Greedy Method

This is another approach that is often used to design algorithms for solving.

Greedy algorithms **do not always** yield a genuinely optimal solution. In such cases the greedy method is frequently the basis of a *heuristic approach*.

• Even for problems which can be solved exactly by a greedy algorithm, establishing the **correctness** of the method may be a non-trivial process.

The greedy method has,

- Most straightforward design technique
- Most problems have n inputs
- Solution contains a subset of inputs that satisfies a given constraint
- Feasible solution: Any subset that satisfies the constraint
- Need to find a feasible solution that maximizes or minimizes a given objective
- Function optimal solution
- Used to determine a feasible solution that may or may not be optimal
- At every point, make a decision that is locally optimal; and hope that it leads to a globally optimal solution
- Leads to a powerful method for getting a solution that works well for a wide range of applications
- May not guarantee the best solution
- Ultimate goal is to find a feasible solution that minimizes [or maximizes] an objective
- function; this solution is known as an optimal solution.

Knapsack problem

Knapsack problem is one of the classical optimization problems.

Description: given a set of items each with a cost and a value, determine the number of each item to include in a collection so that the total cost does not exceed some given cost and the total value is as large as possible.

Different variations:

- 1. Unbounded knapsack problem: no limits on the number of each item
- 2. 0-1 knapsack problem: number of each item is either 0 or 1.
- 3. Fractional knapsack problem: number of each item can be a fractional.
- 4. Subset problem:
 - D Decision problem

D 0-1 problem

D For each item cost is equal to value

The goal of Knapsack problem is,

- > Choose only those objects that give maximum profit.
- ➤ The total weight of selected objects should be <=W</p>

Formulation of the problem

Maximize $\sum_{i=1}^{N} P_i X_i$ (1) Subjected to $\sum_{i=1}^{N} W_i X_i \leq M$(2) Where $(0 \leq X_i \leq 1 \& 1 \leq \text{Ii} \leq \text{N})$(3)

<u>Algorithm Knapsack greedy(W.n)</u>		
For i:=1 to n do		
If(w[i] <w) td="" then<=""><td></td></w)>		
X[i]=1		
W=W-w[i]		
If(i<=n) then		
X[i]=W/w[i];		

Example:

Consider that there are three items. Weight and profit value of each item is as given below. Find optimal solution for the Fractional knapsack problem Where N=3:

i	Wi	Pi
1	18	25
2	15	24
3	10	15

And weight W=20. Solution:

X1,X2,X3	$\sum_{i=1}^{3} W_i X_i \le 20$	$\sum_{i=1}^{3} P_i X_i$	The Criterion
1,2/15,0	20	28.2	Selection according to higher profit
0,2/3,1	20	31	Selection according to less weight
0,1,1/2	20	31.5	Selection according to higher profit per unit weight P _i /W _i

Selection according to higher profit : In this case X1 has Maximum profit therefore

\checkmark	X1=1,	2 unit place left 20-18=2
\checkmark	X2=2/15	X[i]=W/w[i]
\checkmark	X3=0,	Where cannot place item 3 in bag

✤ Selection according to less weight:

- ✓ X3=1 less weight (20-10=10)
- ✓ X2=10/15=2/3
- \checkmark X1=0, Where cannot place item 1 in bag

 $\clubsuit \ \ Selection \ according \ to \ higher \ profit \ per \ unit \ weight \ \ P_i/W_i$

P1/W1=25/18=1.4 P2/W2=24/15=1.6 P3/W3=15/10=1.5 X2=1 (because P2/W2 is maximum) 20-15= 5, Next X3 is maximum X3=5/10=1/2

X1=0, Where cannot place item 1 in bag

Let us compute $\sum wixi$

- 1. 2.1*18+2/15*15+0*8=20
- 2. 0*18+2/3*15+10=20
- 3. 0*18+1*15+1/2*10=20

Let us compute $\sum Pixi$

- 1. 2. 1*30+2/15*21+0*18=32.8
- 2. 3. 0*30+2/3*21+18=32
- 3. 4. 0*30+1*21+1/2*18=30