
 Ali M.S.C Sura.I.Mohammed Lec4 ALGORITHMS

AL-Muthanna University- College of science- Mathematics and computer Applications Department-Third Class

1

Data Structures
1- Introduction

The choice of a suitable data structure can influence the design of an efficient algorithm

significantly. In this lecture, we briefly present some of the elementary data structures.

2-Stacks

 A stack is a linked list in which insertions and deletions are permitted only at one end, called

the top of the stack. It may as well be implemented as an array. This data structure supports two

basic operations: pushing an element into the stack and popping an element off the stack. If S is a

stack, the operation pop(S) returns the top of the stack and removes it permanently. If x is an

element of the same type as the elements in S, then push(S; x) adds x to S and updates the top of

the stack so that it points to x.

A

B
A

C

B

A

C
B
A

top

top

 top

top

D
C
B
A

top

Push(A)
Push(B)

Push(C)
Push(D)

Pop(D)

Figs (2) push and pop operations.

Fig (2) Types of Data Structure

 Ali M.S.C Sura.I.Mohammed Lec4 ALGORITHMS

AL-Muthanna University- College of science- Mathematics and computer Applications Department-Third Class

2

Algorithm 1: Push operation (add element to the stack)

Inputs: stack, Top (index of the stack), size (the maximum size of the stack), n (the element that

will added).

Outputs: add n to stack.

Begin

 If (stack is full) then

 Write "the stack is overflow"

 Else

 {

 Top=Top+1

 stack[Top]=n

 }

End

Algorithm 2: Pop operation (return the top element of the stack)

Inputs: stack, Top (index of the stack).

Outputs: n (the top element of the stack).

Begin

 If (stack is empty) then

 Write "the stack is empty"

 Else

 {

 n=stack [Top]

 Top=Top-1

 }

 Return n

End

Algorithm 3: print ()

 Begin

 If (stack is empty) then

 Print” no element to display”

 Else

 for (i=top ; i >= 0 ; i--)

 Print stack[i]

End

Ex: 1

Let S is (stacking), it’s for push item to the stack, and U is (un stacking), it’s for pop item from

the stack, and the set of inputs to the stack are (M, B, Y, N, R), what are the outputs from these

operations:

A) SSUUSUSUSU

B) SSSUSUUSUU

Sol.

The meaning the inputs items to the stack are chose item M first, then item B,...R. we can’t pop

N before previous items.

 Ali M.S.C Sura.I.Mohammed Lec4 ALGORITHMS

AL-Muthanna University- College of science- Mathematics and computer Applications Department-Third Class

3

A)

Input -----> M B Y N R

Operations -----> S S U U S U S U S U

Output -----> BM Y N R

B)

Input -----> M B Y N R

Operations -----> S S S U S U U S U U

Output -----> Y N B R M

Ex: 2

If the set of inputs of a stack are (1.2.3.4.5) show the right outputs shown below according to the

stack operation:

A) 2. 4. 5. 3. 1

B) 4. 5. 1. 2. 3

Sol

A) Outputs (2. 4. 5. 3. 1)

 To pop item 2 must at first push two items 1. 2, the operation is SSU.

And to pop item 4 after item 2 must at first push two items 3. 4, the operation is SSUSSU

To pop item 5. After item 4, must push item 5 them pop item 5, the operation is SSUSSUSU

According to the state of a stack we can now pop item 3 then item 1, and the operation is now

SSUSSUSUUU.

B) Outputs (4. 5. 1. 2. 3)

We can pop two items 4 & 5 by this sequence of operations

Input -----> 1 2 3 4 5

Operations -----> S S S S U S U

Output -----> 4 5

Now the stack items are: 321 we can’t pop item 1 before two items 2 & 3, so this sequence of

operations is wrong.

Assignment

Outputs (4. 3. 5. 2. 1) we can get these outputs when use the operations of pop & push by using

these sequences: Input -----> 1 2 3 4 5

Operations?

 Ali M.S.C Sura.I.Mohammed Lec4 ALGORITHMS

AL-Muthanna University- College of science- Mathematics and computer Applications Department-Third Class

4

3- Queue:

A queue is a list in which insertions are permitted only at one end of the list called its rear, and

all deletions are constrained to the other end called the front of the queue. As in the case of

stacks, a queue may also be implemented as an array. The operations supported by queues are the

same as those for the stack except that a push operation adds an element at the rear of the queue.

Simple Queue Operations Algorithms:

Algorithm 1: Insert Q

Inputs: Q: array as integer, f: front pointer, r: rear pointer, n: size of queue, x: the new

element

Outputs: insert x to Q.

Begin

If (r = n-1) then

 Write ("Queue is over flow")

Else

 r = r + 1

 Q[r] =x

 If (f = -1) then

 F=0

End

Algorithm 2: Delete Q

Inputs: Q: array as integer, f: front, r: rear, n: queue size

Outputs: x: the deleted element

Begin

 If (((f = -1) &&(r=-1)) || (f>r)) then

 Write ("Queue is empty")

Else

 z = Q[f]

 f = f + 1

 End

Rear: -1
Front:-1

Rear: 0
Front: 0

Rear: 1
Front: 0

Rear: 2
Front: 0

Rear: 2
Front: 1

Rear: 3
Front: 1

Rear: 4
Front: 2

Rear: 4
Front: 1

 Ali M.S.C Sura.I.Mohammed Lec4 ALGORITHMS

AL-Muthanna University- College of science- Mathematics and computer Applications Department-Third Class

5

Exercise: Suppose Q is a queue, the size of queue is 4. Show Q after all of the following

operations has been completed assuming the queue is empty to start with. Show how the front,

rear and elements change.

Sol:

Q[3]

Q[2] Q[1] Q[0]
R

Pointer

F

pointer

State of

Queue

- - - - -1 -1 Empty Q

- - - A 0 0 Add item A

- - B A 1 0 Add item B

- C B A 2 0 Add item C

- C B - 2 1 Delete item

E C B - 3 1 Add item E

E C - - 3 2 Delete item

Exercise: Suppose q is a queue, the size of queue is 6. Show Q after all of the following

operations has been completed assuming the queue is empty to start with. Show how the front,

rear and elements change.

Sol?

R

Pointer

F

pointer

State of

Queue

 Empty Q

 Add item A

 Add item B

 Add item C

 Delete item

 Add item E

 Add item D

 Delete item

 Delete item

