Countable sets

Q is countable set

Proposition (2.19):

R is not countable set.

Proof: Let $S=\{a_1,a_2,...,a_n,...\}\subseteq R$ be a countable set $(S\neq R)$?

Let I_1 be a closed interval in R such that $|I_1|<1$ and $a_1\notin I_1$.

Let I_2 be a closed interval in R such that $|I_2|<\frac{1}{2}$ and $a_2\notin I_2$ and $I_1\supseteq I_2$.

:

Let I_n be a closed interval in R such that $|I_n|<\frac{1}{n}$ and $a_n\not\in I_n$ and $I_{n-1}\supseteq I_n$.

$$I_1$$
, I_2 , I_3 ,..., I_n ,..., $|I_n| \rightarrow 0$

 $\left|\frac{1}{n}\right| \to 0$ by nested theorem

$$\cap_n I_n = \{y\} \quad y \in R$$

$$y \in I_n \ \forall \ n \ \text{and} \ y \neq a_n \ \forall \ n, \ \therefore \ y \notin S, \ \therefore \ S \neq R$$

Corollary (2.20):

The set of irrational number is uncountable set.

(The union of two countable set is countable)

Proof: If not, then $R = Q \cup Q' \Rightarrow \text{countable } C!$

 $\therefore Q'$ is not countable.

Chapter (3) The infinite series

مل رمامی

Definition(3.1):

Let $< a_n >$ be a sequence of real numbers the sum $\sum_{i=1}^{\infty} a_i$ is called an infinite series

$$\sum_{i=1}^{\infty} a_i = a_1 + a_2 + a_3 + \dots + a_n + \dots$$

$$S_1 = a_1$$

$$S_2 = a_1 + a_2$$

**

$$S_n = \sum_{i=1}^n a_i$$

Definition(3.1):

 $< S_n >$ is called the sequence of partial sum

If $\langle S_n \rangle$ converges to S, then we say that $\sum_{i=1}^{\infty} a_i$ is a converges series, in this case we write $\sum_{i=1}^{\infty} a_i = S$ and if $\langle S_n \rangle$ is a divergence sequence, then we say that $\sum_{i=1}^{\infty} a_i$ is a divergence series.

Some Types of Series

1) Geometric series:

A series in the form

$$\sum_{n=1}^{\infty} ar^{n-1} = a + ar + ar^2 + ar^3 + \dots + ar^{n-1} + \dots$$

r is called the base of the series.

$$S_n = \sum_{i=1}^n ar^{i-1} = a + ar + ar^2 + ar^3 + \dots + ar^{n-1}$$

$$(1-r) S_n = (1-r)(a + ar + ar^2 + \dots + ar^{n-1})$$

$$= a - ar^n$$

$$= a(1-r^n)$$
If $r \neq 1$, then $S_n = \frac{a(1-r^n)}{(1-r)} = \frac{a}{(1-r)} - \frac{ar^n}{(1-r)} \qquad |r| < 1$

$$\therefore r^n \to 0 \text{ when } |r| < 1 \quad i.e \quad (-1 < r < 1)$$

$$S_n \to \frac{a}{(1-r)} \text{ when } |r| < 1$$

When |r| > 1, then $< r^n >$ is not bounded, hence $< S_n >$ is not bounded.

 \therefore S_n is a divergence sequence, hence the series is divergence.

When
$$r = 1$$
, then $\sum_{n=1}^{\infty} a r^{n-1} = \sum_{n=1}^{\infty} a = a + a + a + \dots + a + \dots$

 $S_n = \langle na \rangle$ not bounded sequence, hence not converges sequence.

$$\therefore \sum_{n=1}^{\infty} ar^{n-1} \text{ is divergence when } r = 1.$$

When r = -1

$$\sum_{n=1}^{\infty} ar^{n-1} = \sum_{n=1}^{\infty} a(-1)^{n-1}$$

$$= a - a + a - a + a + \dots + a(-1)^{n-1} + \dots$$

$$S_n = 0 \text{ when } n \text{ is even } i.e \ S_{2m} = 0 \qquad \text{we } \mathbb{Z}^+ \quad , \quad S_n = \mathbb{Z}^+ \quad , \quad S_{2m+1} = a \quad \text{when } n \text{ is odd}$$

$$|S_{2m+1} - S_{2m}| = |a| < \epsilon ?$$

 $\therefore < S_n >$ is not a Cauchy sequence, hence $< S_n >$ is a divergence sequence, i.e $\sum_{n=1}^{\infty} ar^{n-1}$ is a divergence series when r=1.

