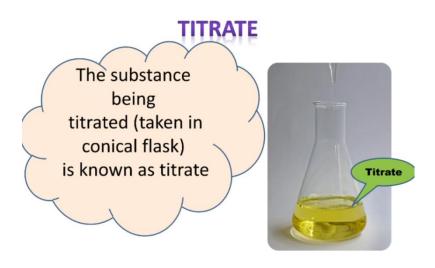
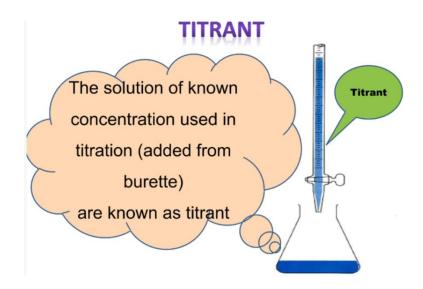
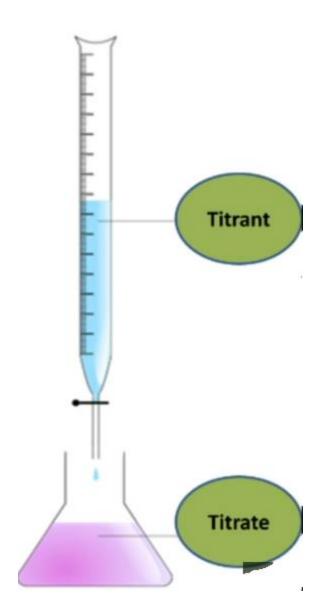

Fundamentals of Analytical Chemistry

م.د.مسار علي عواد

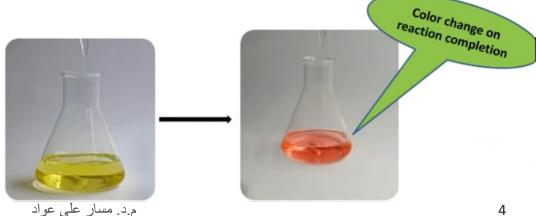



Titration


- ☐ Analytical method in which a standard solution is used to determine the concentration of an unknown solution.
- ☐ A quantitative and volumetric technique, to determine the unknown concentration of a solution by the known concentration of a solution in the presence of indicator is called Titration.
- is used to determine the unidentified concentration of a known analyte

Some Terms Used in Volumetric Titrations

Equivalence point (endpoint)


- –Point at which equal amounts of H₃O⁺ and OH⁻ have been added.
- —is the point in a titration when the amount of added standard reagent is equivalent to the amount of analyte.
- –Determined by...
 - indicator color change

13 13 12 11 11 10 10 pH Equivalence point 6 2 10 30 40 50 60 mL 0.100M NaOH added to 50.00mL 0.100M HCI

The **end point**

The **end point** is the point in a titration when a physical change occurs that is associated with

the condition of chemical equivalence.

A standard solution

A **standard solution** is a reagent of known concentration. Standard solutions are used in titrations and in many other chemical analyses.

A primary standard solution is a highly purified compound that serve as a reference material in all volumetric titration methods.

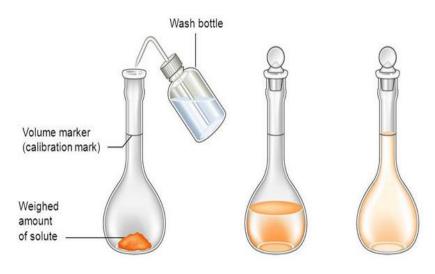
primary standard solution

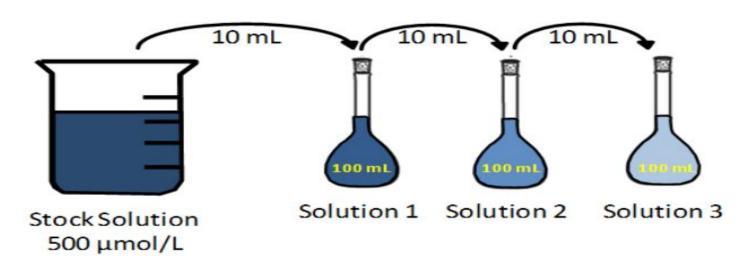
- -Stability toward air.
- High purify.
- Absence of hydrate water
- Ready availability at modest cost
- Reasonable solubility in the titration medium.
- Reasonable large molar mass so that the relative error associated with weighing the standard is minimized

A secondary standard

A **secondary standard** is a compound whose purity has been determined by chemical analysis. The secondary standard serves as the working standard material for titrations and for many other analyses.

