$(\pi$

$$
5=0 \operatorname{ars} 0^{23}=8=0.238 \times 10^{2}
$$

$34 i y_{1} d t$
aritran (un)
\qquad Error Analysis:-
Error Analysis:- Errorkivioujeds? we assumethat machine numbers are represented in the normalized decimal foaling- Point form

$$
\pm 0 . d_{1} d_{2} d_{3}+\cdots d_{k} \times 10^{k}
$$

$4 F d_{1} \leqslant 9$, a \leqslant dis 9 , for each $i=2,3, \ldots, K$

$$
\begin{aligned}
& x=284.60 .541, y=0.0324807 \\
& x=0.2846 .541 \times 10^{3} ; y=0.324807 \times 10^{-1}
\end{aligned}
$$

Numbers of this form are called k-digit dicimal range machine numbers.
Any Positive number (real) within anumerical range of the machine can be normalized to the form

$$
J=0 . d_{1} d_{2}, 1, d_{k} d_{k+1} d_{k+2} \times 10^{n}
$$

There are two Nays of performing this forming $\frac{1}{3}=0.3,3$ one method. called chopping is to simply (chop-off)) the digits $d_{x+1}, d x+2$

$$
y^{*}=0 \cdot d_{1} d_{2}-d k * 10^{h}
$$

The other method called rounding, idols $5 x 10$
y and the chops the result to obtain to

- of the form

$$
y^{*}=\delta_{1} \delta_{1} \delta_{2} \cdots \delta_{k} \times 10^{h}
$$

for rounding when $d_{k+1} \geqslant 5$ we add 1 to d_{k} that is round up. when $d k+1$ r 5 we simply chop of all $d_{k+1, \rightarrow} d_{k+2}, 11$ that is round down. then $\delta_{i}=d i$
$E x=$ - Delerminale the five-digit of π by Using
(a) chopping
(b) rounding

Sct $\pi=0.31415$
(a) $\pi^{*}=0.31415 \times 10^{1}$
(b) $\pi^{*}=0.31416 \times 10^{\circ}=3.1415$ 31081993
$=0.31416 \times 10^{1}=3.1416$
Deff:- The error thal is Produced when a calculat or or computer is useal to Perform real-number culculations is called round off error

Def f^{k} - Sulpose that x^{*} is appraximation of x. (1) The absolute exfor $\left(e_{x}\right)$ is difined by

$$
e_{x}=\left|x-x^{*}\right| u^{3} v^{\prime} 3
$$

(2) The relalive error $\left(R_{x}\right)$ is defined b^{0}) criticy yis

$$
\begin{aligned}
& R_{x}=\frac{|x-x|}{|x|}=\frac{C_{x}}{|x|}, x^{2} \neq 0 \\
& R_{x}=\frac{\left|x-x^{*}\right|}{\left|x^{*}\right|}=\frac{C_{x}}{\left|x^{*}\right|} ; x \neq 0
\end{aligned}
$$

Exs - Determine the absoluts and relative exrors, when approximating x by x^{*} for the following
(a) $x=0.3000 \times 10^{1}$ and $x^{*}=0.3100 \quad x 10^{1}$
(b) $x=0.3000 x 10^{-3}$ and $x^{*}=0.3100 \times 10^{-3}$
(c) $x=0.3000 \times 10^{4}$ and $x^{4}=0.3100 \times 10^{4}$
Sol $@ e_{x}=\left|x-x^{*}\right|=0.1 \times 10^{0}, R_{x}=\frac{C_{x}}{|x|}=0.33333^{-3} \times 10^{-1}$
(b) $C_{x}=\left|x-x^{*}\right|=0.1 x 10^{-4}, R_{x}=\frac{e_{\alpha}}{|x|}=0.33333 \times 10^{-1}$
(c) $C_{x}=0.1 \times 10^{3}$, $R R_{X}$ AL-WARAQ $R_{x}=0.3333^{-} \times 10^{-1}$

Effect of round off error on g the operation of aisithmatic Let X^{*} and y^{*} are approximations of x and y respectively respectively
(The addition

$$
\begin{aligned}
(x+y)=\mid(x+y)- & \left(x^{*}+y^{*}\right) \mid \\
& \leqslant\left|x-x^{*}+y-y^{*}\right| \\
& \leqslant\left|x-x^{*}\right|+\left|y-y^{*}\right|=e_{x}+e_{y}
\end{aligned}
$$

$$
\begin{aligned}
& e_{(x+y)} \leqslant C_{x+}+C_{y} \\
& R(x-y)=\frac{C_{(x+y)}}{|x+y|} \leqslant \frac{1}{|x+y|}\left(C_{x}+C_{y}\right) * \frac{|x \cdot y|}{|x-y|}
\end{aligned}
$$

$$
=\frac{|x| \cdot|y|}{|x+y|}\left(\frac{e_{x}}{|x| \cdot|y|}+\frac{e_{y}}{|x| \cdot|y|}\right)
$$

$$
\begin{aligned}
& =\frac{|x| \cdot|y|}{\left|x_{+} y\right|}\left(\frac{1}{|y|} R_{x}+\frac{R_{y}}{|x|}\right) \\
& =\frac{1}{|x+y|}\left(|x| \cdot R_{x}+|y| \cdot R_{y}\right) \\
& R_{(x+y)} \leqslant \frac{1}{|x+y|}\left(|x| \cdot R_{x}+|y| \cdot R_{y}\right)
\end{aligned}
$$

(2) The subtract

$$
\begin{aligned}
& C_{(x-y)} \leqslant C_{x}+C_{y} \\
& R_{(x-y)} \leqslant \frac{1}{|x-y|}\left(|x| R_{x}+|y| R_{y}\right) \\
& P_{(x-y)}=\frac{\left.C_{x-y}\right) \leqslant \frac{1}{|x-y|}\left(C_{x}-C_{y}\right) * \frac{|x-y|}{|x-y|}=\frac{|\dot{x}-y|}{|x-y|} \cdot\left(\frac{e_{x}}{|x||y|}-\frac{C_{y}}{|x| \cdot y \mid}\right)}{=\frac{|x||y|}{|z-y|} \cdot\left(\frac{R_{x}}{|y|}-\frac{R_{y}}{|x|}\right)=\frac{1}{|x-y|} \cdot\left(|x| R_{x}-|y| R_{y}\right)} \\
& \therefore \left\lvert\,(x-y) \leqslant \frac{1}{|x-y|} \cdot\left(|x| R_{x}-|y| R_{y}\right)\right.
\end{aligned}
$$

いるバル
Ix：－Find the bound of exact value．（a）$x+y$ ，（b）$x-y$ ， if $x^{*}=23.86$ and $y^{*}=0.01762$ where x and y^{\prime} rounding four－digit
50.

$$
\begin{aligned}
& x^{*}=0.2386 x 10^{2} \\
& y^{*}=0.1762 x 10^{-1} \\
& x^{*}+y^{*}=0.2386 \times 10^{2}+0.1762 \times 10^{-1}=23.87762 \\
& C_{x+y} \approx C_{x}+C_{y} \\
& c_{x}=5 \times{ }_{-10}^{x-(k+1)}=5 \text { at } 1^{2-(4+1)}=5410^{-3} \\
& C_{y}=5 * 7^{-10(4+1)}=5 \text { 生 } 10^{-6} \\
& e_{x+y}=5 * 10^{-3}+5 * 10^{-6} \Rightarrow e_{x+y}=0.005005 \\
& x+y=\left(x^{*}+y^{*}\right) \pm e_{x}+y=23.87762 \pm 0.005005 \\
& \begin{array}{l}
\therefore(x+y) \in\left[\left(x^{*}+y^{2}\right)-C_{x+y},\left(x^{k}+y^{*}\right)+C_{-y}\right] \\
(x, y) \in[23.872615,20820]
\end{array} \\
& (x, y) \in[23.872615,23,882625]
\end{aligned}
$$

(3) inulliplicalion.

$$
\begin{aligned}
& C_{x}=\left|x-x^{*}\right|= \begin{cases}x-x^{*} ; & x \geqslant x^{*} \\
-\left(x-x^{*}\right) ; & x \ll x^{*}\end{cases} \\
& = \begin{cases}x-x^{*} ; & x \geqslant *^{*} \\
x^{*}-x ; & x<x^{*}\end{cases} \\
& \beta_{y}=\left|y-y^{*}\right|= \begin{cases}y-y^{*} ; & ;-\left(y-y^{*}\right) ; \\
y<y^{*} \\
y * y^{*}\end{cases} \\
& =\left\{\begin{array}{ll}
y-y^{*} ; & y \geq y^{*} \\
y^{2}-y & ;
\end{array} \quad y<y^{*}\right. \\
& \left(f(x y)=\left|x \cdot y * x^{*} \cdot y^{*}\right|\right.
\end{aligned}
$$

(1) if

$$
\begin{aligned}
& \begin{array}{l}
\text { if } x \geqslant x^{*} \text { and } y z y^{*} \Rightarrow \\
c_{x}=x-x^{*} \text { and } y_{y}=y-y^{*}
\end{array} \\
& \begin{array}{l}
c_{x}=x-x^{*} \text { and } e_{y}=y-y^{*} \\
\Rightarrow x=e_{x}+x^{*} \text { and } y=c_{y}+y^{*}
\end{array} \\
& \therefore C_{(x, y)}=\left|\left(e_{x}+x^{*}\right)\left(e_{y}+y^{*}\right) S x^{*} y^{*}\right| \\
& =\mid e x \cdot y+x^{x} e y+y^{*}\left(x+x y^{2} y^{*}-x^{2} y^{*} \mid\right. \\
& =\left|C_{x} C_{y}+x^{*} C_{y}+y^{x} C_{x}\right| \leqslant C_{x} \cdot C_{y}+\left|x^{*}\right| C_{y}+\left|y^{*}\right| C_{y}
\end{aligned}
$$

since $0<C_{x} \ll 1$ and $0<e_{y} \pi 1 \Rightarrow C_{x} \cdot C_{y}^{2}$.

$$
e_{(x-y)}=\left|x^{*}\right| e_{y}+\left|y^{*}\right| e_{x}
$$

(2) if $x \geqslant x^{*}$ and $y<y^{*}$

$$
\begin{aligned}
& \Rightarrow \quad x=C_{x}+x^{*} \text { and } y=y^{*}-C_{y} \\
& C_{x \cdot y}=\left|\left(C_{x}+x^{*}\right)\left(y^{*}-e_{y}\right)-x^{*} y^{*}\right| \\
& =\left|y^{*} e_{x}-e_{x} \cdot C_{y}+x^{*} / y^{*}-x^{*} C_{y}-x^{*} y^{*}\right| \\
& \left.\leqslant\left|y^{*}\right| C_{x}+C_{x}\right)_{y}+\left|x^{*}\right| C_{y} \\
& \therefore C_{x \cdot y} \leqslant\left|y^{*}\right| C_{x}+\left|x^{*}\right| C_{y}
\end{aligned}
$$

$$
\begin{aligned}
& \text { if } x<x^{*} \\
& e_{x}=x^{*}-x \text { and } y \geq y^{*} \\
& x=x^{*}-e_{x} \text { and } y=y^{*}-y^{*} \\
& C_{x-y}=\left|\left(x^{*}-e_{x}\right) \cdot\left(e_{y}+y^{*}\right)-x^{*} y^{*}\right| \\
& \left.=\mid y^{*} e_{y}+x^{*} y^{*}-e_{x} \cdot e_{y}-y^{*} e_{x}-x^{*}\right) y^{*} \mid \\
& \leqslant\left|x^{*}\right|_{y}^{\prime}+c_{x} \sum_{y}^{*}+\left|y^{*}\right| e_{x} \\
& \therefore e_{x \cdot y} \leqslant\left|x^{*}\right| e_{y}+\left|y^{*}\right| e_{x} \mid
\end{aligned}
$$

if $x<x^{*}$ and $y<x^{*}$
$C_{x}=x^{x}-x \quad$ and $e_{y}=y^{*}-y$

$$
x=x^{*}-e_{x} \quad \text { and } i y=y^{*}+e_{y}
$$

$$
e_{x \cdot y}=\left|\left(x^{*}-e_{x}\right)\left(y^{*}-e_{y}\right)-x^{k}-y^{k}\right|
$$

$$
=\left|x^{*} y^{*}-x^{*} e_{y}-y^{*} e_{x}+e_{x}-e_{y}-x^{*} y^{*}\right|
$$

$$
\left.\leqslant|x| e^{x}+\left|y^{x}\right| e_{x}+e_{x}\right) \cdot e_{z=0}
$$

$$
s \cdot e_{x, y} \leqslant\left|x^{*}\right| e_{y}+\left|y^{k}\right| e_{x}
$$

$$
\begin{aligned}
& R_{x \cdot y}=\frac{C_{x \cdot y}}{\left|x^{*} y^{*}\right|} \leqslant \frac{\left|y^{*}\right| e_{x}+\left|x^{*}\right|}{\left|x^{*}\right|\left|y^{*}\right|} \\
&=\frac{e_{x}}{\left|x^{*}\right|}+\frac{e_{y}}{\left|y^{*}\right|}=R_{x}+R_{y} \\
& \therefore R_{x y} \leqslant R_{x}+R_{y}
\end{aligned}
$$

$$
y
$$

$4 \sin \tilde{J}_{1}$
(4) The Division

$$
\begin{aligned}
& e_{x}= \begin{cases}x-x^{*}, & x \geqslant x^{*} \\
x^{*}-\pi, & x<x^{*}\end{cases} \\
& e_{y}= \begin{cases}y-y^{*} & , y>y^{*} \\
x^{*}-y, & y<y^{*}\end{cases}
\end{aligned}
$$

if, $x \geqslant x^{*}$ and $y \geqslant y^{*} \Rightarrow x=e_{x}+x^{*}$ and $y=C_{y}+y^{*}$

$$
\begin{aligned}
& \therefore C_{x} / y=\left|\frac{C_{x}+x^{*}}{C_{y}+y^{*}}-\frac{x^{*}}{y^{*}}\right|=\left|\frac{C_{x}+x^{*}}{y^{*}\left(\frac{C_{y}}{y^{*}}+1\right)}-\frac{x^{*}}{y^{*}}\right| \\
& \left.\therefore \left\lvert\, \frac{C_{x}}{y^{*}}+\frac{x^{*}}{y^{*}}\right.\right)
\end{aligned}
$$

$$
(1+z)^{-1}=\frac{1}{1+z}=1-z+z^{2}-z^{3} \text { (Binomial theorem) }
$$

$$
\therefore\left(1+\frac{e_{y}}{y^{*}}\right)^{-1}=1-\frac{c_{y}}{y^{*}}+\frac{c_{y}^{2}}{y^{*^{2}}}-\frac{c_{y}^{3}}{y^{x^{3}}}+\cdots
$$

Since $0<C_{y} \ll 1 \Rightarrow e_{y}^{2} \simeq_{0}, e_{y}^{3} \simeq 0$,
Substitute (2) into (1) we have

$$
\begin{aligned}
& C_{x} / y=\left|\frac{e_{x}}{y^{*}}-\frac{C_{x} \cdot C_{y}}{y^{k^{2}}+0}+\frac{x^{*}}{y^{*}}-\frac{x^{*}}{y^{* 2}} C_{y}=\frac{x^{x^{*}}}{y^{*}}\right| \\
& C_{x / y} \leqslant \frac{e_{x}}{\left|y^{*}\right|}+\frac{\left|x^{*}\right|}{\left|y^{*^{2}}\right|} \dot{e}_{y} \text { AL-WARAD }
\end{aligned}
$$

$$
\begin{aligned}
& R_{x / y}=\frac{C_{x / y}}{\left|x^{*} / y^{*}\right|} \leqslant \frac{\frac{C_{x}}{\mid y^{*}}+\frac{\left|x^{*}\right|}{\left|y^{* 2}\right|} e y}{\frac{\left|x^{*}\right|}{\left|y^{*}\right|}} \\
& \left.\therefore R_{x / y} \leqslant R_{x}+R_{y}\right]
\end{aligned}
$$

Ex:- find the bound of exact value (a) $x-y$ (b x / y if $x^{*}=2.1956$ and $y^{*}=3-4781$ where x and y^{\prime} rounding five-digit.

The Error in function Evolution If x^{*} is approximation of x and c_{x} is absolute error in x^{*}. Suppose e_{f} is absolute error in value of function f at point x, that is

$$
\begin{align*}
& C_{f}=\left|f(x)-f_{x=x^{*}+c}^{*}\right|=\left|f\left(x^{*}+e_{x}\right)-f\left(x^{*}\right)\right|- \\
& f\left(x^{*}+C_{x}\right)=f\left(x^{*}\right)+\frac{C_{x}}{1!} f\left(x^{*}\right)+\frac{C_{x}^{2}}{2!} f\left(x^{*}\right)+11 \\
& f\left(x^{*}+C_{x}\right) \simeq f\left(x^{*}\right)+C_{x} f\left(x^{*}\right)-2 \tag{2}\\
& e_{f}=\left|f\left(x^{*}\right)+e_{x} f\left(x^{*}\right)-\left|\left(x^{*}\right)\right|\right. \\
& \therefore e_{f}=C_{x}\left|f^{-}\left(x^{*}\right)\right|
\end{align*}
$$

Ex: - Find bounds of exact value of the function $f(x)=\cos x$ where $x^{*}=0.359$

$$
\begin{aligned}
& C_{f}=e_{x} \mid f_{f}(x)=\cos x \Rightarrow f(x)=-\sin (x) \\
& f\left(x^{*}\right) \pm e_{f} \\
& f(x) \in\left[f\left(x^{*}\right)-C_{f}, f\left(x^{*}\right)+l_{f}\right]
\end{aligned}
$$

Chapter 2
Solution of Nonlinear Equations a ip ，idevisule Given afunction $f_{i} R \longrightarrow R$ such that $f(x)=0$ ．$f(x)=0$ in ， In this chapter we defer mined rooks（solutions）$x^{2}-1=0 \cdots \alpha^{2} x^{2}$ of equation $f(x)=0$ or（Zoros of function）
Definition（1）Let $\left\{x_{n}\right\}_{n=1}^{\infty}$ be asequence of real numbers that converges to x ．If there are positive constance C and β and a integer $n \geqslant 1$ such that $\left|x_{n+1}-x\right| \leqslant c\left|x_{n}-x\right|^{\beta}$ then we son the rate of convergence is of order β ．
Remarks：－（1 If $\beta=1$ then we say that the rale of convergence is linear
（2）If there exists a sequence $\left\{C_{n}\right\}, C_{n} \rightarrow 0$ －as $n \longrightarrow \infty$ such that $\left|x_{n+1}-x\right|=C_{n}\left|x_{n}-x\right|$ $\operatorname{limit}_{n \rightarrow \infty} \frac{\left|x_{n+1}-x\right|}{\left|x_{n}-x\right|}=0$ ，then we som that the rate $\left|x_{n-x}\right|$ of convergence supertinear．
（3）If $\beta=2$ then we say that the rate of convergence is quadratic．
\＃el．：－（2 suppose $\left\{B_{n}\right\}_{n=1}^{\infty}$ is aseguence known to converge to Zero and $\left\{x_{n}\right\}_{n=1}^{\infty}$ converge to x ．If there exist apositive constant c and an integer $n \geqslant 1$ Such＇that $\left|x_{n}-x\right| \leq c\left|B_{n}\right|$ ，then we say $\left\{X_{n}\right\}$ converges bo x with rate convergence $O\left(B_{n}\right)$ and write $X_{n}=X_{0}+O\left(B_{n}\right)$ （This real＂big on of B_{n} ）
Ex：－Compar the convergence behavior the sequences $\left\{x_{n}\right\}=\frac{n+1}{x^{2}}$ and $\left\{y_{n}\right\}=\frac{x+3}{x^{3}}$

Sol Note that both $\lim _{n \rightarrow \infty} x_{n}=0$ and $\lim _{n \rightarrow \infty} y_{n}=0$ FRet $\alpha_{n}=\frac{1}{n}$ and and $\beta_{n} \stackrel{n \rightarrow \infty}{n^{2}} \quad$ ion

$$
\begin{aligned}
& \left|y_{n}-0\right|=\frac{x+3}{x^{3}<}<\frac{n+3 x}{x^{3}} 5 \frac{4}{x^{2}}=4 \quad \beta_{n} \\
& \left|x_{n-0}\right| \leqslant 2\left|\alpha_{n}\right|=2 \frac{1}{x} \\
& \left|y_{n}-0\right| \leqslant 4\left|\beta_{n}\right|=4 \cdot \frac{1}{x^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { hb: } \alpha \text {; verb }
\end{aligned}
$$

Hence $\left\{x_{n}\right\}$ will rate convergence o ($\frac{1}{n}$) and $\left\{Y_{n}\right\}$ wifhrate convergence $0\left(\frac{1}{x^{2}}\right)$ dais show that the sequence $\left\{y_{3}\right\}$ conver fence $x^{x^{2}}$ foo 0 much faster than the sequence $\left\{x_{n}\right\}$.

Now til

* In the following sections we diseuse the (numerical methodes) can be used to lap proximate solufions) (roofs) of nonlinear equations, whin wo a mow,
(1) Bi Section Method.
ot e Biseckion Met ted is based on the interned al de
value theorem the idea beemaind the method is that $f(x) \in C[a, b]$ and $f(a)$, $f(b)<0$ then there exist aroid $P \in(a, b)$ such that $f(P)=0$
(Algorthim (Bisection Method) (n)

(2) If $f(a)$. $f(b)>0$, then stop (does not exist root)
(3) $P=\frac{a+b}{2}$ (4) If $f(a)-f(p) \leqslant 0$ then $b=P$
(5 If $f(a) \quad f(p)>0$ then $a=P$
(7) pint P
(6) If $|b-a| \geqslant \epsilon$ then go to (3)
(Ah) or $f(P) \geqslant \in$. AL-WARAC)

Example: Find the rout (Solution) of the equation $x^{3}+4 x^{2}-10=0$ on $[1,2]$, where $\epsilon=10^{-3}$
Solution:- $a=1, b=2, \epsilon=10^{-3}$

$$
\begin{aligned}
& f(x)=x^{3}+4 x^{2}-10 \\
& f(a)=f(1)=-5, f(b)=14 \\
& f(a)-f(b)=f(1) \cdot f(2)<0 \\
& p=\frac{1+2}{2}=1.5 \\
& f(p)=2.375 \\
& f(a) \cdot f(p)=f(1)-f(1.5)=-5 * 2.375<0 \\
& b=1.5 \\
& f(p)=2.375710^{-3} \\
& p=\frac{a+b}{2}=\frac{1+1.5}{2}=1.25
\end{aligned}
$$

$$
f(p)=-1.79687
$$

$$
f(a) \cdot f(p)=f(1) \quad f(1.25)>0
$$

$$
a=1.25
$$

$$
|f(\rho)|=|-1.7 .2687|\rangle \in E=10^{-3}
$$

$$
p=1.36524475
$$

$$
f(p)=0.000072 \Rightarrow|f(p)|<\epsilon=10^{-3}
$$

 Theorem (1): Suppose that $f \in[a, b]$ and $f(a) \quad f(b)<0$ The bisection method generates aseguanice $\left\{P_{n}\right\}_{n=1}^{+\infty}$ dipso apisoximating to ${ }^{\text {aquero }} p$ of $f(p)=0 \quad(f(P)=0)^{n=1}$ with $\left|p_{n}-p\right| \leqslant \frac{b-a}{2^{n}}$ when $n \geqslant 1$ proof:-

Since $b_{2}-a_{2}=\frac{1}{2}\left(b_{1}-a_{1}\right)=\frac{1}{2}\left(b_{-}-a\right)$. http://mathematicsbasra.blopspot.com https://www,fecebook, com/Mathematic.Basrs

$$
\begin{aligned}
& b_{3}-a_{3}=\frac{1}{2}\left(b_{2}-a_{2}\right)=\frac{1}{2^{2}}(b-a) \\
& b_{n-1}-a_{n}=\frac{1}{2}\left(b_{n-1}-a_{n-1}\right)=\frac{1}{2^{n-1}}(b-a)
\end{aligned}
$$

Then for each $n \geqslant 1$, we have bu $-a_{n} \frac{2^{n-1}}{=} \frac{1}{2^{n-1}}(b-a)$ and $P \in\left(b_{n}, a_{n}\right)$.
Since $P_{n}=\frac{1}{2}\left(a_{n}+b_{n}\right)$ for all $n \geqslant 1$, it follow that

$$
\left|P_{x}-P\right| \leqslant \frac{1}{2}\left|\left(b_{n}-a_{n}\right)\right|=\frac{1}{2}\left|\left(\frac{1}{2^{n-1}}(b-a)\right)\right|=\frac{1}{2^{n}}|b-a|
$$

$$
\left.\therefore\left|\left|P_{x}-P\right| \leqslant \frac{1}{2^{n}}\right| b-a \right\rvert\,
$$

