Fundamentals of Analytical Chemistry

م.د.مسار علي عواد

Titrating a Strong Base with a weak Acid

CH3COOH + NaOH -----> NaCl+H2O

Titration Curve

Titration Curves for Weak Bases

 $NH_3 + HCl \longrightarrow NH_4^+ + Cl^-$

Christine Chang

Buffer Solutions

Buffer: a mixture of a weak acid and its conjugate base or a weak base and its conjugate

acid that resists changes in pH of a solution

Titration Data	
NaOH added (mL)	рН
0.00	2.89
5.00	4.14
10.00	4.57
12.50	4.74
15.00	4.92
20.00	5.35
24.00	6.12
25.00	8.72
26.00	11.30
30.00	11.96
40.00	12.36

Titrating a Strong Base with a weak Acid

Titration curves for weak acid v strong base

- ***** At the equivalence point the solution contains **CH3COONa**.
- * This dissociates into acetate ions CH3COO- and Na+.
- **CH3COO-** is the conjugate base of the weak acid **CH3COOH**.
- CH3COO- is strong base is reacted with water to form wake acid (CH3COOH) and OH- ion as strong conjugate base.
- ***** thus increasing the **pH** to ~ 9 at the equivalence point.

Generate a curve for the titration of 50 mL of 0.1 M acetic acid (HOAc) with 0.1 M sodium hydroxide at 25°C (10,25,49,50,50.10. Ka =1.7 \times 10⁻⁵

3- Equivalence Point

all of the acetic acid has been converted to sodium acetate.

The solution is, therefore, similar to one formed by dissolving NaOAc in water.

NaOAC + H_2O \longrightarrow HOAC + OH^-

4-Postequivalence Point		
(after addition of 50.10 mL reagent)		
C _{NaOHl} = <u>mmol NaOH added – original mmol HOAC</u>		
total volume solution		
= (50.10 mL x 0.1 M) - (50.00 mL x 0.1 M)		
50.0 mL + 50.10 mL		
$C_{\text{NaOH}} = 0.000099 \text{ M}$		
pOH = -log(0.000099)		
pOH = 4.00		
pH + pOH =14		
рН= 14- рОН		
pH= 14- 4		
pH = 10		

Titration Data		
NaOH added (mL)	pН	
0.00 5.00 10.00 25.00 49.00 50.00 50.10 60.00	2.88 4.15 8.73 10.00 	

Titration of a weak base with a strong acid

- * A depiction of the pH change during a titration of HCl solution into an ammonia solution. $NH_3 + HCl \implies NH_4^+ + Cl^-$
- ***** The curve depicts the change in pH vs. the volume of HCl added in mL.
- the pH at the equivalence point is not 7 but below it. This is due to the production of a conjugate acid during the titration; it will react with water to produce hydronium (H₃O⁺) ions.
- In the example of the titration of HCI into
 ammonia solution, the conjugate acid formed
 (NH₄⁺) reacts as follows:

 $NH_4^+ + H_2O \implies NH_3 + H_3O^+$

Titration Curves for Weak Bases

50. mL aliquot of 0.05 M NaCN (K_a for HCN = 6.2 * 10-10) is titrated with 0.1 M HCl. The reaction is

Calculate the pH after the addition of (a) 0.00, (b)

10.00, (c) 25.00, and (d) 26.00 mL of acid.

1. Initial Point: Before adding any volume from burette.

 3- Equivalence Point all of the NaCN has been converted to HCN. 	
$\mathbf{Ka} = \frac{[H3O+] [CN-]}{[HCN]}$	
suppose : $[H3O +] = [CN^{-}]$	
from C _{HCN} = <u>mmol HCL added</u>	
total volume (mL)	
$C_{HCN} = \frac{25 \text{ ml} \times 0.1 \text{ M}}{25 + 50 \text{ ml}} = 0.033 \text{ M}$	
$[H3O^+] = \sqrt{[HCN]K_a}$	
$[H30^+] = \sqrt{0.033 \times 6.2 \times 10^{-10}}$	
$[H30^+] = 1.32 \times 10^{-3}$	
pH=-log (1.32×10^{-3})	
рН= 5.34	