Examples(3.2):

1.
$$\sum_{n=1}^{\infty} \left(-\frac{1}{2}\right) \left(\frac{1}{4}\right)^n = \sum_{n=1}^{\infty} \left(-\frac{1}{2}\right) \left(\frac{1}{4}\right) \left(\frac{1}{4}\right)^{n-1}$$

$$-1 < \frac{1}{4} < 1 = \sum_{n=1}^{\infty} \left(-\frac{1}{8}\right) \left(\frac{1}{4}\right)^{n-1}$$

$$= \frac{\left(-\frac{1}{8}\right)}{\left(1-\frac{1}{4}\right)}$$

2.
$$\sum_{n=1}^{\infty} \left(\frac{1}{3}\right) (-0.1)^{n-1} = \frac{\frac{1}{3}}{1-(-0.1)}$$

2) Harmonic series:

Is of the form $\sum_{n=1}^{\infty} \frac{1}{n}$ is a divergence series.

Let
$$S_1 = 1$$

$$S_2 = 1 + \frac{1}{2}$$

$$S_3 = 1 + \frac{1}{2} + \frac{1}{3}$$

:

$$S_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} = \sum_{k=1}^n \frac{1}{k}$$

:

$$S_{2n} - S_n = \left[1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} + \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n}\right] - \left[1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}\right]$$

$$= \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n} \ge \frac{1}{2n} + \frac{1}{2n} + \dots + \frac{1}{2n} = n \frac{1}{2n} = \frac{1}{2}$$
$$|S_{2n} - S_n| \ge \frac{1}{2} > \epsilon = \frac{1}{4}$$

 $\therefore < S_n >$ is not a Cauchy sequence, $< S_n >$ is not a converges sequence, hence $< S_n >$ is a divergence sequence.

 $\therefore \sum_{n=1}^{\infty} \frac{1}{n}$ is a divergence series (has no sum).

3) The Alternating series:

Is of the form $\sum_{n=1}^{\infty} (-1)^{n+1} a_n$, where $< a_n >$ is a decreasing sequence and $a_n \to 0$, $a_n > 0 \, \forall \, n$, the alternating series is a converges series.

To show that:

When n is even, n=2m , $m\in Z^+$

Let $\langle S_n \rangle$ be the sequence of partial sums

$$S_{2m} = a_1 - a_2 + a_3 - a_4 + \dots + a_{2m-1} - a_{2m}$$

$$= (a_1 - a_2) + (a_3 - a_4) + \dots + (a_{2m-1} - a_{2m})$$

$$= (a_1 - a_{2m}) - (a_2 - a_3) + \dots + (a_{2m-2} - a_{2m-1})$$

$$S_{2m} \le a_1 - a_{2m} \le a_1 \quad \forall m \quad \text{and } a_1$$

 $|S_{2m}|$ ≤ a_1 ∀ m so it is bounded also S_{2m} is increasing $|S_{2m}|$ > is a convergence sequence.

If n is odd, n = 2m + 1, $m \in \mathbb{Z}^+$

$$S_{2m+1} = a_1 - a_2 + a_3 - a_4 + \dots + a_{2m-1} - a_{2m} + a_{2m+1}$$

$$= (a_1 - a_2) + (a_3 - a_4) + \dots + (a_{2m-1} - a_{2m}) + a_{2m+1}$$

$$= (a_1 - a_{2m}) - (a_2 - a_3) - \dots - (a_{2m-2} - a_{2m-1}) + a_{2m+1}$$

$$S_{2m+1} \leq a_1 \quad \forall m$$

 $|S_{2m+1}| \le a_1 \quad \forall m \text{ so it is bounded by } a_1.$

 $< S_{2m+1} >$ is a bounded monotonic sequence

 $\dot{\cdot}$ < S_{2m+1} > is a converges sequence.

Claim:
$$\langle S_{2m} \rangle$$
 and $\langle S_{2m+1} \rangle$ has the same limit point.
 $|S_{2m+1} - S_{2m}| = |a_{2m+1}|$

$$\begin{array}{cccc}
\vdots & a_n \to 0 \text{ when } n \to \infty \text{ (given)} & \vdots & a_{2m+1} \to 0 \\
S_{2m+1} - S_{2m} \to 0 & \Rightarrow & |S_{2m+1} - S_{2m}| \to a - b \\
\downarrow & \downarrow & \downarrow
\end{array}$$

$$\begin{array}{ccc}
a & b \\
\therefore a - b = 0 & \Rightarrow a = b
\end{array}$$

 $\therefore \langle S_{2m} \rangle$ and $\langle S_{2m+1} \rangle$ have the same limit point.

Example:

 $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n}$ Alternating series is a converges series.

 $\frac{1}{n} = 1, \frac{1}{2}, \frac{1}{3}, \cdots$ decreasing sequence $\frac{1}{n} \to 0$ when $n \to \infty$ and $\frac{1}{n} > 0$ \Rightarrow Alternating series \Rightarrow converges series.