Note:- $\left|P_{x}-P\right| \leqslant \frac{1}{q^{n}}|b-a|$ then the sequence $\left\{P_{x}\right\}_{n=1}^{\infty}$ converges to P with 2^{n} rate of convergence $o\left(\frac{1}{2^{n}}\right)$ that is

$$
P_{x}=P+o\left(\frac{1}{2^{k}}\right)
$$

(2) The rate 2^{n} of convergence is linear
(3) since $\frac{|b-a|}{2^{n}} \leqslant \epsilon$

$$
\Rightarrow \frac{|b-a|}{\epsilon} \leqslant 2^{n}
$$

$$
\begin{aligned}
& \Rightarrow \ln \left(\frac{|b-a|}{E}\right) \leqslant \operatorname{Ln}\left(2^{n}\right) \\
& \Rightarrow n \operatorname{Ln}(2) \geqslant n \geqslant \frac{\operatorname{Ln}\left(\frac{|b-a|}{\epsilon}\right)}{\operatorname{Ln}\left(\frac{|b-a|}{\epsilon}\right) \Rightarrow \operatorname{Ln}(2)} \\
& * f(x)=x^{3}+4 x^{2}-10 \Rightarrow[1,2], \epsilon=10^{-3}
\end{aligned}
$$

$$
n \geqslant \frac{\ln \left(\frac{12-11}{10^{-3}}\right)}{\ln (2)}=\frac{3 \ln (10)}{\operatorname{Ln}(2)} \Rightarrow n \geqslant 9.9658
$$

(2) Newton's Method

$$
P_{2}=P_{1}-
$$

$$
\begin{aligned}
& P_{n+1}=P_{n}-\frac{f\left(P_{n}\right)}{F\left(P_{n}\right)}, h \geqslant 0 \\
& f\left(P_{n}\right) \neq 0
\end{aligned}
$$

$$
\begin{aligned}
& m=\frac{f\left(P_{1}\right)-f\left(P_{0}\right)}{P_{1}-P_{0}} \\
& f\left(P_{0}\right)=\frac{f\left(P_{1}\right)-f\left(P_{0}\right)}{P_{1}-P_{0}} \\
& f^{\prime}\left(P_{0}\right)=\frac{-f\left(P_{0}\right)}{P_{1}-P_{0}} \\
& P_{1}=P_{0}-\frac{f\left(P_{0}\right)}{f\left(P_{0}\right)}
\end{aligned}
$$

$$
P_{2}=P_{1}-
$$

$$
f(p)
$$

$$
f\left(\rho_{1}\right)
$$

$$
F\left(P_{n}\right) \neq 0
$$

20

Suppose that $f \in C_{1}^{2}[a, b]$, Let $p_{0} \in[a, b]$ be approximation to P (P is exact root, zero of $f)$. Such that $\bar{f}\left(P_{0}\right) \neq 0$ and $|P-P|$ is small-consider the first Tylores Polynomial for $f(x) e x$ and about. P_{0} and evaluated at $x=1$?

$$
f(P)=f\left(P_{0}\right)+\frac{\left(P-P_{0}\right)}{1!} f\left(P_{0}\right)+\frac{\left(P-P_{0}\right)^{2}}{2!} f\left(\varepsilon\left(P_{0}\right)\right)
$$

©
where है $\left(P_{0}\right)$ lies between P and P_{0}
Since $f(P)=0$ (Pis Zero of I), then the equation gives

$$
0=f\left(P_{0}\right)+\left(P-P_{0}\right) \bar{f}\left(P_{0}\right)+\frac{\left(P-P_{0}\right)^{2}}{2} \overline{f^{\prime}}\left(\Sigma\left(P_{0}\right)\right)
$$

Newton's method is deriveal by assuming that $|P \cdot P|$ is small then the term involving, is much small

$$
\begin{aligned}
& \begin{array}{l}
\Rightarrow 0 \simeq f\left(P_{0}\right)+\left(P-p_{0}\right) f\left(p_{0}\right) \Rightarrow p \simeq \rho_{0}-\frac{f\left(p_{0}\right)}{f\left(p_{0}\right)} \equiv p_{1} \\
\Rightarrow P_{1}=P_{0}-\frac{f\left(p_{0}\right)}{f}
\end{array} \\
& P_{1}=P_{0}-\frac{f\left(P_{0}\right)}{f\left(P_{0}\right)}
\end{aligned}
$$

In general

$$
\binom{\text { din general }}{P_{n+1}=P_{n}-\frac{f\left(P_{n}\right)}{f^{\prime}\left(P_{n}\right)}}, h \geqslant 0
$$

Algorithm (Newton's method)
(1). In put P_{0}, ϵ
(2) $P_{1}=P_{0}-\frac{f\left(P_{0}\right)}{f\left(P_{0}\right)}$
(3) $P_{0}=\rho_{1}$

$$
10.92364005
$$

(4) If $\left(f\left(P_{0}\right) \geqslant \epsilon\right)$ then g_{0} to (2)
(5) Print ρ

Example:- find the approximate solution to $x^{3}+4 x^{2}-10=0$ on $[1,2], \epsilon=10^{-3}$
S o $\theta \in[a, b]=[1,2]$
choose $P_{0}=1.5$

$$
P_{1}=P_{0}-\frac{f\left(P_{0}\right)}{f\left(P_{0}\right)}=1.5-\frac{f(1.5)}{\vec{f}(1.5)}=1.37 .33 .
$$

$$
P_{0}=P_{1}=1.3733
$$

$$
f\left(y_{0}\right)=f(1.3733)=0.1343
$$

$$
\Rightarrow\left|f\left(y_{0}\right)\right|=0.1343>6=10^{-3}
$$

$$
P_{1}=1.3733-\frac{f(1.3733)}{\bar{f}(1.3733)}=F_{1} 3653
$$

$$
P_{0}=1.3653
$$

$$
f\left(p_{0}\right)=0.00052 .846
$$

$$
\begin{aligned}
\left|f\left(P_{0}\right)\right| & =0+00052846<10^{-3} \\
\therefore 1^{2} & =1.3653
\end{aligned}
$$

$1^{2}=1.3653$

$$
\begin{aligned}
& \text { cosif. } \\
& \left\{\begin{array}{l}
\text { u's } \text { s }^{2}+1 \\
\text { cle } \\
\text { cleay }
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \text { a= inpub ('az } 19 \\
& \text { disp(a) }
\end{aligned}
$$

 $\left.a=1 ; b=2 ; e=10^{-3}\right\} \quad=: 10^{-3,} \quad 0, j,[1,2\} ;-\bar{m}$, is if ($f(a) * f(b)>0)$ ck
'does not exist root' cleav
break $=-\quad$ 水
end $b=\operatorname{input}\left({ }^{\prime} b==^{\prime}\right)$'s
$p=(a+b) / 2 ; i=0 \quad e=\operatorname{inPut}\left({ }^{\prime} c=1\right)$; while $(a b s(f(p)>e)$ if $(1(a)+f(b)>0)$

$[1.5,2]$ @

$f(x)=x^{3}-3$

+

16

Scanned by CamScanner
(h) $P \rightarrow$ exact solntini (x, h)

$$
f(P)=0
$$

$$
\text { Subicol } 1 / 1 . /<A
$$

Convergence using Newton's method
Let $C_{n+1}=P-p X_{n+1} \Rightarrow P_{n+1}=P-C_{n+1}$ Cn+1 in wis where p is the exact Solution

$$
\begin{aligned}
& \text { also } P_{n}=P_{e}=e_{n} \\
& \left.p / e_{n+1}=P_{-}^{\prime} e_{n}-\frac{f\left(P-C_{n}\right)}{f\left(P-e_{n}\right)} \Rightarrow e_{n+1}=e_{n}+\frac{f\left(P_{n}\right)}{f\left(P_{n}\right)} \right\rvert\, e_{n+1} \simeq c c_{n} \\
& \left|x_{n+1}-x\right| \leqslant C \mid \\
& f\left(P-e_{n}\right)
\end{aligned}
$$

$$
\left|x_{n+1}-x\right| \leqslant 6\left|x_{n}-v\right|^{\beta}
$$

Since $f\left(p-e_{n}\right)=f(p)-\frac{e_{n}}{1!} \bar{f}(p)+\frac{e_{n}^{2}}{2!} \overline{\bar{f}}(p)+11$ and -

$$
=e_{n}+\left(-e_{n}+\frac{e_{n}^{2}}{2} \frac{\bar{f}(P)}{\bar{f}(P)}+1+1\right)\left(1+e_{n} \cdot \frac{\bar{f}(P)}{\bar{f}(P)}+\frac{e_{n}^{2}}{2} \frac{\overline{\bar{f}}(P)}{\bar{f}(P)}+1+1\right)
$$

$$
=e_{n}-e_{n}-e_{n}^{2} \frac{\overline{\bar{f}}(P)}{\bar{f}(P)} \frac{e_{n}^{3}}{2} \frac{\bar{f}(p)}{\bar{f}(P)}+1+\frac{e_{n}^{2}}{2} \frac{\overline{\bar{f}}(P)}{\bar{f}(P)}+\cdots
$$

$$
e_{n+1} \simeq \frac{e_{n}^{2}}{2} \frac{f(p)}{f(\rho)} \Rightarrow C_{n+1} \sim C e_{n}^{2}
$$

where $G=\frac{-1}{2} \frac{f(P)}{f(P)} \quad \therefore$ The rate of convergence (AL-WARAQ is quadratic (w.".")

$$
\begin{aligned}
& \vec{f}\left(p-e_{n}\right)=\hat{f}(p)-\frac{e_{n}}{1!} \hat{f}(p)+\frac{e_{n}^{2}}{2!} \vec{f}(p)+\cdots \phi \\
& \therefore C_{n+1}=e_{n}+\frac{f(P)-\frac{e_{n}}{1!} f(P)+\frac{e_{1}^{2}}{2!} \bar{f}(P)+a n p}{\left.f^{2}(P)-e_{n}^{\prime \prime \prime}(P)+\frac{e_{n}^{2}}{2} \bar{f}(P)+\ldots\right)} \\
& =C_{n}+\frac{f=0, e_{n} \bar{f}(P)+\frac{e_{n}^{2}}{2} \bar{f}(P)+\cdots 11}{\bar{f}(p)\left(1-e_{n} \frac{\bar{f}(\rho)}{\bar{f}(\rho)}+\frac{e_{n}^{2}}{2} \frac{\bar{f}(\rho)}{\bar{f}(\rho)}+1+1\right)} \\
& =e_{n}+\frac{\left(-e_{n}+\frac{e_{n}^{2}}{2} \frac{\bar{f}(P)}{\bar{f}(P)}+111\right)}{1-e_{n} \frac{\bar{f}(P)}{f(P)}+\frac{e_{n}^{2}}{2} \frac{\bar{f}(P)}{f(P)}+1+1}
\end{aligned}
$$

Parve that the sate of convergence of asknewlon's method is quadratic. - .
(5) The secant vilethod from the graph, we obtain

$$
\begin{aligned}
& \begin{array}{l}
\left.\frac{f(x)-f\left(P_{0}\right)}{x-P_{0}}=\frac{f\left(P_{1}\right)-f\left(P_{0}\right)}{P_{1}-P_{0}}: \frac{f\left(w_{1}\right)}{P_{1}-P_{0}} \Rightarrow \frac{f\left(P_{0}\right)}{P_{2}} \Rightarrow P_{0}\right)=\frac{f\left(P_{0}\right)-f\left(P_{0}\right)}{P_{1}-P_{0}}
\end{array} \\
& -P_{1} f\left(P_{0}\right)+P_{0} f\left(l_{0}^{P}\right)=P_{2}\left(f\left(P_{1}\right)-f\left(P_{0}\right)-P_{0} f\left(P_{1}\right)+P_{0} f\left(P_{0}\right)\right. \\
& P_{\Delta} f\left(P_{1}\right)-P_{1} f\left(P_{0}\right)=P_{2}\left(f\left(P_{1}\right)-f\left(P_{0}\right)\right) \\
& P_{2}=\frac{p_{0} f\left(p_{1}\right)-p_{1} f\left(p_{0}\right)}{f\left(p_{1}\right)-f\left(p_{0}\right)} \Rightarrow P_{3}=\frac{p_{1} f\left(p_{2}\right)-p_{2} f\left(p_{1}\right)}{f\left(p_{2}\right)-f\left(p_{1}\right)}
\end{aligned}
$$

Th general

$$
P_{x+1}=\frac{P_{x-1} f\left(P_{x}\right)-P_{x} f\left(P_{x-1}\right)}{f\left(P_{n}\right)-f\left(P_{x-1}\right)}
$$

Algor ithm (Secant method)

$$
\dot{e}^{\prime}\left(e^{\prime}\right) l_{1}, \dot{a}_{2} ; 1, \dot{o}
$$

(1) In put p_{0}, P_{1}, \in
(2) $P_{2}=\frac{P_{0} f\left(P_{1}\right)-P_{1} f\left(P_{0}\right)}{f\left(P_{1}\right)-f\left(P_{0}\right)}$
(3) $P_{0}=P_{1}, P_{1}=P_{2}$
(4) If $\left|f^{\prime}\left(p_{1}\right)\right| \geqslant E$ then go bo (2
(5) Print p_{2} AL-WARAQ

Examples, find the Solution of $x^{3}+4 x^{2}-10=0$ an $[1,2], \in=10^{-3}$ Sol Let $P_{0}=1.5, P_{1}=1.9 \quad\left(P_{0}, P_{1} \in[1,2]\right.$

$$
\begin{aligned}
& P_{2}=\frac{P_{0} f\left(P_{1}\right)-P_{1} f\left(P_{0}\right)}{f\left(P_{1}\right)-f\left(P_{0}\right)}=\frac{1.5 * f(1.9)-1.9 * f(1.5)}{f(1.9)-f(1.5)} \\
& P_{2}=1.3935 \\
& 1 f\left(P_{2}\right)|=|f(1.3935)|=|0.47 .41|=0.4741\rangle \in=16^{-3} \\
& P_{0}=P_{1}=1.96 P_{1}=P_{2}=1.3935 \\
& P_{2}=\frac{1.9 f(1.3935)-1.3935 * f(1.9)}{f(1.3935)-f(1.2)} \Rightarrow P_{2}=1.3714 \\
& P_{0}=P_{1}=1.3935 \\
& \left|f\left(P_{1}\right)\right|=0.1016>E=1 P_{1}=P_{2}=1.3414 \\
& R_{2}=1.3653
\end{aligned}
$$

$$
\left|f\left(P_{2}\right)\right|=4.1666 * 10^{-6}<\in=10^{-3}
$$

, Convergence of secant Method $2,02 e^{2} \geqslant 0.0$

$$
\text { Leet } C_{n+1}=P P_{n+1} \Rightarrow P_{k+1}=P_{+} C_{n+1}
$$

$$
C_{n}=P-P_{n} \Rightarrow P_{D}=P C_{D}
$$

$$
\begin{aligned}
& e_{n}=P-r_{n} \Rightarrow l_{x}=P-C_{A} p C_{n-1} \\
& e_{n-1}=P-P_{n-1} \Rightarrow P_{n-1}=P-C_{n-1}
\end{aligned}
$$

$$
P_{x+1}=\frac{P_{x-1} f\left(P_{n}\right)-P_{n} f\left(P_{x-1}\right)}{f\left(P_{x}\right)-f\left(P_{x-1}\right)}
$$

$p-e_{n+1}=\frac{\left(p-e_{n-1}\right) f\left(p-e_{n}\right)-\left(p-e_{n}\right) f\left(p-e_{n-1}\right)}{f\left(p-e_{n}\right)-f\left(p-e_{n-1}\right)}$
By Taylor's expansion of $f\left(P-C_{n}\right)$ and $f\left(P-e_{n-1}\right)$, we obtain

$$
P
$$

since $f(p)=0 \quad(P$ is exact solution)

$$
C_{n+1} \stackrel{i}{\simeq} C C_{n-1} \cdot e_{n}
$$

 $\mathrm{c} / \mathrm{c}^{: ~-1, f i l l, s i m e ~} \mathrm{~S}=10^{-3}, \dot{0},[1,2]$ oil clear

if $(f(a) * f(b)>0)$
' does not exist root' break end
$P=(a+b) / 2 ; i=0$; whiles (abs $(f(p))>c)$ $P=(a+b) / 2$; $i=i+1$;

$$
\text { if }(f(a) * f(p)<0)
$$

$$
b=p ;
$$

else, if $(f(a) * f(p)>0)$

$$
a=P \text {; }
$$

else
(d) Print $\left(P_{x} i\right)$
break
end trend $\rightarrow P_{9} i$ AL-WARAQ
(4):- Fixed. Point Iteration Method Deft - The number P is a fixed Point for agiven function g if $g(p)=p$.
$e x_{:}-x^{2}+4 x^{2}-10=0 \quad \underset{\sim}{x}=1,23$

$$
\begin{aligned}
& f(x)=0 \\
& x=g(x) \Rightarrow f(x)=x-g(x)
\end{aligned}
$$

(1) $x^{3}=10-4 x^{2} \Rightarrow x=\sqrt[3]{10-4 x^{2}}$
$\therefore x=g_{1}(x)=\sqrt[3]{10-4 x^{2}}$

(2)

$$
4 x^{2}=10-x^{3} \Rightarrow x^{2}=\frac{10-x^{3}}{4}
$$

$$
x=-\frac{\sqrt{10-x^{3}}}{2}
$$

$x=g_{2}(x)=-\frac{\sqrt{10}-x^{3}}{2}$
(3 $x=\frac{\sqrt{10-x^{3}}}{2} x=$

$$
x=g_{3}(x)=\frac{\sqrt{10-x^{3}}}{2}
$$

(4) $x=x^{3}+4 x^{2}+x=10$

$$
\therefore x=g_{4}(x)=x^{3}+4 x^{2}+x-10
$$

(1)

$$
\begin{aligned}
& g_{1}(x)=\sqrt[3]{10-4 x^{2}},[1,2] \\
& x=1 \rightarrow g_{1}(x)=\sqrt[3]{6} \in[1,2] \\
& x=2 \Rightarrow g_{1}(x)=\sqrt[3]{-6} \notin[1,2]
\end{aligned}
$$

Example: - $x^{2}-x-2=0 \quad$, [as]
(1) $x=x^{2}-2 \Rightarrow x=g_{1}(x)=x^{x^{2}}-2$
(2) $x^{2}=x+2 \Rightarrow x=-\sqrt{x+2}$

$$
x=g_{2}(x)=-\sqrt{x+2}
$$

(3)

$$
\begin{aligned}
& x=\sqrt{x+2} \\
& x=y_{3}(x)=\sqrt{x+2}
\end{aligned}
$$

Therm, If $g \in a,[a, b]$ and $g(x) \in[a, b]$ for all $x \in[a, b]$ then g has at least one fixed Point in $[a, b]$
(2) If in addition, $g(x)$ exist on (a, b) and a Positive number $\mathbb{R}<1$ exists with $|\bar{g}(x)| \leqslant K$ for all $x \in(a, b)$ then there is exactly one fixed point in $[a, b]$

che
clear

$$
\begin{equation*}
P=1.5 ; c=10^{13} ; i=0 \tag{1}
\end{equation*}
$$

while (abs $(f(P))>=c$)

$$
\begin{gathered}
a=P_{-} \quad f(p) / f_{1}(p) ; \\
P_{=a ;} \\
i=i+1 ;
\end{gathered}
$$

$$
\begin{aligned}
& c_{i n d}=i+1 ; \\
& \text { end }
\end{aligned}
$$

i

$$
a
$$

\qquad
clc
clear

$$
p=1.5 ; p_{1}=1.9 ; e=10^{i 3} ; i=0 ;
$$

while $\left.c a b s\left(f\left(P_{1}\right)\right)>=e\right) \&$

$$
\left.\begin{array}{ll}
\left.a=\left(p * f\left(p_{1}\right)-p_{1} * f(p)\right) /(f(p))-f(p)\right) ; \\
p=p_{1} ; \\
p_{1}=a ; \\
i=i+1
\end{array}\right] \begin{array}{lll}
\text { end } \\
\text { end }
\end{array}
$$

Proofs:

If $g(a)=a$ or $g(b)=b$, then g has a fixed Point at the endpoint of interval $[a, b]$. If not then $g(a)>a$ and $g(b)<b$. self $f(x)=g(x)-x$ for all $x \in[a, b]$ $f(a)=g(a)-a$ and $f(b)=g(b)-b$
\Rightarrow and $f(b)<0$ and
By intermediate value theorem we obtain there exists $p \in(a, b)$ for which $f(p)=0$ $\Rightarrow f(p)=g(p)-p=0 \Rightarrow g(p)=p$ $\therefore p$ is fixed Point for g.
(2) suppose in addition, that $\operatorname{Ig}(x)<k<1$, and that p and q are both fixed Points for g in $[a, b](p \neq q)$. By the mean value theorem, we obtain there exists number $\eta \in[a, b]$ between p and q suck that $\bar{g}(M)=\frac{\bar{g}(p)-x(q)}{p-q}$

$$
\begin{aligned}
& p-q \\
& \Rightarrow|g(p)-g(q)|=|g(q)||p-q|<K|p-q|<|F q| \\
& \Rightarrow|g(p)-g(q)|<|p-q| \\
& \text { since } q(p)-p
\end{aligned}
$$

Since. $g(p)=p$ and $g(q)=q \leftrightarrows|g(p)-g(q)|=|p q|$ $\therefore|p-q| \cdot|<|p-q|:=$
which is confraduction Ni this contraduction must come from only supposition $P \neq 9$
$\therefore P+q \Longrightarrow$ The fixed Point is unique.
Example
Show that $g(x)=\frac{\left(x^{2}-1\right)}{3}$ has aunique fixed point on $[-|1|]$ Solution:-
Since $q(x)$ is continuous in $[-1,1]$
$g(-1)=0 \in[-1,1]$ and $g(1)=0 \in[-1,1]$
also for all $x \in[-1,1] \Rightarrow g(x) \in[-1,1]$

$$
\frac{3 \times y}{5}=\frac{1}{5}
$$

$g(x)=\frac{x^{2}-1}{3} \rightarrow g^{-}(x)=\frac{2 x}{3}$
The absolute maximum ${ }^{3}$ for g af $x=-1$ and $x=1$ and the absolute minimum for $g x=0$
$\Rightarrow\left|g^{\prime}(x)\right|=\left|\frac{2 x}{3}\right| \leqslant \frac{2}{3}<1$ for all $x \in[-1,1]$
io g satisfies all the ${ }^{3}$ hypotheses of theorem (2)
\Rightarrow ghas unique fixed Point in $[-1,1]$
a miLiA, who
Note: \rightarrow The hypotheses of theorem (2) are cal $/ x y / s$ day) $\$ 1$ sufficient to garanfee aunique fixed but are not necessary. Example:- Show that the oren (2) does not ensure aunique fixed point of $g(x)=3^{-x}$ on $[0,1]$, even though aunique fixed point on this interval does exist Solution: - g is continuous on $[0,1]$ $g(0)=1 \in[0,1]$ \& $g(1)=\frac{1}{3} \in[0,1]$ also for all

$$
x \in[0,1] \Rightarrow g(x) \in[0,1]
$$

$$
\bar{g}(x)=-\ln (3) \cdot 3^{-x}
$$

\therefore The first part of theorem (2) satisfy

$$
g_{k}^{\prime}(0)=-\ln (3) \Rightarrow|g(0)|=\ln 3=1.09861>1
$$

\therefore © The second part of theorem (2) not satisfy.
But the function g is decreasing and it Clear form figure that yovedivent the fixed point must be unique.

$$
\begin{aligned}
& f(x)=x-g(x)=0 \\
& \Rightarrow x=g(x)-5), 0 \text {, } 2,1)=1 ; \\
& P_{n}=g\left(P_{n}-1\right) \quad n \geqslant 1 ; \\
& P_{1}=g\left(P_{0}\right), P_{2}=g\left(P_{1}\right)
\end{aligned}
$$

Algorithm of fixed-Poinge Iteration
(1) In Put $p_{0}, \in 1$
(2) $\quad P_{1}=g\left(P_{0}\right)$
(3) $P_{0}=P_{1}$
(4) If $\left(\left|P_{0}-g\left(P_{0}\right)\right| \nabla_{1} \in\right)$ then $g_{0} f_{0}$ (2) (5) print P_{1}

Example:- Find the Solution of. the equation $x^{3}-x-1=0$,

$$
\text { Solution }=\sqrt{1+\frac{1}{x}} ; P_{0}=1.5, \epsilon=5 \times 10^{-4}
$$

Solution: $\frac{x}{}$

$$
\begin{aligned}
& P_{n}=g\left(P_{n-1}\right) ; n \geqslant 1 \\
& P_{1}=g\left(P_{1}\right)=\sqrt{1+\frac{1}{1.5}}=1.29094 \Rightarrow\left|f\left(P_{1}\right)\right|=\left|f\left(1.290 q_{4}\right)\right|=0.8757 \epsilon \\
& P_{2}=g\left(P_{1}\right)=1.3321 .4 \\
& P_{3}=g\left(P_{2}\right)=1.32313 \Rightarrow\left|f\left(P_{3}\right)\right|>\epsilon=5110^{-4} \\
& P_{4}=g\left(P_{3}\right)=1.32506 \\
& P_{5}=g\left(P_{4}\right)=1.32464 \Rightarrow\left|f\left(P_{5}\right)\right|<\epsilon \\
& P_{5}=1.32464
\end{aligned}
$$

