Fundamentals of Analytical Chemistry

م.لـ.مسـار علي عواد

Titration and Acid-Base Neutralization

What is Acid-Base Titration?

It is a quantitative analysis method to determine an acid's or bases' concentration by precisely neutralizing them with a standard solution of either acid or base of known concentration.

* Both titrations involve in the neutralization reaction.

$$
\mathrm{HCl}+\mathrm{KOH} \longrightarrow \mathrm{H} 2 \mathrm{O}+\mathrm{KCl}
$$

Acid + Alkali \rightarrow Salt + Water

$$
\text { Or } \mathrm{H}^{+}+\mathrm{OH}^{-} \longrightarrow \mathrm{H}_{2} \mathrm{O}
$$

What is Acid-Base Titration?

* The strength of an acid can be determined using a standard solution of a base. This process is called acidimetry.

```
HNO3 + NaOH \longrightarrow H2O + NaNO3
```

moles $\mathrm{H}_{3} \mathrm{O}^{+}=$moles OH^{-} $\mathbf{M} \cdot \mathbf{V} \cdot \mathbf{n}=\mathbf{M} \cdot \mathbf{V} \cdot \mathbf{n}$

What is Acid-Base Titration?

the strength of a base can be found with the help of a standard solution of an acid, which is known as alkalimetry.

What is Acid-Base Titration?

In general, the reaction of an acid with a base produces water and one of a class of compounds called salts.

$$
\begin{array}{ccc}
2 \mathrm{HCl}(a q) & \mathrm{Ca}(\mathrm{OH})_{2}(a q) & 1 \mathrm{~mol} \\
2 \mathrm{~mol} & \mathrm{CaCl}_{2}(a q) & +\underset{2}{2 \mathrm{H}_{2} \mathrm{O}(l)} \\
\hline 1 \mathrm{~mol} & 2 \mathrm{~mol}
\end{array}
$$

moles $\mathrm{H}_{3} \mathrm{O}^{+}=$moles OH^{-} $\mathrm{M} \cdot \mathrm{V} \cdot \mathbf{2}=\mathrm{M} \cdot \mathrm{V} \cdot 1$

$$
\underset{1 \mathrm{~mol}}{\mathrm{H}_{2} \mathrm{SO}_{4}(a q)}+\underset{2 \mathrm{~mol}}{2 \mathrm{NaOH}(a q)} \longrightarrow \underset{1 \mathrm{~mol}}{\mathrm{Na}_{2} \mathrm{SO}_{4}(a q)}+\underset{2 \mathrm{~mol}}{2 \mathrm{H}_{2} \mathrm{O}(l)}
$$

moles $\mathrm{H}_{3} \mathrm{O}^{+}=$moles OH^{-} $\mathrm{M} \cdot \mathrm{V} \cdot \mathbf{1}=\mathrm{M} \cdot \mathrm{V} \cdot \mathbf{2}$

Indicators

Indicators are often added to the analyte solution to produce an observable physical change (signaling the end point) at or near the equivalence point.
\square Large changes in the relative concentration of analyte or titrant occur in the equivalence-point region. These concentration changes cause the indicator to change in appearance.

Indicators

Methyl Violet

Malachite green
Cresol red

Thymol blue
Benzopurpurin 4B
Orange IV
Phloxine B

2,4-Dinitrophenol

Methyl yellow (in ethanol)
Bromophenol blue
Congo red
Methyl orange
Bromocresol green
alpha-Naphthyl red

Methyl red

Litmus (azolitmin)
Bromocresol purple
4-Nitrophenol
Bromothymol blue
Phenol red

Acid Colour	Range	Base Colour
yellow	$\begin{gathered} 0.0- \\ 1.6 \end{gathered}$	blue
yellow	$0.2-$	blue-green
red	$\begin{gathered} 1.0- \\ 2.0 \end{gathered}$	yellow
red	$\begin{gathered} 1.2- \\ 2.8 \end{gathered}$	yellow
violet	$\begin{gathered} 1.2- \\ 3.8 \end{gathered}$	red
red	$\begin{gathered} 1.4- \\ 2.6 \end{gathered}$	yellow
colourless	$\begin{gathered} 2.1- \\ 4.1 \end{gathered}$	pink
colourless	$\begin{gathered} 2.8- \\ 4.0 \end{gathered}$	yellow
red	$\begin{gathered} 2.9- \\ 4.0 \end{gathered}$	yellow
yellow	$\begin{gathered} 3.0- \\ 4.6 \end{gathered}$	blue-violet
blue	$\begin{gathered} 3.1- \\ 4.9 \end{gathered}$	red
red	$\begin{gathered} 3.2- \\ 4.4 \end{gathered}$	yellow
yellow	$\begin{gathered} 4.0- \\ 5.6 \end{gathered}$	blue
red	$\begin{gathered} 4.0- \\ 5.7 \end{gathered}$	yellow
red	$\begin{gathered} 4.8- \\ 6.0 \end{gathered}$	yellow
red	$\begin{gathered} 5.0- \\ 7.0 \end{gathered}$	blue
yellow	$\begin{gathered} 5.2- \\ 6.8 \end{gathered}$	violet
colourless	$\begin{gathered} 5.4- \\ 6.6 \end{gathered}$	yellow
yellow	$\begin{aligned} & 6.0- \\ & 7.6 \end{aligned}$	blue
yellow	$\begin{gathered} 6.4- \\ 8.0 \end{gathered}$	red

The titration of an acid with a base

Acid solution with indicator

Added base is measured with a buret.

