Calculations Used in Analytical Chemistry

A-Some Important Units of Measurement

A-1 International System of Units (SI).

SI Base Units				
Physical Quantity	Name of Unit	Abbreviation		
Mass	kilogram	kg		
Length	meter	m		
Time	second	S		
Temperature	kelvin	К		
Amount of substance	mole	mol		
Electric current	ampere	А		
Luminous intensity	candela	cd		

D	C	C	T 7	• • •
Pro	HYPS	tor	U	nite
I IC.	IIACO	101	\cup	11103

Prefix	Abbreviation	Multiplier
	V	1.024
yotta-	Ŷ	10^{24}
zetta-	Z	10^{21}
exa-	E	1018
peta-	Р	10^{15}
tera-	Т	10^{12}
giga-	G	10^{9}
mega-	М	10^{6}
kilo-	k	10^{3}
hecto-	h	10^{2}
deca-	da	10^{1}
deci-	d	10^{-1}
centi-	С	10^{-2}
milli-	m	10^{-3}
micro-	μ	10^{-6}
nano-	n	10^{-9}
pico-	р	10^{-12}
femto-	f	10^{-15}
atto-	a	10^{-18}
zepto-	Z	10^{-21}
yocto-	У	10^{-24}

- In analytical chemistry, we often determine the amount of chemical species from mass measurements.
- For such measurements, metric units of kilograms (kg), grams (g), milligrams (mg), or micrograms (μg) are used.
- Volumes of liquids are measured in units of liters (L), milliliters (mL), microliters (μL), and sometimes nanoliters (nL).
- ♣ The liter, the SI unit of volume, is defined as exactly 10⁻³ m³. The milliliter is defined as 10⁻⁶ m³, or 1 cm³

A-2 The Distinction Between Mass and Weight

Mass *m* is an invariant measure of the quantity of matter.Weight *w* is the force of gravitational attraction between that matter and Earth.

A chemical analysis is always based on mass so that the results will not depend on Locality

A-3 The Mole

The **mole** (abbreviated mol) is the SI unit for the amount of a chemical substance such as atoms, molecules, ions, electrons, other particles, or specified groups of such particles as represented by a chemical formula.

A **mole** of a chemical species is 6.022×10^{23} atoms, molecules, ions, electrons, ion pairs, or subatomic particles.

The **molar mass** M of a substance is the mass in grams of 1 mole of that substance. We calculate molar masses by summing the atomic masses of all the atoms appearing in a chemical formula. For example, the molar mass of formaldehyde CH₂O is

$$\begin{aligned} \mathcal{M}_{\mathrm{CH_2O}} &= \frac{1 \, \operatorname{mol} \cdot \mathcal{C}}{\mathrm{mol} \cdot \mathrm{CH_2O}} \times \frac{12.0 \, \mathrm{g}}{\mathrm{mol} \cdot \mathcal{C}} + \frac{2 \, \operatorname{mol} \cdot \mathrm{H}}{\mathrm{mol} \cdot \mathrm{CH_2O}} \times \frac{1.0 \, \mathrm{g}}{\mathrm{mol} \cdot \mathrm{H}} \\ &+ \frac{1 \, \operatorname{mol} \cdot \mathcal{O}}{\mathrm{mol} \cdot \mathrm{CH_2O}} \times \frac{16.0 \, \mathrm{g}}{\mathrm{mol} \cdot \mathrm{O}} \\ &= 30.0 \, \mathrm{g/mol} \, \mathrm{CH_2O} \end{aligned}$$

and that of glucose, $C_6H_{12}O_6$, is

$$\mathcal{M}_{C_6H_{12}O_6} = \frac{6 \text{ mol } \mathcal{C}}{\text{mol } C_6H_{12}O_6} \times \frac{12.0 \text{ g}}{\text{mol } \mathcal{C}} + \frac{12 \text{ mol } \text{H}}{\text{mol } C_6H_{12}O_6} \times \frac{1.0 \text{ g}}{\text{mol } \text{H}} + \frac{6 \text{ mol } \mathcal{O}}{\text{mol } C_6H_{12}O_6} \times \frac{16.0 \text{ g}}{\text{mol } \mathcal{O}} = 180.0 \text{ g/mol } C_6H_{12}O_6$$

Thus, 1 mole of formal dehyde has a mass of 30.0 g, and 1 mole of glucose has a mass of 180.0 g $\,$

A-4 The Millimole

A-5 Calculating the Amount of a Substance in Moles or Millimoles

Example 1 : Find the number of **moles** and **millimoles** of benzoic acid (M = 122.1 g/mol) that are contained in 2.00 g of the pure acid.

Example 2 ; What is the mass in grams of Na $^+$ (22.99 g/mol) in 25.0 g of Na₂SO₄ (142.0 g/mol)?