Let (X, d) be a metric space and $S \subseteq X$, then S is open iff S is a union of balls

<u>Proof</u>:-⇒)let S be an open set

Then $\forall x \in S$, $\exists r_x > 0$ such that $B_{r_x}(x) \subseteq S$

$$: \cup_{x \in S} B_{r_x}(x) = S.$$

$$=$$
) $S = \bigcup_{i \in w} B_i$ are balls

: every ball is an open set $\Rightarrow S = \bigcup_{i \in w} B_i$ is open (by proposition (4.8)).

Definition (4.13):-

Let (X, d) be a metric space (topological space) and $E \subseteq X$, then E is closed in X if X - E is open in X.

Examples:-

 $1-[a,b] \subset R$, [a,b] is closed

Since $R - [a, b] = (-\infty, a) \cup (b, \infty)$ is open. $\leftarrow [$

The union of open set in a metric space is open.

 $X - D_r(x_0)$

In general any disk is a closed set.

$$D_r(x_0) = \{x \in X : d(x, x_0) \le r\}$$

 $X - D_r(x_0) = \{x \in X : d(x, x_0) > r\}$ is an open set

Proof: let
$$E = \{x_1, x_2, \dots, x_n\} \subseteq X$$

T.P X - E is open.

Let
$$a \in X - E$$
, $\therefore a \neq x_i$, $\forall i = 1, 2, \dots, n$

$$\therefore \exists 0 < d_i$$
 , $\forall i = 1, 2, \dots, n$

Take
$$r = \min\{d_1, d_2, \dots, d_n\} \Rightarrow B_r(a) \nsubseteq E$$

$$\Rightarrow B_r(a) \cap E = \emptyset$$

$$B_r(a) \subseteq X - I$$

$$X-E$$
 is

$$\Rightarrow B_r(a) \cap E = \emptyset \Rightarrow B_r(a) \subseteq X - E \Rightarrow X - E \text{ is oper}$$

$$\Rightarrow$$
 E is closed.

$$3-H_1 = \{ (x,y) \in R^2 : x \in R , y \ge 0 \}$$

is closed not open subset in R^2 .

Since the ball with center (x, 0) is not contain in H_1 .

 $H_2 = \{ (x, y) \in R^2 : x \in R , y > 0 \}$

is open not closed subset in R^2

Since the ball with center (x, y) is contain in H_2 .