Example: \rightarrow the equation $x^{2} x-2=0$ has aunique root in $[1.5,3]$ by Using Fixed Point Iteration method find approximate of this solution accurate within $5 \# 10^{-5}$ Solution: -
The equation $f(x)=x^{2}-x-2$ can be writeen in following forms (1) $x=x^{2}-2 \rightarrow x=g_{1}(x)=x^{2}-2$
(2) $x^{2}=x+2 \Rightarrow x=\sqrt{x+2} \Rightarrow x=g_{2}(x)=\sqrt{x+2}$
(3) $x=1+\frac{2}{x} \Rightarrow x=g_{3}(x)=1+\frac{2}{x}$
@IRAQ1math قناة رياضبات العراق

$$
P_{n}=g_{i}\left(P_{n-1}\right) \quad i n \geqslant 1 \quad ; i=1,2,3
$$

$$
P_{0}=2.5
$$

Theron (3) s - Let $g \in G[a, b]$ be such that. $g(x) \in[a, b]$ for all $x \in[a, b]$. Suppose that in addition, that g exists on (a, b) and that a constant or $K<1$ exists with $\lg (x) / \leqslant K$ for all $x \in(a, b)$. Then for any number $P_{0} \in[a, b]$, the sequence defined by $P_{n}=g\left(p_{n-1}\right) ; n \geqslant 1$ converge to the unique fixed point P in (a, b).
Proof:-
Let $C_{n}=P_{-} P_{n} ; k=0,1,2, \ldots$

$$
\begin{aligned}
& \text { Since } P_{n}=g\left(p_{n-1}\right) \text { and } p=g(p) \\
& \therefore e_{n}=g(p)-g\left(P_{n-1}\right) \\
& C_{n}=\frac{g(p)-g\left(P_{n-1}\right)}{\left(P-P_{n-1}\right)} \cdot\left(P-P_{n-1}\right)
\end{aligned}
$$

By Using the mean value theorem owe have

$$
c_{n}=g^{\prime}\left(A_{n}\right) \cdot\left(P-P_{n-1}\right)
$$

where $\lambda_{n} \in(a, b)$ and between P and P_{n-1}

$$
e_{n}=\left|g^{\prime}(-1 n)\right| \mid P-P_{n-1} \leqslant k e_{n-1} \quad\left(g^{\prime}(x) \mid \leqslant k\right)
$$

$$
e_{n} \leqslant K \quad e_{n-1}
$$

the raft of convergence of fixed-Point Iteration Method is linear
$e_{n} \leqslant k e_{n-1} \quad$ similarly $\quad e_{n-1} \pi k e_{n-2}$
 $\epsilon=5 \times 10^{-5}$ au, wow alp, ax, pion! [1,2]

Function $y=9 \Delta x$

$$
\text { xe } \sim y \ldots \operatorname{lin}_{1}
$$

$$
y=\left(x^{\wedge} 2-\exp (x)+5\right) / 3
$$

$$
\begin{aligned}
& \text { end } \\
& \text { ole } \\
& \text { clear } \\
& a=1.5 ; \\
& c=5 * 10^{1-5} ; \\
& i=6 ;
\end{aligned}
$$

while (abs $(a-g(a))>=c)$

$$
\begin{aligned}
& i=i+1 ; \\
& b=g(a) \\
& a=b \\
& \text { en } 0 \\
& b \\
& i
\end{aligned}
$$

Numerical Solution of linear systems equations.
In this chapter we will solve alinear system of n equation in n variable. Such asysfem has the form

$$
\left.\begin{array}{c}
E_{1}: a_{11} x_{1}+a_{12} x_{2}+11+a_{1 n} x_{n}=b_{1} \\
E_{2}: a_{21} x_{1}+a_{22} x_{2+11+}+a_{2 n} x_{n}=b_{2} \tag{1}\\
E_{n:} a_{n 1} x_{1}+a_{n 2} x_{2}+1+a_{n n} x_{n}=b_{n}
\end{array}\right\}
$$

Inthis system we are given the constants $a_{i j}$ for each $i, j=1,2, \ldots, n$ and b_{i} forlach $i=1,2, \ldots, n$, and we are need to determine the unknowns $x_{1}, x_{2}, \ldots, x_{1}$.
we can write the linear system (1) as matrix equation

$$
\begin{aligned}
& A \underline{X}=\underline{v_{2}} \\
& \text { with } A=\left(\begin{array}{lll}
a_{11} & a_{12} & a_{1 n} \\
a_{21} & a_{22} & a_{2 n} \\
a_{n 1} & a_{n 2} & a_{n n}
\end{array}\right) ; \underline{X}=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{n}
\end{array}\right) ; \underline{b}=\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{n}
\end{array}\right)
\end{aligned}
$$

There are two kind of method to solve linear system of equations
(1) or (2)

Direct techniques are methods that theoretically give the exact solution to the system in a finite number steps
(a) Gaussian Elimination G.V in ir
we used three operations to simplify the linear system given in (1)

(1) Equation Ei can be multiplied by any constant (nonzero) λ with resulting equation used in place of $E i$. This operation is denoted ($\lambda E I$) $\longrightarrow E i$
(2) Equation Et can be multiplied by any constant λ and added to equation E_{i} with the resulting equation used in Place of E_{i}. This operation denoted $\left(E_{i}+\lambda E_{i}\right) \longrightarrow E_{i}$ (3) Equation E_{i} and E_{j} can be transposed in order chis operation denoted $\quad E_{i} \longleftrightarrow E_{j}$
of these
By the sequence operation alinear system will be systemically transform in anew linear system that is more "easily solved and has the same solution
The sequence of operations is. illustrated in the following example. Example:- Use Gaussian elimination to Solve the system

$$
\begin{aligned}
-3 x_{1}+2 x_{2}-x_{3} & =-1 \\
6 x_{1}-6 x_{2}+7 x_{3} & =-7 \\
3 x_{1}-4 x_{2}+4 x_{3} & =-6
\end{aligned}
$$

Solution e- $A y=\underline{b}$

$$
\begin{aligned}
& A=\left(\begin{array}{ccc}
-3 & 2 & -1 \\
6 & -6 & 7 \\
3 & -4 & 4
\end{array}\right) ; \underline{y}=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) ; \underline{b}=\left(\begin{array}{c}
-1 \\
-7 \\
-6
\end{array}\right) \\
& (A: b)=\left(\begin{array}{ccc}
-3 & 2 & -1 \\
6 & -6 & 7 \\
3 & -1 & -7 \\
3 & -4 & -6
\end{array}\right), \\
& E_{1} \longrightarrow E_{1}
\end{aligned}
$$

$$
\left(E_{j}-\frac{a_{j i}}{a_{i j}} E_{i}\right)^{(m)} \longrightarrow E j^{(m+1)} \text { for } j=i+1, i+2, \ldots, n
$$

$$
E_{1}^{(0)} \longrightarrow E_{1}^{(1)}
$$

$$
\left(E_{2}-\frac{\left.a_{21} E_{1}\right)^{(0)}}{a_{11}}=\left(6^{-6} 7:-7\right)-\frac{6}{-3}(-32-1:-1)\right.
$$

$$
=\left(\begin{array}{llll}
6 & -6 & 7:-7
\end{array}\right)^{a+1}(-6 \quad 4-2:-2)=\left(0^{-3}-2 \quad 5:-9\right)=E_{2}^{(9)}
$$

$$
\begin{gathered}
\left(E_{3}-\frac{a_{31}}{a_{11}} E_{1}\right)^{(0)}=\left(\begin{array}{llll}
3 & -4 & 4: 6
\end{array}\right)-\frac{3}{-3}\left(\begin{array}{lll}
-3 & 2 & -1:-1
\end{array}\right)=\left(\begin{array}{lll}
6 & -2 & 3:-7
\end{array}\right) \\
\\
=E_{3}^{(1)}
\end{gathered}
$$

$$
(A \cdot b)^{n)}=\left(\begin{array}{ccccc}
-3 & 2 & -1 & 0 & -1 \\
0 & -2 & 5 & 0 & -9 \\
0 & -2 & 3 & 0 & -7
\end{array}\right)
$$

@IRAQ1math شكاء رياضيات المراق https://telegram.me/IRAQ1math $\mathrm{http}: / /$ mathematicsbasra.blogspot.com
tutps:///www.facebook.com/Mathematic.Basra

$$
\begin{aligned}
& E_{1}^{(1)} \longrightarrow E_{1}^{(2)}, E_{2}^{(1)} \longrightarrow E_{2}^{(2)} \\
& \begin{aligned}
\left(E_{3}-\frac{a_{32}}{a_{22}} E_{2}\right)^{11}= & \left(\begin{array}{lll}
0 & -2 & 3:-7
\end{array}\right)-\frac{-2}{-2}\left(\begin{array}{lll}
0 & -2 & 5:-9
\end{array}\right) \\
& =\left(\begin{array}{llll}
0 & 0 & -2: 2)^{-2}
\end{array}\right.
\end{aligned} \\
& (A ; b)^{(2)}=\left(\begin{array}{ccccc}
-3 & 2 & -1 & 0 & -1 \\
0 & -2 & 5 & 0 & -9 \\
0 & 0 & -2 & 0 & 2
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left(\begin{array}{ccc}
-3 & 2 & -1 \\
0 & -2 & 5 \\
0 & 0 & -2
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
-1 \\
-9 \\
2
\end{array}\right) \text { by using back } \\
& x_{i}=\frac{b_{i}-\sum_{j=i+1}^{n} a_{i j} x_{j}}{a_{i i}}, x_{n}=-\frac{b_{n n}}{a_{n n}} \\
& x_{3}=\frac{b_{33}}{a_{33}}=\frac{2}{-2}=-1 \quad-d j_{0}, h_{2}
\end{aligned}
$$

$$
\begin{aligned}
& x_{1}=\frac{b_{1}-\sum_{j=2}^{3} a i x j^{\prime}}{a n}=2
\end{aligned}
$$

$$
\begin{aligned}
& \frac{56}{3}=(2) \quad \text { col } \mu 川<\text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { * } a=\left[\begin{array}{ll}
R & r
\end{array}\right] \Leftarrow
\end{aligned}
$$

 \therefore - 1 , his

$$
\begin{aligned}
& -3 x_{1}+2 x_{2}-x_{3}=-1 \\
& 6 x_{1}-6 x_{2}+7 x_{3}=-7 \\
& 3 x_{1}-4 x_{2}+4 x_{3}=-6 \\
& x_{1}=\frac{\left|A_{1}\right|}{|A|}, x_{2}=\frac{\left|A_{2}\right|}{|A|} ; \quad x_{3}=\frac{|A|}{|A|} \\
& A=\left(\begin{array}{ccc}
3 & 2 & -1 \\
6 & -6 & 7 \\
3 & -4 & 4
\end{array}\right), b=\binom{-7}{6}
\end{aligned}
$$

 Example: - Solve the system

$$
\begin{aligned}
& x_{2}+x_{3}=6 \\
& x_{1}-2 x_{2}-x_{3}=4 \\
& x_{1}-x_{2}+x_{3}=5
\end{aligned}
$$

\qquad

2014 /11/26 stu)

Using Gaussian elimination with Partial Pivoting ldentivites-zer

$$
L_{E 3}+a_{2} 2^{(1)}=1,\left(a_{32}\right)^{(4)}=1
$$

Scanned by Cam canner

$$
\begin{aligned}
& \left(A_{0} b\right)=\left(\begin{array}{ccc}
0 & 1 & 1: 6 \\
1 & 2 & 1: \\
1 & -1 & 1 \\
1 & 5
\end{array}\right) \sim\left(\begin{array}{cccc}
11 & -2 & -1: 4 \\
0 & 1 & 1: 6 \\
1 & -1 & 1: 5
\end{array}\right) \\
& \left|a \|\left|=0,\left|a_{21}\right|=1,\left|a_{31}\right|=1\right.\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.(A: b)^{a)}=\left(\begin{array}{ccccc}
1 & -2 & -1 & 4 \\
0 & 1 & 1 & 6 \\
0 & 1 & 2 & : & 1
\end{array}\right) N ; \begin{array}{cccc}
1 & -2 & -1: 4 \\
0 & 1 & 1: & 6 \\
0 & 1 & 2 & : 1
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& (A: b)^{(1)} \rightarrow(A: b)^{(2)} \\
& (A: b) \xrightarrow{(2)}\left(\begin{array}{cccc}
1 & -2 & -1: 4 \\
0 & 1 & 1: \\
0 & 0 & 1 & \vdots \\
0
\end{array}\right)
\end{aligned}
$$

@IRAQ1math b) https://telegram.me/IRAQ1 Rena hitp://mathematicsbasra,blogspot.Com hitps://wWw.hactbook.com/

$$
x_{3}=-5, x_{2}=11, \quad x_{1}=21
$$

(b) DecomPosition Matrix netked.

$$
\begin{align*}
& A \cdot x=b \\
& L \cdot(U \cdot x)=b \\
& U \cdot x=y
\end{align*}
$$

where L is lower traingular and U is $L . U \cdot \underline{x}=\underline{b}$ upper traingluar lobtogel
$u_{22} u_{33}-u_{22}<2$

First solve $l . y=b$ for y b) formard substilution Second Solve

(1) Doolitle's metkad leferis, 5u, Linios

$$
\begin{aligned}
& A \underline{x}=b \Longrightarrow h .(U \cdot x)=\underline{b} \text {. } \\
& \text { where }\left(\begin{array}{lll}
l_{21}^{1} & 1 & \\
l_{31} & l_{32} & 1 \\
l_{\text {min }}^{\prime} & l_{n 2} & 4
\end{array}\right), U=\left(\begin{array}{ccc}
u_{11} & u_{12} & U_{1 n} \\
& u_{22} & u_{2 n} \\
& & \vdots \\
& & U_{n n}
\end{array}\right) \\
& A=L . U \\
& \text { where }\left(\begin{array}{lll}
l_{21} & 1 & \\
l_{31} & l_{32} & 1 \\
l_{121} & l_{n 2} & 1
\end{array}\right), U=\left({ }^{u_{11}}\right.
\end{aligned}
$$

Ex:- Solve the system

$$
\begin{aligned}
& 2 x_{1}+4 x_{2}-6 x_{3}=-4 \quad \text { Using doolitle's method } \\
& x_{1}+5 x_{2}-3 x_{3}=10 \\
& x_{1}+3 x_{2}+2 x_{3}=5 \quad \text { AL-WARAQ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Soullisini, } \\
& \left(\begin{array}{lll}
2 & 4 & -6 \\
1 & 5 & 3 \\
1 & 3 & 2
\end{array}\right), b=\left(\begin{array}{c}
-4 \\
10 \\
5
\end{array}\right) \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& =\left(\begin{array}{ll}
u_{11} & u_{12} \\
l_{12} \cdot u_{11} & l_{21} \cdot u_{12}+u_{22} \\
l_{31} u_{11} & l_{31} \cdot u_{22}+l_{32} u_{22}
\end{array}\right. \\
& u_{11}=2, \quad u_{12}=4, \quad u_{13}=-6 \\
& l_{2 r}+U_{1 r}=1 \Rightarrow l_{2 t}=\frac{1}{2} \\
& l_{7} u_{11}=1 \Rightarrow l_{31}=\frac{1}{2} \\
& 2_{21}+u_{12}+u_{22}=5 \Rightarrow \frac{1}{2}(4)+u_{22}=5 \rightarrow u_{22}=3 \\
& L=\left(\begin{array}{ccc}
1 & 0 & 0 \\
\frac{1}{2} & 1 & 0 \\
\frac{1}{2} & \frac{1}{3} & 1 \\
L_{0} \cdot y=b
\end{array}\right), U=\left(\begin{array}{ccc}
2 & 4 & -6 \\
0 & 3 & 6 \\
0 & 0 & 3
\end{array}\right) \\
& \text { b. } y=b \\
& \left(\begin{array}{ccc}
\frac{1}{\frac{1}{2}} & 0 & 0 \\
\frac{1}{2} & \frac{1}{3} & 1
\end{array}\right)\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right)=\left(\begin{array}{c}
-4 \\
10 \\
5
\end{array}\right) \\
& y_{1}=-4, \quad y_{2}=12, \quad y_{3}=3 \\
& U \cdot x=y \Rightarrow\left(\begin{array}{ccc}
2 & 4 & -6 \\
0 & 3 & 6 \\
0 & 0 & 3
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
-4 \\
12 \\
3
\end{array}\right) \\
& x_{3}=1, x_{2}=2, x_{1}=-3 \\
& \mathrm{a}^{3 x}=\left(\begin{array}{c}
-3 \\
2 \\
1
\end{array}\right)
\end{aligned}
$$

(2) Crookes method: 1 .

$$
\begin{aligned}
& A x=\underline{b} \Rightarrow L \cdot(U \underline{x})=\underline{b} \\
& L=\left(\begin{array}{llll}
l_{11} & & \\
l_{13} & l_{22} & l_{33} & \\
l_{13} & l_{23} & l_{33^{2}} & l_{13} \\
l_{13} & l_{2 n} & & l_{\text {inn }}
\end{array}\right), U=\left(\begin{array}{l}
1 \\
1
\end{array}\right. \\
& \left.\begin{array}{ccc}
u_{12} & \ldots & u_{1 n} \\
1 & u_{23} & \cdots \\
u_{2 n} \\
1 & 1 & u_{3 n} \\
1 & & 1
\end{array}\right)
\end{aligned}
$$

$$
s=F \quad, \zeta 1=3.4
$$

$$
\left(\begin{array}{c}
\mu-1 \\
2 \\
8
\end{array}\right)=\left(\begin{array}{c}
i \\
i \\
8
\end{array}\right)\left(\begin{array}{lll}
2 & 1 & i \\
0 & 8 & 0 \\
8 & 0 & 0
\end{array}\right)
$$

$$
E==, \quad S=+\infty
$$

$$
\begin{array}{r}
2 x_{1}+3 x_{2}-x_{3}=5 \\
4 x_{1}+4 x_{2}-3 x_{3}=3 \\
-2 x_{1}+3 x_{2}-x_{3}=1
\end{array}
$$

$$
\text { r(bial, b, }(-3) \text { qdic }(n-)_{1}
$$

$$
\pi \quad a^{c}
$$

$$
B A=\left[23^{\circ}-2 ;\right.
$$

$$
b=
$$

$$
c=\left[\begin{array}{ll}
a & b
\end{array}\right]
$$

就
in. Sel,

$$
\begin{aligned}
& x(2)=(c(2,4)-c(2,3) * x(3)) /(c(2,2) \\
& x(1)=(c(1,4)-c(1,2) * x(2)=c(1,3) * x(3)) / c(1,4)
\end{aligned}
$$

@IRAQ1math

$$
\begin{gathered}
\Rightarrow \quad x(3)=((3,4) / c(3,3) \\
\quad \text { for })=2:-1: 1
\end{gathered}
$$

$$
x(j)=(c(j, 4)-c(j, 3) * \times(3)) \subset(j, j) \neq
$$

की $x(j)=(c(j+4)-c(j, j+1: j): x(j+1: 3)) / c(j e j)$

$$
\begin{aligned}
& C\left(i 0^{\circ}\right)=c\left(i, i 0^{\circ}\right)-c(i, j) / c(i, j) * c(i, 0) \\
& \text { end }
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow c(2, j)=c(2,1)-c(2,1) / c(1,1) \underset{\text { U, in in in su }}{1} \\
& \Rightarrow C\left(3,3^{*}\right)=C(3,1)-c(3,1) / \subset(\mid, 1) \text {. } \\
& \text { Nilf fir } j=1: 2 \text { ? }
\end{aligned}
$$

Solve the system

$$
\begin{aligned}
x_{1}+x_{2}+3 x_{4} & =4 \\
3 x_{1}+x_{2}-x_{3}+x_{4} & =1 \\
3 x_{1}-x_{2}-x_{3}+2 x_{4} & =-3 \\
-x_{1}+2 x_{2}+3 x_{3}-x_{4} & =4
\end{aligned} \quad \text { using Gaussian }
$$

Solution:-

$$
A \cdot B=\left[\begin{array}{cccccc}
1 & 1 & 0 & 3 & 8 & 4 \\
2 & 1 & -1 & 1 & 0 & 1 \\
3 & -1 & -1 & 2 & \vdots & -3 \\
-1 & 2 & 3 & -1 & : & 4
\end{array}\right]
$$

$\left(\sum_{j} \frac{a j i}{a^{\prime} i i} E_{i}\right)^{m}$

$$
\begin{aligned}
& \left(\begin{array}{lllll}
2 & 1 & -1 & 1 & :
\end{array}\right)-\frac{2}{1}\left(\begin{array}{lllll}
1 & 1 & 0 & 3 ; 4
\end{array}\right)=\left(\begin{array}{llllll}
0 & -1 & -1 & -5 & -7
\end{array}\right) \\
& \left(\begin{array}{llll}
3 & -1 & -1 & 2:-3
\end{array}\right) \quad-3(11103: 4)=(0-4-1-7:-15) \\
& \left(\begin{array}{lll}
-1 & 2 & 3
\end{array}-1: 4\right)+\left(\begin{array}{llll}
1 & 1 & 0 & 3: 4
\end{array}\right)=\left(\begin{array}{llll}
0 & 3 & 2: 8
\end{array}\right) \\
& {\left[\begin{array}{cccc:c}
1 & 1 & 0 & -5 & 4 \\
0 & -1 & 1 & -5 & -7 \\
0 & -4 & -1 & -7 & 15 \\
0 & 3 & 3 & 2: 8
\end{array}\right]} \\
& 5 \mathrm{ky} \text { out. }
\end{aligned}
$$

(3) Coleskis nethood.

Definition:-(1) AmatrixA is Positive definite if it is symetric and $x^{2}, A \cdot \underline{0}$ for evory n-dimensional colomn vegrar $x \neq 0$.
$\left(\begin{array}{llll}x_{1} & x_{2} & \ldots x_{n}\end{array}\right)\left(\begin{array}{ccc}a_{11} & a_{12} & -a_{1 n} \\ a_{21} & a_{22} & \ldots \\ 1 & a_{2 n} \\ a_{n 1} & a_{n 2} & \ldots \\ a_{n n}\end{array}\right)\left(\begin{array}{l}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right)$

$$
=\left(\begin{array}{ll}
x_{1} & x_{2}-\cdots x_{n}
\end{array}\right)\left(\begin{array}{l}
\sum_{j=1}^{n} a_{1} j x_{j} \\
\sum_{j=1}^{n} a_{2 j} x_{j} \\
\sum_{j=1}^{n} a_{n j} x_{j}
\end{array}\right)=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} x_{i} x_{j}
$$

Exi- The matrix $A=\left(\begin{array}{ccc}2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2\end{array}\right)$ Positive definite

$$
=\left(\begin{array}{lll}
x_{1} & x_{2} & x_{3}
\end{array}\right)\left(\begin{array}{ccc}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 2
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{lll}
x_{1} & x_{2} & x_{3}
\end{array}\right)\left(\begin{array}{ll}
2 x_{1} & -x_{2} \\
x_{1}+2 x_{2}-x_{3} \\
x_{2}+2 x_{3}
\end{array}\right)
$$

$$
q_{1}=2 x_{1}^{2}-x_{1} x_{2}-x_{1} x_{2}+2 x_{2}^{2}-x_{2} x_{3}-x_{2} x_{3}+2 x_{3}^{2}
$$

$$
\begin{aligned}
7 & =2 x_{1}-x_{1} x_{2}-x_{1} x_{2}+x_{2}^{2} \\
& =x_{1}^{2}+\left(x_{1}^{2}-2 x_{1} x_{2}+x_{2}^{2}+\left(x_{2}^{2}-2 x_{2} x_{3}+x_{3}^{2}\right)+x_{3}^{2}\right.
\end{aligned}
$$

$$
\begin{aligned}
& =x_{1}+\left(x_{1}-x_{1} x_{2}+x_{2} x_{1} x^{2}+\left(x_{2}-x_{3}\right)^{2}+x_{3}^{2}\right. \\
& =x_{1}^{2}+\left(x_{1}\right.
\end{aligned}
$$

$$
\because x^{t} A \cdot x=x_{1}^{2}+\left(x_{1}-x_{2}\right)^{2}+\left(x_{2}-x_{3}\right)^{2}+x_{3}^{2}>0
$$

:OA is positive definite.
a MLy, \& "id jées!
Definition: (2 Aleading Prikipal. Submatrix. of a matrixA is amatrix of the form

$$
\begin{aligned}
& A_{k}=\left(\begin{array}{ccc}
a_{11} & a_{2} & a_{1} k \\
a_{21} & a_{22} & a_{2 n} \\
a_{1} & a_{k 2} & a_{k k}
\end{array}\right) \text { for some } 15 k \mid k n . \\
& A_{1}=(a 11), A_{2}=\left(\begin{array}{cc}
a_{11} & a_{2} \\
a_{21} & a_{22}-\text { AL-WARAQ }
\end{array} \rightarrow A_{n}=A\right.
\end{aligned}
$$

Theeryem: A symetric mafrix A is Positive definite if and onry if each of its leading principal submatrix has apositive deferminat.
$|A K|>0$ for some $1<k$, $<n$

$$
\left|A_{1}\right|>0,\left|A_{2}\right|>0, \cdots,\left|A_{n}\right|>0
$$

Example, The matrix $A=\left(\begin{array}{ccc}2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2\end{array}\right)$ is Positive
Solutioni-
$|A K|>0$ for some $1 i<k \leq n$.

