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Physical Optics 2018 

Dr. Muwafaq Fadhil Al-Mishlab 

First lecture [ Wave Equations] 

 

1. One-dimensional wave equation  
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Fig. 1 Translating wave pulses. 
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 any wave of the form of Eq. 1 must satisfy the wave Eq. 2 
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2. Simple Harmonic Motion  

Simple harmonic motion is defined as the projection on any diameter of a graph point moving in a circle 

with uniform speed. The motion is illustrated in Fig. 2. The graph point p moves around the circle of 

radius a with a uniform speed v. If at every instant of time a normal is drawn to the diameter AB, the 

intercept P, called the mass point, moves with SHM. 

 

 

 

Fig. 2 Simple harmonic motion along a straight line AB. 
 

Moving back and forth along the line AB, the mass point is continually changing speed vx' Starting 

from rest at the end points A or B, the speed increases until it reaches C. From there it slows down 

again coming to rest at the other end of its path. The return of the mass point is a repetition of this 

motion in reverse. The displacement of an object undergoing SHM is defined as the distance from its 

equilibrium position C to the point P. It will be seen in Fig. 2 that the displacement x varies in magnitude 

from zero up to its maximum value a, which is the radius of the circle of reference. The maximum 

displacement a is called the amplitude, and the time required to make one complete vibration is called 

the period. If a vibration starts at B, it is completed when the mass point P moves across to A and back 

again to B. If it starts at C and moves to B and back to C, only half a vibration has been completed. The 

amplitude a is measured in meters, or a fraction thereof, while the period is measured in seconds.  

The frequency of vibration is defined as the number of complete vibrations per second. If a particular 

vibrating body completes one vibration in t s, the period T = t s and it will make three complete 
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vibrations in 1 s. If a body makes 10 vibrations in 1 s, its period will be T = fo s. In other words, the 

frequency of vibration υ and the period T are reciprocals of each other: 

Frequency= 1/period , Period= 1/frequency 

𝜈 =
1

𝑇
 ,    𝑇 =

1

𝜈
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If the vibration of a body is described in terms of the graph point p, moving in a circle, the frequency 

is given by the number of revolutions per second, or cycles per second: 

1 cycle/second = 1 vibration/ second         [called Hertz , 1vib/s = 1 Hz] 

 

3. Theory of SHM 

At this point we present the theory of SHM and derive an equation for the period of vibrating bodies. 

In Fig.3 we see that the displacement x is given by: 

𝑥 = 𝑎 𝑐𝑜𝑠𝜃  4 

 

As the graph point p moves with constant speed ν, the radius vector a rotates with constant angular 

speed ω, so that the angle θ changes at a constant rate 

𝑥 = 𝑎 𝑐𝑜𝑠𝜔𝑡  5 

 

The graph point p, moving with a speed ν, travels once around the circle of reference, a distance equal 

to 2πa, in the time of one period T. We now use the relation in mechanics that time equals distance 

divided by speed, and obtain  

Τ =
2𝜋𝑎

𝑣
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To obtain the angular speed ω of the graph point in terms of the period, we have 

Τ =
2𝜋

𝜔
 , 𝑜𝑟 𝜔 =

2𝜋

Τ
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An object moving in a circle with uniform speed ν has a centripetal acceleration toward the center, 

given by 

𝑎𝑐 =
𝑣2

𝑎
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Since this acceleration ac continually changes the direction of the motion, its component ax along the 

diameter, or x axis, changes in magnitude and is given by ax = ac cos θ. Substituting in Eq. (8), we find 

𝑎𝑥 =
𝑣2

𝑎
cos 𝜃  
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Fig. 3 The acceleration ax of any mass moving with simple harmonic 

motion is toward a position of equilibrium C. 

 

From the right triangle CPp, cos 𝜃 =  𝑥
𝑎⁄      direct substitution gives 

𝑎𝑥 =  
𝑣2

𝑎
 
𝑥

𝑎
   𝑜𝑟    𝑎𝑥 =  

𝑣2

𝑎2
 𝑥 

We now multiply both sides of the equation by a2/ax v
2, take the square root of both sides of the equation, 

and obtain 

𝑎2

𝑣2
=  

𝑥

𝑎𝑥
      𝑎𝑛𝑑        

𝑎

𝑣
=  √

𝑥

𝑎𝑥
     

For a/v in Eq. (6) we now substitute √
𝑥

𝑎𝑥
     and obtain for the period of any SHM the relation 
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Τ = 2𝜋 √
𝑥

