Some Important Concepts and Fundamentals

1-Chemical Measurements

Fundamental SI (System International) Units of Measure

Measurement
mass
volume
distance
temperature
time
current
amount of substance

Unit
kilogram
liter
meter
kelvin
second
ampere
mole
kg
Symbol

L
m
K
s
A
mol

The tables below provide a list of other important units

Measurement	Unit	Symbol	Equivalent SI units
length	angstrom	\AA	$1 \AA=1 \times 10^{-10} \mathrm{~m}$
force	newton	N	$1 \mathrm{~N}=1 \mathrm{~m} \cdot \mathrm{~kg} / \mathrm{s}^{2}$
pressure	pascal	Pa	$1 \mathrm{~Pa}=1 \mathrm{~N} / \mathrm{m}^{2}=1 \mathrm{~kg} /\left(\mathrm{m} \cdot \mathrm{s}^{2}\right)$
	atmosphere	atm	$1 \mathrm{~atm}=101,325 \mathrm{~Pa}$
energy, work, heat	joule	J	$1 \mathrm{~J}=1 \mathrm{~N} \cdot \mathrm{~m}=1 \mathrm{~m}^{2} \cdot \mathrm{~kg} / \mathrm{s}^{2}$
power	watt	W	$1 \mathrm{~W}=1 \mathrm{~J} / \mathrm{s}=1 \mathrm{~m}^{2} \cdot \mathrm{~kg} / \mathrm{s}^{3}$
charge	coulomb	C	$1 \mathrm{C}=1 \mathrm{~A} \cdot \mathrm{~s}$
potential	volt	V	$1 \mathrm{~V}=1 \mathrm{~W} / \mathrm{A}=1 \mathrm{~m}^{2} \cdot \mathrm{~kg} /\left(\mathrm{s}^{3} \cdot \mathrm{~A}\right)$
temperature	degree Celsius	${ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{C}=\mathrm{K}-273.15$
	degree Fahrenheit	${ }^{\circ} \mathrm{F}$	${ }^{\circ} \mathrm{F}=1.8(\mathrm{~K}-273.15)+32$

Using Prefixes as Multipliers

Prefix	Symbol	Factor	Prefix	Symbol	Factor
yotta	Y	10^{24}	deci	d	10^{-1}
zetta	Z	10^{21}	centi	c	10^{-2}
exa	E	10^{18}	milli	m	10^{-3}
peta	P	10^{15}	micro	μ	10^{-6}
tera	T	10^{12}	nano	n	10^{-9}
giga	G	10^{9}	pico	p	10^{-12}
mega	M	10^{6}	femto	f	10^{-15}
kilo	k	10^{3}	atto	a	10^{-18}
hecto	h	10^{2}	zepto	Z	10^{-21}
deca	da	10^{1}	yocto	y	10^{-24}

Some analytical techniques can detect as little as 0.000000000000001 g of a compound. The stated mass is $1 \times 10^{-15} \mathrm{~g}$. And is the same as 1 femtogram.
$0.000000001 \mathbf{g}=1 \times 10^{-9} \mathrm{~g}=1$ nanogram.
$0.001 \mathbf{~ m o l}=1 \times 10^{-3} \mathrm{~mol}=\mathbf{1} \mathbf{~ m m o l}$
$0.000001 \mathbf{~ m o l}=1 \times 10^{-6} \mathrm{~mol}=\mathbf{1} \boldsymbol{\mu m o l}$
$1000 \mathrm{~mL}=1 \mathrm{~L}$
$1 \mathrm{~cm}^{3}=1 \mathrm{~mL}$
$\left(L=10^{-3} \mathrm{~m}^{3}\right)$
$\left(\mathrm{mL}=10^{-6} \mathrm{~m}^{3}\right)$
$0.21361=0.214$

2- Fundamental to Quantitative Calculations

Atomic Weight is the weight of a specified number of atoms of that element, and that number is the same from one element to another.
Molecular Weight (mw) defined as the sum of the atomic weights of the atoms that make up a compound. (grams per mole $\mathrm{g} / \mathrm{mol}$)
Formula Weight (fw) is a more accurate description for substances that don't exist as molecules but exist as ionic compounds (strong electrolytes-acids, bases, salts). (grams per mole)

The term molar mass is sometimes used in place of formula weight.