$$
\begin{aligned}
& A=\left(\begin{array}{ccc}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 2
\end{array}\right) \\
& \text { @1RAQ1math 歌 } \\
& \begin{array}{l}
\text { https://telegram.me/IRAQ1math } \\
\text { http://mathematicsbasra.blogspot.com }
\end{array} \\
& \begin{array}{l}
\text { http: } / / \text { mathernaticsbasra.blogspot.com } \\
\text { tatpp://www.facebook.com/Mathematic.Basra }
\end{array} \\
& \left|A_{1}\right|=\left|a_{1}\right|=2>0 \\
& \left|A_{2}\right|=\left|\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right|=2 * 2-(-1) *(-1)=3>0 \\
& \begin{aligned}
&\left|A_{3}\right|=\left|\begin{array}{ccc}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 2
\end{array}\right|=2\left|\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right|-(-1)\left|\begin{array}{cc}
1 & -1 \\
0 & 2
\end{array}\right| \\
&+(0) \mid-1
\end{aligned} \\
& +(0)\left|\begin{array}{cc}
-1 & 2 \\
0 & -1
\end{array}\right| \\
& =2 * 3+(-2)=4>0
\end{aligned}
$$

Thearem (2) If A is an nan positive definite matrix then @ A is nonsigular (AAI $\neq 0$)
(b) aii>0 for each $i=1,2, \cdots, 2 n$
(c) $\max _{1 \leqslant k j<n}\left|a_{k j}\right| \leqslant \max _{1 \leqslant i \leqslant n} \mid a i i 1$
(d) (aij) $)^{2}$ aii ajj for each $i \neq j$

Theorem 3:- A symetrice mateix: A is Positive definite if and onily if A can be factored in the form L.L L^{t} where L is Lower fringular

$$
\begin{aligned}
& A=L \cdot L t \rightarrow\left(\begin{array}{lll}
a_{11} & a_{12} & \ldots \\
a_{21} & a_{22} & a_{1 n} \\
a_{n 1} & a_{n 2} & a_{2 n} \\
a_{n n}
\end{array}\right)= \\
& \left(\begin{array}{llll}
l_{11} & l_{21} & l_{n 1} \\
l_{21} & l_{22} & & l_{22} \\
l_{31} & l_{32} & l_{33} & l_{n 2} \\
l_{n 1} & l_{n 2} & & l_{n n}
\end{array}\right) \cdot\left(\begin{array}{llll}
l_{n n}
\end{array}\right)
\end{aligned}
$$

choleski's Algorithm Produces the L. Lt factorization described in theorem (3). for all $j=1,2, \ldots, n$
(1) If $i=j$

$$
l_{i i}=\left(a_{j j}-\sum_{k=1}^{j-1} l_{j k}^{2}\right)^{\frac{1}{2}}
$$

(2) If $i=j+1, j=j+2, \ldots, n$

$$
l_{i j}=\frac{1}{l_{j j}}\left[a_{j i}-\sum_{k=1}^{j-1} l_{i k} l_{j k}\right]
$$

Ex:- Solve the system

$$
\begin{aligned}
& x_{1}-x_{2}+x_{3}=-2 \\
& -x_{1}+2 x_{2}-3 x_{3}=6 \\
& x_{1}-3 x_{2}+9 x_{3}=2
\end{aligned}
$$

\because using choleski's method.
Solution:

$$
A=\left(\begin{array}{ccc}
1 & -1 & 1 \\
-1 & 2 & -3 \\
1 & -3 & 9
\end{array}\right), b=\left(\begin{array}{c}
-2 \\
6 \\
2
\end{array}\right)
$$

$A=L .2 t \quad$ for all $j=1,2,3$
(1) If $i=j=1 \Rightarrow l_{11}=\left(a_{11}-\sum_{k=1}^{0} l_{1 k}^{2}\right)^{\frac{1}{2}} \Rightarrow l_{11}=\left(a_{11}\right)^{\frac{1}{2}} \cdot \sqrt{1}=1$
(2) If $i=2 \Rightarrow l_{21}=\frac{1}{l_{11}}\left(a, 2-\sum_{k=1}^{\sum_{k=1}} \rightarrow l_{\ell N}\right) \Rightarrow l_{21}=\frac{a_{12}}{l_{11}}=-1$

$$
i=3 \Rightarrow l_{31}=\frac{1}{l_{11}}\left(a_{13}-\sum_{k=1}^{6} L_{d e C}\right) \Rightarrow l_{31}=\frac{a_{13}}{l_{11}}=1
$$

$$
\begin{aligned}
& j=2 \\
& \text { (1) If } i=j=2 \Rightarrow l_{22}=\left(a 22-\sum_{k=1}^{1} l_{2} k\right)^{\frac{1}{2}}=\left(a_{22}-l_{21}^{2}\right)^{\frac{1}{2}} \\
& \Rightarrow l_{22}=\left(2-(-1)^{2}\right)^{\frac{1}{2}}=\sqrt{1}=1
\end{aligned}
$$

(2) If $i=3 \Rightarrow l_{32}=\frac{1}{l_{22}}\left[a_{23}-\sum_{k=1}^{1} l_{3 k} \cdot l_{2 k}\right)$

$$
\begin{aligned}
& l_{32}=\frac{1}{l_{22}}\left[a_{23}-l_{31} l_{21}\right]=\frac{1}{n}[-3-(1)(-1)]=-2 \\
& j=3
\end{aligned}
$$

$$
\begin{aligned}
& \text { (1) If } i=j=3 \\
& l_{33}=\left(a_{33}-\sum_{k=1}^{2} l_{3 k}^{2}\right)^{\frac{1}{2}}=\left(a_{33}-l_{31}^{2}-l_{32}^{2}\right)^{\frac{1}{2}} i l \\
& =\left(9-(1)^{2}-(-2)^{2}\right)^{\frac{1}{2}}=\sqrt{4}=2 \\
& L=\left(\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 1 & 0 \\
1 & -2 & 2
\end{array}\right), L=\left(\begin{array}{cc}
1 & 1 \\
0 & 1 \\
0 & 0 \\
\hline
\end{array}\right) \\
& \therefore A x=\underline{b} \Rightarrow\left(L^{2} \cdot x\right)=b \\
& L y=b \rightarrow\left(\begin{array}{ccc}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & -2 & 2
\end{array}\right)\left(\begin{array}{l}
x \\
y_{2} \\
y_{3}
\end{array}\right)=\left(\begin{array}{c}
-1 \\
6 \\
2
\end{array}\right) \\
& L^{t} \cdot \underline{x}=\underline{y}
\end{aligned}
$$

(2) Iterankive Tehniques.

Def:-(3) The L_{2} and L_{∞}-norms for the vector $x_{=}=\left(x_{1}, x_{2} \ldots, x_{h}\right)^{t}$ are defined by $\|x\|_{2}=\left\{\left.\sum_{i=1}^{n} x_{i}^{2}\right|^{\frac{1}{2}} ;\left\|\frac{x}{2}\right\|_{\infty}=\max ^{2}\left|x_{i}\right|\right.$
Exi- The vector $\underline{x}=(-1,1,2)^{t}$ in \mathbb{R}^{3} has norms

$$
\begin{aligned}
\|\underline{2}\|_{2}=\sqrt{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}} & =\sqrt{(-1)^{2}+(1)^{2}+(2)^{2}}=\sqrt{6} \\
\|\underline{\chi}\|_{\infty}=\max _{1 \leqslant 5 \leqslant 3}\left|x_{1}\right| & =\max \left(\left|x_{1}\right|,\left|x_{2}\right|,\left|x_{3}\right|\right) \\
& =\max (|-1|,|11,| 21)=2
\end{aligned}
$$

Def:-(4) If A is an $n \times n$ matrix then the norm for the matrix is defined by $\|A\|_{\infty}=\max _{1 \leqslant i \leqslant n}\left(\sum_{j=1}^{n}\left(a_{i j}\right)\right.$
Ex: If $A=\left(\begin{array}{ccc}1 & 2 & -1 \\ 0 & 3 & -1 \\ 5 & -1 & 1\end{array}\right)$ then find the norm.

$$
\left.\begin{array}{l}
\sum_{j=1}^{3}\left|a_{1} j\right|=|11+|2|+|-1|=4 \\
\sum_{j=1}^{\sum_{j=1}^{3}}\left|a_{2} j\right|=|0|+|3|+|-1|=4 \\
\sum_{j=1}^{3}\left|a_{3 j}\right|=|5|+|-1|+|1|=7
\end{array}\right\}\|A\|_{\infty}=\max _{1 \backslash i \leqslant 3}\left(\sum_{j=1}^{3} a_{i j}\right)
$$

(a Jacobi Iterative method:
@1RAQ math 3) 2 / /RAQ1math
nttps://telegram.me/IRAQ Let A is $n \times n$ matrix $A x=b$ https:I/Telegram.me//RAQ 1 math
http://mathematicsbasra.blogspot.com huts $/ /$ wwww.tacebook.com/Mathematic. Bate

$$
\begin{aligned}
& \sum_{j=1}^{n} a_{i j} x_{j}=b_{i} \quad(i=1,2, \ldots, n) \\
& \sum_{\substack{j=1 \\
j \neq i}}^{n} a_{i} j x_{j}+a_{i i} x_{i}=b_{i} \\
& x_{i}=\frac{1}{a}[(k)
\end{aligned}
$$

$$
x_{i}^{(k)}=\frac{1}{a i i}\left[b_{i}-\sum_{\substack{j=1 \\ j \neq i}}^{n} \text { aij } x_{j}^{(k-1)} \text { AL-WARAQ } \quad i \neq i\right.
$$

Ex: Solve the system $\quad \begin{aligned} & 3 x_{1}+x_{2}+x_{3}=13 \text { sub: } \\ & \\ & \\ & x_{1}+2 x_{2}-x_{3}=4\end{aligned}$
$x_{1}+x_{2}+x_{3}=9$
whore $\underline{x}^{(0)}=0 \quad$ with accurate $\epsilon=10^{-5}$ solution!-

$$
\left.x_{1}=\frac{1}{a_{11}}\left[b_{1}-\sum_{j=2}^{3} a_{1} j x_{j}^{(k+1)}\right]=\frac{1}{a_{11}}\left[b_{1}-a_{12} x_{2}^{(k-1)}-a_{13} x_{3}^{(k-1)}\right]\right\}
$$

$$
\begin{equation*}
x_{1}^{(k)}=\frac{1}{3}\left[13-x_{2}^{(k-1)}+x_{3}^{(k-1)}\right] \tag{1}
\end{equation*}
$$

$$
\begin{align*}
& x_{2}^{(k)}=\frac{1}{a_{22}}\left[b_{2}-\sum_{j=1}^{3 j} a_{2} j x_{j}^{(k-1)}\right]=\frac{1}{a_{22}}\left[b_{2}-a_{21} x_{1}^{(k-1)}-a_{23} x_{3}^{(k-1)}\right] \\
& \left.x_{2}^{(k)}=\frac{1}{2}\left[4-x_{1}^{(k-1)}+x_{3}^{(k-1)}\right]--2\right) \tag{--2}\\
& x_{3}^{(k)}=\frac{1}{a_{33}} \cdot\left[b_{3-} \sum_{j=1}^{\sum^{2}} a_{3 j} x_{j}^{(k-1)}\right]=\frac{1}{a_{33}}\left[b_{3}-a_{31} x_{1}^{(k-1)}-a_{32} x_{2}^{(k-1)}\right] \\
& x_{3}^{(k)}=9-x_{1}^{(k-1)}-x_{2}^{(k-1)}
\end{align*}
$$

$$
x_{1}^{(1)}=\frac{1}{3}\left[13-x_{2}^{(0)}-x_{3}^{(0)}\right]_{1}=\frac{1}{3}[13-0-0]=\frac{13}{3}
$$

$$
x_{2}^{(1)}=\frac{1}{2}\left[4-x_{1}^{(0)}+x_{3}^{(5)}\right]=2
$$

$$
x_{3}^{(1)}=9-x_{1}^{(0)}-x_{2}^{(0)}=9
$$

$$
x^{(1)}=\binom{2^{13}}{9}
$$

$$
\left\|x^{(1)}-x^{(0)}\right\|_{2}=\left\|\left(\begin{array}{c}
\frac{13}{3} \\
2 \\
9
\end{array}\right)-\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)\right\|_{2}=\left\|\binom{\frac{13}{3}}{2}\right\|_{2}
$$

$$
=\sqrt{\left(\frac{12}{3}\right)^{2}+(2)^{2}+(9)^{2}}=10.87>\epsilon=10^{-5}
$$

$$
{\underset{x}{x}}_{(2)}^{x_{1}}=\frac{1}{3}\left[13-x_{2}^{(1)}-x_{3}^{(1)}\right]=\frac{1}{3}[13-2-9]=0.6667
$$

$$
\begin{aligned}
& x_{2}^{(2)}=\frac{1}{2}\left[4-x_{1}^{(1)}+x_{3}^{(1)}\right]=\frac{1}{2}\left[4-\frac{13}{3}+9\right]=4 \cdot 3333 \\
& x_{3}^{(2)}=9-x_{1}^{(1)}-x_{2}^{(1)}:=1-\frac{13}{3}-2=2.6667 \\
& \underline{x}^{(2)}=\left(\begin{array}{l}
0.6667 \\
4.3333 \\
2.6667
\end{array}\right) \\
& \left\|\left\|\underline{x}^{(2)}-x^{(1)}\right\|_{2}=2 \cdot 3.04>\epsilon\right. \\
& \underline{x}^{(3)}=\left(\begin{array}{l}
2 \\
3 \\
4
\end{array}\right) \Rightarrow\left\|x^{(3)}-x^{(2)}\right\|=1.1957 \times 10^{-15}<6=10^{-5} \\
& \therefore \underline{x}=x^{(5)}=\left(\begin{array}{l}
2 \\
3 \\
4
\end{array}\right)
\end{aligned}
$$

(b) Gallss-seidel method in

$$
\begin{aligned}
& \text { (b Gallss-seidel method } \sum_{j=1}^{n} a_{i j} x_{j}=b_{i} \quad(i=1,2, \ldots, n) \\
& \sum_{j=1}^{i-1} a_{i j} x_{j}+a_{i i} x_{i}+\sum_{j=i+1}^{n} a_{i j} x_{j}=b_{i} \\
& x_{i}=\frac{1}{a_{i i}}\left[b_{i}-\sum_{j=1}^{i-1} a_{i j} x_{j}-\sum_{j=i+1}^{n} a_{i j} x_{j}\right] \\
& x_{i}^{(k)}=\frac{1}{a_{i i}}\left[b_{i}-\sum_{j=1}^{i-1} a_{i j} x_{j}^{(k)}-\sum_{j=i+1}^{n} a_{i j} x_{j}^{(k-1)}\right] \quad \begin{array}{l}
i=b_{2}, \ldots, n \\
a_{i i} \neq 0
\end{array}
\end{aligned}
$$

Ex. Find the first seven iterations for Gauss-seidel method of the following linear system

$$
\begin{aligned}
& -x_{2}+4 x_{3}=-24 \\
& 3 x_{1}+4 x_{2}-x_{3}=30 \\
& 4 x_{1}+3 x_{2}=24
\end{aligned}
$$

$$
\text { with } \underline{x}^{(6)}=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)
$$

$$
\text { Sol: } \begin{aligned}
4 x_{1}+3 x_{2} & =24 \\
3 x_{1}+4 x_{2}-x_{3} & =30 \\
-x_{2}+4 x_{3} & =-24
\end{aligned}
$$

$$
x_{1}^{(k)}=\frac{1}{a n t}\left[b_{1}-\sum_{j=1}^{a} a a_{j} x_{j}^{(k)}-\sum_{j=2}^{3} a\left(j x_{j=1}^{(k-1)}\right]\right.
$$

$$
=\frac{1}{a_{11}}\left[b_{1}-a_{12} x_{2}^{(k-1)}-a_{13} x_{3}^{(k-1)}\right]
$$

$$
\begin{aligned}
& x_{1}^{(k)}=\frac{1}{4}\left[24-3 x_{2}^{(k-1)}\right] \ldots-1 \\
& x_{2}^{(k)}=\frac{1}{a_{22}}\left[b_{2}-\sum_{j=1}^{1} a_{2 j} x_{j}^{(k)}-\sum_{j=3}^{3} a_{2 j} j x_{j}^{(k-1)}\right]
\end{aligned}
$$

$$
x_{2}^{(k)}=\frac{1}{4}\left[30-\sum_{j=1}^{1} a_{2} j x_{j}^{(x)}-\sum_{j=3}^{2} a_{2} j x_{j}^{(k-1)}\right] \Rightarrow x_{2}^{(k)}=\frac{1}{4}\left[30-3 x_{1}^{(k)}+x_{3}^{(k)}-2\right)^{k-1}
$$

$$
x_{3}^{(k)}=\frac{1}{933}\left[b_{3}-\sum_{j=1}^{j=1} a_{3 j} x_{j}^{(k)}-\sum_{j=3}^{3} a_{3} j x_{j}^{(x-1)}\right]
$$

$$
\begin{equation*}
x_{1}^{(1)}=\frac{1}{4}\left[24-3 * x_{1}^{(i)}\right]=\frac{1}{4}[24-3 * 1]=\frac{21}{4}=5.25 \text {. } \tag{3}
\end{equation*}
$$

$$
x_{2}^{(1)}=\frac{1}{4}\left[30-3 * x_{1}^{(1)}+x_{3}^{(9)}\right]_{1}=\frac{1}{4}[30-3 * 5.25+1]=3.81 .25
$$

$$
x_{3}^{(1)}=\frac{1}{4}\left[-24+x_{2}^{(1)}\right]=\frac{1}{4}[-24+3.8125]=-5.046375 .
$$

$X_{1}^{(1)}=\left(\begin{array}{c}5.25 \\ 3.8125 \\ -5.046375\end{array}\right) \quad \therefore$
$X^{(7)}=\left(\begin{array}{c}3.013 .411 \\ 3.988241 \\ -5.0027) 4\end{array}\right) ; \quad \underline{X}=\left(\begin{array}{c}3 \\ 4 \\ -5\end{array}\right)$ exact Salifficion
clear

$$
\begin{aligned}
& a=[23-1 ; 44-3 ;-23-1\} \\
& b=[5 ; 3 ; 1] \\
& n=1 e n g+4(b) \\
& c=[a b] \\
& x=\text { zeros }(n, 1)
\end{aligned}
$$

$$
\text { for, }=1 ; n-1 ;
$$

$$
f \text { or } i=j+1!m j
$$

$$
\begin{aligned}
& c(i, i)=c(i, i)-c(i, j) / c(j, j) \\
& \text { end } \\
& \text { end } \\
& x(n)=c(n, n+1) / c(n, n) \\
& \text { for } j=n-1:-1: 1 \\
& x(j)=(c(j, n+1)-c(j, j+1, n) \ll
\end{aligned}
$$

end

$$
\begin{aligned}
& c(j, j+(\operatorname{sn}) \cos (c(j) \\
& x(j+\mid i n)) / c(j, j)
\end{aligned}
$$

x

$$
\begin{array}{ll}
3 x_{1}+4 x_{2}-2 x_{3}+x_{4}=5 & \\
7 x_{1}+7 x_{2}-9 x_{3}+2 x_{4}=9 & <16 x_{1} l \\
x_{1}+5 x_{2}+x_{3}-x_{4}-4 & \text { 㕸 } \\
2 x_{1}-4 x_{2}-x_{3}+2 x_{4}=-2 & \text { and } \tag{Cus}
\end{array}
$$

ce
clear

$$
a=E
$$

$b=E$
J;
$n=\operatorname{length}(b)$
$c=\left[\begin{array}{ll}a & b\end{array}\right]$,
$x=$ Zeros $(n, 1)$;
for $j=n-1: 1$;
for $i=j+1: n$;
$c(i,: 0)=c(i, ;)-c(i, j) / c(j, j) * c(j, 3)$
end
end

$$
\begin{aligned}
& \text { end } \\
& x(n)=c(n, n+1) / c(n, n) \\
& \text { for } j=n-1:-1 \quad \text { o } 1 \\
& x(j)=(c(j, n+1)-c(j ; j+1 ; n) * x(j+1 ; n) /<c j, j) \\
& \quad \text { end }
\end{aligned}
$$

 Date:
(C) Successive over -Relaxation (SOR)

$$
\begin{aligned}
& x_{i}=(1-\omega) x_{i}^{(k-1)}+\frac{w_{2}}{a_{i j}}\left[b_{i}-\sum_{j=1}^{n} a_{j} x_{j}^{(k)}\right. \\
&\left.-\sum_{j=i+1}^{n} a_{i j} x_{j}^{(k-1)}\right]
\end{aligned}
$$

if $w=1 \Rightarrow$ Son is Gauss -it seidel

$$
\text { i< } \omega<2
$$

Ex:- Find the first seven iterations of the Sore" me thad for the following linear $5 y$ stems.

$$
4 x_{1}+3 x_{2}=24
$$

$$
\left.\begin{array}{rl}
4 x_{1}+3 x_{2}=24 & \text { where } x^{(0)}=\left(\begin{array}{l}
1 \\
3 x_{1}+4 x_{2}-x_{3}
\end{array}=30\right. \\
-x_{2}+4 x_{3}=-24 & w=1: 25
\end{array}\right) \text { and }
$$

Solution:-

$$
\begin{aligned}
& x_{1}^{(k)}=-0.25 x_{1}^{(k-1)}+\frac{1.25}{911}\left[b_{1}-\sum_{j=2}^{3} a_{1 j} x_{j}^{(k-1)}\right]= \\
& x_{1}^{(k)}=-0.25 x_{1}^{(k-1)}+\frac{1025}{4}\left[24-3 x_{2}^{(k-1)}\right] \quad \text { i } \\
& \begin{array}{l}
x_{1}=-0.25 x_{1}+\frac{1.2}{4}\left[24-3 x_{2}\right. \\
x_{2}=-0.25 x_{2}^{(k)}+\frac{1.25}{a 22}\left[b_{2}-\sum_{j=1}^{1} a_{2} j x_{j}^{(k)}-\sum_{j=3}^{3} a 2 j x_{j}^{(k-1)}\right]
\end{array} \\
& =0.25 x_{2}^{(k-1)}+\frac{1.25}{4}\left[30-a_{21} x_{1}^{(k)}-a_{23} x_{3}^{(k-1)}\right] \\
& x_{2}^{(k)}=-0.25 x_{2}^{(k-1)}+\frac{1.25}{4}\left[30-3 x_{1}^{(k)}+x_{3}^{(k-1)}\right] \\
& x_{3}^{(k)}=-0.25{ }_{(k-1)}^{(k)}+\frac{1.25}{4}\left[-24+x_{2}^{(k)}\right]=3 \\
& x_{1}^{(1)}=-0.25 x_{1}^{(0)}+\frac{1.25}{4}\left[24-3 x_{2}^{(0)}\right] \\
& =0.25+\frac{125}{4}[24-3]=6.3125 \\
& x_{2}^{(1)}=-0.25 \times x_{2}^{(0)}+\frac{1.25}{4}\left[30-3 \times x_{1}^{(1)}+X_{3}^{(0)}\right] \\
& =-0.25+\frac{1.25}{4}[30-3 * 6.3125+1]=3.5195313
\end{aligned}
$$

(AL-WARAQ

$$
\left.\begin{array}{l}
x_{3}^{(1)}=-0.25 x_{3}^{(0)}+\frac{1.25}{4}\left[-24+x_{2}^{(1)}\right]=0.25+\frac{1.25}{4}[-24+3.519 \\
533
\end{array}\right] \quad \begin{aligned}
& x_{3}^{(1)}=-6.6501465 \\
& \underline{x}^{(1)}=\left(\begin{array}{l}
6.3125 \\
3-5195313 \\
-6.6501465
\end{array}\right) \\
& \underline{x}^{(7)}=\left(\begin{array}{l}
3.0000498 \\
4.0002586 \\
-5.8003486
\end{array}\right) \\
& \underline{x}=\left(\begin{array}{l}
3 \\
4 \\
-5
\end{array}\right)
\end{aligned}
$$

cle^{-}
clear

$$
\begin{aligned}
& a=[34-2,1 \cdots ; 7,7-92 ; 151-1,2,-4-12] \\
& b=E 5 ; 9 ; 4 ;-2], \\
& n=\operatorname{length}(b) \\
& c=[a \quad b] . \\
& x=\text { Zeros }(n, 1)
\end{aligned}
$$

for $j=1: n-1$ j
for $i=j+1: h j+1$:

$$
\begin{aligned}
& c(i,-)=c(i, i) c(i, j) / c(j, j) * c(j, i) \\
& \text { end } \rightarrow \text { end - } \\
& x(n)=c(n, n+1) / c(n, n)
\end{aligned}
$$