The ideal standard solution for a titrimetric method will react rapidly with the analyte so that the time required between additions of reagent is minimized; be sufficiently stable so that it is necessary to determine its concentration only once. react more or less completely with the analyte so that satisfactory end points are realized; undergo a selective reaction with the analyte that can be described by a balanced.

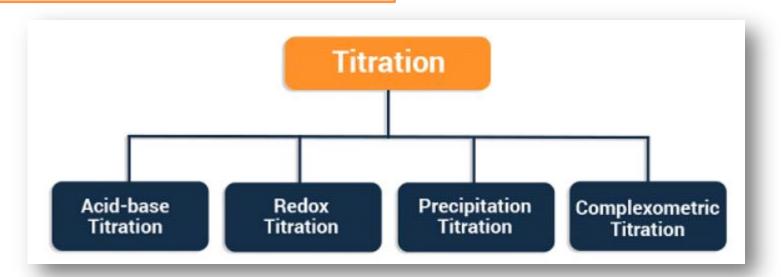

A standard solution


Primary standard

- HCl ,H3SO4
- NaOH, NH3
- KMnO4

Secondary standard

- Oxalic acid ,benzoic acid
- Borax, sodium carbonate
- K2Cr2O7,
- Na2C2O4

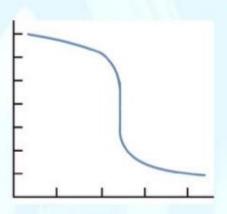


Primary vs Secondary Standard Solution More Information Online WWW.DIFFERENCEBETWEEN.COM							
Commence to the second	Primary Standard Solution	Secondary Standard Solution					
DEFINITION	The solution made form primary standard substances.	The solution made from secondary standard substances.					
PURITY	Purity of primary standard solutions is very high.	Purity of secondary standard solutions is low compared to primary standards.					
REACTIVITY	Very low	High compared to primary standards					
NATURE	Not hygroscopic	Hygroscopic					
CONTAMINATION	Rarely gets contaminated.	Easily get contaminated due to their high reactivity					
APPLICATION	Used to standardize secondary standards and other reagents.	Important for specific analytical experiments.					

Types of Titration

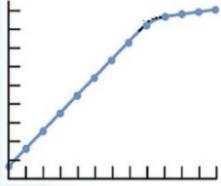
Titrations can be classified as:

Based on the strength of reagents used:


- Acid-base reactions.
 - Na₂CO₃, Na₂B₄O₇, KH(C₈H₄O₄), HCl (cbpt.)
- Complex formation reactions.
 - AgNO₃, NaCl
- Precipitation reactions.
 - AgNO₃, KCI
- Redox reactions.
 - K₂Cr₂O₇, Na₂C₂O₄, I₂

Type of Titrations based on Chemical Reactions

• Acid-Base Titrations, example: $H^+ + OH^- \rightarrow H_2O$ $K = 1/K_w$


- Precipitation Titrations, example: $Ag^{+}_{(aq)} + Cl^{-}_{(aq)} \rightarrow AgCl_{(s)}$ K=1/K_{sp}
- Redox Titrations: $5 \text{ H}_2\text{O}_2 + 2 \text{ MnO}_4^- + \text{H}^+ \rightarrow 5 \text{ O}_2 + 2 \text{ Mn}^{2+} + 8\text{H}_2\text{O}$
- Complexometric Titrations, example:
 EDTA + Ca²⁺ → (Ca–EDTA)²⁺

> Type of Titration Curves

Type	Example.	y-axis	x-axis
Acid-base	HCl/NaOH	pH	V. NaOH
Precipitation	Ag+/Cl-	pAg+	V. Ag+
Complexation	Ca ²⁺ /EDTA	pCa ²⁺	V. EDTA
Redox	MnO_4^-/Fe^{2+}	Potential	V. Fe ²⁺

V. = volume

,	Туре	Example	y-axis	x-axis
	Spectro- photometric	apotransferrin/ Fe ³⁺	Absorbance	V. Fe ³⁺
ĺ	Thermo- metric	H ₃ BO ₄ / NaOH	Temperature	V. NaOH