Let
$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = \frac{1}{k(k+1)} = \frac{1}{k} - \frac{1}{(k+1)}$$

$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = \frac{1}{1 \cdot (2)} + \frac{1}{2 \cdot (3)} + \frac{1}{3 \cdot (4)} + \dots + \frac{1}{n(n+1)} + \dots$$

$$S_n = \sum_{i=1}^{n} \frac{1}{i(i+1)} = \frac{1}{2} + \frac{1}{6} + \frac{1}{12} + \dots + \frac{1}{n(n+1)}$$

$$= \sum_{i=1}^{n} \frac{1}{i} - \frac{1}{i+1}$$

$$= \left(1 - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \dots + \left(\frac{1}{n-1} - \frac{1}{n}\right) + \left(\frac{1}{n} - \frac{1}{n+1}\right)$$

$$= 1 - \frac{1}{n+1}$$

$$= \frac{n}{n+1}$$

 $S_n = \langle \frac{n}{n+1} \rangle \to 1$ converges sequence,

$$\therefore \sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 1$$

Proposition (3.3):

Let $\sum_n a_n$ and $\sum_n b_n$ be two convergence series, if $\sum_n a_n = S$ and $\sum_n b_n = T$. Then $\sum_n a_n + \sum_n b_n = \sum_n (a_n + b_n)$ is a convergence series and $\sum_n a_n + \sum_n b_n = S + T$.

Proof: let $\langle S_n \rangle$ and $\langle T_n \rangle$ be sequences of partial sum of $\sum_n a_n$ and $\sum_n b_n$ respectively.

$$\sum_n a_n = S$$
 and $\sum_n b_n = T$

$$: S_n \to S \text{ and } T_n \to T$$

Let V_n be a sequence of partial sum of $\sum_n a_n + \sum_n b_n$.

$$V_n = \sum_{i=1}^n a_i + \sum_{i=1}^n b_i$$

$$= a_1 + a_2 + \dots + a_n + b_1 + b_2 + \dots + b_n \rightarrow S + T$$

$$\therefore V_n \rightarrow S + T$$

$$\therefore V_n \rightarrow S + T$$

$$\therefore \sum_{n} a_n + \sum_{n} b_n = S + T$$

Corollary (3.4):

If $\sum_n a_n$ is a convergence series and $\sum_n b_n$ is a divergence series, then $\sum_n a_n + \sum_n b_n$ is a divergence series.

<u>Proof:</u> suppose the result is not true; <u>i.e.</u> $\sum_n a_n + \sum_n b_n$ is a convergence series.

 $\sum_{n} a_n$ is a convergence series, then $-\sum_{n} a_n$ is a convergence series; let $\langle S_n \rangle$ be sequence of partial sum of $\sum_n a_n$, then $S_n \to S$. let $\langle T_n \rangle$ be sequence of partial sum of $\sum_n a_n$, then $T_n \to T$ $S_n = \sum_{i=1}^n a_i = a_1 + a_2 + \dots + a_n$ $T_n = c \sum_{i=1}^n a_i = c(a_1 + a_2 + \dots + a_n) = c S_n$ $S_n \to S$, $cS_n \to cS$ =XE an con.

 $\therefore -\sum_n a_n$ is a convergence series.

 $(\sum_n a_n + \sum_n b_n) + (-\sum_n a_n) = \sum_n b_n$ convergence series by (3.3) c!.

 $\therefore \sum_{n} a_n + \sum_{n} b_n$ is a divergence series.

<u>H.W</u>: Give an example of two divergence series such that the sum of them is convergence.

Some Kinds of Test:

1-The Convergence Test:

Proposition (3.5):

If $\sum_n a_n$ is a convergence series, then the sequence $< a_n >$ is converge to zero.

<u>Proof:</u> let $\langle S_n \rangle$ be sequence of partial sum of $\sum_n a_n$

 $\sum_n a_n$ is a convergence series, then $< S_n >$ is a convergence sequence and hence $< S_n >$ is a Cauchy sequence.

i.e
$$\forall \in > 0 \exists k \in \mathbb{Z}^+ \quad k = k(\in) \text{ s.t } |S_n - S_m| < \in \forall n, m > k.$$

In particular put m = n + 1

$$|S_n - S_m| = |-a_{n+1}| = |a_{n+1}| = |a_{n+1} - 0| < \epsilon \quad \forall \, n > k$$

< $a_n >$ converge to zero.

Example:

$$<\frac{n}{2n+1}>$$
 is converge to $\frac{1}{2}$

 $\therefore \sum_{n=1}^{\infty} \frac{n}{2n+1}$ is a diverges series, since not converge to zero.

Remark:

In general the converse of proposition (3.5) is not true.