟 −  𝜔𝑡 +  
𝜋

3
) (KV/m)   , 𝐸2 = 5 cos (𝑘2. 𝑟 −  𝜔𝑡 + 

𝜋

4
)  (KV/m) 

Let us determine the irradiance contributed by each beam acting along that due to their mutual 

interference at a point where their path difference is zero. We have: 

𝐼1 =  
1

2
 𝜖0 𝑐 𝐸01

2 =
1

2
 𝜖0 𝑐 (2000)2 = 5309 𝑊/𝑚2  

𝐼2 =  
1

2
 𝜖0 𝑐 𝐸02

2 =
1

2
 𝜖0 𝑐 (5000)2 = 33,180 𝑊/𝑚2  

𝐼12 = 2 √𝐼1𝐼2 cos 𝛿 = 2 √5309 × 33180 cos (
𝜋

3
−  

𝜋

4
) = 24640 𝑊/𝑚2 

To find the fringe contrast near the region of superposition we must calculate  

𝐼𝑚𝑎𝑥 =  𝐼1 +  𝐼2 + 2 √𝐼1𝐼2 = 5309 + 33180 + 2 √(5309 × 33180) = 65034 𝑊/𝑚2 

𝐼𝑚𝑖𝑛 =  𝐼1 +  𝐼2 − 2 √𝐼1𝐼2 = 5309 + 33180 −  2 √(5309 × 33180) = 11945 𝑊/𝑚2 

 

𝑓𝑟𝑖𝑛𝑔 𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 =  
65034 − 11945

65034 + 11945
= 0.690 

If the amplitudes of the two waves equal, then Imax = 4I0, Imin = 0, and the fringe contrast would be 1 