Find the first lao iteration of the Jacobi method ${ }^{2}$ for linear system,$x^{(0)}=0 \quad 10 x_{1}-x_{2}=9$

$$
\begin{aligned}
& -x_{1}+10 x_{2}-2 x_{3}=7= \\
& x_{1}^{(n)}=\frac{1}{a i i}\left[b_{i}-\sum_{i=1}^{n} a_{i j} x_{j}^{(k+1)}\right]-2 x_{2}+10 x_{3}=6 \\
& x_{1}^{(k)}=\frac{1}{a_{11}}-\left[b_{1}-a_{12} x_{2}^{(i)} \because a_{1} \leqslant x_{3}^{(k-1)}\right] \\
& =\frac{1}{10}\left[9+{\underset{x}{2}}_{((\underline{1)}]}^{\because D}\right. \\
& x_{2}^{(k)}=\frac{1}{a_{22}}\left[b_{2}-a_{21} x_{1}^{(k-1)}-x_{2} x_{23} x_{(k-1)}^{(k-1)}\right] \\
& \left.=\frac{1}{10}\left[7+x_{1}^{(k-1)}+2 x_{3}^{(k-1)}\right]-2\right) \\
& x_{3}^{(k)}=\frac{1}{a_{33}}\left[b_{3}-a_{31} x_{1}^{(k-1)}-a_{32} x_{2}^{(k-1)}\right] \\
& i=\frac{1}{10}\left[6+2 x_{2}^{(k+i)}\right] \text {. } \\
& x_{1}^{(1)}=\frac{1}{10}\left[9+\dot{x}_{2}^{(0)}\right]=-\frac{2}{10}=0,9 \\
& x_{2}^{(0)}=\frac{1}{10}\left[71-x_{1}^{(0)}+2 x_{3}^{(0)}\right]=\frac{7}{10}=6.7 \\
& x_{3}^{(1)}=\frac{1}{10}\left[6+2 x_{2}^{(0)}\right]=\frac{6}{10}=0.6 \\
& x_{1}^{(2)}=\frac{1}{10}\left[-2+x_{2}^{(1)}\right]=\frac{1}{10}=[9+8.7]=\frac{9.7}{10}=0.97 \\
& x_{2}^{(2)}=\frac{1}{10}\left[7+x_{1}^{(1)}+2 x_{3}^{(1)}\right]=\frac{1}{10}[7+0-2+2 * 6-6] \\
& =\frac{1}{10}[7+0.9+1.2]=\frac{9.1}{10}=0.91 \\
& x_{3}^{* 2)}=\frac{1}{10}\left[6+2+\frac{10}{10}\right]=\frac{1}{10}[6+2 x-1-7] \\
& =\frac{1}{10}[6+1.4]=\frac{7.4}{10}=6.74 \\
& x^{(2)}=\left(\begin{array}{ll}
0 & 9 \\
0 & 9 \\
0 & 91 \\
0 & 74
\end{array}\right) .
\end{aligned}
$$

$$
\begin{align*}
& x_{i}^{(R T}=\frac{1}{a_{i i}}\left[b_{i}-\sum_{j=1}^{i-1} a_{i j} x_{j}^{(k)}-\sum_{j=i+1}^{n} a_{i j} x_{j}^{(k-1)}\right] \\
& x_{1}^{(k)}=\frac{1}{10}\left[a-\sum_{j=2}^{3} a_{i} j x_{j}^{(k-1)}\right]=\frac{1}{10}\left[9+x_{2}^{(k-1)}\right] \\
& x_{2}^{(k)}=\frac{1}{10}\left[7-\sum_{j=1}^{1} a_{2 j} x_{j}^{(k)}-\sum_{j=3}^{3} a_{2} j x_{j}^{(k-1)}\right] \\
& =\frac{1}{10}\left[7+x_{1}^{(k)}+2 x_{3}^{(k-1)}\right] \\
& x_{3}^{(k)}=\frac{1}{0}\left[6-\sum_{j=1}^{2} a_{3 j} x_{j}^{(k)}\right] \\
& =\frac{1}{10}\left[6+2 x_{2}^{(k)}\right] \\
& x_{1}^{(1)}=\frac{1}{10}\left[9+x_{2}^{(0)}\right]=\frac{9}{10}=0.9 \\
& x_{2}^{(v)}=\frac{1}{10}\left[7+x_{1}^{(1)}+2 x_{3}^{(0)}\right]=\frac{1}{10}[7+0.9]=6.79 \\
& x_{3}^{(1)}=\frac{1}{10}\left[6+2 x_{2}^{(1)}\right]=\frac{1}{10}[6+1.58]=0: 758 \\
& x_{1}^{(z)}=\frac{1}{10}\left[9-x_{2}^{(\prime)}\right]=\frac{1}{10}[9-6-79]=0.979 \\
& x_{2}^{(2)}=\frac{1}{0}\left[7+x_{1}^{(7)}+2 x_{3}^{(1)}\right]=\frac{1}{10}\left[7+0.975^{5}+2 *-0758\right] \\
& =\frac{1}{10}[7.979+1.516] \\
& =\frac{1}{16}[9.495]=0.4495
\end{align*}
$$

(3)

Cis

$$
A x=b \rightarrow \frac{x^{(k)}=+x^{(k-1)}+C=C}{11 T \|<1}
$$

then
to the exact vector \triangle and
the following inqualities hold
(1) $\left\|x^{-}-\underline{x}^{(k)}\right\| \leqslant\|T\|^{k}\left\|\underline{x}-x^{(0)}\right\| \quad x^{x_{n}} \|^{(x)}=T x^{(x)} \rightarrow$
(2) $\left\|\underline{x}-\underline{x}^{(2)}\right\| \leqslant \frac{\|T\|^{k}}{1-\|+\|} \cdot\left\|\underline{x}^{(i)}-\underline{x}^{(0)}\right\|$

Proof
$\therefore\left\{x^{(k)}\right\}_{k=0}^{\infty}$ eon verges to x and we have $\left\|\underline{x}-\underline{x}^{(x)}\right\| \leqslant M T\left\|^{k} \cdot\right\| x-x^{(k)} \| \Rightarrow D$ holds

$$
\begin{aligned}
& \underline{x}=T \underline{x}+\underline{c}=1 \\
& \underline{X}^{(k)}=T \underline{x}^{(x-1)}+\subseteq 2 \\
& \underline{x}-\underline{x}^{(k)}=T\left(\underline{x}-x^{(k-1)}\right) \\
& =T\left(T\left(x-x^{v-2}\right)\right)=T^{2}\left(x-x^{k-2}\right) \\
& =T^{3}\left(\underline{x}-\underline{x}^{(-\overline{-1})}\right) \\
& * x-x^{(k)}=T^{k}\left(x-x^{(0)}\right) \\
& \left\|x^{-x} x^{(k)}\right\|=\|++^{k} \cdot\left(x-x^{(0)} \|\right. \\
& \left\|x-x^{(k)}\right\| \leqslant\left\|T^{k}\right\| \cdot\left\|\underline{x}-x^{(0)}\right\| \\
& \text { since }\|T\|<1 \Rightarrow \lim _{k \rightarrow \infty} I\|T\|^{k} \neq 0 \\
& \lim _{k \rightarrow \infty}\left\|x-x^{(k)}\right\|=\lim _{k \rightarrow \infty}\|T\|\left\|^{k} \cdot\right\| x^{n} x^{(0)} \| \\
& \therefore \lim _{k \rightarrow \infty}\left\|X=x^{(k)}\right\| \geq 0 \\
& \Rightarrow \prod_{k \rightarrow \infty}^{k \rightarrow x^{(k)}}=\underline{x} \text {. }
\end{aligned}
$$

to Prove 2)

$$
\left\|\underline{x}^{(k)}-\underline{x}^{(k-1)}\right\| \leqslant\|T\| \quad\left\|\underline{x}-\underline{(k-1)}-\underline{x}^{(k-2)}\right\| \leq\|T\|^{2}\left\|\underline{x}^{(k-2)}-\underline{x}^{(k-x)}\right\|
$$

$$
\left\|\dot{x}^{(k)}-\underline{x}^{(k-1)}\right\| K\|T\|^{k-1}\left\|\underline{x}^{(1)}-\underline{x}^{(0)}\right\|
$$

Thus for $m>k \geq 1$

$$
\begin{aligned}
& \left\|x^{(m)}=x^{(k)}\right\|=\left\|x^{m}-x^{(m-1)}+x^{(m-1)}-x^{(m-2)}+x^{(m-2)}+\cdots+x^{(k+1)}-x^{(k)}\right\| \\
& \leqslant\left\|x^{(n)}-x^{(m-1)}\right\| 1+\left\|x^{(x-1)}-x^{(n-y}\right\|+11+\left\|x^{(k-1)}-x^{(k)}\right\| \\
& \leqslant\|T\|^{m-1}\left\|x^{(1)}-x^{(0)}\right\|+\|i+\|^{m-2}\left\|x^{\prime \prime},-x^{(2)}\right\|+\cdots+\|T\|^{k}\left\|x^{(2)}-x^{(0}\right\| \\
& \left.=\|T\|^{k}<\|T\|^{m-k-1}+\|+\|^{m-k-2}+1+1+\|T\|^{2}+\|T\|+1\right)\left\|x^{91}-x^{(0)}\right\|
\end{aligned}
$$

$\left.\therefore\left\|x^{(m)}-x_{(m)}^{(k)}\right\| \leqslant\|T\|^{k}\left(1+\|T\|+\|T\|^{2}+\left\|T^{3}\right\|^{(k+11}+\|+\|^{m-k-1}\right)+x^{2} x^{2}\right)$ $\lim _{n \rightarrow \infty} \underline{x}^{(n)}=\underline{x}$
$\therefore\left\|x-x^{(k)}\right\|\left\{\|T\|\left\|^{k}(\|+\|+1)+\right\| T\left\|^{2}+\right\|+1 \|^{3}+\cdots\right)\left\|x^{(y)}-x^{(0)}\right\|$
$\therefore\left\|x-x^{k}\right\|<\frac{\|T\|^{k}}{1-\|T\|} \cdot\left\|x^{(1)}-x^{()}\right\|$
$E x: \rightarrow 10\left(x_{1}-x_{2}+2 x_{3}=6\right.$

$$
\begin{gathered}
-x_{1}+11 x_{2}-x_{3}+3 x_{4}=25 \\
2 x_{1}-x_{2}+10 x_{3}-x_{4}=-11 \\
3 x_{2}=x_{3}+8 x_{4}=15
\end{gathered}
$$

$$
\begin{aligned}
& \text { Solution } \\
& x_{1}^{(k)}=\frac{1}{10} x_{2}^{(k-1)}-\frac{1}{5} x_{3}^{(k-1)}+\frac{3}{5} \\
& x_{2}^{(k)}=\frac{1}{11} x_{1}^{(k-1)}+\frac{1}{11} x_{3}^{(k-1)}-\frac{3}{11} x_{4}^{(k-1)}+\frac{25}{11} \\
& x_{3}^{(k)}=\frac{-1}{5} x_{1}^{(k-1)}+\frac{1}{10} x_{2}^{(k-1)}+\frac{1}{10} x_{4}^{(k-1)}-\frac{11}{10} \\
& (k) \\
& x_{4}^{(k)}=\frac{-3}{8} x_{2}^{(k-1)}+\frac{1}{8} x_{3}^{(k+4)}+\frac{5}{18}
\end{aligned}
$$

$$
\begin{aligned}
& \left(\begin{array}{l}
x_{1}^{(k)} \\
x_{2}^{(k)} \\
x_{3}^{(k)} \\
x_{4}^{(k)}
\end{array}\right)=\left(\begin{array}{cccc}
0 & \frac{1}{10} & \frac{1}{5} & 0 \\
\frac{1}{11} & 0 & \frac{1}{11} & \frac{-3}{11} \\
\frac{-1}{5} & \frac{1}{10} & 0 & \frac{1}{10} \\
0 & \frac{-3}{8} & \frac{1}{8} & 0
\end{array}\right)\left(\begin{array}{l}
x_{1}^{(k-1)} \\
x_{2}^{(k-1)} \\
x_{3}^{(k-1)} \\
\left.x_{3}^{(1-1)}\right)
\end{array}\right)+\left(\begin{array}{c}
25^{\frac{3}{5}} \\
\frac{-111}{10} \\
\frac{-15}{8}
\end{array}\right) \\
& T=(, c=() \\
& \|T\|=\|T\|_{\infty}=\max _{1 \leqslant i<4}\left(\sum_{j=1}^{4}\left|a_{i j}\right|\right) \\
& =\max \left(\sum_{j=1}^{4}|a| j\left|, \sum_{j=1}^{\prime}\right| a_{2 j} j, \sum_{j=1}^{n}\left|a_{3 j}\right|, \sum_{j=1}^{4}\left|a_{4} j\right|\right) \\
& =\max \left(\frac{3}{10}, \frac{5}{10}, \frac{2}{5}, \frac{1}{2}\right) \\
& 11 \text { T川रो }
\end{aligned}
$$

$$
\begin{aligned}
& H \delta x\|=\| A^{-1} \cdot \delta b \| \\
& \|\delta \underline{x}\| \leqslant\left\|A^{-i}\right\| \cdot\|\delta b\| \\
& \frac{\|\delta x\|}{\|x\|} \leqslant \cdot \frac{\left\|A^{-1}\right\|}{\|\underline{x}\|} \cdot\|\delta \underline{\|}\| \\
& A \underline{x}=b \Rightarrow\|A \cdot \underline{x}\|=\|\underline{b}\| \\
& \Rightarrow\|A\| \cdot\|x\| \geqslant\|b\| \\
& \|x\| \geqslant \frac{\|b\|}{\|A\|} \\
& \frac{\|\delta x\|}{\|\underline{x}\|} \leqslant\left\|A^{-1}\right\| \cdot\|A\| \cdot \frac{\|\delta b\|}{\|b\|} \\
& \frac{\|\delta x\|}{\|\underline{x}\|} \leqslant k(A) \cdots \frac{\|\delta b\|}{\|b\|}
\end{aligned}
$$

where $K(A)=\left\|A^{-1}\right\| \cdot\|A\|$ (KCAL is coridition.
(2) Perturbation in $A: \rightarrow$

Let $A^{\prime}=A+\delta A$ (δA is small change)

$$
\begin{aligned}
& \underline{x}=\underline{x}+\delta \underline{x} \\
& (A+\delta A)(\underline{x}+\delta \underline{x})=\underline{b} \\
& A \underline{x}+\delta A \cdot \underline{x}+(A+\delta A) \delta \underline{x}=b \\
& (A+\delta A) \delta \underline{x}=-\delta A \cdot \underline{x} \\
& \delta \underline{x}=-(A+\delta A)-1 \cdot \delta A \cdot \underline{x} \\
& \delta \underline{x}=-\left(A\left(I+R^{-1} \delta A\right)\right)^{-1} \cdot \delta A \cdot \underline{x} \\
& \delta \underline{x}=-\left(I+A^{-1} \delta A\right)^{-1} \cdot A^{-1} \cdot \delta A \cdot \underline{x} \\
& \left.\left.\|\delta \underline{x}\| \| I+A^{-1} \delta A\right)^{-1}\right)\|\cdot\| A^{-1}\|\cdot\| \delta A\|\cdot\| \underline{x} \|
\end{aligned}
$$

$$
\begin{aligned}
& \leqslant \frac{1}{1-\left\|A^{-1}\right\| \cdot\|\delta A\|}\left\|A^{-1}\right\|\|\delta A\| \cdot\|x\| \\
& \frac{\|\delta \underline{x}\|}{\|\underline{x}\|} \leqslant \frac{1}{\|-\| A^{-1}\|\cdot\| \delta A \|} \cdot\left\|A^{-1 \|}\right\| \delta A \| \\
& \frac{\|\delta x\|}{\|\underline{x}\|} \leqslant \text { बIS }
\end{aligned}
$$

$$
\text { c.lo } 1</ \mathrm{In}
$$

$$
x=t=-x .
$$

sting io \qquad
Pasitive

$$
\begin{aligned}
& x-\frac{1}{x}-\frac{1}{\operatorname{ton} x}=x \\
& x=g_{2}(x)=x+\frac{1}{x}+\frac{1}{\tan x}
\end{aligned}
$$

Sy－mbric $0+\left|A_{2}\right|=20>0$

$|A|=\mid, 1>0$
\square ？． \square
\qquad
－：Chapter 4 s－

Interpalation and Polynamial APFoximation

$$
\begin{aligned}
& e^{x}=1+x+\frac{x^{2}}{2!} x^{3}+\frac{x^{4}}{4!} \\
& e^{1.5}=1+1-5+\frac{(1 \cdot 51 ?}{2!}+\frac{(1.5) 3}{3!}
\end{aligned}
$$

（1）Ladrange Polynomial： \qquad 2＇58になごう
Let $\left(x_{0}, f\left(x_{0}\right)\right)$ and $\left(x_{1}, f\left(x_{1}\right)\right)$
are two Poinks with $x_{0} \neq x_{1}$

$$
\Longrightarrow \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}=\frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{x_{1}-x_{0}}
$$

$$
\Rightarrow\left(x_{1}-x_{0}\right) f(x)-\left(x_{1}-x_{0}\right) f\left(x_{0}\right)=\left(x-x_{0}\right) f\left(x_{1}\right)-\left(x-x_{0}\right) f\left(x_{0}\right)
$$

$$
\Rightarrow\left(x_{1}-x_{0}\right) f(x)-x_{1} f\left(x_{0}\right)+x_{0} f\left(x_{0}\right)=\left(x-x_{0}\right) f\left(x_{1}\right)-x f\left(x_{0}\right)+x_{0} f(x)
$$

$$
\left(x_{1}-x_{0}\right) f(x)=x_{1} f\left(x_{0}\right)-x f\left(x_{0}\right)+\left(x-x_{0}\right) f\left(x_{1}\right)
$$

$$
\left(x_{1}-x_{0}\right) f(x)=\left(x_{1}-x\right) f\left(x_{0}\right)+\left(x-x_{0}\right) f\left(x_{0}\right)
$$

$$
\Rightarrow f(x)=\frac{\left(x_{1}-x\right)}{\left(x_{1}-x_{0}\right)} f\left(x_{0}\right)+\frac{\left(x-x_{0}\right)}{\left(x_{1}-x_{0}\right)} f\left(x_{0}\right)
$$

$$
\Rightarrow f(x)=\frac{x-x_{1}}{x_{0}-x_{1}} f\left(x_{0}\right)+\frac{\left(x-x_{0}\right)}{\left(x_{1}-\operatorname{ALC}_{0}\right)} \text { - }
$$

where $L 0(x)=\frac{x-x_{1}}{x_{0}-x_{1}}$ and $L_{1}(x)=\frac{x-x_{0}}{x_{1}-x_{0}}$
In general case for each $i=0,1,2, \ldots, h$. The Polynomial Passing through the Points $\left(x_{0}, f\left(x_{0}\right)\right.$), $\left(x_{1}, f\left(x_{1}\right), \ldots,\left(x_{n}, f\left(x_{n}\right)\right)\right.$ is given by

$$
\begin{equation*}
f(x)=\ln (x)=\sum_{i=0}^{n} L_{i}(x) f(x i) \tag{1}
\end{equation*}
$$

where $L_{i}(x)=\frac{\left(x-x_{0}\right)\left(x-x_{1}\right) \cdots\left(x-x_{i-1}\right) \cdot\left(x-x_{i+1}\right) \cdots\left(x-x_{n}\right)}{\left(x_{i}-x_{0}\right)\left(x_{i}-x_{1}\right) \cdots\left(x_{i}-x_{i-1}\right)\left(x-x_{i+1}\right) \ldots\left(x_{i-}-x_{n}\right)}$ < $10 /<1<0$ sly, ll
whore $L_{i}(x)$ is called the no l lagrange Polynomial.
$L_{i}\left(x_{j}\right)= \begin{cases}1 & \text { where } j=i \\ 0 & \text { where } j \neq i\end{cases}$
$L_{0}\left(x_{0}\right)=1$
(5. Theorem? (1) If $x_{0}, x_{1}, x_{2}, \ldots, x_{n}$ are $n+1$ distinct nuinbevs (and) f is afunction whose "values is given 'at these number, then there exist a unique polynomial $p(x)$. of degree n with the property that $f\left(x_{i}\right)=P\left(x_{i}\right)$ This polynomial given by (1) Janice x_{11} low is et ir no l Ex: - From the fable find $f(1.5)$, using interpolating of

x	0	1	2	3
$k \times 1$	-5	-6	-1	16

Colubion $=n+1=4 \Rightarrow n=3$
(2) Divided Differences: The Zeroth divided differences is given by $f\left[x_{i}\right]=f\left(x_{i}\right)$. The first divided def of f is given by

$$
\begin{aligned}
& \text { is given by } f \text { is given by } f_{\left(x_{i}+1\right)}-f\left(x_{i}\right) \\
& x_{i} f+i=0,1,2, \ldots n-1 \\
& \text { of } x_{i}
\end{aligned}
$$

The second divided difference of f is given by

$$
f\left[x_{i}, x_{i+1}, x_{i+2}\right]=\frac{f\left[x_{i+1}, x_{i+2}\right]-f\left[x_{i}, x_{i-1}\right]}{x_{i+2}-x_{i}}
$$

The k th divided difference of f is given by

$$
f\left[x_{i}, x_{i+1}, x_{i+2}, \ldots, x_{i+k}\right]=\frac{f\left[x_{i+1}, x_{i}+2, \ldots, x_{i} x_{i+k}\right]-f\left[x_{i}, x_{i+1}, \ldots, x_{i}-1-2\right.}{n x_{i}+b, x_{i}}
$$

Ex: Find the first, seconds, third and four th divided differenences from table

$$
\begin{array}{l|lllll}
\begin{array}{lllll}
\text { differences } \\
x & 1 & 3 & 4 & 6 \\
\hline
\end{array} & 7 & 7
\end{array}
$$

$f(x)$ I 10158 , 12 first divided differences are given by
Solution g $f\left(x_{0}\right)-f\left(x_{0}\right) \cdot=\frac{10+2}{3-1}=4$

$$
\begin{aligned}
& f\left[x_{0}, x_{1}\right]=\frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{x_{1}-x_{0}}=\frac{10-2}{3-1}=4 \\
& f\left[x_{1}, x_{2}\right]=\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}=\frac{15-10}{4-3}=5 \\
& f\left[x_{2}, x_{3}\right]=\frac{f\left(x_{3}\right)-f\left(x_{2}\right)}{x_{3}-x_{2}}=\frac{8-15}{6-4}=\frac{-7}{2}=-3.5 \\
& f\left[x_{3}, x_{4}\right]=\frac{f\left(x_{4}\right)-f\left(x_{3}\right)}{x_{4}-x_{3}}=\frac{12-8}{7-6}=4
\end{aligned}
$$

The second divided differences are given by

$$
\begin{aligned}
& f\left[x_{0}, x_{1}, x_{2}\right]=\frac{f\left[x_{1}, x_{2}\right]-f\left[x_{0}, x_{1}\right]}{x_{2}-x_{0}}=\frac{5-4}{4-1}=0.3333 \\
& f\left[x_{1}, x_{2}, x_{3}\right]=\frac{f\left[x_{2}, x_{3}\right]-f\left[x_{1}, x_{2}\right]}{x_{3}-x_{1}}=\frac{-3-5-5}{6-3}=-2.8333 \\
& f\left[x_{2}, x_{3}, x_{4}\right]=\frac{f\left[x_{3}, x_{4}\right]-f\left[x_{2}, x_{3}\right]}{x_{4}-x_{2}}=\frac{4+(3.52}{7-4}-2.5
\end{aligned}
$$

The third divided differences are given by

$$
\begin{array}{r}
f\left[x_{0}, x_{1}, x_{2}, x_{3}\right]=\frac{f\left[x_{1}, x_{2}, x_{3}\right]-f\left[x_{0}, x_{1}, x_{2}\right]}{x_{3}-x_{0}} \\
=\frac{-2.83333-0.33333}{6.1}=-0.63333
\end{array}
$$

$$
f\left[x_{1}, x_{2}, x_{3}, x_{4}\right]=\frac{f\left[x_{2}, x_{3}, x_{4}\right]-f\left[x_{1}, x_{2}, x_{3}\right]}{}
$$

$$
=\frac{2.5-(-2.83333)}{1-3}=1.33333
$$

The fourth divided differences are given lay

$$
\begin{array}{r}
f\left[x_{0}, x_{1}, x_{2}, x_{4}\right]=\frac{f\left[x_{1}, x_{2}, x_{3}, x_{4}\right]-f\left[x_{0}, x_{1}, x_{2}, x_{3}\right]}{x_{4}-x_{0}} \\
=\frac{1.33333-(0.633333)}{7-1}=0.32778
\end{array}
$$

@IRAQ1math فناة رياضبيات العراق https://telegram.me/IRAQ1math http://mathematicsbasra.blogspot.com

