Let (X,d) be a metric space and, $S \subseteq X$, S is called an open set if for each $x_0 \in S$ there exists r > 0, $(r \in R)$, such that:

$$B_r(x_0) \subseteq S$$

Examples:

1) Every ball in any metric space is an open set.

$$r-d_1$$
 x_0

$$B_r(x_0) = \{ x \in X : d(x, x_0) < r \}$$

Proof: let $y \in B_r(x_0)$

$$0 < d(y, x_0) = d_1 < r$$

Take $\epsilon = r - d_1 > 0$, to proof $B_{\epsilon}(y) \subseteq B_r(x_0)$

Let
$$z \in B_{\epsilon}(y) \stackrel{?}{\Rightarrow} z \in B_r(x_0)$$

 $d(z,y) < \epsilon$ given, to prove $d(z,x_0) < r$?

$$d(z,x_0) \le d(z,y) + d(y,x_0)$$

$$< \epsilon + d_1$$

$$= r - d_1 + d_1$$

$$= r$$

In particular every open interval in R is an open set, (a, ∞) , $(-\infty, a)$

are open sets.

$$\forall b \neq a , \exists d = |b - a|$$

$$(b-\epsilon, b+\epsilon) \subseteq (a,\infty)$$

[a,b) is not an open set.

$$\exists (a-\epsilon,a+\epsilon) \not\subset [a,b)$$

 H_1

- 2) $H_1 = \{(x,y) \in \mathbb{R}^2 : x \in \mathbb{R} , y \ge 0\}$
- is not open subset in \mathbb{R}^2 .

Since the ball with center (x, 0) is not contain in H_1 .

$$H_2 = \{ (x, y) \in R^2 : x \in R , y > 0 \}$$
 is open subset in R^2

Since the ball with center (x, y) is contain in H_2 .

3) The set of rational (irrational) number is not open set.

Since any interval in Q with center $\frac{a}{b} \in Q$, doesn't contain rational only (by density of irrational).

Also any interval in Q', doesn't contain irrational only because of the density of rational number) not open.

Proposition(4.8):

Let (X, d) be a metric space, and T be a collection of all open subset of X, then T satisfies the following:

- 1) $X,\emptyset \in T$.
- 2) The union of any number of open sets is open. (i.e The union of any element of T is again in T.
- 3) The intersection of a finite number of element of T is again in T.

<u>Proof:</u>2) Let $\{T_n\}$ be any number of open sets in T.

To prove $\bigcup_n T_n \in T$ (i.e is open in T).

Let $x \in \bigcup_n T_n$, $\therefore \exists k \in \mathbb{N}$ s.t $x \in T_k$.

- T_k is open, $\exists r > 0$, s.t $B_r(x) \subseteq T_k$
- $\therefore B_r(x) \subseteq \cup_n T_n$
- $: \cup_n T_n$ is open
- 3) Let T_1, T_2, \dots, T_n be a finite number of open sets in .

To prove $\bigcap_{i=1}^n T_i$ is open in T.

Let
$$x \in \bigcap_{i=1}^n T_i$$
, $x \in T_i$ $\forall i = 1, 2, \dots, n$.

- $: T_i \text{ is open }, \forall i = 1,2,\cdots,n$
- $\exists r_1 \in R , s.t \quad B_{\mathbf{r}_1}(x) \subseteq T_1 , \exists r_2 \in R , s.t \quad B_{\mathbf{r}_2}(x) \subseteq T_2 , \cdots$

Take $r = \{r_1, r_2, \cdots, r_n\}$

- $\therefore B_r(x) \subseteq \cap_{i=1}^n T_i$
- $\therefore \cap_{i=1}^n T_i$ is open

Remark(4.9):

The intersection of infinite number of open sets needn't be open. As the following example shows:

Example:

$$\forall n \in N \text{ , let } A_n = \left(\frac{-1}{n}, \frac{1}{n}\right) \subseteq R \text{ , } \cap_n A_n = \{0\}$$

$$\longleftrightarrow \left(\begin{array}{c} (& (& +) \\ \hline \end{array} \right) \longrightarrow \begin{array}{c} \text{Let } X \in \bigcap A_n \\ \text{If } \exists x \neq 0 \text{ , } x > 0 \Rightarrow \exists k \in N \text{ s.t } \frac{1}{k} < x \text{ , } \therefore x \notin \left(\frac{-1}{k}, \frac{1}{k}\right).$$

If
$$\exists x \neq 0$$
, $x < 0$, $0 < -x \Rightarrow \exists t \in N$ s.t $\frac{1}{t} < -x \Rightarrow \frac{-1}{t} > x$, $\therefore x \notin \left(\frac{-1}{t}, \frac{1}{t}\right) \Rightarrow x \notin \bigcap_{n} A_{n}$

 $\therefore \cap_n A_n$ is only zero.

Note:

 $\{0\}$ is not open, since. $\forall \epsilon > 0$, $B_{\epsilon}(0) = (-\epsilon, \epsilon) \nsubseteq \{0\}$

Remark:

If (X, d) is a metric space, then we can define a topological space from this metric space by taking T = the set of all open subsets of X and by proposition (4.8) we easily seen that (X, T) is a topological space

But if (X, T) is a topological space, then in general we couldn't get a metric space from this topological space as the following example shows:-

Example:

Let
$$X = \{a, b, c, d, e, f, \dots, z\}$$
 and $T = \{X, \emptyset\}$.

(X,T) is a topological space

But we cannot define a distance between the elements of X.

Proposition(4,12):-