Example 1 : Calculate the weight of one mole of $\mathrm{CaSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$.

Solution

One mole is the formula weight expressed in grams. The formula weight is

Ca	40.08
S	32.06
110	176.00
14 H	14.11
	$262.25 \mathrm{~g} / \mathrm{mol}$

Moles: The number of moles of a substance is calculated from

$$
\text { Moles }=\frac{\text { grams }}{\text { formula weight }(\mathrm{g} / \mathrm{mol})}
$$

$$
\text { Millimoles }=\frac{\text { milligrams }}{\text { formula weight }(\mathrm{mg} / \mathrm{mmol})}
$$

Example 2: Calculate the number of moles in $500 \mathrm{mg} \mathrm{Na}_{2} \mathrm{WO}_{4}$ (sodium tungstate). ($293.8 \mathrm{~g} / \mathrm{mol}$)

Example 3: What is the weight, in milligrams, of 0.250 mmol Fe2O3 (ferric oxide)? $159.7 \mathrm{mg} / \mathrm{mmol}$

3- Chemical Concentration (How Do We Express Concentrations of Solutions):
Concentration states how much solute is contained in a given volume or mass of solution or solvent.

- Molarity (M):- The number of moles of solute per liter of solution.

$$
M=\text { molarity }=\frac{\text { mol solute }}{\mathrm{L} \text { solution }}
$$

- Formality (F):- The number of moles of solute, regardless of chemical form, per liter of solution.
(Formality is numerically the same as molarity)
Sometimes the molarity of a strong electrolyte is called the formal concentration (F).

For a weak electrolyte such as acetic acid, $\mathrm{CH}_{3} \mathrm{COOH}$, some of the molecules dissociate into ions in solution

O	O	Formal concentration	Percent dissociated
C	C	0.10 F	1.3\%
$\mathrm{CH}_{3} \mathrm{OH}$	$\mathrm{CH}_{3} \quad \mathrm{O}^{-}+\mathrm{H}^{+}$	0.010 F	4.1\%
Acetic acid	Acetate ion	0.0010 F	12\%

Example 5: How many grams per milliliter of NaCl are contained in a 0.250 M solution? $58.4 \mathrm{mg} / \mathrm{mmol}$

Example 6: How many grams $\mathrm{Na}_{2} \mathrm{SO}_{4}$ should be weighed out to prepare 500 mL of a 0.100 M solution? $142 \mathrm{mg} / \mathrm{mmol}$

Example 7:
(a) Typical seawater contains 2.7 g of salt (sodium chloride, NaCl) per $100 \mathrm{~mL}\left(100 \times 10^{-3} \mathrm{~L}\right)$. What is the molarity of NaCl in the ocean?
(b) MgCl_{2} has a concentration of 0.054 M in the ocean. How many grams of MgCl_{2} are present in 25 mL of seawater? $22.99 \mathrm{~g} / \mathrm{mol}$ (Na) and $35.45 \mathrm{~g} / \mathrm{mol}$ (Cl)
Answer:
a) 0.46 M
b) 0.13 g

- Molality (m) is concentration expressed as moles of substance per kilogram of solvent (not total solution).
Molality is independent of temperature.
Molarity changes with temperature because the volume of a solution usually increases when it is heated.

$$
m=\text { molality }=\frac{\text { mol solute }}{\mathrm{kg} \text { solvent }}
$$

- Normality (N): The number of equivalents of solute per liter of solution.