4- $Q \subset R$ is not closed R - Q = Q' is not open

- · Q is not closed
- 5- Z (Integers number) is closed

$$R - Z = \cdots \cup (-1,0) \cup (0,1) \cup (1,2) \cup \cdots$$
 $R - Z = \cdots \cup (-1,0) \cup (0,1) \cup (1,2) \cup \cdots$
 $R - Z = \cdots \cup (-1,0) \cup (0,1) \cup (1,2) \cup \cdots$
 $R - Z = \cdots \cup (-1,0) \cup (0,1) \cup (1,2) \cup \cdots$
 $R - Z = \cdots \cup (-1,0) \cup (0,1) \cup (1,2) \cup \cdots$
 $R - Z = \cdots \cup (-1,0) \cup (0,1) \cup (1,2) \cup \cdots$
 $R - Z = \cdots \cup (-1,0) \cup (0,1) \cup (1,2) \cup \cdots$
 $R - Z = \cdots \cup (-1,0) \cup (0,1) \cup (1,2) \cup \cdots$
 $R - Z = \cdots \cup (-1,0) \cup (0,1) \cup (1,2) \cup \cdots$
 $R - Z = \cdots \cup (-1,0) \cup (0,1) \cup (1,2) \cup \cdots$
 $R - Z = \cdots \cup (-1,0) \cup (0,1) \cup (1,2) \cup \cdots$
 $R - Z = \cdots \cup (-1,0) \cup (0,1) \cup (1,2) \cup \cdots$
 $R - Z = \cdots \cup (-1,0) \cup (0,1) \cup (1,2) \cup \cdots$
 $R - Z = \cdots \cup (-1,0) \cup (0,1) \cup (1,2) \cup \cdots$
 $R - Z = \cdots \cup (-1,0) \cup (0,1) \cup (1,2) \cup \cdots$
 $R - Z = \cdots \cup (-1,0) \cup (0,1) \cup (1,2) \cup \cdots$
 $R - Z = \cdots \cup (-1,0) \cup (0,1) \cup (1,2) \cup \cdots$
 $R - Z = \cdots \cup (-1,0) \cup (0,1) \cup (1,2) \cup \cdots$
 $R - Z = \cdots \cup (-1,0) \cup (0,1) \cup (1,2) \cup \cdots$
 $R - Z = \cdots \cup (-1,0) \cup (0,1) \cup (1,2) \cup \cdots$
 $R - Z = \cdots \cup (-1,0) \cup (0,1) \cup (1,2) \cup \cdots$
 $R - Z = \cdots \cup (-1,0) \cup (0,1) \cup (1,2) \cup \cdots$
 $R - Z = \cdots \cup (-1,0) \cup (0,1) \cup (1,2) \cup \cdots$
 $R - Z = \cdots \cup (-1,0) \cup (0,1) \cup (1,2) \cup \cdots$
 $R - Z = \cdots \cup (-1,0) \cup (0,1) \cup (0,1) \cup (0,1) \cup (0,1)$
 $R - Z = \cdots \cup (-1,0) \cup (0,1) \cup (0,1) \cup (0,1)$
 $R - Z = \cdots \cup (-1,0) \cup (0,1) \cup (0,1)$
 $R - Z = \cdots \cup (-1,0) \cup (0,1) \cup (0,1)$
 $R - Z = \cdots \cup (-1,0) \cup (0,1) \cup (0,1)$
 $R - Z = \cdots \cup (-1,0) \cup (0,1) \cup (0,1)$
 $R - Z = \cdots \cup (-1,0) \cup (0,1) \cup (0,1)$
 $R - Z = \cdots \cup (-1,0) \cup (0,1) \cup (0,1)$
 $R - Z = \cdots \cup (-1,0) \cup (0,1) \cup (0,1)$
 $R - Z = \cdots \cup (-1,0) \cup (0,1) \cup (0,1)$
 $R - Z = \cdots \cup (-1,0) \cup (0,1) \cup (0,1)$
 $R - Z = \cdots \cup (-1,0) \cup (0,1) \cup (0,1)$
 $R - Z = \cdots \cup (-1,0) \cup (0,1) \cup (0,1)$
 $R - Z = \cdots \cup (-1,0) \cup (0,1)$
 $R - Z = \cdots \cup (-1,0) \cup (0,1)$
 $R - Z = \cdots \cup (-1,0)$
 $R - Z = \cdots \cup (-$

Proposition (4.14):-

Let (X, d) be a metric space (topological space) and let T be the collection of all closed subsets of X. Then T satisfies the followings:

- 1) $X, \emptyset \in T$ (i.e, X and \emptyset are closed)
- 2) The union of finite numbers of elements in T is an element is T (<u>i.e</u>, the union of finite numbers of closed set is again a closed set)
- 3) The intersection of finite or infinite numbers of elements of *T* is an element in *T*

(i.e., the intersection of finite or infinite numbers of closed set is closed)

Proof: (H.w)

Remark:

Let $X \neq \emptyset$ and $y_{\alpha} \subseteq X$ $\forall \alpha \in \Lambda$ then

$$X - \cup_{\alpha \in \Lambda} y_{\alpha} = \cap_{\alpha} (X - y_{\alpha})$$

$$X - \bigcap_{\alpha \in \Lambda} y_{\alpha} = \bigcup_{\alpha} (X - y_{\alpha}).$$

Definition (4.15):

Let (X, d) be a metric space and $\emptyset \neq S \subseteq X$ and $p \in X$, we say.