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Estimation
INTRODUCTION
The field of statistical inference consists of those methods used to make decisions or
to draw conclusions about a population. These methods utilize the information
contained in a sample from the population in drawing conclusions. This chapter
begins our study of the statistical methods used for inference and decision making.
Statistical inference may be divided into two major areas: parameter estimation
and hypothesis testing . As an example of a parameter estimation problem. suppose
that a structural engineer is analyzing the tensile strength of a component used in an
automobile chassis. Since variability in tensile strength is naturally present between
the individual components because of differences in raw material batches.
manufacturing processes. and measurement procedures (for example). the engineer
1s interested in estimating the mean tensile strength of the components. In practice,
the engineer will use sample data to compute a number that is in some sense a
reasonable value (or guess) of the true mean. This number is called a point estimate
.We will see that it is possible to establish the precision of the estimate.
Now consider a situation in which two different reaction temperatures can be used in
a chemical process. say and . The engineer conjectures that results in higher vields
than does . Statistical hypothesis testing is a framework for solving problems of this
type. In this case, the hypothesis would be that the mean yield using temperature is



Formulation the problem of point estimation :

Let X~ f (-\' ) . where f(x) depends upon an unknown parameter & . we want
to estimate or a point estimate of & .

Our problem is how to find ( define ) the statistic ¥ =u { XXy s X, ) . Or is

how to find the real number ’=H(-T1 S Xyl Xy, ) such that vy will be a good

point estimator of & .

Definition 4-1 : A point estimate of some population parameter ¢ is a single

numerical value & of a statistic Y . The statistic Y is called the point
estimator .

If we sign to the parameter by € . then the point estimate of & will be denoted by
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The method of point estimation :

Maximun likelihood estimation ( MLE ) :

It is highly desirable to have a method that is generally applicable to the construction
of statistical estimators that have “good” properties. In this section we present an
mportant method for finding estimators of parameters proposed by
geneticist/statistician Sir Ronald A. Fisher around 1922 called the method of
maximum likelihood. Even though the method of moments is intuitive and easy to
apply. it usuvally does not yield “good™ estimators. The method of maximum
likelihood is intuitively appealing. because we attempt to find the values of the true
parameters that would have most likely produced the data that we in fact observed.
For most cases of practical interest. the performance of maximum likelihood
estimators is optimal for large enough data. This is one of the most versatile methods
for fitting parametric statistical models to data. First, we define the concept of a
likelihood function .

Definition 4-2 : Let f(x.x,....x,.6 ). Y < R". be the joint probability

(or density) function of n random wvariables X;. . . . . Xy with sample values
)¢ T Xy . The likelihood function of the sample is
given by

L(6:x.x;..... x, )= f(x,.%,.....x, 1 € ) [=L(B). in a briefer notation].
We emphasize that L is a function of 8 for fixed sample values.

If X .. .. X, are discrete iid random variables with probability function p(x. 6).
then. the likelihood function is given by




= H P( X,— =X ) o(by multiplication rule for independent random variables)
i=1

and in the continuous case, if the density is f(x.8) . then the likelihood function is

L(6) =f[f (x,.6)
i=1

[t is important to note that the likelihood function. although it depends on the

observed sample values x = (Xy. . . . . Xy). 1s to be regarded as a function of the
parameter 6.
In the discrete case. L(0: x5. . . . . Xp) gives the probability of observing
X=(Xp..... Xy). for a given 6. Thus, the likelihood function is a statistic, depending
on the observed sample x = (x3. .. .. Xq) .

Example 4-1 : Let X;. . ... X, be iid N(u. 62) random variables. Let x;. . . .. X, be

the sample values . Find the likelihood function .
Solution :
The density function for the normal variable is given by
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Hence. the likelihood function is
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Example 4-2 :

Suppose Xy, . . .. X, are a random sample from a geometric distribution with
parameter p. 0 =p <1. Find MLE p~.

Solution :

For the geometric distribution . the pmf is given by

flx.p)=p(1=py™"  .0<p<1 .x=1.2.3.....

Hence, the likelihood function is

Lp)=[]e(1-p) " =p"(1-p 1? h
i=l

Taking the natural logarithm of L(p).

InL=nlnp —i{'xi -Din(l—p).

i=1
Taking the derivative with respect to p. we have

dinL
dhi:}si— T(x —-1)— !
dp p = l-p

Equating d In L(p) /dp to zero. we have

n

1 |
n—-—>(x,-1)— =0
p > I-p

i=1

Solving for p.
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Thus. we obtain a maximum likelihood estimator of p as
’ 7l 1
p = = —
L X
>
i1
Example 4-3 :
Suppose X;. .. .. X, are random samples from a Poisson distribution with
parameter . . Find MLE A
Solution
We have the probability mass function
G A
P(X)=€-’"? . ox=0.1.2.. ... L0,

Hence. the likelihood function is
<
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Then. taking the natural logarithm, we have

n n
InL(y)=—nA +[Z X, j.hl A— Z-hl x;!
=1 i=1
and differentiating with respect to A results in

dinL(A) =—!J‘+(iX- )l
dA o ')A

. {n N 1
and M =0 implies —n+| XX ]T =0
A b=l /' !
X
. - i=1 i
Thatis, A= — X

Hence. the MLE of A 1s

A =X



Example 4-4 :

Find the MLE of a Bernoulli parameter .

Solution

We have the probability mass function of Bernoulli distribution is

px)=p*(1-p)™

x=0.1

Hence, the likelihood function is

(o 1 >
Lp) = [T pu(l-p)™) = p= (1-p) -
i=1

n n
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Then. taking the natural logarithm. we have

InL(p) = ';ixl Inp + [ n

o n-i X;
-zna]hml-p)i4
i=1

and differentiating with respect to p results in

n _é .
dnL(p) % @15&]
dp p 1-p
Tx, [n-Ix, |
= \ = ]
and IBLP) _ _implies =— - —~ =0
dp P l-p
Ty,
) = .
Thatis, P =" " =X

Hence. the MLE of p 1s



Example4-5 : Let X;. . ... X, beiid N(pu 02) random variables. Let x;. ..., X, be
the sample values . If both p and o° are unknown . find MLE n and o’ .
Solution :

The density function for the normal variable is given by
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Hence. the likelihood function is

C o 1 [ (x,—u)) -
Liu.c? =] exp| —~L 50| = A —
( - 127 o l\ 25° }.' {2}7)5 " 20°

For MLE of n

Lo e — L —ep| -1
(27 )2 "
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Then. taking the natural logarithm. we have

) ) ) ;{x,-—pr]'

]11.?_'-(;.{:.02 )= In

(27 )% o) 20
o 2 (x, — 1) (x, —u)
cu 207 o’
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and LJ} =0 . implies
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> (x,—u) : D

= 0= (v —u)=0= Dx=nu=>pu=" =X
g 1 n

Hence. the MLE of 1 1s

i=1

A

n=Xx

Now . For MLE of &
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Then. taking the natural logarithm. we have
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and differentiating with respect to  results in
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and ———— = 0 .1implies
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Hence. the MLE of &° is
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