جامعة المثنى كلية العلوم قسم الكيمياء

الكيميام الاولى

2015 ڪمي اچشش رڪيدر تعبابال عبدال مفتاح الإبداع للكيماء التصليطة الكثافة النوعية للمحاليل

Density and specific gravity of solutions

1. الكثافة (density)

وتعبر عن كتلة المادة لكل وحدة حجم

express the mass of a substance per unit volume

$$d = \frac{m}{v}$$

ويعبر عنها بالوحدات التالية Kg/L, g/ml ,....

2. الجاذبية النوعية (Specific gravity)

هي النسبة بين كتلة المادة لكتلة الماء المساوي لها بالحجم

The ratio of the mass of a substance to the mass of an equal volume of water.

و لا يوجد لها وحدات (unit less).

وفي هذه المادة سوف نعامل المصطلحين السابقين نفس المعاملة في عملية

Example:

Calculate the molar concentration of HNO₃ (63.0 g/mol) in a solution that has a specific gravity of 1.42 and is 70.5% HNO₃ (w/w).

Solution:

$$Mw = 63.0 \text{ g/mol}$$
 mass% = 70.5 (w/w)

*) كما مر معنا في كتاب مفتاح الإبداع لكيمياء 102 فإننا نستطيع التمويل من
$$(\% \longrightarrow M)$$
 أو بالعكس حسب القانون التالي

$$M = \frac{d \times \% \times 10}{Mw}$$

$$M = \frac{1.42 \times 70.5 \times 10}{63} = 15.9 \text{ M}$$

Example:

Describe the preparation of 100 mL of 6.0 M HCl from a concentrated solution that has a specific gravity of 1.18 and is 37% (w/w) HCl (36.5 g/mol).

صف تحضير محاول HCl بحجم (
$$m$$
l) وتركيز (M 0.0) من محلول مركز يمتلك جاذبية نوعية (m l) و (m l) m l) m 2.

Solution:

$$V_2 = 100 \text{ ml}$$

$$M_2 = 6.0 M$$

$$V_1 = ??$$

$$M_1 = ??$$

$$Mw_{HCl} = 36.45 \text{ g/mol}$$

من الجدول الدوري

نستطيع إيجاد قيمة (M₁) من خلال معطيات السؤال حسب القانون التالى:

$$M_1 = \frac{d \times \% \times 10}{Mw} = \frac{1.18 \times 37 \times 10}{36.45} = 11.98 M$$

$$\Rightarrow M_1 V_1 = M_2 V_2$$

$$11.98 \times V_1 = 6 \times 100$$

$$\Rightarrow V_1 = 50 \text{ ml}$$

تحديد صيغة المركب:

Determining the formula of a compound

الصيغة الكيميائية Chemical Formula

1

الصيغة البدائية Emperical Formula

هي الصيغة البسيطة التي تعطينا أنواع الذرات المكونة للمركب والنسب بين أعداد ذراتها.

> مثال CH₂O

الصيغة الجزيئية Molecular Formula

هي الصيغة الأكثر تعقيد ووضوح وتعطينا أنواع الذرات المكونة للمركب وأعدادها الصحيحة

> مثال C₆H₁₂O₆

Molecular Formula = $L \times Emperical Formula$

L = هو عدد صحیح (1، 2، 3،) نستطیع حساب L عن طریق القانون:

$$L = \frac{M_{w} \text{ of Molecular Formula}}{M_{w} \text{ of Emperical Formula}}$$

• يجب أن تكون الصيغة البدائية بأبسط شكل لها "لا يوجد قواسم مـشتركة بين أعداد الذرات المكونة للمركب".

Example:

Which of the following is not an empirical formula?

- a) CH
- b) CH₂O
- c) AlCl₃
- d) H₂O₂

e) N₂O₅

Solution:

في حال الصيغة البدائية " Empirical Formula" لا يوجد قاسم مشترك بين أعداد الذرات

Molecular Formula $= H_2O_2$

But the empirical Formula = HO.

• طريقة حل مثل هذا النوع من الأسئلة لتحديد الصبيغة البدائية والجزيئية المركب؟

(Molecular Formula)

(Empirical Formula)

Example:

Determine the empirical and molecular formulas for a compound that gives the following analysis "in mass percent".

71.65% Cl

24.27% C

4.07% H

The molar mass is known to be 98.96 g/mol.

حدد الصيغة البدائية والجزيئية لمركب يعطى هذا التحليل "النسب المئوية للعناصر"

71.65% Cl 24.27% C

4.07% H

علماً بأن الكتلة المواية المركب تساوي 98.96 g/mol

مفتاح الإبداع للكيماء التحليا

Solution:

نفترض أنه يوجد لدينا g 100 من هذا المركب وبذلك تصدح النسب المئوية للعناصر عبارة عن كتلة

$$\Rightarrow m_{ci} = 71.65 \text{ g}$$

$$m_{c} = 24.27 \text{ g}$$

$$m_{u} = 4.07 \text{ g}$$

1) نوجد عدد مو لات العناصر المكونة للمركب.

$$n_{cl} = \frac{m}{M_{cl}} = \frac{71.65}{35.45} = 2.021 \text{ mol}$$

$$n_c = \frac{24.27}{12} = 2.021 \text{ mol}$$

$$n_{\rm H} = \frac{4.07}{1} = 4.04 \text{ mol}$$

$$\Rightarrow$$
 Cl₁ C₁ H₂ = Empirical Formula

3) نقوم بحساب قيمة L:

$$L = \frac{M_{w} \text{ of Molecular Formula}}{M_{w} \text{ of Empirical Formula}}$$

$$L = \frac{98.96}{1 \times 35.45 + 1 \times 12 + 2 \times 1} = 2$$

4) نقوم بحساب الصيغة الجزيئية:

Molecular Formula = $L \times Empirical Formula$

$$= 2 \times (Cl_1C_1H_2)$$
$$= Cl_2C_2H_4$$

Example:

A chlorine oxide is 59.7% by mass Cl. What is the empirical formula of the oxide?

a) Cl_2O_5 b) Cl_2O c) ClO_2

d) Cl_2O_3 e) Cl_2O_2

Solution:

نورض انه يوجد لدينا 100g من هذا المركب

 \Rightarrow mass of Cl = 59.7 g

 \Rightarrow mass of O = 100 - 59.7 = 40.39

$$n_{CI} = \frac{m}{Mw} = \frac{59.7}{35.45} = 1.684 \,\text{mol}$$

$$n_o = \frac{m}{Mw} = \frac{40.3}{16} = 2.518$$

$$Cl_{\frac{1.684}{1.684}} O_{\frac{2.518}{1.684}}$$