المحاضرة رقم 4

Example 1

What is the molar concentration of K₃Fe(CN)₆ in a solution that contains 63.3 ppm of (329.3 g/mol)?

$$ppm = 63.3 \, mg/L$$

$$M = \frac{F.wt \times 1000}{F.wt \times 1000}$$

M =? ppm= 63.3 F. wt = 329.3 g/mol

$$ppm = \frac{63.3 \, mg/L}{1000 \, mg/g}$$

$$ppm = 0.0363 \ g/L$$

$$ppm = M \times F.wt \times 1000$$

$$M\left(\frac{mol}{L}\right) = \frac{63.3 \ (\frac{mg}{L})}{329.3 \ \left(\frac{g}{mol}\right) \times 1000 \ (\frac{mg}{g})}$$

% by weight (% w/w)

$$\%$$
w/w = $\frac{\text{mass of solute}}{\text{total mass of solution}} \times 100\%$

What is the % w/w of a solution if 3.00 grams of NaCl are dissolved in 17.00 g of water?

 $mass\ of\ solute = 3\ g$

total mass of solution = mass of solute + mass of solvent

total mass of solution = 3 g + 17 gtotal mass of solution = 20 g

$$\%\frac{W}{W} = \frac{3 g}{20 g} \times 100$$

$$\%\frac{W}{W} = 15\%$$

% by volume (% w/w)

$$%v/v = \frac{\text{volume of solute}}{\text{total volume of solution}} \times 100\%$$

What is the % v/v of a solution if 20.0 mL of alcohol are dissolved in 50.0 mL of solvent?

 $volume\ of\ solute\ =\ 20\ ml$

total volume of solution = volume of solute + volume of solvent

total volume of solution = 20 ml + 50 ml total volume of solution = 70 ml

$$\%v/v = \frac{20 \, ml}{70 \, ml} \times 100$$

$$\%\frac{V}{V} = 28.5\%$$

Dr.Masar Ali Awad

% by weight /volume (% w/v)

$$weight/volume-percent-(w/v) = \frac{weight-solute, g}{volume-solution, mL} \times 100\%$$

What is the % w/v of a solution if 21.0 g of NaCl are dissolved in 100.0 mL of solution?

$$weight of solute = 21 g$$

$$\%w/v = \frac{21 g}{100 ml} \times 100$$

$$\%\frac{W}{V} = 21.0\%$$

Classifying Solutions of Electrolytes

Weak electrolytes ionize only partially

Strong electrolytes ionize almost completely

NH3, NH4OH

CH3COOH, H2CO3, H2S, H2SO3, H3PO4 $\mathbf{H_2SO_4}$, $\mathbf{HC1}$, $\mathbf{HNO_3}$ \mathbf{HBr} , $\mathbf{HClO_3}$, $\mathbf{HClO_4}$

NaOH, KOH

CH₃COOH(aq) CH₃COO + H⁺

NaOH (aq) \longrightarrow Na⁺ + OH

HCl (aq) \longrightarrow H⁺ + Cl⁻

 H_2SO_4 (aq) \longrightarrow 2 H⁺ + SO_4^{2-}

Analytical versus Equilibrium concentration

Analytical concentration is amount of solute that is dissolved in the specific volume of solution.

Analytical concentration has differed from the equilibrium concentration especially when the electrolyte is partially dissolving in solution

Example: Preparation 0.2 M acetic acid by dissolving 0.2 mol of the acetic acid in 1L solution.

What is analytical concentration and equilibrium concentration

Analytical concentration

 $C_{HOAc} = [HOAc]_{undissociated} + [OAc]$

equilibrium concentration

2/8/2025

DcMasar All Awad

Stoichiometric Calculations

- Stoichiometry is the field of chemistry that is concerned with the relative quantities of reactants and products in chemical reactions.
- mass relationships between substances in a chemical reaction
- based on the mole ratio

Mole Ratio

indicated by coefficients in a balanced equation

Equation:	$2 H_2(g)$	+	$O_2(g)$	\longrightarrow	2 H ₂ O(<i>l</i>)
Molecules:	2 molecules H_2	+	1 molecule O_2	\longrightarrow	2 molecules H ₂ O
	33 33				
Mass (amu):	4.0 amu H ₂	+	32.0 amu O ₂		36.0 amu H ₂ O
Amount (mol):	2 mol H ₂	+	1 mol O ₂	>	2 mol H ₂ O
Mass (g):	4.0 g H ₂	+	32.0 g O ₂		36.0 g H ₂ O

Stoichiometric calculations in volumetric analysis

Volumetric titration: A solution of accurately known concentration (Standard solution) is gradually added to another solution of unknown concentration until the chemical reaction between the two solutions is complete.

Equivalence point— the point at which the reaction is complete Indicator — substance that changes color at (or near) the equivalence point The titrant is add Slowly until The indicator changes color (pink)

Endpoint - the point at which the color of indicator changes

Requirements for titration • The reaction must be stoichiometric.

$$V_1 * N_1 = V_2 * N_2$$

Where:

V₁: volume of titrant used

N₁: concentration of titrant expressed in normality

V2: volume dilution . titrand

N₂: concentration of titrand (unknown)

Titration Setup

Titration Setup

Titration Setup

Titration Setup

Titration Setup

Titrant
Resource Setup

Analyse / Titrand
Resour Volume,

Malnown Concentration

Conicci Fis

2/8/2021

Dr.Masar Ali Awad