Newton InterPolatary divided differences formula Let the Polynomial of Newton's inter Polating divided differences formula is written town, 5 = $=1551$ ar la, 3 , in by $f(x)=P_{n}(x)=\quad$ xn wis

$$
-\hat{a}_{0}+a_{1}\left(x-x_{0}\right)+a_{2}\left(x-x_{0}\right)\left(x-x_{1}\right)+\cdots+a_{n}\left(x-x_{0}\right)\left(x-x_{1}\right) \ldots\left(x-x_{2}\right)
$$

$$
\text { if } x=x_{0}
$$

\leq Nunsuiliofts
$f\left(x_{0}\right) \simeq P_{n}\left(x_{0}\right)=a_{0}+a_{1} \cdot 0+a_{2 \cdot 0+1+1}+a_{n} 0$ Eves x_{0} bill

$$
\begin{aligned}
& f\left(x_{0}\right)=a_{0} \quad x=x_{0} \\
& \therefore f(x) \cong P_{n}(x)=f\left(x_{0}\right)+a_{1}\left(x-x_{0}\right)+\cdots+a_{n}\left(x-x_{0}\right)\left(x-x_{1}\right)-\left(x-x_{0}\right)
\end{aligned}
$$

if $x=x_{1}$

$$
\begin{gathered}
f\left(x_{1}\right)=f\left(x_{0}\right)+a_{1}\left(x_{1}-x_{0}\right)+0+\cdots+0 \\
\therefore f\left(x_{1}\right)=f\left(x_{0}\right)+a_{1}\left(x_{1}-x_{0}\right) \\
a_{1}=\frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{x_{1}-x_{0}}=f\left[x_{0}, x_{0}\right]
\end{gathered}
$$

$$
\therefore f(x)=P_{n}(x)=f\left(x_{0}\right)+f\left[x_{0}, x_{1}\right]\left(x-x_{0}^{\prime}\right)+\ldots+a_{n}\left(x-x_{0}\right)(x-x)
$$

In general
$\cdots\left(x-x_{n}\right)$
$a_{k}=f\left[x_{0}, x_{1}, \ldots, x_{k}\right]$ for each $k=0,1,2, \ldots n$
The $P_{n}(x)$ san be written as

$$
f(x) \simeq P_{n}(x)=f\left(x_{6}\right)+\sum_{k=1}^{n} f\left[x_{6}, x_{1} \ldots, x_{k}\right]\left(x-x_{0}\right)(x-x)-=0
$$

$$
\begin{align*}
& f(x) \simeq P_{n}(x)= f\left(x_{0}\right)+f\left[x_{0}, x_{1}\right]\left(x-x_{0}\right)+f\left[x_{0}, x_{1}, x_{2}\right] \cdot\left(x-x_{0}\right)\left(x-x_{0}\right) \tag{2}\\
&+f\left[x_{0}, x_{1}+x_{2}, \cdots, x_{n}\right] \cdot\left(x-x_{0}\right)\left(x-x_{1}\right) \cdots-\left(x-x_{n-1}\right) \\
&
\end{align*}
$$

(2) is called Newton forward-divided difference formula $(x) F:(D) D)=[\pm, 1]$

QQ) 2 mes, cleo, 0,
Ex:- Find $f(1.21$ using Newton frrward-divided difference formula (F.D.D) From the following table

x	1	3	4	6	7
$f(x)$	2	10	15	8	12

\because Solution: $\because \quad n+1=5 \Rightarrow n=4 \quad 2,2,5,5,5$ ins.

$$
\begin{aligned}
& f(x) \simeq p_{4}(x)=f\left(x_{0}\right)+\sum_{k=1}^{4} f\left[x_{0}, x_{1}, \ldots, x_{4}\right]\left(x-x_{0}\right)(x-x) \ldots \\
& \quad\left(x-x_{k-1}\right) \\
& f(x) \bumpeq f\left(x_{0}\right)+f\left[x_{0}, x_{1}\right]\left(x-x_{0}\right)+f\left[x_{0}, x_{1}, x_{2}\right]\left(x, x_{0}\right)\left(x-x_{1}\right) \\
& +f\left[x_{0}, x_{1}, x_{2}, x_{3}\right]\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right)+f\left[x_{0}, x_{1}, x_{2}, x_{3}, x_{4}\right] \\
& \left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)
\end{aligned}
$$

x	f	$f[1]$	$f[g]$	$f[3]$	$f[4]$
1	2				
3	10	4	0.3333		
4	15	5	-2.83333	1.63333	0.32778
7	8	-3.5	2.5		
7	12	4	2.5		

$$
\begin{aligned}
& f(x) \simeq 2+4(x-1)+0.3333(x-1)(x-3)+(-0.6333)(x-1)(x-3)(x-4) \\
& +0.32778 \cdot(x-1)(x-3)(x-4)(x-6) \\
& f(1.2) \sim 0.45569
\end{aligned}
$$

Now if $x_{i+1}-x_{i}=h \quad \forall i=0,12 m$, $n-1$
Then the first divided differences are given by

$$
\begin{aligned}
& f\left[x_{0}, x_{1}\right]=\frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{x_{1}-x_{0}}=\frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{h}=\frac{\Delta f\left(x_{0}\right)}{h}=\frac{1}{h} \Delta f_{0} \\
& f\left[x_{1}, x_{2}\right]=\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-\frac{x_{L}}{\text { AL-WARAQ }}}=\frac{\Delta f_{1}}{h} \\
& \vdots
\end{aligned}
$$

In general : $\Delta f_{k}=f_{k}-f_{k-1}, \quad \forall k=1,2, \ldots,{ }^{n}$
The second divided differences are given by:

$$
\begin{aligned}
f\left[x_{0}, x_{1}, x_{2}\right] & =\frac{f\left[x_{1}, x_{2}\right]-f\left[x_{0}, x_{1}\right]}{x_{2}^{\prime}-x_{0}}=\frac{1}{2 h}\left(\Delta f_{1}-\Delta f_{0}\right) \\
& =\frac{1}{2 h^{2}} \Delta f_{0}
\end{aligned}
$$

In general $\Delta^{2} f_{i}=\Delta\left(\Delta f_{i}\right) \quad, i=0,1,2, \ldots, n-2$
The K th divided difference are given by

$$
\begin{aligned}
\Delta^{k} f_{i} & =\Delta^{k-1}\left(\Delta f_{i}\right)=\Delta^{k-1}\left(f_{i+1}, f_{i}\right) \\
& =\Delta^{k-1} f_{i+1}-\Delta^{k-1} f_{i} \quad, \quad i=0,1,2, \ldots, n-k
\end{aligned}
$$

for example:

x	x_{0}	x_{1}	x_{2}	x_{3}	x_{4}
$f(x)$	f_{0}	f_{1}	f_{2}	f_{3}	f_{4}

from formula (2) we have

$$
\begin{aligned}
& \text { from formula } \\
& f(x) \simeq P_{n}(x)=f\left(x_{0}\right)+f\left[x_{0}, x_{1}\right]\left(x-x_{0}\right)+f\left[x_{0}, x_{1}, x_{2}\right]\left(x-x_{0}\right)\left(x-x_{2}\right) \\
& \left.+\cdots+x_{0}, x_{1}, \ldots, x_{n}\right]\left(x-x_{0}\right)\left(x-x_{1}\right) \ldots\left(x-x_{n-1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =f\left(x_{0}\right)+\frac{\Delta f_{0}}{h}\left(x-x_{0}\right)+\frac{\Delta^{2} f_{0}}{2 h^{2}}\left(x_{-} x_{0}\right)\left(x-x_{1}\right)+\cdots \\
& \frac{\Delta^{3} f_{0}}{3 N 2+h^{3}}\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right)+11+\frac{\Delta^{n} f_{0}}{n \Delta h-1)}\left(x^{3 n+2}-x_{n-1}^{n}\right) \\
& f(x) \sim x_{n}(x)=f\left(x_{0}\right)+\sum_{k=1}^{n} \frac{\Delta^{k} f_{0}}{K!h^{k}}\left(x-x_{0}\right) \cdots\left(x-x_{k-1}\right)
\end{aligned}
$$

The formula (3) is called Newton forword-difference form ala (FolD)

Ex: - Find $f(2,5$, , from the following table.

Solution: To find $f(2.5)$, we use Newlon forward difference (formula (3))

$$
\begin{aligned}
& n+\frac{1}{f}=5 \Rightarrow n^{n} \Rightarrow \Delta^{2} f \quad \Delta^{3} f \quad \Delta^{4} f \\
& 2 \quad 5 \\
& \begin{array}{ccccc}
2 & 10 & >5 & & \\
-2 & \rightarrow 0 & \\
4 & 17 & 7 & 2 & 0 \\
5 & 26 & 5 & 2 & n=1
\end{array} \\
& f(x) \simeq P(x)=f\left(x_{0}\right)+\sum_{k=1}^{n=1} \frac{\Delta^{k} f_{0}}{k!1^{k}}\left(x-x_{0}\right)\left(x-x_{1}\right) \ldots\left(x-x_{k-1}\right) \\
& =f\left(x_{0}\right)+\frac{\Delta f_{0}}{1!h}\left(x-x_{0}\right)+\frac{\Delta^{2} f_{0}}{2!h^{2}}\left(x-x_{0}\right)\left(x-x_{0}\right)+\frac{4^{3} f_{0}}{3!h^{3}}\left(x-x_{0}\right)\left(x-x_{0}\right) \\
& +\frac{\Delta^{4} \dot{f}_{0}}{4!h^{4}}\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{3}\right) \\
& f(x) \simeq 5+\frac{5}{1!(1)}(x-2)+\frac{2}{2!(1)^{2}}(x-2)(x-3)+\frac{0}{31(y)^{3}}(x-2) \\
& \text { - }(x-3)(x-4)+\frac{0}{4!(144}(x-2)(x-3)(x-4)(x-5) \\
& =5+5 x-10+x^{2} \div 5 x+6 \\
& f(x)=x^{2}+1 \\
& f(2.5)=(2.5)^{2}+1=6.25+1=7.25
\end{aligned}
$$

 https://telegram.me/IRAQ1math

Now, if the Palynomial is writlen by

$$
\begin{aligned}
& f(x) \simeq P_{n}(x)=a_{0}+a_{1}\left(x-x_{n}\right)+a_{2}\left(x-x_{n}\right)\left(x-x_{n-1}\right) \\
& +\cdots+a_{n}\left(x-x_{n}\right)\left(x-x_{n-1}\right) \cdots\left(x-x_{0}\right) \\
& \text { if } \left.\dot{x}=x_{n}^{n} \Rightarrow f\left(x_{n}\right)=a_{0}\right) \\
& f(x) \sim f\left(x_{n}\right)+a_{1}\left(x-x_{n}\right)+a_{2}\left(x-x_{n}\right)\left(x-x_{n-1}\right)+\cdots \\
& \quad+a_{n}\left(x-x_{n}\right)\left(x-x_{n-1}\right) \ldots\left(x-x_{n}\right)
\end{aligned}
$$

when $x=x_{n-1}$

$$
\begin{aligned}
& \Rightarrow \quad a_{1}=f\left[x_{n-1}, x_{n}\right] \\
& \vdots \\
& a_{k}=f\left[x_{0}, x_{1}, \ldots, x_{k}\right]
\end{aligned}
$$

Then we have

$$
\begin{aligned}
& \left.\left.f(x) \simeq P_{n}(x)=f\left(x_{n}\right)+f\left[x_{n-1}, x_{n}\right]\left(x-x_{n}\right)+\ldots, x_{n-1}, x_{n}\right]\left(x-x_{n}\right)\left(x-x_{n-1}\right), x_{n}\right]\left(x-x_{0}\right)
\end{aligned}
$$

$E(x)$ find $f(5.5)$ from the following table $\begin{array}{lllllll}\cdots & 1 & 2 & 4 & 6 & 7 & \text { efolution } \\ f(x) & 10 & 15 & 8 & 12 & \text { On }\end{array}$ $f(x) 12 \quad 10 \quad 15 \quad 8 \quad 12$
To find $f(5.5)$ we a.sed the furmula (4) $n+1=5$

from formula (4), we obtain AL-WARAQ

$$
f(x) \simeq P_{4}(x)=12+4 *(x-7)+2.5(x-7)(x-6)+
$$

$$
1.3333(x-7)(x-6)(x-4)+0.32778(x-7)(x-6)(x-4)(x-3)
$$

$$
f(5.5)=?
$$

具

$$
f^{2}(x) \simeq P_{n}(x)=f\left(x_{n}\right)+\left(x-x_{n}\right) \cdot \frac{\nabla f_{n}}{!!h}+\left(x-x_{n}\right)\left(x-x_{n-1}\right) \cdot \frac{\nabla^{2} f_{n}}{2!h^{2}}
$$

$$
+\left(x-x_{n}\right)\left(x-x_{n-x}\right)\left(x-x_{n}\right) \cdot \frac{\nabla^{n} f_{n}}{n!h_{n}}
$$

$$
\begin{aligned}
= & f\left(x_{n}\right)+\sum_{k=0}^{n} \frac{V^{n} f u}{n!h}\left(x-x_{n}\right)\left(x-x_{n}+1\right)(5) \\
& \text { Find } f(5.5) \text { bronc } \text { the following }
\end{aligned}
$$

Ex: Find $f(5,5)$ frame the following table

$$
\begin{array}{c|ccccc}
x & 2 & 3 & 4 & 5 & 6 \\
\hline f(x) & 5 & 10 & 17 & 26 & 37
\end{array}
$$

Solution :- $n=4 \quad ; x_{i+1}-x_{i}=h=1$
$x \quad f$ 布 $\nabla^{2} f \nabla^{r f} \nabla^{\mu} f$
from (5) we have

$$
\begin{aligned}
& f(x) \sim f\left(x_{4}\right)+\left(x-x_{4}\right) \cdot \frac{\nabla f_{4}}{\frac{1!h}{}}+\left(x-x_{4}\right)\left(x-x_{3}\right) \frac{\nabla^{2} f_{4}}{2!h^{2}}+ \\
& \left(x-x_{4}\right)\left(x-x_{5}\right)\left(x-x_{2}\right) \frac{\nabla^{3} f_{4}}{3!!\frac{\nabla^{4}}{} f_{4}}+\left(x-x_{4}\right)\left(x-x_{3}\right)\left(x-x_{3}\right)(x-x) \frac{x^{4}}{4!!h} \\
& f(x) \simeq 37+(x-6) \cdot \frac{11}{1!(1)}+(x-6)(x-5) \cdot \frac{2}{2!(1)^{2}}+(x-6)(x-5)(x-4) \cdot \frac{0}{3!\cdot(1)^{3}} \\
& +(x-6)(x-5)(x-4) \cdot(x-3) \cdot \frac{0}{4!(1) 4}
\end{aligned}
$$

$$
\begin{aligned}
& 25 \\
& 3 \quad 10 \quad 5 \\
& \begin{array}{lllll}
4 & 17 & 7 & 2 & 0 \\
5 & 26 & 9 & 2 &
\end{array} \\
& 6 \quad 37,11 \rightarrow 2 \rightarrow 0 \rightarrow 0
\end{aligned}
$$

$$
\begin{aligned}
= & 37+11 x-66+x^{2}-11 x+30+0+0 \\
& f(x)=x^{2}+1 \\
& f(5.5)=(5.5)^{2}+1=31.25
\end{aligned}
$$

 Gauss formulas
（ai－Gauss forward formula a wry（f）

$$
\left.\begin{array}{l}
f(x) \simeq P_{n}(x)=f\left(x_{0}\right)+\left(x-x_{0}\right) \frac{\delta f 1}{1!h} \\
+\left(x-x_{0}\right)\left(x-x_{1}\right) \frac{\delta_{2} f_{0}}{2!h^{2}}+ \\
\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{-1}\right) \cdot \frac{\delta^{3} f_{1}}{3!1_{3}^{3}}+ \\
\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{-1}\right)-\left(x-x_{2}\right) \frac{\delta_{0}}{4!f_{0}^{4}}
\end{array}\right\}
$$

$\frac{x}{x} \frac{f}{f} \quad \delta^{x} \delta^{2} f \delta^{3} f S^{4} f$

$\begin{array}{ccc}\widehat{x}_{0}^{-1} & x_{0}^{2} & f_{0}-f_{-1} \\ x_{n} & 1\end{array}$

$2,240,0$ 以 ب． $f_{1}-f_{0}$
$f_{2} f_{1}=b_{3,}$
$f_{3}-f_{2}=01$

Example：Find $P(5.5)$ from the following table | x | 1 | 3 | 5, | 7 | 9 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $f\left(x_{1}\right)$ | 2 | 10 | 15 | 18 | 20 |

Solution：$n+1=5 \Rightarrow n=4$
以脌
To find $f(5.5)$ ，we used formula（6）

cW）जblíy sing

AL－WARAD

$$
\begin{aligned}
& f(x) \simeq P(x)=15+(x-5) \cdot \frac{3}{11 \cdot(2)}+(x-5)(x-7) \cdot \frac{-2}{21(2) 2^{2}}+(x-5)(x-7)(x-3)(x-9) \cdot \frac{0}{4!(2)^{4}} \\
& (x-5)(x-7)(x-3) \cdot \frac{1}{3!(2)^{3}}+(x-5 \\
& f(5-5)=15 \cdot 8984-3
\end{aligned}
$$

(b) Gauss Backward formula Auedr-Gob' $\underset{\text { a }}{\text { emu }}$

$$
\begin{aligned}
& f(x)=P_{n}(x)=f\left(x_{0}\right)+\left(x-x_{0}\right) \frac{\delta f_{-1}}{1!h}+\left(x-x_{0}\right)\left(x-x_{-1}\right) \frac{\delta^{2} f_{0}}{2!!^{2}}+ \\
& \left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{1}\right) \frac{\delta^{3} f-1}{8!}+\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{1}\right)(x-x-2) \frac{\delta^{4} f_{0}}{4\left(h^{4}\right.}
\end{aligned}
$$

Ex:- Find $f(4.5)$ from the following table

$$
x \mid 1,3,579
$$

$\begin{array}{llllll}f(x) & 2 & 10 & 15 & 18 & 20\end{array}$
Solverion, $n+1=5 \Rightarrow n-4$. To Find $f(5.5)$, we used formenla (7)

$$
\begin{aligned}
& f(x) \sim P(x)=15+(x-5) \frac{5}{16(2)}+(x-5)(x-3) \frac{-2}{2!(2)^{2}}+(x-5)(x-7) \frac{1}{3!(2)}{ }^{4} \\
& +(x-5)(x-3)(x-7)(x-1) \cdot \frac{0}{4!(2)^{4}}
\end{aligned}
$$

$$
f(x)=\frac{1}{x-2}
$$

$f(4.5)=13.6 .015 .625$ (AAEWARAQ

$$
\begin{aligned}
x-x_{2} & =x-\left(x_{1}+h_{1}\right. \\
& =X-\left(x_{0}+h_{1} h\right) \\
& =x-\left(x_{0}+2 h\right.
\end{aligned}
$$

- ckapter 5 -

Nunevicat Differmeintion and Inflegratisi
(1) If $x_{i+1}-x_{i}=1$ Esuth et th ; dität.
(a) numerical differentiation of xewton: find.ard furimula $f(x)=f\left(x_{0}\right)+\left(x-x_{0}\right) \frac{\Delta f_{0}}{1!\hbar}+\left(x-x_{0}\right)\left(x-x_{1}\right) \frac{\Delta f_{0}}{2!t_{0}}+1$

$$
\begin{equation*}
\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right) \frac{\Delta_{0}^{3 f_{0}}}{3!L^{3}}+\frac{\Delta f_{0}}{1!\hbar}+\left(x-x_{0}\right)\left(x-x_{1}\right) \frac{\Delta f_{0}}{2!f_{0}}+1\left(x-x_{0}\right)\left(x-x_{1}\right) \cdot L_{1}^{2}\left(x-x_{n-1}\right) \frac{\Delta 4 f_{0}}{n!h^{2}} \tag{1}
\end{equation*}
$$

Let $\frac{x-x_{0}}{L_{c}}=q \Rightarrow x-x_{0}=h q$

$$
\begin{aligned}
& x-x_{1}=x-\left(x_{0}+h\right)=x-x_{0}-L=h q-h=h(9-1) \\
& x x_{2}=x-\left(x_{1}+h\right)=x-x_{0}-2 h=h 9-2 h=h(9-2) \mid
\end{aligned}
$$

In deneral

$$
x-x_{k}=h(q-k) ; \quad k=0,1,2, n,
$$

Substitute the lost relations info (1), we obtain

$$
\begin{align*}
& \begin{aligned}
f(x) & =f\left(x_{0}\right)+q \Delta f_{0}+q(q-1) \frac{\Delta^{2} f_{0}}{2}+q(q-1)(q-2) \frac{\Delta 3 f_{0}}{6} \\
& +q(q-1)(q-2)(q-3) \Delta \Delta^{4} q_{0}
\end{aligned} \\
& +q(q-1)(q-2)(q-3) \frac{\Delta^{4} q_{0}}{24} \\
& f^{\prime}(x)=\frac{d f}{d q} \cdot \frac{d q}{d x}=\frac{1}{\hbar} \cdot \frac{d f}{d q} \\
& f(x)=f\left(x_{0}\right)+9 \Delta f_{0}+\frac{1}{2}\left(q^{2}-q\right) \Delta^{2} f_{0}+\frac{1}{6}\left(\dot{q}^{3}-3 q^{2}+2 q\right) \Delta^{3} f_{0} \\
& +\frac{1}{24}\left(q^{4}-6 q^{3}+11 q^{2}-6 q\right) \Delta^{4} f_{0}+\cdots \\
& \begin{aligned}
& f^{\prime}(x)=\frac{1}{h} \frac{d f}{d q}=\frac{1}{h}\left[\Delta f_{0}+\frac{1}{2}(29-1) \Delta^{2} f_{0}+\frac{1}{6}\left(-39^{2}-69+2\right) \Delta 3 f\right. \\
&\left.+\frac{1}{24}\left(49^{3}-1892+229-6\right) \quad \Delta^{4} f_{0}\right]
\end{aligned} \\
& \begin{aligned}
& f^{\prime}(x)=\frac{1}{\hbar}\left[\Delta f_{0}+\frac{1}{2}(2 q-1) \Delta^{2} f_{0}+\frac{1}{6}\left(39^{2}-6 q+2\right) \Delta^{3} f_{0}\right. \\
&\left.* \frac{1}{12}\left(2 q^{3}-g q^{2}+11 q-3\right) \Delta^{4} f_{0}+\cdots 1\right]
\end{aligned} \tag{2}
\end{align*}
$$

(0) \qquad

$$
f^{\prime \prime}(x)=\frac{d^{2} f}{d q^{2}} \cdot \frac{d^{2} q}{d x^{2}}
$$

$$
f(x)=\frac{1}{h^{2}}\left[\Delta^{2} f_{0}+(q-1) \Delta^{3} f_{0}+\frac{1}{12}\left(69^{2}-18 q+11\right) \Delta^{4} f_{0}\right)_{1}
$$

If $x=x_{i}$ dow tie w tie j

- Set $x_{i}=x_{0} \Rightarrow q=0, f\left(x_{i}\right)=f\left(x_{0}\right)$.

$$
\begin{align*}
& f\left(x_{0}\right)=\frac{1}{4}\left[\Delta f_{0}-\frac{1}{2} \Delta^{2} f_{0}+\frac{1}{3} \Delta^{3} f_{0}-\frac{1}{4} \Delta^{4} f_{0}+1 i\right], \\
& f^{\prime}\left(x_{0}\right)=\frac{1}{h^{2}}\left[\Delta^{2} f_{0}-\Delta^{3} f_{0}+\frac{11^{4}}{12} \Delta^{4} f_{0}-\frac{5}{6} \Delta^{5} f_{0}\right] 111 \tag{5}
\end{align*}
$$

Example: - Find $f^{\prime}(2.5), f^{\prime \prime}(2.5)$ and $f^{\prime}(3)$ from the

Solution -y

$$
f^{\prime}(2-5)=\frac{1}{1}\left[5+\frac{1}{2}\left(2(0-5-1) * 2+\frac{1}{6}\left(3(0-5)^{2}-6(0-5)+2\right) * 0+0\right]\right.
$$

$$
f^{\prime}(2.5)=5 \Rightarrow f^{\prime}(2.5)=\frac{1}{(1)^{2}}[2+0+0]=2
$$

$$
f^{\prime}(3)=\frac{1}{1}\left[7-\frac{1}{2} * 2+\frac{1}{3} * 0+\frac{1}{4} *=\right)^{2} \text { AL-WARAQ } \longrightarrow f^{\prime}(3:=6
$$

Scanned by CamScanner
(b) Nunterical Differentiation of Newton-Backward formula

$$
\begin{align*}
& f(x)=f\left(x_{n}\right)+\left(x-x_{n}\right) \frac{\nabla f_{n}}{T!h}+\left(x-x_{n}\right)\left(x-x_{n-1}\right) \frac{\nabla^{2} f_{n}}{2!L_{n}}+ \\
& \quad+111+\left(x-x_{n}\right)\left(x-x_{n-1}\right) \ldots\left(x-x_{n}\right) \frac{\nabla^{n} f_{n}}{n!L n} \tag{6}
\end{align*}
$$

