
 AliM.S.C Sura.I.Mohammed 8Lec ALGORITHMS

AL-Muthanna University- College of science- Mathematics and computer Applications Department-Third Class

1

Divide and Conquer (DAC)Technique

The name \divide and conquer" has been given to a powerful algorithm design technique that is used to

solve a variety of problems. In its simplest form, a divide-and-conquer algorithm divides the problem

instance into a number of sub instances (in most 3 cases), recursively

 Divide: the instance I into p sub instances I1, I2 ,… Ip of approximately the same size.

 Conquer: Recursively call the algorithm on each sub instance I j , 1 < j < p, to obtain p partial

solutions.

 Combine the results of the p partial solutions to obtain the solution to the original instance I.

Return the solution of instance I.

Flowchart (1) Divide and Conquer (DAC)

To illustrate this approach, consider the problem of finding both the minimum and maximum in an array

of integers A[1..n] and assume for simplicity that n is a power of 2.

Example Divide and Conquer (DAC)

The following computer algorithms are based on divide-and-conquer programming approach

 Binary Search

 Merge Sort

 Quick Sort

 Strassen's Matrix Multiplication

 Closest pair (points)

 AliM.S.C Sura.I.Mohammed 8Lec ALGORITHMS

AL-Muthanna University- College of science- Mathematics and computer Applications Department-Third Class

2

Binary Search: Binary search is a fast search algorithm with run-time complexity of Ο(log n). This search

algorithm works on the principle of divide and conquers. For this algorithm to work properly, the data

collection should be in the sorted form. Binary search looks for a particular item by comparing the middle

most item of the collection.

 If a match occurs, then the index of item is returned.

 If the middle item is greater than the item, then the item is searched in the sub-array to the left of

the middle item.

 Otherwise, the item is searched for in the sub-array to the right of the middle item.

This process continues on the sub-array as well until the size of the sub-array reduces to zero.

Example 1: The following is our sorted array; we need to search the location of value 31 using binary

search.

Step1: Find the middle element of the array by using this formula −

mid = (high + low) / 2

Here it is, (9 + 0) / 2 = 4 (integer value of 4.5). So, 4 is the mid of the array.

Algorithm binarysearch

Input: An array A[1..n] of n elements sorted in no decreasing order

and an element x.

Output: j if x = A[j]; 1 ≤ j ≤ n; and 0 otherwise.

1. binarysearch (1,n)

Procedure binarysearch (low, high)

1. if low > high then return 0

2. else

3. mid← (𝑙𝑜𝑤 + ℎ𝑖𝑔ℎ)/2
4. if x = A[mid] then return mid

5. else if x < A[mid] then return binary search(low; mid - 1)

6. else return binarysearch(mid + 1; high)

7. end if

high low

sublist2 sublist1
Middle

element

 AliM.S.C Sura.I.Mohammed 8Lec ALGORITHMS

AL-Muthanna University- College of science- Mathematics and computer Applications Department-Third Class

3

Step2: Compare the value stored at location 4, with the value being searched, i.e. 31. We find that it the

value at location 4 is 27, which is not a match.

 if 31> 27 search the sublist 2

Now handle only sublist2. Again divide it, find mid of sublist 2, here it is, (9 + 5) / 2 = 7. So, 7 is the mid

of the array. We find that it the value at location 7 is 35, which is not a match.

if 31< 35 search the sublist 1

Now handle only sublist1. Again divide it, find mid of sublist 1, here it is, (6 + 5) / 2 = 5. So, 5 is the mid

of the array.

We find that it the value at location 5 is 31, so match is found at 5
th

 position of array i.e
.
at array [5].

Example 2: Using tables to find key by binary search.