Density Calculations:

- Density is the weight per unit volume at the specified temperature, usually g / mL or $\mathrm{g} / \mathrm{cm} 3$ at $20^{\circ} \mathrm{C}$.

Specific gravity is defined as the ratio of the mass of a body (e.g., a solution), usually at $20^{\circ} \mathrm{C}$, to the mass of an equal volume of water at $4^{\circ} \mathrm{C}$ (or sometimes $20^{\circ} \mathrm{C}$).

Density of solution at $20^{\circ} \mathrm{C}=$ Specific gravity of solution $\times 0.99821$ g / mL

- Percent Composition for the SOLID SAMPLES:

The percentage of a component in a mixture or solution is usually expressed as a weight percent ($\mathrm{wt} \%$):

$$
\%(\mathrm{wt} / \mathrm{wt})=\left[\frac{\mathrm{wt} \text { solute }(\mathrm{g})}{\mathrm{wt} \text { sample }(\mathrm{g})}\right] \times 10^{2}(\% / \mathrm{g} \text { solute } / \mathrm{g} \text { sample })
$$

- Percent Composition for the LIQUID SAMPLES
- Percent Composition for the LIQUID- SOLID SAMPLES

$$
\%(\mathrm{wt} / \mathrm{vol})=\left[\frac{\text { wt solute }(\mathrm{g})}{\text { vol sample }(\mathrm{mL})}\right] \times 10^{2}(\% / \mathrm{g} \text { solute } / \mathrm{mL} \text { sample })
$$

- Parts per Thousand, Parts per Million and Parts per Billion For SOLID SAMPLES
parts per thousand (ppt), parts per million (ppm), or parts per billion (ppb).

$$
\begin{aligned}
\mathrm{ppt}(\mathrm{wt} / \mathrm{wt}) & =\left[\frac{\mathrm{wt} \text { solute }(\mathrm{g})}{\mathrm{wt} \text { sample }(\mathrm{g})}\right] \times 10^{3}(\mathrm{ppt} / \mathrm{g} \text { solute } / \mathrm{g} \text { sample }) \\
\mathrm{ppm}(\mathrm{wt} / \mathrm{wt}) & =\left[\frac{\mathrm{wt} \mathrm{solute}(\mathrm{~g})}{\mathrm{wt} \text { sample }(\mathrm{g})}\right] \times 10^{6}(\mathrm{ppm} / \mathrm{g} \text { solute } / \mathrm{g} \text { sample }) \\
\mathrm{ppb}(\mathrm{wt} / \mathrm{wt}) & =\left[\frac{\mathrm{wt} \text { solute }(\mathrm{g})}{\mathrm{wt} \text { sample }(\mathrm{g})}\right] \times 10^{9}(\mathrm{ppb} / \mathrm{g} \text { solute } / \mathrm{g} \text { sample })
\end{aligned}
$$

- Parts per Million, Parts per Billion and Parts per Trillion For SOLID- Liquid SAMPLES

$$
\begin{aligned}
\mathrm{ppm}(\mathrm{wt} / \mathrm{vol}) & =\left[\frac{\mathrm{wt} \text { solute }(\mathrm{g})}{\text { vol sample }(\mathrm{mL})}\right] \times 10^{6}(\mathrm{ppm} / \mathrm{g} \text { solute } / \mathrm{mL} \text { sample }) \\
\mathrm{ppb}(\mathrm{wt} / \mathrm{vol}) & =\left[\frac{\mathrm{wt} \text { solute }(\mathrm{g})}{\text { vol sample }(\mathrm{mL})}\right] \times 10^{9}(\mathrm{ppb} / \mathrm{g} \text { solute } / \mathrm{mL} \text { sample }) \\
\mathrm{ppt}(\mathrm{wt} / \mathrm{vol}) & =\left[\frac{\mathrm{wt} \text { solute }(\mathrm{g})}{\text { vol sample }(\mathrm{mL})}\right] \times 10^{12}(\mathrm{ppt} / \mathrm{g} \text { solute } / \mathrm{mL} \text { sample })
\end{aligned}
$$

Example : A 2.6 g sample of plant tissue was analyzed and found to contain $3.6 \mu \mathrm{~g}$ zinc. What is the concentration of zinc in the plant in ppm? In ppb?