Let $\frac{x-x_{n}}{h}=q \Rightarrow x-x_{n}=\ln q$

$$
x-x_{n-1}=x \cdot(x-2)=x_{1}-x_{n}+h=h q+h=h(q+1)
$$

$$
x-x_{n-2}=x-\left(x_{n}-2 h\right)=h(9+2)
$$

In general

$$
x-x_{n}-k=L(q+k) \cdot \quad k=0, \lg 2, \ldots
$$

Subslitute the last velations, we have

$$
\left.\begin{array}{rl}
f(x)= & f\left(x_{n}\right)+q \nabla f_{n}+q(q+1) \frac{i \nabla^{2} f_{n}}{2!}+q(q+1)(q+2) \frac{\nabla^{3} f_{n}}{3!}+ \\
q(q+1)(q+2)(q+3) \frac{\nabla^{4} f_{n}}{4!}+1+1 \\
f(x)= & f\left(x_{n}\right)+9 \nabla f_{n}+\frac{1}{2}\left(q^{2}+q\right) \nabla^{2} f_{n}+\frac{1}{6}\left(q^{3}+3 q^{2}+2 q\right) \nabla^{3} f_{n} \\
& +\frac{1}{24}\left(q^{4}+6 q^{3}+11 q^{2}+69\right) \nabla^{4} f_{n}+111 \\
f^{\prime}(x)= & \frac{d f}{d q} \cdot \frac{d q}{d x}=\frac{1}{h} \frac{d f}{d q} \\
= & \frac{1}{h}\left(\nabla_{n}+\frac{1}{2}\left(2 q+12 \nabla^{2} f_{n}+\frac{1}{6}\left(3 q^{2}+6 q+2\right) \nabla^{3} f_{n}+\right.\right. \\
& \frac{1}{12}\left(2 q^{3}+g q^{2}+11 q+3\right) \nabla^{4} q_{n}+1 n
\end{array}\right]
$$

If $x=x_{i} \quad$ lof? Plavio \& 'és
set $x_{i}=x_{n} \Longrightarrow q=0 \quad, f\left(x_{i}\right)=f\left(x_{n}\right)$

$$
\begin{align*}
& f^{\prime}\left(x_{n}\right)=\frac{1}{h}\left[\nabla^{f_{n}}+\frac{1}{2} \cdot \nabla^{2} f_{n}+\frac{1}{3} \nabla^{3} f_{n}+\frac{1}{4} \nabla^{4} f_{n+11}\right] \ldots . \tag{9}\\
& f^{\prime \prime}\left(x_{n}\right)=\frac{1}{h^{2}}\left[\nabla^{2} f_{n}+\nabla^{3} f_{n}+\frac{11}{12} \nabla^{4} f_{n}+\frac{5}{6} \nabla^{5} f_{n+111}\right] \tag{10}
\end{align*}
$$

Example: Find $f^{\prime}(5.5), f^{\prime}(5.5)$ and $f^{\prime}(6)$

$$
\begin{aligned}
& q=\frac{x-x_{n}}{h}=\frac{5 \cdot 5-6}{1}=-0.5 \\
& f^{\prime}(5.5)=\frac{1}{1}\left[11+\frac{1}{2}(2(-0.5)+1) * 2+0+0\right] \\
& f^{\prime}(5.5)=11 \\
& f^{\prime}(5.5)=2 \\
& f^{\prime}(6)=\frac{1}{1}\left[11+\frac{1}{2} \times 2+0+0\right]=12
\end{aligned}
$$

$$
\begin{aligned}
& 3 x_{1}+x_{2}+x_{3}=13 \\
& x_{1}+2 x_{2}-x_{3}=4 \\
& x_{1}+x_{2}+x_{3}=9
\end{aligned}
$$

C）$a=[3,1 ; 12-1 ; 111] ; b=[13 ; 4 ; 2]_{j}$

$$
n=1 \operatorname{len} 9 \text { th }(b) ; x=\text { Zeros }(n, 1) ; P=[0 ; 0 ; 0] ; e=10^{-5} ; e r=1 ;
$$

while ew＞e．
for $j=1$ in

$$
\text { if } j==1
$$

$$
\begin{aligned}
x(1)= & (b(1)-a(1,2:-n) * P(2 ; n)) / a(1,1) ; \\
& \text { elseif } j==n
\end{aligned}
$$

ofse

$$
x(j)=(b(j)-a(j, 1: j-1) * x(1: j-1)-a(\hat{j} ; \dot{j}+1 ; n) *
$$

end

$$
P(j+1 ; n)) / a(j, j) j
$$

end

$$
\text { err }=\operatorname{norm}(x-p) \text {; }
$$

＠IRAQ1math Jl

$$
p=x \text {; }
$$

x	2	9
$f(x)$	45	48
Interpolusing		

Find $f(5)$ by using Lagronge

$$
\begin{aligned}
n+1 & =4 \Rightarrow n=3 \\
f\left(x_{3}\right) & =P_{3}(x)=\sum_{i=0}^{3} L_{3}(x) f\left(x_{3}\right)
\end{aligned}
$$

$$
\begin{aligned}
& L_{0}(x)=\frac{\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right)\left(x-x_{3}\right)}=\frac{(x-9)(x-16)(x-23)}{(2-9)(2-16)(2-23)} \\
& L_{1}(x)=\frac{\left(x-x_{0}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)}{\left(x-x_{0}\right)\left(x-x_{2}\right)\left(x_{1}-x_{3}\right)}=\frac{(x-2)(x-16)(x-23)}{(2-2)(9-16)(2-23)} \\
& L_{2}(x)=\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{3}\right)}{\left(x / x_{0}\right)\left(x-x_{1}\right)\left(x-x_{3}\right)}=\frac{(x-2)(x-9)(x-23)}{(16-2)(16-9)(16-23)} \\
& L_{3}(x)=\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{3}\right)}{\left(x_{3}-x_{0}\right)\left(x_{3}-x_{1}\right)\left(x-x_{2}\right)}=\frac{(x-2)(x-9)(x-16)}{(23-2)(23-9)(23-16)}
\end{aligned}
$$

$$
f(x)-L_{0} f\left(x_{0}\right)+L_{1}(x) f\left(x_{1}\right)+L_{2}\left(\frac{x}{}\right) f\left(x_{2}\right)+L_{3} f\left(x_{3}\right)
$$

$x_{i+1}=x_{i}=L \Rightarrow$ where $h=7$

$$
\psi_{0}
$$

$$
f^{\prime}(1.5)=0.6666 \quad \angle i
$$

$$
\begin{aligned}
& \text { Sub: } \left.\frac{6 x}{y}\right)>b y \\
& \text { Dute: } \frac{\partial x}{\Delta x^{2}}+\frac{\partial^{2} u}{4 y^{2}}=f(x, y)
\end{aligned}
$$

* If $f(x)$ is given =.

$$
\text { foy Let } \Delta x=h
$$

$\Rightarrow f(x+h)=f(x)+\overline{h f^{\prime}}(x)+\frac{h^{2}}{2!} f(x)+\frac{h^{3}}{3!} f^{\prime \prime}(x)+11$ (矢

$$
\left.f(x-h)=f(x)-h f(x)+\frac{h^{2}}{2!},{ }^{\prime}(x)-\frac{h^{3}}{3!}+\frac{1}{3!}(x)+(x)+11\right)
$$

From, (*), we have
(1) $f^{\prime}(x)=\frac{f(x+h)-f(x)}{h}+0(h) \cdots$ (forward-difference

From (\#), we have formiala).
(2) $f^{\prime}(x)=\frac{f(x)-f(x-h)}{L}+o(h)$ (backward difference

Substract (\#1) frow (A) we have

$$
\left.\begin{array}{l}
\left(3 f^{\prime}(x)=\frac{f(x+h)-f(x-h)}{2 h}+0\left(h^{2}\right)\right. \text { (Centeral difference) } \\
\text { forminta }
\end{array}\right)
$$

formota)

$$
=\frac{2.1 e^{2.1}-2 e^{2}}{0.1}=23.7084462
$$

(2) Backward-difference formula

$$
\begin{aligned}
f^{\prime}(x) & =\frac{f(x)-f(x-h)}{h} \\
f^{\prime}(2) & =\frac{f(2)-f(2-0.1)}{0.1}=\frac{f(2)-f(1+9)}{0.1} \\
& =20.7491276
\end{aligned}
$$

(3) Centeral-difference formula

$$
\begin{aligned}
& f^{\prime}(x)=\frac{f(x+h)-f(x-h)}{2 h}=\frac{f(2+0.1)-f(2-0.1)}{2 \times 0.1}=f(2.11-f(1.9) \\
& f^{\prime}(2)=\frac{2 * 0.1}{\prime} \\
& f^{\prime}(2)=22.2287869 \\
& \therefore f(x)=x e^{x} \Rightarrow f^{\prime}(x)=x e^{x}+e^{x}=(x+1) e^{x} \\
& f^{\prime}(2)=(2+1)^{2} C^{\prime}=3 e^{2} \\
& f^{\prime}(2)=22.167168
\end{aligned}
$$

- lí é, tís álévlites

$$
\begin{aligned}
& E_{I}=122.167168-23.70844 .621 \\
& E_{B}=122.167168-20.7492764= \\
& E_{C}=122.167168-22.2287 .8691 \\
& h=0.0001
\end{aligned}
$$

$$
\begin{array}{c|ccccc}
x & 2 & 2 & 3 & 4 & 5 \\
\hline f(x) & 2 & 5 & 17 & 26 & 37
\end{array}
$$

che
clear

$$
\begin{gathered}
x=[1 ; 2 ; 3 ; 4 ; 5] ; y=[2 ; 5 ; 10 ; 17 ; 26] ; \\
\omega=\text { length }(x) ;
\end{gathered}
$$

1
$n=w-1$;

$$
L=Z \operatorname{eros}(\omega, \omega)
$$

for $k=1: \omega$

$$
v=1 ;
$$

for $j=1: w$
if $K N=0$

$$
v=\operatorname{conv}\left(v_{1} \rho_{0} l y(x(j))\right) /(x(k)-x(j)) ;
$$

end.
end

$$
L\left(R_{1} ;\right)=v ;
$$

end

$$
\begin{aligned}
& e=y^{\prime} * 1 \\
& \text { Polyฟal (c ,los) }
\end{aligned}
$$

- Chapter. 6 -

Numerical Integration
brandi (
To evaluate a $\int^{b} f(x) d x$, we divide the interval [arb] into n subintervols, which have the same length i.e $h=\frac{b-a}{h}$

$$
x_{0}=a, x_{n}=b, x_{i}^{n}=x_{0}+i h, i=1,2,3, \ldots, h-1
$$

$$
\text { Let } f(x) \simeq P_{n}(x)
$$

$$
\begin{equation*}
\therefore \quad a \int^{b} f(x) d x=a P_{n}(x) d x \tag{1}
\end{equation*}
$$

we approximate $P_{n}(x)$ by Newton forward difference inter Polating

$$
\begin{align*}
& P_{n}(x)=f_{0}+\left(x-x_{0}\right) \frac{\Delta f_{0}}{1 b_{0}}+\left(x-x_{0}\right)\left(x-x_{0}\right) \frac{\Delta^{2} f_{0}}{21 h^{2}}+\cdots, \\
& +\left(x-x_{0}\right)\left(x-x_{n}\right)=\left(x-x_{n-1}\right) \frac{\Delta n f_{0}}{n!h} \\
& \therefore \quad \int^{b} f(x) d x=\int_{0}^{x_{n}}\left(f_{0}+\left(x-x_{0}\right) \frac{\Delta f_{0}}{1!h}+\left(x-x_{0}\right)(x-x) \frac{4^{2} f_{0}}{2!L^{2}}\right. \\
& +\cdots+d x \tag{2}\\
& \text { Let } \frac{x-x_{0}}{1 h}=q \Rightarrow x-x_{0}=h q \\
& \Rightarrow x-x_{1}=h(q-1) \\
& x_{1}-x_{2}=h(g-2) \\
& \left(x-x_{n-1}\right)=h(q-(n-1)) \\
& x-x_{n}=h(q-n) \leftrightarrow \text { and } \\
& d x=h d q \\
& \text { if } x=x_{0} \Rightarrow q=0 \\
& \text { if } x=x_{n} \rightarrow q_{n}=x
\end{align*}
$$

substitute the last relations into \& , we have

$$
\begin{aligned}
& \int_{\int^{b} f(x) d x}^{b}=0 \int^{n}\left(f_{0}+q \Delta f_{0}+\frac{q(q-1)}{2} \Delta^{2} f_{0}+\frac{q(q-1)(q-2)}{6} \Delta^{3} f_{0}\right. \\
& \left.\quad+\frac{g(q-1)(q-2)(q-3)}{24} \Delta^{4} f_{0}+\cdots\right) h d q \\
& = \\
& =\int_{0}^{x^{24}\left(f_{0}+q \Delta f_{0}+\frac{q(g-1)}{2} \Lambda^{2} f_{0}+\ldots\right) d q}
\end{aligned}
$$

The equation C_{3} is called Newton-cost formula $\| \frac{1 H \omega}{}$ use Newton Back ward-difference inter Plating formula to obtain Newton -cost formula
(1) Trapezoidal formula

let $n=1,[a, b]=\left[x_{0}, x_{1}\right]$
$3{ }^{5}$
from [3. we have

$$
\begin{aligned}
& \int^{b} f^{\prime}(x) d x=1 \quad \int_{0}^{1} f_{0}+q \Delta f_{0}+\frac{q(g-1)}{2} \Delta f_{0}^{2} \neq \\
& \left.\frac{q(q-1)(q-2)}{6} \Delta^{3} f_{0}+\ldots\right) d g \ldots \\
& =h\left[b_{0} q+\frac{g^{2}}{2} \Delta f_{0}+\frac{1}{2}\left(\frac{q^{3}}{3}-\frac{q^{2}}{2}\right) \Delta z f_{0}+1+\right]_{0}^{1} \\
& =h\left(f_{0}+\frac{1}{2} \Delta f_{0} \frac{1}{12} \Delta^{2} f_{0}+\cdots\right)-1 \sum_{0} \\
& =h\left(f_{0}+\frac{1}{2}\left(f_{1}-f_{0}\right)^{12}-\frac{h}{12} \Delta^{2} f_{0} \& \quad \Delta f_{0}-f_{1}-f_{0}\right. \\
& a \int^{b} f(x) d x=\frac{h}{2}\left(f_{0}+f_{1}\right):-\frac{h}{2} \Delta^{2} f: \\
& \Rightarrow \quad \int_{a}^{b} f(x) d x \simeq \frac{h}{2}+\left(f_{0}+f_{1}\right) \cdot \\
& E=\frac{-h}{12} \Delta^{2} f_{0}
\end{aligned}
$$

@IRAQ1math Hi Hi ta https://telegram.me/IRAQ1math http://mathematicsbasra.blogspoL.com htps://www.facebook.eem/Marthematic.Basra

$$
\begin{aligned}
& f^{*}\left(\varepsilon^{u \prime \prime}=\frac{1}{h^{2}}\left(\Delta^{2} f_{0}+(g-1) \Delta^{33} f_{0}+\cdots\right)\right. \\
& f^{\prime}\left(\varepsilon^{\prime}\right)=\frac{1}{L^{2}} \Delta^{2} f_{0} \Rightarrow \ldots E=\frac{-h_{0}^{3}}{12} f^{\prime \prime}(\xi) \leftrightarrows\left\{\in\left[x_{0}, x_{n}\right]\right.
\end{aligned}
$$

$$
\text { If }[a, b]=\left[x_{0}, x_{n}\right]
$$

$$
\begin{aligned}
& \Rightarrow\left[x_{0}, x_{1}\right],\left[x_{1}, x_{2}\right], \ldots,\left[x_{n-1}, x_{n}\right] \\
& \int_{a}^{b} f(x) d x=x_{0} \int_{n}^{x_{n}} f(x) d x=x_{0} \int^{x_{1}} f(x) d x+x_{1}^{x_{2}} f(x) d x \\
& \quad+\cdots+x_{n-1}^{x_{n}} f(x) d x
\end{aligned}
$$

from (4), we have

$$
\begin{align*}
& a \int_{b}^{b} f(x) d x=\frac{h}{2}\left[f_{0}+f_{1}\right]+\frac{h}{2} \cdot\left[f_{1}+f_{2}\right]+1+\frac{h}{2}\left[f_{n-1}+f_{m}\right] \\
& \int_{a}^{b} f(x) d x=\frac{h}{2}\left[f_{x}+2 f_{1}+2 f_{2}+\ldots+2 f_{n-1}+f_{n}\right] \tag{6}
\end{align*}
$$

From (5), we have.

$$
\begin{equation*}
\left.E_{T}=-\frac{-x h^{3}}{12} f^{\prime \prime}(\xi), \xi \in \sum_{0}, x_{n}\right]=[a, b] . \tag{7}
\end{equation*}
$$

The equation (8) is eased. Trapezoidal formula and ((7) the error of ' the method
 Trapezoidal formula and the err of the method where. $n=10$. $\delta t=b=\frac{-n h^{3}}{12} f^{\prime}(\varepsilon)$

$$
\begin{array}{ll}
f:-f\left(v_{0}\right)=f(a)=f(1)(0) & \text { sub: } 2 f_{2}=f(x+2 h) \\
f_{1}=f\left(v_{0}+h\right)=f\left(1+\frac{1}{2}\right) & \text { Datei, }
\end{array}
$$

Salutions $-\quad a=1, b-6, f(x)=2+\sin (2 \sqrt{x})$

$$
\begin{aligned}
& h=\frac{b-a}{h}=\frac{\sigma-1}{10}=\frac{1}{9} . \\
& \int_{a}^{b} f(x) d x=\int_{\$}^{6}=\text { ? }(2+\sin (2 \sqrt{x})) d x
\end{aligned}
$$

$$
\begin{aligned}
& \text { Ateo } \\
& \text { 施 Sins } \\
& =\frac{\frac{1}{2}}{2}\left[f(1)+2 f\left(\frac{3}{2}\right)+2 f(2)+2 f\left(\frac{5}{2}\right)\right. \\
& +2 f(3)+2 f^{2}\left(\frac{7}{2}\right)+2 f(4)+2 f^{2}\left(\frac{9}{2}\right)+2 f(5) \\
& \left.42 f\left(\frac{11}{2}\right)+f(6)\right] \\
& =8.19385457 \\
& E_{T}=\left|\frac{-n h^{3}}{12} f^{\prime \prime}(\varepsilon)\right| \Rightarrow f^{\prime \prime}(\varepsilon)=\max \left(\left|f^{\prime}(a)\right|,\left|f^{\prime \prime}(b)\right|\right) \\
& f^{\prime \prime}(x)=\frac{d^{2}}{d x^{2}}(2+\sin (2 \sqrt{x}))=\frac{-\sin (2 \sqrt{x})}{\sqrt{x}}-\frac{\cos (2 \sqrt{x})}{2 x \sqrt{x}} \\
& f(1)=-0.701224, f(6)=0.15746257 \\
& \therefore f(5)=\max (1-0.7012241), 10.1574625 \mathrm{~F}) \\
& =0.76224 \\
& \therefore E_{T}=\left|\frac{-10\left(\frac{1}{2}\right)^{3}}{12} * 0.7012248\right|=E_{T}=0.0730144
\end{aligned}
$$

(2) Simpson's formula
let $n=2, \quad[a, b]=\left[x_{0}, x_{2}\right]$
From (3), we have

$$
\begin{aligned}
& \int_{a}^{b} f(x) d x=\int_{g(q-1)} \int_{0}^{2} f_{0}+q \Delta f_{0}+\frac{q(g-1)}{2} \Delta^{2 f} f_{0}+\frac{g(q-1)(q-2)}{6} \Delta^{3 f}
\end{aligned}
$$

$$
\begin{aligned}
& =h\left(2 f_{0}+2 \Delta f_{0}+\frac{1}{3} \Delta^{2} f_{0}=\frac{1}{90} \Delta^{\prime \prime} f_{0}+\cdots 1\right)
\end{aligned}
$$

$$
\begin{align*}
& { }_{a}^{S^{b}} f(x) d x=\frac{h}{3}\left(f_{0}+4 f_{1}+f_{2}\right) \ldots(8) \\
& E=\frac{-15^{5}}{90} f^{(31)}(\varepsilon) \quad, q \in[a, b] \tag{9}\\
& \text { let }[a, b]=\left[x_{0}, x_{n}\right] \\
& {\left[x_{0}, x_{2}\right],\left[x_{2}, x_{4}\right], \ldots,\left[x_{n-2}, x_{n}\right]} \\
& \therefore \quad \int^{b} f(x) d x=x_{0} \int_{x_{n}} f(x) d x \\
& =x_{0} \int^{x_{2}} f(x) d x+x_{2} \int^{x_{4}} f(x) d x+\cdots+x_{n-2} \int_{n}^{x_{n}} f(x) d x
\end{align*}
$$

From (d), we have

$$
\begin{aligned}
\int^{b} f(x) d x & =\frac{h}{3}\left(f_{0}+4 f_{1}+f_{2}\right)+\frac{h}{3}\left(f_{2}+4 f_{3}+f_{4}\right)+\ldots \\
& +\frac{h}{3}\left(f_{n-2}+4 f_{n-1}+f_{n}\right) \\
\int_{f(x)}^{b} & =\frac{h}{3}\left[f_{0}+4 f_{1}+2 f_{2}+4 f_{3}+2 f_{4}+\cdots+2 f_{n-2}\right.
\end{aligned}
$$

formal (6) is colled simpson's method

$$
\begin{aligned}
& \text { from (3), we have } \\
& E_{s}=\left|\frac{-k \hbar^{5}}{180} f^{(4)}(\varepsilon)\right| k, \sum_{i} \in\left[x_{0}, x_{m}\right]=[a, b] \ldots \text { (II }
\end{aligned}
$$

Ex:-find, $\int^{6}(2+\sin (2 \sqrt{x})) d x$ by using simpsons forncula and E_{S}, where $n=10$ solufin:-

$$
\begin{gathered}
a=1, b=6, n=10 . \\
h=\frac{b-a}{x}=\frac{1}{2}
\end{gathered}
$$

$$
\begin{aligned}
& S^{6}(2+\sin (2 \sqrt{x}))=\frac{\frac{1}{2}}{2}\left[f(1)+4 f\left(\frac{3}{2}\right)+2 f^{\prime}(2)+4 f\left(\frac{5}{2}\right)+2 f(3)\right. \\
& \left.\quad+4 f(4)+4 f\left(\frac{2}{2}\right)^{3}+2 f(5)+4 f\left(\frac{11}{2}\right)+f(6)\right]
\end{aligned}
$$

$$
S^{6}(2+\sin (2 \sqrt{x}))=8 \cdot 183.0155
$$

@IRAQ1 math https://telegram.me/IRAQ1math http:///mathematicsbasra.blogspot.com

$$
E_{s}=0.005154
$$

https://www,Facebook.com/Mathematic.Basra
ci o/s/A, Lest
Note:- (1) we can use simpsons rule if n is even
(2) we can determine the value (n) if the error of trapezoidal is given (ET)

$$
\begin{aligned}
& E_{T}=\left|\frac{-x h^{3}}{12} f^{\prime \prime}(\varepsilon)\right| \quad,\{\in[a, b] \\
& =\frac{n \cdot \frac{(b-a)^{3}}{x^{3}}\left|f^{\prime}(\varepsilon)\right|}{12}=\frac{(b-a)^{3}}{12 n^{2}}\left|f^{\prime}(\varepsilon)\right| \\
& n \geq \sqrt{\frac{(b-a)^{3}}{12 E_{T}} \cdot\left|f^{\prime}(\varepsilon)\right|}
\end{aligned}
$$

$$
\text { where } f^{\prime \prime}(\varepsilon)=\max \left(\left|f_{(a)}^{\prime \prime},\left|f^{\prime \prime}(b)\right|\right)\right.
$$

(3) we can determine the value (n) if the error of simpson's vale given (ES)

$$
\begin{aligned}
& E_{s}=\left|\frac{-r h^{5}}{180} f(\varepsilon)\right| \\
& n \geq \sqrt[4]{\frac{(b-a)}{180 * E_{5}^{5}} \cdot\left|f^{(4)}(\varepsilon)\right|} \\
& \text { Where } f^{(4)}(\varepsilon)=\max \left(\left|f^{(4)}(a)\right|,\left|f^{(4)}(b)\right|\right)
\end{aligned}
$$

Ex:-Detarmine the value h required to approximate. $\int_{i=1}^{1} \cdot \frac{1}{x+4} d x ; z ;$ within $\epsilon=10^{-\frac{1}{2}}$
(1) Use Trapezoidal rule.
(2) Use Sim Poon's rule.

