المحاضرة رقم 2

Chemical equilibrium

- Most reactions DO NOT go to completion.
- * Reactions that do not go to completion are REVERSIBLE.
- * Reversible reactions exist in a state of EQUILIBRIUM.
- **Equilibrium** is reached when the rate of the forward reaction equals the rate of the reverse reaction.
- ❖ All reactant and product concentrations are constant at equilibrium.
- ❖ The equilibrium reaction does not mean the amounts of products and reactants are equal.

$$N_{2(g)} + 3H_{2(g)} \longrightarrow 2NH_{3(g)}$$

Equilibrium-constant expressions

· Consider the following equilibrium system:

$$aA + bB \stackrel{Kf}{\rightleftharpoons} cC + dD$$

$$Rate2 = K_r \quad [C]^c \quad [D]^d$$
 $Rate1 = K_f \quad [A]^a \quad [B]^b$
 $K_r[C]^c \quad [D]^d = K_f \quad [A]^a \quad [B]^b$

Rate 1 = Rate 2

$$\frac{k_f}{k_r} = \frac{[\mathbf{C}]^{\mathbf{c}}[\mathbf{D}]^d}{[\mathbf{A}]^{\mathbf{a}}[\mathbf{B}]^b}$$

$$\frac{K_f}{k_r} = k_{eq} \qquad \qquad \qquad \qquad \frac{\kappa_f}{\kappa_r} = \kappa_{eq} = \frac{[\mathbf{C}]^{\mathbf{c}}[\mathbf{D}]^d}{[\mathbf{A}]^{\mathbf{a}}[\mathbf{B}]^b}$$

• The numerical value of K_{eq} is calculated using the concentrations of reactants and products that exist at equilibrium (equilibrium constant)

What does the magnitude of $oldsymbol{K_{eq}}$ tell us about the reaction at equilibrium?

1-When the equilibrium constant is very small. $k_{eq} = \sim 0.001$ or less, we will have mostly reactant species present at equilibrium. $K_{eq} = small\ value$

2- When the equilibrium constant is very high., $k_{eq} = 1000$ or more, we will have mostly product species present at equilibrium. $K_{eq} = high \, value$

3- When the equilibrium constant is moderate. If k_{eq} is in between 0.001 and 1000, we will have a significant concentration of both reactant and product species present at equilibrium.

$$[C]^c [D]^d \cong [A]^a [B]^b$$

Magnitude of K increasing \longrightarrow

Composition of equilibrium mixture

Applying the Ion-Product Constant for Water

The self-ionization of water

(the process in which water ionizes to hydronium ions and hydroxide ions)

- When two molecules of water collide, there can be a transfer of a hydrogen ion from one molecule to the other.
- The products are a positively charged hydronium ion and a negatively charged hydroxide ion.

$$H_2O \rightleftharpoons H^+ + OH^-$$

$$H^+ + H_2O \rightleftharpoons H_3O^+$$

$$H2O + H_2O \rightleftharpoons H_3O^+ + OH^-$$

$$k = \frac{[OH^{-}][H3O^{+}]}{[H_2O][H_2O]}$$

$$K_w = K \cdot [H_2O] \cdot [H_2O] = [OH^-] \cdot [H_3O^+]$$

$$K_w = [OH^-][H_3O^+]$$

 $\mathbf{K}_{\mathbf{w}}$ characterizes the degree of dissociation of water. Generally, its negative logarithm is used:

$$pK_w = -\log(K_w) = 14$$

The value of Kw at 25° C is 1 x 10^{-14} . Since pure water is neutral in nature. H+ ion concentration must be equal to OH- ion concentration.

$$[H_3O^+] = [OH^{-}] = x$$

$$K_w = X^2$$
 \longrightarrow $X^2 = 1 \times 10^{-14}$

$$X = 1 \times 10^{-7}$$
 \longrightarrow $[OH^{-1}] = [H_3O^+] = 1 \times 10^{-7}$

Applying the Ion-Product Constant for Water

$$\begin{aligned} \mathsf{H_2O_{(I)}} + \mathsf{H_2O_{(I)}} &\rightleftharpoons \mathsf{H_3O^+_{(aq)}} + \mathsf{OH^-_{(aq)}} \\ \mathsf{H_2O_{(I)}} &\rightleftharpoons \mathsf{H^+_{(aq)}} + \mathsf{OH^-_{(aq)}} \end{aligned}$$

· In pure water,

$$K_{-} = [H,O^{+}][OH^{+}] = 1.0 \times 10^{-14}$$

$$[H^+] = \frac{K_w}{[OH^-]}$$
 $[OH^-] = \frac{K_w}{[H^+]}$

	Acidic, basic or neutral	pH at 298 K
[H+] = [OH-]	neutral	7
[H+] > [OH-]	acidic	<7
[OH ⁻] > [H ⁺]	basic	>7

Because

$$[H_3O^*][OH^*] = K_y = 1.0 \times 10^{-9},$$

we know that

$$-\log [H,O^{-}] + -\log [OH^{-}] = -\log K_{*} = 14.00$$

or, in other words,

$$pH + pOH = pK_{*} = 14.00$$

Dissociation Constants

$$K_c = \frac{[H_3O^+][A^-]}{[HA]}$$

 This equilibrium constant is called the acid-dissociation constant, K_a. The greater the value of Ka, the stronger the acid.

Weak Bases react with water to produce hydroxide ion.

$$NH_3(aq) + H_2O(l) \Longrightarrow NH_4^+(aq) + OH^-(aq)$$
Base Acid

$$B(aq) + H_2O(I) = HB^+(aq) + OH^-(aq)$$

The equilibrium constant expression for this reaction is:

$$K_b = \frac{[\mathsf{HB}^+] [\mathsf{OH}^-]}{[\mathsf{B}]}$$

where K_b is the base-dissociation constant.

