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Divide and Conquer (DAC)Technique  

The name \divide and conquer" has been given to a powerful algorithm design technique that is used to 

solve a variety of problems. In its simplest form, a divide-and-conquer algorithm divides the problem 

instance into a number of sub instances (in most 3 cases), recursively  

 Divide: the instance I into p sub instances I1, I2 ,… Ip of approximately the same size. 

 Conquer: Recursively call the algorithm on each sub instance I j , 1 < j < p, to obtain p partial 

solutions. 

 Combine the results of the p partial solutions to obtain the solution to the original instance I. 

Return the solution of instance I. 

 

 
Flowchart (1) Divide and Conquer (DAC) 

To illustrate this approach, consider the problem of finding both the minimum and maximum in an array 

of integers A[1..n] and assume for simplicity that n is a power of 2.  

 

 

Example Divide and Conquer (DAC) 

The following computer algorithms are based on divide-and-conquer programming approach  

 Binary Search 

 Merge Sort 

 Quick Sort 

 Strassen's Matrix Multiplication 

 Closest pair (points) 



  AliM.S.C Sura.I.Mohammed                              8Lec                                                                              ALGORITHMS 

AL-Muthanna University- College of science- Mathematics and computer Applications Department-Third Class 

 
2 

 

Binary Search: Binary search is a fast search algorithm with run-time complexity of Ο(log n). This search 

algorithm works on the principle of divide and conquers. For this algorithm to work properly, the data 

collection should be in the sorted form. Binary search looks for a particular item by comparing the middle 

most item of the collection.  

 If a match occurs, then the index of item is returned.  

 If the middle item is greater than the item, then the item is searched in the sub-array to the left of 

the middle item.  

 Otherwise, the item is searched for in the sub-array to the right of the middle item.  

This process continues on the sub-array as well until the size of the sub-array reduces to zero. 

 

 

 

 

 

 

 

  

Example 1: The following is our sorted array; we need to search the location of value 31 using binary 

search. 

 

Step1: Find the middle element of the array by using this formula − 

mid = (high + low) / 2 

Here it is, (9 + 0) / 2 = 4 (integer value of 4.5). So, 4 is the mid of the array. 

 

 

 

Algorithm binarysearch 

Input: An array A[1..n] of n elements sorted in no decreasing order 

and an element x. 

Output: j if x = A[j]; 1 ≤ j ≤ n; and 0 otherwise. 

1. binarysearch (1,n) 

Procedure binarysearch (low, high) 

1. if low > high then return 0 

2. else 

3.      mid←  (𝑙𝑜𝑤 +  ℎ𝑖𝑔ℎ)/2  
4.       if x = A[mid] then return mid 

5.      else if x < A[mid] then return binary search(low; mid - 1) 

6.      else return binarysearch(mid + 1; high) 

7. end if 

high low 

sublist2 sublist1 
Middle 

element 
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Step2: Compare the value stored at location 4, with the value being searched, i.e. 31.  We find that it the 

value at location 4 is 27, which is not a match.  

 

     if 31> 27 search the sublist 2 

 

Now handle only sublist2. Again divide it, find mid of sublist 2, here it is, (9 + 5) / 2 = 7. So, 7 is the mid 

of the array. We find that it the value at location 7 is 35, which is not a match. 

 

  

if  31< 35 search the sublist 1 

 

Now handle only sublist1. Again divide it, find mid of sublist 1, here it is, (6 + 5) / 2 = 5. So, 5 is the mid 

of the array.  

 

    

We find that it the value at location 5 is 31, so match is found at 5
th

 position of array i.e
. 
at array [5]. 

 

 

Example 2: Using tables to find key by binary search. 

 Data[]=15,-6,0,7,9,23,54,82,101 

Elements that searching; x=101, x=82, x=-14? Assignment (deadline at 29-4-2019//8:00 AM) 

Low Mid high Key 

1 5 9 9 

6 7 9 54 

8 8 9 82 

9 9 9 101 

   Found 101 at 9
th

 position of array 

sublist2 

Middle 

element 

sublist1 

sublist1 sublist2 

Middle 

element 

if middle=key 

Low Mid high Key 

1 5 9 9 

6 7 9 54 

8 8 9 82 

  Found 82 at 8
th

 position of array 
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Quick Sort(QS): A quick sort first selects a value, which is called the pivot value. Although there are 

many different ways to choose the pivot value, we will simply use the first item in the list. The role of 

the pivot value is to assist with splitting the list. The actual position where the pivot value belongs in the 

final sorted list, commonly called the split point, will be used to divide the list for subsequent calls to the 

quick sort. Using pivot algorithm recursively, we end up with smaller possible partitions. Each partition 

is then processed for quick sort. We define recursive algorithm for quicksort as follows – 

Step 1 − Make the right-most index value pivot 

Step 2 − partition the array using pivot value 

Step 3 − quicksort left partition recursively 

Step 4 − quicksort right partition recursively 

Quick Sort  Pseudo code: To get more into it, let see the pseudo code for quick sort algorithm – 

 

 

 

 

 

 

Example: - A list of unsorted elements are: 8 3 2 11 5 14 0 2 9 4 20  

 

  

procedure quickSort(left, right) 

   if right-left <= 0 

      return 

   else      

      pivot = A[right] 

      partition = partitionFunc(left, right, pivot) 

      quickSort(left,partition-1) 

      quickSort(partition+1,right)     

   end if 

end procedure 
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Merge Sort Algorithm 

Merge sort is one of the most efficient sorting algorithms. It works on the principle of Divide and 

Conquer. Merge sort repeatedly breaks down a list into several sublist until each sublist consists of a 

single element and merging those sublist in a manner that results into a sorted list.  

Basic Idea: It divides the array in two equal parts (based on the median). Each set is individually sorted 

and the resulting sorted sequences are merged to get a single sorted sequence. Runs in O (n*log n) time in 

all the cases. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example: Let’s consider an array with values {14, 7, 3, 12, 9, 11, 6, 12} Below, we have a pictorial 

representation of how merge sort will sort the given array. In merge sort we follow the following steps: 

1. We take a variable p and store the starting index of our array in this. And we take another 

variable r and store the last index of array in it. 

2. Then we find the middle of the array using the formula (p + r)/2 and mark the middle index as q, and 

break the array into two subarrays, from p to q and from q + 1 to r index. 

3. Then we divide these 2 subarrays again, just like we divided our main array and this continues. 

//Algorithm of Merge Sort 

MERGE-SORT(A, p, r) 
1. If p < r 

2. q =  [ ( p + q ) /2 ] 

3. MERGE-SORT(A, p, q) 

4. MERGE-SORT(A, q+1, r) 

5. MERGE(A, p, q, r) 

MERGE (A, p, q, r) 
1. n1 = q – p +1 

2. n2 = r – q 

3. let L [1.. n1 + 1 ] and L [1.. n2 + 1 ]  be new arrays 

4. for i=1 to  n1 

5. L[ i ]  =  A [ p + i -1] 

6. for j=1 to n2 

7. R[ j ]= A[ q + j ] 

8. L [n1 + 1 ] =  ∞ 

9. R [n2 + 1 ] =  ∞ 

10. i = 1 

11. j = 1 

12. for k = p to r 

13. if L[ i ] < R [ j ] 

14. A[ k ] = L[ i ] 

15. i = i + 1 

16. else  A[ k ] = R [ j ] 

17. j = j + 1 
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4. Once we have divided the main array into subarrays with single elements, then we start merging the 

subarrays. 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

                         