Converting Parts per Billion into Molarity

The concentration of $\mathrm{C}_{29} \mathrm{H}_{60}$ in summer rainwater collected in Hannover, Germany is 34 ppb. Find the molarity of $\mathrm{C}_{29} \mathrm{H}_{60}$ and express the answer with a nano prefix
H.W) How many ppm of $\mathrm{C}_{29} \mathrm{H}_{60}$ are in $23 \mu \mathrm{M} \mathrm{C} 29 \mathrm{H} 60$?
(Answer: 9.4 ppm)

Preparing Solutions:

To prepare a solution with a desired molarity from a pure solid or liquid, we weigh out the correct mass of reagent and dissolve it in a volumetric flask
Example : A solution is prepared by dissolving $1.26 \mathrm{~g} \mathrm{AgNO}_{3}$ in a $250-\mathrm{mL}$ volumetric flask and diluting to volume. Calculate the molarity of the silver nitrate solution. How many millimoles AgNO_{3} were dissolved? $169.9 \mathrm{~g} / \mathrm{mol}$

- Dilution Calculations:

Dilution formula:

$$
\mathrm{M}_{\text {conc }} \cdot V_{\text {conc }}=\mathrm{M}_{\text {dil }} \cdot V_{\text {dil }}
$$

Moles taken from Moles placed in concentrated solution dilute solution

Example : The molarity of "concentrated" HCl purchased for laboratory use is approximately 12.1 M . How many milliliters of this reagent should be diluted to 1.000 L to make 0.100 M HCl ?
H.W) You wish to prepare 500 mL of a $0.100 \mathrm{M} \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ solution from a 0.250 M solution. What volume of the 0.250 M solution must be diluted to 500 mL ? Answer= 200 mL

Example : How many milliliters of concentrated sulfuric acid, $94.0 \%(\mathrm{~g} / 100 \mathrm{~g}$ solution), density $1.831 \mathrm{~g} / \mathrm{cm} 3$, are required to prepare 1 liter of a 0.100 M solution?

Example : A $25.0-\mu \mathrm{L}$ serum sample was analyzed for glucose content and found to contain $26.7 \mu \mathrm{~g}$. Calculate the concentration of glucose in $\mu \mathrm{g} / \mathrm{mL}$ and in mg / d
H.W) (a) Calculate the molar concentrations of $1 \mathrm{mg} / \mathrm{L}$ (1.00 ppm) solutions each of $\mathrm{Li}^{+}(6.94 \mathrm{~g} \mathrm{Li} / \mathrm{mol})$ and $\mathrm{Pb}^{2+}(207 \mathrm{~g} \mathrm{~Pb} / \mathrm{mol})$.
Answer ($1.44 \times 10^{-4} \mathbf{~ m o l} / \mathrm{L} \mathrm{Li}$ and $4.83 \times \mathbf{1 0}^{\mathbf{- 6}} \mathbf{~ m o l} / \mathrm{L} \mathrm{Pb}$)
(b) What weight of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ will have to be dissolved in 1 liter of water to prepare a $100 \mathrm{mg} / \mathrm{L}(100 \mathrm{ppm}) \mathrm{Pb}^{2+}$ solution? Answer= $0.137 \mathrm{~g} \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2}$

- p-function

A function of the form $\mathrm{p} X$, where $\mathrm{p} X=-\log (X)$.
Example : What is pNa for a solution of $1.76 \times 10^{-3} \mathrm{M} \mathrm{Na}_{3} \mathrm{PO}_{4}$?

Example : What is the $\left[\mathrm{H}^{+}\right]$in a solution that has a pH of 5.16 ?