 Data[]=15,-6,0,7,9,23,54,82,101

Elements that searching; x=101, x=82, x=-14? Assignment (deadline at 29-4-2019//8:00 AM)

Low Mid high Key

1 5 9 9

6 7 9 54

8 8 9 82

9 9 9 101

 Found 101 at 9
th

 position of array

sublist2

Middle

element

sublist1

sublist1 sublist2

Middle

element

if middle=key

Low Mid high Key

1 5 9 9

6 7 9 54

8 8 9 82

 Found 82 at 8
th

 position of array

 AliM.S.C Sura.I.Mohammed 8Lec ALGORITHMS

AL-Muthanna University- College of science- Mathematics and computer Applications Department-Third Class

4

Quick Sort(QS): A quick sort first selects a value, which is called the pivot value. Although there are

many different ways to choose the pivot value, we will simply use the first item in the list. The role of

the pivot value is to assist with splitting the list. The actual position where the pivot value belongs in the

final sorted list, commonly called the split point, will be used to divide the list for subsequent calls to the

quick sort. Using pivot algorithm recursively, we end up with smaller possible partitions. Each partition

is then processed for quick sort. We define recursive algorithm for quicksort as follows –

Step 1 − Make the right-most index value pivot

Step 2 − partition the array using pivot value

Step 3 − quicksort left partition recursively

Step 4 − quicksort right partition recursively

Quick Sort Pseudo code: To get more into it, let see the pseudo code for quick sort algorithm –

Example: - A list of unsorted elements are: 8 3 2 11 5 14 0 2 9 4 20

procedure quickSort(left, right)

 if right-left <= 0

 return

 else

 pivot = A[right]

 partition = partitionFunc(left, right, pivot)

 quickSort(left,partition-1)

 quickSort(partition+1,right)

 end if

end procedure

 AliM.S.C Sura.I.Mohammed 8Lec ALGORITHMS

AL-Muthanna University- College of science- Mathematics and computer Applications Department-Third Class

5

Merge Sort Algorithm

Merge sort is one of the most efficient sorting algorithms. It works on the principle of Divide and

Conquer. Merge sort repeatedly breaks down a list into several sublist until each sublist consists of a

single element and merging those sublist in a manner that results into a sorted list.

Basic Idea: It divides the array in two equal parts (based on the median). Each set is individually sorted

and the resulting sorted sequences are merged to get a single sorted sequence. Runs in O (n*log n) time in

all the cases.

Example: Let’s consider an array with values {14, 7, 3, 12, 9, 11, 6, 12} Below, we have a pictorial

representation of how merge sort will sort the given array. In merge sort we follow the following steps:

1. We take a variable p and store the starting index of our array in this. And we take another

variable r and store the last index of array in it.

2. Then we find the middle of the array using the formula (p + r)/2 and mark the middle index as q, and

break the array into two subarrays, from p to q and from q + 1 to r index.

3. Then we divide these 2 subarrays again, just like we divided our main array and this continues.

//Algorithm of Merge Sort

MERGE-SORT(A, p, r)
1. If p < r

2. q = [(p + q) /2]

3. MERGE-SORT(A, p, q)

4. MERGE-SORT(A, q+1, r)

5. MERGE(A, p, q, r)

MERGE (A, p, q, r)
1. n1 = q – p +1

2. n2 = r – q

3. let L [1.. n1 + 1] and L [1.. n2 + 1] be new arrays

4. for i=1 to n1

5. L[i] = A [p + i -1]

6. for j=1 to n2

7. R[j]= A[q + j]

8. L [n1 + 1] = ∞

9. R [n2 + 1] = ∞

10. i = 1

11. j = 1

12. for k = p to r

13. if L[i] < R [j]

14. A[k] = L[i]

15. i = i + 1

16. else A[k] = R [j]

17. j = j + 1

 AliM.S.C Sura.I.Mohammed 8Lec ALGORITHMS

AL-Muthanna University- College of science- Mathematics and computer Applications Department-Third Class

6

4. Once we have divided the main array into subarrays with single elements, then we start merging the

subarrays.

