Fundamentals of Analytical Chemistry

م.لـ.مسـار علي عواد

Titration Curve

* A titration curve is a plot of pH vs. the amount of titrant volume of titrant added.
* Such curves are useful for determining endpoints and dissociation constants of weak acids or bases.

Features of the Strong AcidStrong Base Titration Curve

$$
\mathrm{HCl}+\mathrm{NaOH} \longrightarrow \mathrm{H} 2 \mathrm{O}+\mathrm{NaCl}
$$

1. The pH starts out low, reflecting the high $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$ of the strong acid and increases gradually as acid is neutralized by the added base.
2. Suddenly the pH rises steeply. This occurs in the immediate vicinity of the equivalence point. For this type of titration the $\mathbf{p H}$ is 7.0 at the equivalence point.
3. Beyond this steep portion, the $\mathbf{p H}$ increases slowly as more base is added.

Titration Curve

* A titration curve is a plot of pH vs. the amount of titrant volume of titrant added.
* Such curves are useful for determining endpoints and dissociation constants of weak acids or bases.

Graph of How pH changes as Titrant is Added

$>$ Assume

»strong acid and base completely dissociate >Any amount of H^{+}added will consume a stoichiometric amount of OH^{-}

$$
\mathrm{H}^{+}+\mathrm{OH}^{-} \longrightarrow \mathrm{H}_{2} \mathrm{O}
$$

-Reaction Assumed to go to completion

> -_Preequivalence or Before the equivalence point, the pH is determined by excess OH - in the solution
-At the equivalence point, H^{+}is just sufficient to react with all OH^{-}to make $\mathrm{H}_{2} \mathrm{O}$
-Postequivalence or After the equivalence point, pH is determined by excess H^{+}in the solution.

$$
\mathrm{HCl}+\mathrm{NaOH} \longrightarrow \mathrm{H} 2 \mathrm{O}+\mathrm{NaCl}
$$

Sample Calculation: Strong Acid-Strong Base Titration Curve

Before the Equivalence Point

1- Before the equivalence point, we calculate the pH from the molar concentration of unreacted acid.
2-strong acid is complete dissociation in water

1. Initial Point: the solution is $\mathbf{X} \quad \mathrm{M}$ in $\mathrm{H}_{3} \mathrm{O}^{+}, \quad \mathrm{pH}=-\log (\mathrm{H}+)$

Preequivalence Point (after addition of 10 mL reagent)
$\mathrm{C}_{\mathrm{HCl}}=\underline{\text { mmol remaining (original } \mathrm{mmol} \mathrm{HCl}-\mathrm{mmol} \mathrm{NaOH} \text { added) }}$ total volume (mL)

Equivalence Point

$$
\left[\mathrm{OH}^{-}\right]=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right], \mathrm{pH}=7
$$

Postequivalence Point (after addition of $\mathbf{2 5 . 1 0} \mathrm{mL}$ reagent)
$\mathrm{C}_{\mathrm{NaOH}}=\underline{\mathrm{mmol} \mathrm{NaOH} \text { added }- \text { original } \mathrm{mmol} \mathrm{HCl}}$

م.د. مسـار علي عواد

Titration curve for 50.00 mL of 0.02 M HCl with 0.1 M NaOH , when added $4,8,10,12 \mathrm{ml}$ from NaOH , Find the

```
HCl+NaOH NaCl+H2O
```

1. Initial Point:
the solution is 0.02 M in $\mathrm{H}_{3} \mathrm{O}^{+}$,
$\mathbf{p H}=-\log (\mathbf{H}+)$
$\mathrm{pH}=-\log (0.02)$
, $\mathrm{pH}=1.7$

2- Preequivalence Point

$\mathbf{C}_{\mathbf{H C l}}=\underline{\text { mol remaining (original mmol } \mathrm{HCl}-\mathrm{mmol} \mathrm{NaOH} \text { added) }}$
total volume (mL)
(after addition of 4 mL reagent)

$$
\mathrm{C}_{\mathrm{HCl}}=\frac{50 \mathrm{ml} \times 0.02 \mathrm{M}-0.1 \mathrm{M} \times 4 \mathrm{ml})}{(50 \mathrm{ml}+4 \mathrm{ml})}
$$

$\mathrm{C}_{\mathrm{HCl}}=\mathbf{0 . 0 1}$
$\mathbf{p H}=-\log (0.01)$
$\mathrm{pH}=\mathbf{2}$
(after addition of 8 mL reagent)

$$
\mathrm{C}_{\mathrm{HCl}}=\frac{50 \mathrm{mlx} \times 0.02 \mathrm{M}-0.1 \mathrm{M} \times 8 \mathrm{ml})}{(50 \mathrm{ml}+8 \mathrm{ml})}
$$

$\mathbf{C H C l}_{\mathbf{H C l}}=\mathbf{0 . 0 0 3}$
$\mathrm{pH}=-\log (0.003)$
$\mathrm{pH}=2.5$

3- Equivalence Point $\left[\mathrm{OH}^{-}\right]=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right], \mathrm{pH}=7$

```
4-Postequivalence Point
(after addition of 12.00 mL reagent)
```