Color change shows neutralization.

Acid-Base Indicators

A. Finding the equivalence point of a titration

1) Use a $\mathbf{p H}$ meter
a) Plot pH versus titrant volume
b) Center vertical region = equivalence point
2) Use an Acid-Base Indicator
a) Acid-Base Indicator $=$ molecule that changes color based on $\mathbf{p H}$
b) Choose an indicator that changes color at the equivalence point
c) End Point $=$ when the indicator changes color. If you have chosen the wrong indicator, the end point will be different than the eq. pt.
d) Indicators are often Weak Acids that lose a proton (causing the color change) when [OH-] reaches a certain concentration

Acid-base indicators

General Many indicators are weak acids and partially dissociate in aqueous solution

$$
\mathrm{HIn}_{(\mathrm{aq})} \rightleftharpoons \mathrm{H}^{+}{ }_{(\mathrm{aq})}+\mathrm{In}_{(\mathrm{aq})}^{-}
$$

The un-ionised form (HIn) is a different colour to the anionic form ($\mathbf{I n}^{-}$).

-increase of [H+]

- equilibrium moves to the left to give red undissociated form

increase of $\left[\mathrm{OH}^{-}\right]$

OH^{-}ions remove $\mathrm{H}+$ ions to form water;
$\mathrm{H}+(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})=\mathrm{H} 2 \mathrm{O}(\mathrm{l})$

- equilibrium will move to the right to produce a blue colour

Summary

$$
\mathrm{HIn}_{(\mathrm{aq})} \stackrel{\text { In acidic solution }}{\rightleftharpoons \mathrm{H}^{+}{ }_{(\mathrm{aq})}}+\mathrm{In}^{-}{ }_{(\mathrm{aq})} \quad \mathrm{pH}=\mathrm{pK}_{\text {in }} \pm 1
$$

the behavior of an acid-type indicator

$\mathrm{HIn}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{In}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$

The equilibrium-constant expression for the dissociation of an acid-type indicator takes the form

$$
K_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{In}^{-}\right]}{[\mathrm{HIn}]}
$$

Rearranging leads to

$$
\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=K_{\mathrm{a}} \frac{[\mathrm{HIn}]}{\left[\mathrm{In}^{-}\right]}
$$

$$
\mathrm{pH}=\mathrm{pK} \mathrm{a}+\log [\mathrm{In}-] /[\mathrm{HIn}]
$$

We see then that the hydronium ion is proportional to the ratio of the concentrationof the acid form to the concentration of the base form of the indicator

The equilibrium for a base-type indicator

$$
\mathrm{In}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{InH}^{+}+\mathrm{OH}^{-}
$$

Color change and molecular modes for phenolphthalein.
(a) Acidic form after hydrolysis of the lactone form.
(b) Basic form.

the behavior of an acid-type indicator

* we can write that the average indicator, HIn, exhibits its pure acid color when $\frac{[\mathrm{HIn}]}{\left[\mathrm{In}^{-}\right]} \geq \frac{10}{1}$
* and its base color when $\quad \frac{[\mathrm{HIn}]}{\left[\mathrm{In}^{-}\right]} \leq \frac{1}{10}$

$$
\begin{gathered}
\mathrm{pH}=\mathrm{pK}_{\mathrm{a}} \pm 1 \\
\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log (1 / 10)=\mathrm{pK}_{\mathrm{a}}-\mathbf{1} \\
\mathrm{pH}=\mathrm{pKa}_{\mathrm{a}}+\log (10 / 1)=\mathrm{pK} \mathrm{a}+1
\end{gathered}
$$

$$
\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=K_{\mathrm{a}} \frac{[\mathrm{HIn}]}{\left[\mathrm{In}^{-}\right]} \quad \longrightarrow \quad\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10 K_{\mathrm{a}} \quad \text { or } \quad\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=0.1 K_{\mathrm{a}}
$$

* Most indicators require a transition range of about 02 pH units.
* The $\mathrm{pK} a$ of the indicator should be close to the pH of the equivalence point.
* The human eye is not very sensitive to color differences in a solution containing a mixture of HIn and In . particularly when the ratio $[\mathrm{HIn}] /[\mathrm{ln} 2]$ is greater than about 10 or smaller than about 0.1. Because of this restriction.