Solution:

$$
\begin{aligned}
& \left.\begin{array}{l}
f^{\prime}(a)=\frac{2}{64}=\frac{1}{32} \\
f^{\prime}(b)=\frac{2}{216}=\frac{1}{108}
\end{array}\right\} \begin{array}{l}
f^{\prime}(\varepsilon)=\max \left(\left|f^{\prime}(a)\right|,\left|f^{\prime}(b)\right|\right)=\frac{1}{32}
\end{array} \\
& n \geq \sqrt{\frac{(b-a)^{3}}{12 * E_{T}} \cdot f^{\prime}(\varepsilon)} \Rightarrow x \geq \sqrt{\frac{(2)^{3}}{12 * 10^{-2}} \cdot \frac{T}{32}}=45.643541646 \\
& \therefore k \simeq 46 \Rightarrow k=\frac{b-a}{x}=\frac{2}{46}=\frac{1}{23}
\end{aligned}
$$

(2)

$$
n \geq \sqrt[4]{\frac{(b-a))^{2}}{180 \times \varepsilon_{5}} \cdot f^{(5)}(\varepsilon)}
$$

$f^{(4)}(x)=\frac{24}{(x+4)^{5}} \Rightarrow f^{(4)}(0)=\frac{3}{128}, f(2)=\frac{1}{324}$
$f^{\prime}(z)=$ max $\left(\left|f^{(-1)}(a)\right|,\left|f^{(a)}(b)\right|\right)$
$=\max \left(\frac{3}{128}, \frac{1}{324}\right)=\frac{3}{128}$
$x^{\prime}, \sqrt[4]{\frac{25}{180 * 10^{-5}} \cdot \frac{3}{128}}=4.51801$

$$
(x \geq 4.51801 \Rightarrow x \simeq 6) \Rightarrow x=\frac{1}{3}
$$

- -ailegill ápite.aje
(3) Romberg I' $^{\prime}$ Integration

10 besin the Presentation of Romberg. Integration Sachem recall. Trapezoidal rule for approximating. the integral $\int_{a}^{b} f(x) d x$ using x swbintervals is

$$
\begin{aligned}
& \int_{a}^{b} f(x) d x=\frac{h}{2}\left[f(a)+2 \sum_{i=1}^{n-1} f(x i)+f(b)\right]-\frac{n h^{3}}{12} f(\xi) \\
& =\frac{k}{2}\left[f(a)+f(b)+2 \sum_{c=1}^{n-1} f(a+i h)\right]-\frac{n h^{3}}{12} f_{i}^{n}(\xi)
\end{aligned}
$$

where $\left\{\in[a, b], h=\frac{b-a}{x}\right.$
we first obtain Trapezoidal rule apliroxiniations with $x_{1}=1, x_{2}=2, x_{3}=4, i i$, and $k_{m}=2^{m-1}$

Where m is Positive integer
The value of the steP his corresponding it x_{k} are

$$
h_{k}=\frac{b-a}{x_{k}}=\frac{b-a}{2^{k-1}}
$$

with this natation the trapezoidal rule becomes

$$
\begin{aligned}
& \int_{a}^{b} f(x) d x=\frac{h_{k}}{2}\left[f(a)+f(b)+2 \sum_{i=1}^{k-1} f\left(a+i h_{k}\right)\right]-\frac{n_{k} k_{x}^{3}}{12} \cdot f^{k}(\varepsilon) \\
& =\frac{h k}{2}\left[f(a)+f(b)+2 \sum_{i=1}^{k-1} f(a+i h k)\right]-\frac{2^{k-1} h_{k} f^{k}(\varepsilon)}{12} \\
& R_{k, 1}=\frac{h_{k}}{2}\left[f(a)+f(b)+2 \sum_{i=1}^{k=1} f\left(a+i h_{k}\right)\right]
\end{aligned}
$$

$$
\begin{align*}
\Rightarrow R_{1,1} & =\frac{h_{1}}{2}[f(a)+f(b)] \ldots \tag{2}\\
R_{2,1} & =\frac{h_{2}}{2}\left[f(a)+f(b)+2 \sum_{=1}^{1} f\left(a+i h_{2}\right)\right] \\
& =\frac{b-a}{4}\left[f(a)+f(b)+2 f\left(a+h_{2}\right)\right] \\
& =\frac{1}{2}\left[R_{1,1}+h_{1} f\left(a+h_{2}\right)\right] \\
R_{3,1} & =\frac{1}{2}\left[R_{2,1}+h_{2}\left\{f\left(a+h_{3}\right)+f\left(a+3 h_{3}\right)\right\}\right]
\end{align*}
$$

In general

Equation (12) \& (13) are called the first step of Romberg integration Now by Richardson's extrapolation, we have

$$
\begin{aligned}
& R_{k, j}=R_{k}, j-1+\frac{R_{k, j-1}-R_{k-1, j-1}}{4^{j-1}-1} \\
& R_{k, j}=\frac{4^{j-1} R_{k, j-1}-R_{k-1}, j-1}{4^{j-1},-1} \\
& k_{k}=2,3,1, \ldots, n \quad, j=2,1, n, n
\end{aligned}
$$

The results that are generated form these formula: are shown table $1=\frac{e}{}$
س

Ex: Use Romberg integration to compute os $\int^{1} e^{-x} d x$ $2 x=3$
Solution:
from (12)

$$
\begin{aligned}
& R_{1,1}=\frac{h_{1}}{2}[f(a)+f(b)]=\frac{1}{2}[f(0)+f(1)]=\frac{1}{2}\left[0+e^{-}\right] \\
& R_{1,1}=\frac{1}{2} e^{-1}=0.1839397206
\end{aligned}
$$

from (18)

$$
\begin{aligned}
& R_{21}=\frac{1}{2}\left[R_{131}+h_{1} * \sum_{l=1}^{\frac{1}{2}} f\left(a+(2 i-1) h_{2}\right]\right. \\
& =\frac{1}{2}\left[R_{11}+h_{1} * f\left(a+h_{2}\right)\right]=\frac{1}{2}\left[R_{1,1}+1 \cdot f\left(\frac{1}{2}\right)\right]=0.167781228 \\
& R_{3,1}=\frac{1}{2}\left[R_{221}+h_{2}\left\{f\left(a+h_{3}\right)+f\left(a+3 h_{3}\right)\right\}\right] \\
& =\frac{1}{2}\left[R_{2,1}+\frac{1}{2}\left\{f\left(\frac{1}{4}\right)+f\left(\frac{3}{4}\right)\right\}\right] \\
& R_{3,1}=0.1624884051
\end{aligned}
$$

from (14), we obtain

$$
R_{2,2}=\frac{4^{2-1} R_{2,1}-R_{0,1}}{4^{2-1}-1}=\frac{4 R_{2,1}-R_{1,1}}{3}=0.1624016835
$$

AL-WARAQ

$$
\begin{aligned}
& R_{3,2}=\frac{4 R_{3,1}-R_{2,1}}{3}=0.1607224759 \\
& R_{3,3}=\frac{4^{3-1} R_{3,2}-P_{2,2}}{4^{3-1}-1}=\frac{16 R_{3,2}-R_{2,2}}{15} \\
& R_{3,3}=0.160615287
\end{aligned}
$$

$\therefore \int^{\prime} x^{2} e^{-x} d x=0.160615287$
The exact solution of $\quad \int^{\int} x^{2} e^{-x} d x=0.160615287$

$$
T_{10}=0.1600037 .412
$$

$T_{1,0000000}=0.160602794$
-3s) dofic $f-(1.5)$ (25)

$$
\begin{array}{l|llll}
x & 2 & 3 & 4 & 5 \\
\hline f(x) & 2 & 1 a & 17 & 260337
\end{array}
$$

\qquad

$$
\begin{aligned}
& \text { CID } \\
& x=[1 ; 2 ; 3 ; 4 ; 5 ; 6] ; y=[2 ; 5 ; 10 ; 17 ; 26 ; 37] ; \\
& x=1 \operatorname{lem} g \text { th }(x) ; d=\text { Zeros }(n, n) ; d(:, 1)=y^{\prime} ;
\end{aligned}
$$

for $j=2: n$

$$
\text { for } k=j \text { in }
$$

$$
\begin{aligned}
& \text { for } k=j \text { in } \\
& d(k, j)=(d(k, j-1)-d(k-1, j-1)) /(x(k)-x(k-j+1)) ;
\end{aligned}
$$

end
end

$$
\begin{aligned}
& P=d(n, n) ; \\
& \text { for } k=(n-1):-1: 1 \\
& P=\operatorname{conv}\left(P, P_{01 y}(x(k n)) ;\right. \\
& m=\text { length }(P) ; \\
& P(m)=P(n)+d(k, k) ; \\
& \text { end } \\
& P \\
& P_{01 y} \operatorname{Val}(P / 1.5 ;
\end{aligned}
$$

$$
\text { chapter } 6^{(7)}
$$

Numerical Solutions of ordinary differential equations

(a) Solution of initial value problems $y^{\prime}=f(t, y)$, consider the initial -value problem $a<t \leqslant b$ of ordinary differential equation (i) som is given by

$$
\frac{d y}{d t}=y^{\prime}(t)=f(t, y(t)), \text { a st } \leqslant b, y(m)=\alpha
$$

Numerical methods: ~ Sound (F)
(1) Euleres Method 3

$$
\begin{aligned}
& y\left(t_{i+1}\right)=y\left(t_{i}\right)+h f\left(t_{i} y_{i}\right)+\frac{h^{2}}{} f^{\prime}\left(z_{i,}, y_{i}\right)+\cdots \\
& \left.\left.=y\left(l_{i}\right)+h f\left(t_{i}, y_{i}\right)+\frac{h^{2}}{2} y^{2} y^{\prime \prime}(\varepsilon), \quad\{\in[a, b]\}\right\}_{\}}\right\}
\end{aligned}
$$

 Thus, $\omega_{0}=\alpha$
\square (1) $i=0,1,2, \ldots, h$

Rustiest edilèn role r
Ex: use Eulers method to approximate the solution for initial - value Problem

$$
\begin{gathered}
y^{\prime}=y-(2,1
\end{gathered}
$$

$$
\begin{aligned}
& \quad a_{0}=0, b=1, n=5 \Rightarrow h=\frac{b-=}{x}=\frac{0}{5}=0.2 \\
& l_{i}=a+i h \quad, i=0,1,2,3.4,5, f(t, y)=y-i^{2}+1 \\
& t_{i}=0.2 i \quad \\
& w_{0}=\alpha \\
& w_{i+1}=w_{i}+h=f_{1}\left(t i, w_{i}\right) \\
& w_{0}=0.5 \\
& w_{i+1}=w_{i}+0.2\left[w_{i}-k_{i}^{2}+1\right]=1.2 w_{i}-0.2 t_{i}^{2}+0.2 \\
& =1-2 w_{i}-0.2(0.2 i)^{2}+0.2 \\
& w_{i+1}=1.2 w_{i}-0.008 i^{2}+0.2 \\
& w_{1}=1.2 w_{0}-0.008(0)^{2}+0.2 \\
& =1.2
\end{aligned}
$$

$$
w_{2}=1.2 w_{1}-0.008(1)^{2}+0.2
$$

$$
=1.2 * 0.8-0.008+0.2
$$

$$
=1.152=w(0.4\}
$$

$$
w_{3}=1.2 w_{2} i=2008(2)^{2}+0.2
$$

$$
=1.2 * 1.152-0.008 * 4-0.2
$$

$$
=1.5304=W(0.6)
$$

$$
w_{4}=1.2 w_{3}-0.008(3)^{2}+0.2
$$

$$
=1.9884=w(0.8)
$$

$$
w_{5}=\sin ^{4}(y)=2.4587
$$

The exact solution $I /(t)=(t+1)^{2}-0.5 e^{t}$ ए2 ${ }^{2} / j^{\prime}$

(2) Higher-order Taylores ucthed Taylor's methed of crder x is given by $\left.w_{0}=2\right\}$ $w_{i+1}=\omega_{e}+h^{(n)}$ (Zi,wi) for each $i=0, h_{2} \ldots, w_{1}$ () where

$$
T_{\left(w_{0}\right)}^{\left(t_{i}, w_{i}\right)}=f^{\prime}\left(k_{i}, w_{i}\right)+\frac{h}{2} f^{\prime}\left(l_{i}, w_{i}\right)+\cdots+\frac{n^{n-1}}{x!} f^{(n-1)}\left(t_{i, N}\right)
$$

Note that Euleres method is fuytores method.
 Fu-abio ($n-1$) bit Example:

Use twy lor methad of order fowo and order fourles opproximate that solution for the -inifial value preblem.

$$
y^{\prime}=y-t^{2}+1, \quad 0, c t \leqslant 1 \quad, y(0)=0.5 \quad, n=5
$$

Sol.

$$
a=0, b=1, \quad h=0 \cdot 2, f(t ; y)=y-t^{2}+1
$$

(1) order two

$$
\begin{aligned}
& f(t, y)=y-t^{2}+1 \\
& f^{\prime}(t, y)=\frac{d}{d t}\left(y-t^{2}+1\right)=y^{\prime}-2 t=y-t^{2}+1-2 t \\
& w_{0}=0 \cdot 5 \\
& w_{i+1}=w_{i}+h T^{(2)}\left(t_{i}, w_{i}\right) \\
& \quad=w_{i}+0.2 T^{(n)}\left(t_{i}, w_{i}\right) \\
& T^{(2)}\left(t_{i}, w_{i}\right)=f\left(t_{i}, w_{i}\right)+\frac{h}{3} f^{\prime}\left(t_{i,}, w_{i}\right) \\
& =w_{i}-l_{i}^{2}+1+\frac{0.2}{2} \quad\left[w_{i}-t_{i+1}^{2}-2 t_{i}\right]
\end{aligned}
$$

$$
\begin{aligned}
\therefore w_{i}+1 & =w_{i}+0.2\left\{w_{i}-f_{i}^{2}+1+0.1 w_{i}-0.1 t_{i}^{2}+0.1-0.2 \beta_{i}\right\} \\
w_{i+1} & =\left(.22 w_{i}-0.22 t_{i}-0+04 t_{i}^{i}+0.22\right. \\
w_{i+1} & =1.22 w_{i}-0.0088 i^{2}-0.008 i+0.22 \quad\left(t_{i}=0.2 i\right) \\
w_{1} & =1.22 \times 0.5-0.0088(0)^{2}-0.008(0)+0.22 \\
& =1.22 \times 0.5+0.22=0.83 \\
w_{2} & =1.2158 \\
w_{3} & =1.6520706 \\
w_{4} & =2.1323327 \\
w_{5} & =26486459
\end{aligned}
$$

$<10 / \varepsilon / \ll \quad s 6,81$
@IRAQ1math تناة رياضنيات العراق https://telegram.mara.//mathematicsbasra.blogspot.com htt. $\mathrm{h} / / \mathrm{www}$.facebook.com/Mathematic. Bassra
hutps:I
(3) Range - Kuttia method of ordard four:-

Ramie - kutta method of ordard four formula is given by
$w_{0}=\alpha \quad$ (initial condition) Suit)!
$w_{i+1}=w_{i}+\frac{1}{6}\left[K_{1}+2 K_{2}+2 K_{3+} K_{4}\right], i=0, I_{2}, \ldots, n_{-1}$
where

$$
\begin{aligned}
& k_{1}=h f\left(t_{i}, w_{i}\right) \\
& k_{2}=h f\left(t_{i}+\frac{h}{2}, w_{i}+\frac{k_{1}}{2}\right) \\
& k_{3}=h f\left(t_{i}+\frac{h}{2}, w_{i}+\frac{k_{2}}{2}\right) \quad \text { wi } y_{1}, f_{1},(t, y) \\
& k_{4}=h f\left(t_{i}+h, w_{i}+k_{3}\right)
\end{aligned}
$$

Ex: use range - kutta method to approximate Solution to the following initial value Problem.
$\quad y^{\prime}=y-b^{2}+1, \quad$ casts $1, y(0)=0.5$
Solution: $a=0, b=1, t_{i}=a+i h=i h$

$$
\begin{aligned}
h & =\frac{1}{5}=0.2 \Rightarrow k_{i}=0.2 i \\
w_{0} & =y(0)=0.5 \\
w_{i}+1 & =w i+\frac{1}{6}\left[k_{1}+2 k_{2}+2 k_{3}+1 k_{4}\right] \\
K_{1} & =0.2 * f\left(t_{i}, w_{i}\right) \\
& =0.2 *\left(w_{i}-\left(t_{i}^{2}+1\right)=0.2\left(w_{i}-(0.2 i)^{2}+1\right)\right. \\
k_{2} & =0.2 * f\left(t_{i}+\frac{h}{2} g w_{i}+\frac{k_{1}}{2}\right) \\
& =0.2 *\left(w_{i}+\frac{k_{1}}{2}-\left(t_{i}+\frac{h}{2}\right)^{2}+1\right) \\
k_{3} & =0.2 * f\left(t_{i}+\frac{h}{2}, w_{i}+\frac{k}{2}\right) \\
& =0.2\left(w_{i}+\frac{k}{2}-(0.2 i+0.1)^{2}+1\right) \\
k_{4} & =0.27\left(b_{i}+h, w i+k_{3}\right) \\
& =0.2 \times\left(w i+k_{3} \Rightarrow(0.2 i+0.2)^{2}+1\right)
\end{aligned}
$$

$4=, 3,1<$
(b) Solution: Boundary value Problences Consider the linear second boundary -value Problem is given by

$$
y^{\prime \prime}(x)=P(x) y^{\prime}(x)+q(x) y(x)+r(x), a \leqslant x \leqslant b
$$

with Boundary - conditions

$$
\begin{aligned}
& y(a)=\alpha \quad, y(b)=\beta \quad y^{\prime \prime}\left(x_{i}\right)=p\left(x_{i}\right) y^{\prime}\left(x_{i}\right)+q\left(x_{i}\right) y\left(x_{i}\right)+r\left(x_{i}\right) \text { yon tin) }
\end{aligned}
$$

with boundary conditions

$$
y\left(x_{0}\right)=\alpha, y\left(x_{n}\right)=\beta
$$

From chapter 5 , by using finite difference formulas

$$
y^{\prime \prime}\left(x_{i}\right)=\frac{y_{i+1}-2 y_{i}+j_{i+1}(\text { central -difference })}{h^{2}}
$$

$$
\begin{aligned}
& \begin{array}{l}
y^{\prime}\left(x_{i}\right)=\frac{y_{i+1}-y_{i-1}}{2 h} \quad \text { (central - difference) } \\
y_{i+1}+y_{i-1-2 y_{i}}
\end{array} \\
& \left.\frac{y_{i+1}+y_{i-1-2 y i}}{h^{2}}=p\left(x_{i}\right)\left(\frac{y_{i+1}-y_{i s h}}{2 h}\right)+g\left(x_{i}\right) y_{i}\left(x_{i}\right)+r\left(x_{i}\right)\right] 2 h^{2} \\
& 2 y_{(+1-4} y_{i-1}+2 y_{i-1}=h p\left(x_{i}\right) y_{i+1}-h p\left(x_{i}\right) y_{i-1}+ \\
& , r_{2}^{2} 2 h^{2} g\left(x_{i}\right) y_{i}+2 i^{2} v\left(x_{i}\right) \\
& \left(2-h p\left(x_{i}\right)\right) y_{i+1}-\left(4+2 h^{2} q\left(x_{i}\right) y_{i}+\left(2+h P\left(x_{i}\right) y_{i-1}=2 h^{2} r\left(x_{i}\right)\right.\right. \\
& \left(2+h P\left(x_{i}\right)\right) y_{i-1}-\left(4+2 h^{2} g\left(x_{i}\right)\right) y_{i}+\left(2 h P\left(x_{i}\right)\right) y_{i+1}=2 h^{2} r\left(x_{i}\right)
\end{aligned}
$$

$$
i=1
$$

$$
\begin{aligned}
& \left(2+h\left(p\left(x_{1}\right)\right) y_{0}-\left(4+2 h^{2} q\left(x_{1}\right) y_{1}+\left(2-h p\left(x_{1}\right)\right) y_{2}=2 h^{2} r\left(x_{1}\right)\right.\right.
\end{aligned}
$$

$$
-\left(4+2 h^{2} q\left(x_{1}\right)\right) y_{1}+\left(2-h P\left(x_{1}\right)\right) y_{2}=2 h^{2}=2 h_{1} r\left(x_{1}\right)
$$

$$
i=2
$$

$$
\left(2+h P(x, y) y_{0}\right.
$$

$$
\left(2+h P^{2}\left(x_{2}\right)\right) y_{1}-\left(4+2 h^{2} g\left(x_{2}\right)\right) y_{2}+\left(2-h P\left(x_{2}\right)\right) y_{3}=2 h^{2} r\left(x_{2}\right)
$$

$$
i=n-1
$$

$$
\begin{array}{r}
\frac{\left(2+h P\left(x_{n-1}\right)\right) y_{n-2}-\left(4+2 h^{2} q\left(x_{n-1}\right)\right) y_{n-1}+\left(2-h P\left(x_{n-1}\right) y_{n}\right.}{=2 h^{2} r\left(x_{n-1}\right)}
\end{array}
$$

$$
\left(2+h P\left(x_{n-1}\right)\right) y_{n-2}-\left(4+2 h^{2} g\left(x_{n-1}\right) y_{n-1}=-2 h^{2} r\left(x_{n-1}\right)\right.
$$

$\left(2=h P\left(x_{n-1}\right) y_{n} x_{n-1}\right.$ The resulting system of equations is expressed in matrix form

The system $A \underline{y}=\underline{b}$ cam be solve by
(any method "chapter 3")
AL-WARAQ

$$
\begin{aligned}
& \text { Date: }(1-2 \mid 2) \\
& \text { C N ~ N }
\end{aligned}
$$

$$
\begin{aligned}
& y^{\prime}=y-t^{2}+1, \text { osc } z \leqslant 1, \quad, y(0)=0.5
\end{aligned}
$$

$$
\begin{aligned}
& w_{p}=-\alpha=0-5 \\
& \omega_{i+1}=\omega_{i}+h_{f}\left(t_{i}, w_{i}\right)
\end{aligned}
$$

Solution=-
crsiol BL; Jl cint ciudor
function $z=f(t, y)$

$$
z=-y-t^{2}+1
$$

end
cle
clear

$$
\begin{aligned}
& a=0 ; b=1 ; n=5 ; w(1)=0.5 ;((1)=a ; \\
& h=(b-a) / n ; \\
& f \text { or } i=1: n \\
& w(i+1)=w(i)+h * f(t(i), w(i)) ; \\
& z(i+1)=a+i * h ; \\
& \text { end } \\
& w^{\prime} ;
\end{aligned}
$$

$$
\begin{aligned}
& -5.5000 \\
& , 0.8000^{\circ} \\
& 1.1520 \\
& \text { 1-5504 } \\
& 1.9885 \\
& 2.4582 \\
& \text { 》) farmat } 2 \mathrm{avg} \\
& \longleftrightarrow \\
& د 0 \mu 310 ; \\
& \text { in-trie }
\end{aligned}
$$

 0. 500000000000000 - 018000000000600000
1.1520000000000000

1. 550400
1.288480 2. 4581760

AL-WARAQ

Ex:- Use finite-difference method to approximate the solution to the following boundary value Problem $y^{\prime \prime}=4(y-x), 0<x \leqslant 1, y(0)=0$ $y(1)=2$
(1) with $h=\frac{1}{3}\left(\begin{array}{c}n=3 \\ \text { ans? }\end{array}\right.$) (2) with $\lim _{0}=\frac{1}{4}$ $y_{0}=y_{1}(0)=0{ }^{4}$
$y_{n}=y_{3}=y(6)$ $y_{n}=y_{3}=y(b)$
$=y(1)=2$ $x_{i}=c+y h$ $x_{1}=$
$\frac{y_{i+1}-2 y_{i}+y_{i-1}}{h^{2}}=4\left(y_{i}-x_{i}\right)$ $y_{1}=I\left(x_{i}\right)-y\left(\frac{?}{3}\right)$
$y_{i+1}-2 y_{i}+y_{i-1}=h_{4}^{2} y_{i}-4 h^{2} x_{i}$
$y_{i-1}-\left(2+4 l^{2}\right) y_{i}+y_{i+1}=-4 L^{2} x_{i}$
$i=1$
$y_{0}^{l}-\left(2+4 h^{2}\right) y_{1}+y_{2}=-4 h^{2} x_{1} \quad \& \operatorname{in}^{\prime} L$ (i) J_{1} Ne $-\left(2+4 L^{2}\right) y_{1}+y_{2}=-4 L^{2} x_{1}-y_{0} \quad n=3$ is Lis ai xe $-\left(2+4\left(\frac{1}{3}\right)^{2}\right) y_{1}+y_{2}=-4 *\left(\frac{1}{3}\right)^{2} * \frac{1}{3}-0 \quad i=2, i=3, i=1, i=i, k$

$$
-\frac{22}{9} y_{1}+y_{2}=\frac{-4}{2} \quad\left(x_{1}=1+\left(\frac{1}{3}\right)=\frac{1}{3}\right)
$$

$$
-66 y_{1}+27 y_{2}=-4
$$

$$
\dot{c}=2
$$

$$
y_{1}-\left(2+\frac{4}{9}\right) y_{2}+y_{3}=\frac{-4}{9} x_{2}
$$

$$
x_{2}=a h=\frac{2}{3} \quad /=x i=a+i h=\frac{1}{3}
$$

$$
y_{1}-\frac{22}{7} y_{2}+y_{3}=\frac{-4}{2} \cdot \frac{21}{3}
$$

$$
\begin{aligned}
\therefore x_{i} & =i h \\
y_{1} & =\frac{1}{2}, x_{2}
\end{aligned}
$$

$$
y_{1}-\frac{22}{9} y_{2}=\frac{-8}{27}-2
$$

$$
\begin{aligned}
& x_{1}=1 h \\
& x_{1}=\frac{1}{3}, x_{2}=\frac{2}{3}, x_{3}=1
\end{aligned}
$$

$$
x_{u}=\frac{4}{3}, \ldots
$$

$$
27 y_{1}-6.6 y_{2}=-62
$$

AL-WARAQ
from (1) we obtain

$$
y_{2}=\frac{-4+66 y_{1}}{27} \cdots 3
$$

Substionte (3 into (2) we have

$$
\begin{gathered}
27 y_{1}-66\left(\frac{-4+66 y_{1}}{27}\right)=-62 \\
-1210 y_{1}=-646 \Rightarrow y_{1}=\frac{-646}{-1210}=0.533884 \\
y_{2}=1.1569016 \\
\frac{x_{i}}{0} \\
\frac{1}{3} \\
\frac{y_{i}}{3} \\
1
\end{gathered}
$$

@IRAQ1math هنا

