This is another approach that is often used to design algorithms for solving.
Greedy algorithms do not always yield a genuinely optimal solution. In such cases the greedy method is frequently the basis of a heuristic approach.

- Even for problems which can be solved exactly by a greedy algorithm, establishing the correctness of the method may be a non-trivial process.
The greedy method has,
- Most straightforward design technique
- Most problems have n inputs
- Solution contains a subset of inputs that satisfies a given constraint
- Feasible solution: Any subset that satisfies the constraint
- Need to find a feasible solution that maximizes or minimizes a given objective Function - optimal solution
- Used to determine a feasible solution that may or may not be optimal
- At every point, make a decision that is locally optimal; and hope that it leads to a globally optimal solution
- Leads to a powerful method for getting a solution that works well for a wide range of applications
- May not guarantee the best solution
- Ultimate goal is to find a feasible solution that minimizes [or maximizes] an objective
function; this solution is known as an optimal solution.

Knapsack problem

Knapsack problem is one of the classical optimization problems.
Description: given a set of items each with a cost and a value, determine the number of each item to include in a collection so that the total cost does not exceed some given cost and the total value is as large as possible.

Different variations:

1. Unbounded knapsack problem: no limits on the number of each item
2. $0-1$ knapsack problem: number of each item is either 0 or 1.
3. Fractional knapsack problem: number of each item can be a fractional.
4. Subset problem:

D Decision problem
D 0-1 problem
D For each item cost is equal to value
The goal of Knapsack problem is,
$>$ Choose only those objects that give maximum profit.
$>$ The total weight of selected objects should be $<=\mathrm{W}$

Formulation of the problem

Maximize $\sum_{i=1}^{N} P_{i} X_{i} \ldots \ldots$...(1)
Subjected to $\sum_{i=1}^{N} W_{i} X_{i} \leq$ M.......(2)
Where ($0 \leq X_{i} \leq 1 \& 1 \leq \mathrm{I} \leq \mathrm{N}$)

```
Algorithm Knapsack greedv(W,n)
For \(i:=1\) to \(n\) do
\(I f(w[i]<W)\) then
    \(X[i]=1\)
    \(W=W-w[i]\)
If(i<=n) then
    \(X[i]=W / w[i]\);
```


Example:

Consider that there are three items. Weight and profit value of each item is as given below. Find optimal solution for the Fractional knapsack problem Where $\mathrm{N}=3$:

i	Wi	Pi
1	18	25
2	15	24
3	10	15

And weight $\mathrm{W}=20$.
Solution:

$\mathrm{X} 1, \mathrm{X} 2, \mathrm{X} 3$	$\sum_{i=1}^{3} W_{i} X_{i} \leq 20$	$\sum_{i=1}^{3} P_{i} X_{i}$	The Criterion
$1,2 / 15,0$	20	28.2	Selection according to higher profit
$0,2 / 3,1$	20	31	Selection according to less weight
$0,1,1 / 2$	20	31.5	Selection according to higher profit per unit weight $\mathrm{P}_{\mathrm{i}} / \mathrm{W}_{\mathrm{i}}$

* Selection according to higher profit : In this case X1 has Maximum profit therefore
$\checkmark \quad \mathrm{X} 1=1$,
$\checkmark \quad \mathrm{X} 2=2 / 15$
2 unit place left $20-18=2$
$\checkmark \quad \mathrm{X} 3=0$,
$\mathrm{X}[\mathrm{i}]=\mathrm{W} / \mathrm{w}[\mathrm{i}]$
Where cannot place item 3 in bag
* Selection according to less weight:
$\checkmark \mathrm{X} 3=1 \quad$ less weight $(20-10=10)$
$\checkmark \quad \mathrm{X} 2=10 / 15=2 / 3$
\checkmark X1 $=0$, Where cannot place item 1 in bag
* Selection according to higher profit per unit weight $\mathrm{P}_{\mathrm{i}} / \mathrm{W}_{\mathrm{i}}$

P1/W1=25/18=1.4
$\mathrm{P} 2 / \mathrm{W} 2=24 / 15=1.6$
P3/W3=15/10=1.5
$\mathrm{X} 2=1$ (because P2/W2 is maximum) $20-15=5$, Next X3 is maximum
X3 $=5 / 10=1 / 2$
$\mathrm{X} 1=0$, Where cannot place item 1 in bag
Let us compute \sum wixi

1. 2 . $1 * 18+2 / 15 * 15+0 * 8=20$
2. $0 * 18+2 / 3 * 15+10=20$
3. $0 * 18+1 * 15+1 / 2 * 10=20$

Let us compute \sum Pixi

1. 2 . $1 * 30+2 / 15 * 21+0 * 18=32.8$
2. 3. $0 * 30+2 / 3 * 21+18=32$
1. 4 . $0 * 30+1 * 21+1 / 2 * 18=30$
