Calculations Used in Analytical Chemistry

A-Some Important Units of Measurement

A-1 International System of Units (SI).

SI Base Units		
Physical Quantity	Name of Unit	Abbreviation
Mass	kilogram	kg
Length	meter	m
Time	second	s
Temperature	kelvin	K
Amount of substance	mole	mol
Electric current	ampere	A
Luminous intensity	candela	cd

Prefixes for Units

Prefix	Abbreviation	Multiplier
yotta-	Y	10^{24}
zetta-	Z	10^{21}
exa-	E	10^{18}
peta-	P	10^{15}
tera-	T	10^{12}
giga-	G	10^{9}
mega-	M	10^{6}
kilo-	k	10^{3}
hecto-	h	10^{2}
deca-	da	10^{1}
deci-	d	10^{-1}
centi-	c	10^{-2}
milli-	m	10^{-3}
micro-	μ	10^{-6}
nano-	n	10^{-9}
pico-	p	10^{-12}
femto-	f	10^{-15}
atto-	a	10^{-18}
zepto-	z	10^{-21}
yocto-	y	10^{-24}

\$ In analytical chemistry, we often determine the amount of chemical species from mass measurements.
For such measurements, metric units of kilograms (kg), grams (g), milligrams (mg), or micrograms ($\mu \mathrm{g}$) are used.

Volumes of liquids are measured in units of liters (L), milliliters (mL), microliters $(\mu \mathrm{L})$, and sometimes nanoliters (nL).
The liter, the SI unit of volume, is defined as exactly $10^{-3} \mathrm{~m}^{3}$. The milliliter is defined as $10^{-6} \mathrm{~m}^{3}$, or $1 \mathrm{~cm}^{3}$

A-2 The Distinction Between Mass and Weight

Mass \boldsymbol{m} is an invariant measure of the quantity of matter.
Weight \boldsymbol{w} is the force of gravitational attraction between that matter and Earth.

A chemical analysis is always based on mass so that the results will not depend on Locality

A-3 The Mole

The mole (abbreviated mol) is the SI unit for the amount of a chemical substance such as atoms, molecules, ions, electrons, other particles, or specified groups of such particles as represented by a chemical formula.

A mole of a chemical species is 6.022×10^{23} atoms, molecules, ions, electrons, ion pairs, or subatomic particles.

The molar mass M of a substance is the mass in grams of 1 mole of that substance. We calculate molar masses by summing the atomic masses of all the atoms appearing in a chemical formula. For example, the molar mass of formaldehyde $\mathrm{CH}_{2} \mathrm{O}$ is

$$
\begin{aligned}
\mathscr{M}_{\mathrm{CH}_{2} \mathrm{O}}= & \frac{1 \mathrm{~mole}}{\mathrm{~mol} \mathrm{CH}_{2} \mathrm{O}} \times \frac{12.0 \mathrm{~g}}{\mathrm{~mole}}+\frac{2 \mathrm{molH}}{\mathrm{~mol} \mathrm{CH}_{2} \mathrm{O}} \times \frac{1.0 \mathrm{~g}}{\mathrm{~mol} \mathrm{H}} \\
& +\frac{1 \mathrm{~mol}^{\mathrm{mol} \mathrm{CH}}}{2} \mathrm{O}
\end{aligned} \frac{16.0 \mathrm{~g}}{\mathrm{~mol} \mathrm{O}}, 30.0 \mathrm{~g} / \mathrm{mol} \mathrm{CH}_{2} \mathrm{O}
$$

and that of glucose, $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$, is

$$
\begin{aligned}
\mathcal{M}_{\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}}= & \frac{6 \mathrm{~mole}}{\mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}} \times \frac{12.0 \mathrm{~g}}{\mathrm{~mole}}+\frac{12 \mathrm{molH}}{\mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}} \times \frac{1.0 \mathrm{~g}}{\mathrm{molH}} \\
& +\frac{6 \mathrm{~mol}^{2}}{\mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}} \times \frac{16.0 \mathrm{~g}}{\mathrm{~mol}}=180.0 \mathrm{~g} / \mathrm{mol} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}
\end{aligned}
$$

Thus, 1 mole of formaldehyde has a mass of 30.0 g , and 1 mole of glucose has a mass of 180.0 g

A-4 The Millimole

A-5 Calculating the Amount of a Substance in Moles or Millimoles

Example 1 : Find the number of moles and millimoles of benzoic acid ($M=122.1 \mathrm{~g} / \mathrm{mol}$) that are contained in 2.00 g of the pure acid.

Example 2 ; What is the mass in grams of $\mathrm{Na}^{+}(22.99 \mathrm{~g} / \mathrm{mol})$ in 25.0 g of $\mathrm{Na}_{2} \mathrm{SO}_{4}(142.0$ $\mathrm{g} / \mathrm{mol}$)?