𝑎𝑥
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If the displacement is to the right of C, its value is +x, and if the acceleration is to the left, its value is – 

ax. Conversely, when the displacement is to left of C, we have - x, and the acceleration is to the right, 

or +ax. This is the reason for writing  

Τ = 2𝜋 √−
𝑥

𝑎𝑥
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4. Transverse waves  

 

All light waves are classified as transverse waves. Transverse waves are those in which each small part 

of the wave vibrates along a line perpendicular to the direction of propagation and all parts are vibrating 

in the same plane. When a source vibrates with SHM and sends out transverse waves through a 

homogeneous medium, they have the general appearance of the waves shown in Fig. 4. 

 

 

Fig. 4 Diagram of a transverse wave, vibrating in the plane of the page, showing the 

wavelength λ., the amplitude a, the displacement y, and the speed v. 

 

The distance between two similar points of any two consecutive wave forms is called the wavelength 

λ. One wavelength, for example, is equal to the distance between two wave crests or two wave troughs. 

The displacement y of any given point along a wave, at any given instant in time, is given by the vertical 

distance of that point from its equilibrium position. The value is continually changing from + to - to +, 
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etc. The amplitude of any wave is given by the letter a in Fig. 4, and is defined as the maximum value 

of the displacement y.  

The frequency of a train of waves is given by the number of waves passing by, or arriving at, any given 

point per second, and is specified in hertz, or in vibrations per second. From the definition of frequency 

υ and the wavelength λ, the speed of the waves v is given by the wave equation: 

𝜈 =  𝜐𝜆   12 

 

The length of one wave times the number of waves per second equals the distance the waves will travel 

in 1 s. 

 

5. Sine Waves  

The simplest kind of wave train is that for which the motions of all points along the wave have 

displacements y given by the sine or cosine of some uniformly increasing function. This in effect 

describes what we have called SHM.  

Consider transverse waves in which the motions of all parts are perpendicular to the direction of 

propagation. The displacement y of any point on the wave is then given by 

𝑦 = 𝑎 𝑠𝑖𝑛
2𝜋𝑥

𝜆
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A graph of this equation is shown in Fig. 5, and the significance of the constants a and A is clear. To 

make the wave move to the right with a velocity v, we introduce the time t as follows: 

𝑦 = 𝑎 𝑠𝑖𝑛
2𝜋

𝜆
 (𝑥 − 𝜈𝑡) 

14 
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Fig. 5 Contour of a sine wave at time t = O. 

 

Any particle of the wave, such as P in the diagram, will carry out SHM and will occupy successive 

positions P, P', P, P’” etc., as the wave moves. The time for one complete vibration of anyone point is 

the same as any other point. Furthermore, the period T and its reciprocal the frequency υ are given by 

the wave equation (12): 

𝑣 =  𝜐𝜆 =  
𝜆

𝑇
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If we substitute several of these variables in Eq. (14), we can obtain useful equations for wave motion 

in general:  

 

𝑦 = 𝑎 sin 2𝜋 (
𝑡

𝑇
−  

𝑥

𝜆
) 
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𝑦 = 𝑎 𝑠𝑖𝑛
2𝜋

𝑇
 (𝑡 −

𝑥

𝑣
) 
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𝑦 = 𝑎 sin 2𝜋𝜈 (𝑡 −
𝑥

𝑣
) 18 

 

A useful and brief way of expressing the equation for simple harmonic waves is in terms of the angular 

frequency w = 2πυ and the propagation number k = 2π/λ. Equation (l4) then becomes: 
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𝑦 = 𝑎 sin(𝑘𝑥 − 𝜔𝑡) = 𝑎 sin(𝜔𝑡 − 𝑘𝑥 +  𝜋) = 𝑎 cos (𝜔𝑡 − 𝑘𝑥 +
𝜋

2
) 19 

 

The addition of a constant to the quantity in parentheses is of little physical significance, Thus the 

equations when written 

𝑦 = 𝑎 cos(𝜔𝑡 − 𝑘𝑥)  𝑎𝑛𝑑 𝑦 = 𝑎 sin(𝜔𝑡 − 𝑘𝑥)  20 

 

will describe the wave of Fig. 5, if the curve applies at times t = T/4 and T/2, respectively, instead of at 

t = 0. 

 


