Fundamentals of Analytical Chemistry

م.د.مسار علي عواد

Titration and Acid-Base Neutralization

Acid + Base → Water + Salt
 Ex: HCI + NaOH → H₂O + NaCI

- It is a quantitative analysis method to determine an acid's or bases' concentration by precisely neutralizing them with a standard solution of either acid or base of known concentration.
- ***** Both titrations involve in the <u>neutralization reaction</u>.

$$HCI + KOH \longrightarrow H2O + KCI$$

Acid + Alkali→Salt + Water

Or
$$H^+ + OH^- \rightarrow H_2O$$

The strength of an acid can be determined using a standard solution of a base. This process is called <u>acidimetry</u>.

HNO3 + NaOH

H2O + **NaNO3**

moles H_3O^+ = moles $OH^ M \cdot V \cdot n = M \cdot V \cdot n$

the strength of a base can be found with the help of a standard solution of an acid, which is known as alkalimetry.

 $HCl + NaOH \longrightarrow H2O + NaCl$

moles H_3O^+ = moles $OH^ M \cdot V \cdot n = M \cdot V \cdot n$

In general, the reaction of an acid with a base produces water and one of a class of compounds called salts.

$$2\text{HCl}(aq) + \text{Ca}(\text{OH})_2(aq) \longrightarrow \text{CaCl}_2(aq) + 2\text{H}_2\text{O}(l)$$

$$2 \text{ mol} \qquad 1 \text{ mol} \qquad 2 \text{ mol}$$

$$moles \text{H}_3\text{O}^+ = \text{moles OH}^-$$

$$\text{M}\cdot\text{V}\cdot\text{2} = \text{M}\cdot\text{V}\cdot\text{1}$$

$$\begin{array}{ccc} \mathrm{H_2SO}_4(aq) \ + \ 2\mathrm{NaOH}(aq) \longrightarrow \mathrm{Na_2SO}_4(aq) \ + \ 2\mathrm{H_2O}(l) \\ 1 \ \mathrm{mol} & 2 \ \mathrm{mol} & 1 \ \mathrm{mol} & 2 \ \mathrm{mol} \end{array}$$

moles
$$H_3O^+$$
 = moles OH^-
 $M \cdot V \cdot 1 = M \cdot V \cdot 2$

Indicators

- **Indicators** are often added to the analyte solution produce an observable physical change to (signaling the end point) at or near the equivalence point.
- Large changes in the relative concentration of analyte or titrant occur in the equivalence-point region. These concentration changes cause the indicator to change in appearance.

Indicators	Acid Colour	Range	Base Colour
Methyl Violet	yellow	0.0 – 1.6	blue
Malachite green	yellow	0.2 – 1.8	blue-gro
Cresol red	red	1.0 – 2.0	yellow
Thymol blue	red	1.2 – 2.8	yellow
Benzopurpurin 4B	violet	1.2 – 3.8	red
Orange IV	red	1.4 – 2.6	yellov
Phloxine B	colourless	2.1 – 4.1	pink
2,4-Dinitrophenol	colourless	2.8 - 4.0	yellov
Methyl yellow (in ethanol)	red	2.9 – 4.0	yellov
Bromophenol blue	yellow	3.0 – 4.6	blue-vio
Congo red	blue	3.1 – 4.9	red
Methyl orange	red	3.2 - 4.4	yellov
Bromocresol green	yellow	4.0 – 5.6	blue
alpha-Naphthyl red	red	4.0 – 5.7	yellov
Methyl red	red	4.8 - 6.0	yellov
Litmus (azolitmin)	red	5.0 - 7.0	blue
Bromocresol purple	yellow	5.2 - 6.8	viole
4-Nitrophenol	colourless	5.4 - 6.6	yellov
Bromothymol blue	yellow	6.0 - 7.6	blue
Phenol red	yellow	6.4 - 8.0	red

olet

5/9/2021

The titration of an acid with a base

Acid solution with indicator Added base is measured with a buret. Color change shows neutralization.

Acid-Base Indicators

- A. Finding the equivalence point of a titration1) Use a pH meter
- a) Plot pH versus titrant volume
- b) Center vertical region = equivalence point
- 2) Use an Acid-Base Indicator
- a) Acid-Base Indicator = molecule that changes color based on pH
- b) Choose an indicator that changes color at the equivalence point
 c) End Point = when the indicator changes color. If you have chosen the wrong indicator, the end point will be different than the eq. pt.
- d) Indicators are often Weak Acids that lose a proton (causing the color change) when [OH-] reaches a certain concentration

9 م<u>د.</u> مسار علي عواد

the behavior of an acid-type indicator

$HIn + H_2O \longrightarrow In^- + H_3O^+$

The equilibrium-constant expression for the dissociation of an acid-type indicator takes the form

$$K_{\rm a} = \frac{[\rm H_3O^+][\rm In^-]}{[\rm HIn]}$$

Rearranging leads to

$$[H_{3}O^{+}] = K_{a}\frac{[HIn]}{[In^{-}]}$$

 $pH = pK_a + \log [In_-]/[HIn]$

We see then that the **hydronium ion** is proportional to the **ratio** of the **concentration of the acid** form to the **concentration of the base form** of the indicator

The equilibrium for a base-type indicator

 $In + H_2O \longrightarrow InH^+ + OH^-$

Color change and molecular modes for phenolphthalein. (a) Acidic form after hydrolysis of the lactone form. (b) Basic form.

the behavior of an acid-type indicator

- ✤ we can write that the average indicator, HIn, exhibits its pure acid color when
- ✤ and its base color when

$$\frac{[\text{HIn}]}{[\text{In}^-]} \le \frac{1}{10}$$

 $pH = pK_a \pm 1$

$$pH = pK_a + log(1/10) = pK_a - 1$$

$$pH = pK_a + log(10/1) = pK_a + 1$$

$$[H_3O^+] = K_a \frac{[HIn]}{[In^-]}$$
 \longrightarrow $[H_3O^+] = 10K_a$ or $[H_3O^+] = 0.1 K_a$

- Most indicators require a transition range of about 02 pH units.
- The pKa of the indicator should be close to the pH of the equivalence point.
- The human eye is not very sensitive to color differences in a solution containing a mixture of HIn and In. particularly when the ratio [HIn]/[In2] is greater than about 10 or smaller than about 0.1.
 Because of this restriction.

[HIn]

 $[In^{-}]$