 \(\mathrm{C}_{\mathrm{NaOH}}=\underline{\mathrm{mmol} \mathrm{NaOH} \text { added }- \text { original } \mathrm{mmol} \mathrm{HCl}}\)
 total volume solution
 \(=(12 \mathrm{~mL} \times 0.1 \mathrm{M})-(50.00 \mathrm{~mL} \times 0.02 \mathrm{M})\)
 \(50.0 \mathrm{~mL}+12 \mathrm{~mL}\)
 \(\mathrm{C}_{\mathrm{NaOH}}=\mathbf{0 . 0 0 3 2} \mathrm{M}\)
 \(\mathrm{pOH}=-\log (0.0032)=2.49\)
 \(\mathrm{pH}+\mathrm{pOH}=14\)
 \(\mathrm{pH}=14-\mathrm{pOH}\)
 \(\mathrm{pH}=14-2.49\)
 \(\mathrm{pH}=11.5\)
 | $\mathrm{V} \mathrm{NaOH}(\mathrm{ml})$ added from
 buret | pH |
| :---: | :---: |
| 0 | 1.7 |
| 4 | 2 |
| 8 | 2.5 |
| 10 | 7 |
| 12 | 11.5 |

Titrating a Strong Base with a Strong Acid

Titration curve for 50.00 mL of 0.05 M NaOH with 0.1 M HCl

Before the Equivalence Point

1- Before the equivalence point, we calculate the pH from the molar concentration of unreacted acid.
2 - strong base is complete dissociation in water

1. Initial Point: the solution is $\mathbf{X} \quad \mathrm{M}$ in $\mathbf{H}_{3} \mathbf{O}^{+}, \quad \mathrm{pOH}=-\log (\mathbf{O H}-) \quad, \quad \mathrm{pOH}+\mathrm{pH}=14, \quad \mathrm{pH}=\mathbf{1 4}-\mathrm{pOH}$

Preequivalence Point

$$
\begin{gathered}
\mathrm{C}_{\mathrm{NaOH}}=\frac{\text { mmol remaining }(\text { original } \mathrm{mmol} \mathrm{NaOH}-\mathrm{mmol} \mathrm{HCl} \text { added })}{\text { total volume }(\mathrm{mL})} \\
{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\frac{\left[\mathrm{OH}^{-}\right]}{K_{w}}}
\end{gathered}
$$

Equivalence Point

$$
\left[\mathrm{OH}^{-}\right]=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right], \mathrm{pH}=7
$$

م.د. مسار علي عواد

Postequivalence Point

$\mathrm{C}_{\mathrm{HCl}}=\underline{\text { mmol } \quad \mathrm{HCl} \text { added }- \text { original mmol } \mathrm{NaOH}}$ total volume solution
$\mathrm{pH}=-\log [\mathrm{H} 3 \mathrm{O}+]$

Calculate the pH during the titration of 50 mL of 0.05 M NaOH with 0.1 M HCl at $25^{\circ} \mathrm{C}$ after the addition of the following volumes of reagent: (a) 24.50 mL , (b) 25.00 mL , (c) 25.50 mL .

$\mathrm{HCl}+\mathrm{NaOH}$

$\mathrm{NaCl}+\mathrm{H} 2 \mathrm{O}$

1. Initial Point:
$\mathrm{pOH}=-\log (\mathrm{OH}-)$,
$\mathrm{pOH}=-\log (0.05)$
, $\mathrm{pOH}=1.3$
$\mathrm{pOH}+\mathrm{pH}=14, \quad \mathrm{pH}=14-\mathrm{pOH} \quad, \quad \mathrm{pH}=14-1.3 \quad, \quad \mathrm{pH}=12.7$
```
2- Preequivalence Point
C 
    total volume (mL)
(after addition of 24.5 mL reagent)
```

```
        \(\left.\mathrm{C}_{\mathrm{NaOH}}=50 \mathrm{M} \times 0.05 \mathrm{ml}-0.1 \mathrm{M} \times 24.5 \mathrm{ml}\right)\)
```

 \(\left.\mathrm{C}_{\mathrm{NaOH}}=50 \mathrm{M} \times 0.05 \mathrm{ml}-0.1 \mathrm{M} \times 24.5 \mathrm{ml}\right)\)
 (\(50 \mathrm{ml}+24.5 \mathrm{ml}\))
 (\(50 \mathrm{ml}+24.5 \mathrm{ml}\))
 $\mathrm{C}_{\mathrm{NaOH}}=\mathbf{0 . 0 0 0 6 7}$
$\mathrm{C}_{\mathrm{NaOH}}=\mathbf{0 . 0 0 0 6 7}$
$\mathrm{pOH}=-\log (0.00067) \quad$,
$\mathrm{pOH}=-\log (0.00067) \quad$,
$\mathrm{pOH}=\mathbf{3 . 1 7 3 9}$
$\mathrm{pOH}=\mathbf{3 . 1 7 3 9}$
$\mathrm{pH}+\mathrm{pOH}=14$
$\mathrm{pH}+\mathrm{pOH}=14$
, $\mathrm{pH}=14$ - 3.1739
, $\mathrm{pH}=14$ - 3.1739
$\mathrm{pH}=10.83$

```
                                \(\mathrm{pH}=10.83\)
```

3- Equivalence Point \quad [$\left.\mathrm{OH}^{-}\right]=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right], \mathrm{pH}=7$

```
4-Postequivalence Point
(after addition of }25.5\textrm{mL}\mathrm{ reagent)
C
                total volume solution
        =(25.5 mL \times 0.1 M)-(50.00 mL \times 0.05 M)
                        50.0 mL + 25.5 mL
        C нсІ = 0.00066 M
pH=-log(0.00066)
pH = 3.18
```

$\mathrm{V} \mathrm{HCl}(\mathrm{ml})$ added from buret	pH
0	12.7
24.5	10.83
25	7
25.5	3.18

